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a b s t r a c t

In this paper, we investigate a simple limiter using weighted essentially non-oscillatory
(WENO) methodology for the Runge–Kutta discontinuous Galerkin (RKDG) methods solv-
ing conservation laws, with the goal of obtaining a robust and high order limiting proce-
dure to simultaneously achieve uniform high order accuracy and sharp, non-oscillatory
shock transitions. The idea of this limiter is to reconstruct the entire polynomial, instead
of reconstructing point values or moments in the classical WENO reconstructions. That
is, the reconstruction polynomial on the target cell is a convex combination of polynomials
on this cell and its neighboring cells and the nonlinear weights of the convex combination
follow the classical WENO procedure. The main advantage of this limiter is its simplicity in
implementation, especially for multi-dimensional meshes. Numerical results in one and
two dimensions are provided to illustrate the behavior of this procedure.

� 2012 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we consider the following hyperbolic conservation law

ut þ f ðuÞx ¼ 0;
uðx;0Þ ¼ u0ðxÞ

ð1:1Þ

and its two-dimensional version

ut þ f ðuÞx þ gðuÞy ¼ 0;
uðx; y;0Þ ¼ u0ðx; yÞ;

ð1:2Þ

where u; f ðuÞ and gðuÞ can be either scalars or vectors. We investigate a simple limiter using weighted essentially non-oscil-
latory (WENO) methodology for the Runge–Kutta discontinuous Galerkin (RKDG) methods, with the goal of obtaining a ro-
bust and high order limiting procedure to simultaneously maintain uniform high order accuracy in smooth regions and
control spurious numerical oscillations near discontinuities. The idea of this limiter is to reconstruct the entire polynomial
based on the polynomials of the DG solution in the target and neighboring cells, instead of reconstructing point values or
moments based on cell averages or lower order moments.

DG methods are a class of finite element methods using completely discontinuous piecewise polynomials as basis func-
tions. The first DG method was introduced by Reed and Hill [25] in 1973, to solve the neutron transport equation. The type of
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DG methods we will discuss in this paper is the Runge–Kutta discontinuous Galerkin (RKDG) methods [7,6,5,4,8], which use
explicit and nonlinearly stable high order Runge–Kutta method for time discretization and the DG method for space discret-
ization. This method has several advantages, such as local conservation, the allowance of arbitrary triangulation, excellent
parallel efficiency, the capability in h–p adaptivity and certain superconvergence properties.

The main difficulty in solving (1.1) and (1.2) is that solutions may contain discontinuities even if the initial conditions are
smooth. DG methods can compute solutions to (1.1) and (1.2), which are either smooth or have weak shocks and other dis-
continuities, without further modification. However, for problems containing strong discontinuities, the scheme will gener-
ate significant oscillations and even nonlinear instability. We often need to apply nonlinear limiters to control these
oscillations. Many such limiters exist in the literature, such as the minmod type total variation bounded (TVB) limiter
[7,6,5,4,8], the moment-based limiter [2] and the more recent improved moment limiter [3]. Although these limiters can
control spurious numerical oscillations near discontinuities, they tend to degrade accuracy when mistakenly used in smooth
regions of the solution. It is usually difficult to design limiters to achieve both high order accuracy and a non-oscillatory
property near discontinuities. Qiu and Shu [23] and Zhu et al. [37] have made such an attempt using WENO methodology
[13,19,15,10,14,18,20,27] as limiters for the DG methods. They use the usual WENO reconstruction based on cell averages
of neighboring cells as in [15,14,27], to reconstruct the values of the solutions at certain Gaussian quadrature points in
the target cells, and then rebuild the solution polynomials from the original cell average and the reconstructed values at
the Gaussian quadrature points through a numerical integration for the moments. This limiter needs to use the information
from not only the immediate neighboring cells but also neighbors’ neighbors, making it complicated to implement in multi-
dimensions, especially for unstructured meshes [37,14,36]. The effort in [21,24] attempts to construct Hermite type WENO
approximations, which use the information of not only the cell averages but also the lower order moments such as slopes, to
reduce the spread of reconstruction stencils. However for higher order methods the information of neighbors’ neighbors is
still needed.

In this paper, we use the WENO methodology to design a new and simpler limiter for the RKDG methods. We do not
reconstruct the point values or moments individually and separately, but attempt to reconstruct the entire polynomial in
one shot, using the information only from the target cell and its immediate neighbors. As we will see later, this approach
simultaneously removes the problem of negative weights and reduces considerably the complexity of implementation, espe-
cially for multi-dimensional meshes including unstructured meshes, although in this paper simulation results on the struc-
tured meshes only are reported. Comparing with previous WENO type limiters for DG schemes, the limiter developed in this
paper uses most fully the information of the complete polynomials which are already available for DG methods in the target
and neighboring cells. Because of this richness of available information, the choice of linear weights are much less restrictive.
Essentially, any choice of positive linear weights which add up to one is adequate for accuracy. We refer to [10,16,9] and the
review paper [30] for a detailed discussion of such practice in choosing linear weights for WENO procedures in finite volume
WENO schemes. For our new WENO limiter, following the practice in [9], we give the central cell with a larger linear weight
compared to the neighboring cells since in smooth regions the central stencil should provide the most stable reconstruction
together with the highest quality in accuracy.

This paper is organized as follows. We first review the RKDG algorithm formulation for the model problem in Section 2. In
Section 3, we present the details of our WENO limiting procedure. In Section 4, numerical experiments are provided to verify
the accuracy and stability of this approach. Finally, concluding remarks are provided in Section 5.

2. Review of the RKDG methods

In this section, we give an overview of the algorithm formulation of the RKDG method for solving hyperbolic conservation
laws (1.1) and (1.2).

One-dimensional case. To define the DG method for (1.1) in the one-dimensional case, we consider a partition of the
computational domain ½a; b� in N cells as follows

a ¼ x1
2
< x3

2
< � � � < xNþ1

2
¼ b:

We denote

Ij ¼ ½xj�1
2
; xjþ1

2
�; xj ¼

1
2

xjþ1
2
þ xj�1

2

� �
as the cell and cell center, respectively. We again denote

Dxj ¼ xjþ1
2
� xj�1

2
; h ¼ max

16j6N
Dxj:

We assume that the mesh is regular, namely there is a constant c > 0 independent of h such that

Dxj P ch; 1 6 j 6 N:

Define the approximation space as

Vk
h ¼ v : v jIj

2 PkðIjÞ; 1 6 j 6 N
n o

ð2:1Þ
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where PkðIjÞ denotes the set of polynomials of degree up to k defined on the cell Ij. With a slight abuse of notation, the semi-
discrete DG method for solving (1.1) is defined as follows: find the unique function u ¼ uðtÞ 2 Vk

h such that, for j ¼ 1; . . . ;N,Z
Ij

utvdx�
Z

Ij

f ðuÞvxdxþ f̂ jþ1
2
vðx�jþ1

2
Þ � f̂ j�1

2
vðxþ

j�1
2
Þ ¼ 0 ð2:2Þ

holds for all test functions v 2 Vk
h. Here and below u�, uþ denote the left and right limits of the function u at the cell interface,

respectively. f̂ jþ1
2

is the the so-called monotone numerical fluxes (approximate or exact Riemann solvers in the system case).
Two-dimensional case. As before, we assume a rectangular mesh to cover the computational domain ½a; b�2, consisting of

cells

Ii;j ¼ fðx; yÞ : xi�1
2
6 x 6 xiþ1

2
; yj�1

2
6 y 6 yjþ1

2
g

for 1 6 i 6 Nx and 1 6 j 6 Ny. We also assume the mesh is regular and define a finite element space consisting of piecewise
polynomials

Wk
h ¼ v : v jIi;j

2 PkðIi;jÞ; 1 6 i 6 Nx; 1 6 j 6 Ny

n o
where PkðIi;jÞ denotes the set of polynomials of degree up to k defined on the cell Ii;j. The semi-discrete DG method for solving
(1.2) is defined as follows: find the unique function u 2Wk

h such that, for all test functions v 2Wk
h and all 1 6 i 6 Nx and

1 6 j 6 Ny, we haveZ
Ii;j

utv dxdy ¼
Z

Ii;j

f ðuÞvxdxdy�
Z

Ij

f̂ iþ1
2
ðyÞvðx�iþ1

2
; yÞdyþ

Z
Ij

f̂ i�1
2
ðyÞvðxþ

i�1
2
; yÞdyþ

Z
Ii;j

gðuÞvy dxdy

�
Z

Ii

ĝjþ1
2
ðxÞvðx; y�jþ1

2
Þdxþ

Z
Ii

ĝi�1
2
ðxÞvðx; yþ

j�1
2
Þdx: ð2:3Þ

The semi-discrete scheme (2.2) and (2.3) can be written as

ut ¼ LðuÞ;

where LðuÞ is the spatial discretization operator. To discretize the time variable, we use the following total variation dimin-
ishing (TVD) third order Runge–Kutta method [31]:

uð1Þ ¼ un þ DtLðunÞ;

uð2Þ ¼ 3
4

un þ 1
4

uð1Þ þ 1
4

DtLðuð1ÞÞ;

unþ1 ¼ 1
3

un þ 2
3

uð2Þ þ 2
3

DtLðuð2ÞÞ:

ð2:4Þ

Other TVD, or strong stability preserving (SSP) time discretizations [11] can of course also be used.
For simplicity, we consider the forward Euler time discretization of the semi-discrete scheme (2.2). Starting from a solu-

tion un 2 Vk
h at time level n (for the initial condition, u0 is taken as the L2 projection of the analytical initial condition into Vk

h).
We would like to ‘‘limit’’ it to obtain a new function un;new before advancing it to next time level. That is: find unþ1 2 Vk

h, such
that, for j ¼ 1; . . . ;N,Z

Ij

unþ1 � un;new

Dt
v dx�

Z
Ij

f ðun;newÞvx dxþ f̂ n;new
jþ1

2
vðx�jþ1

2
Þ � f̂ n;new

j�1
2

vðxþ
j�1

2
Þ ¼ 0 ð2:5Þ

holds for all test functions v 2 Vk
h. The limiting procedure to go from un to un;new will be discussed in the following section.

3. A new WENO limiter

In this section, we present the details of our new WENO limiting procedure for the RKDG methods. As in [23], we also
adopt the following framework:

� Identify the troubled cells, namely, those cells which might need the limiting procedure.
� Replace the solution polynomials in the troubled cells with reconstructed polynomials, which keep the original cell aver-

ages, maintain the original high order of accuracy, but are less oscillatory.

3.1. Identification of the troubled cells

In this subsection, we discuss the identification of the troubled cells. This part is not the emphasis of our paper and we do
not attempt to compare the pros and cons of various troubled cell identification procedures. We will simply use the TVB
minmod limiter [7,6,5,4,8] to identify troubled cells. We emphasize that the goal of our limiter is to be insensitive to the
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troubled-cell indicators. That is, if more troubled cells are identified than they actually exist, the computational cost of the
algorithm will increase but the original high order accuracy should be maintained.

We first provide an overview of the minmod limiter [6] in the one-dimensional scalar case. Denote the cell average of the
solution u as

�uj ¼
1

Dxj

Z
Ij

udx ð3:1Þ

and further denote

~uj ¼ u�jþ1
2
� �uj;

~~uj ¼ �uj � uþ
j�1

2
: ð3:2Þ

~uj and ~~uj are modified either by the usual minmod limiter [12],

~uðmodÞ
j ¼ m ~uj;Dþ�uj;D��uj

� �
; ~~uðmodÞ

j ¼ m ~~uj;Dþ�uj;D��uj

� �
; ð3:3Þ

where

Dþ�uj ¼ �ujþ1 � �uj; D��uj ¼ �uj � �uj�1;

with the minmod function m defined by

mða1; . . . ; alÞ ¼
smin

16j6l
jajj if s ¼ signða1Þ ¼ � � � ¼ signðalÞ;

0; otherwise;

(
ð3:4Þ

or by the TVB modified minmod function [28]

~mða1; . . . ; alÞ ¼
a1 if ja1j 6 Mh2

;

mða1; . . . ; alÞ; otherwise;

(
ð3:5Þ

where the TVB parameter M has to be chosen adequately depending on the solution of the problem. For more details, see [6].
To detect the troubled cells using the limiter described above, we declare that whenever one of the minmod functions

(3.3) gets enacted (returns other than the first argument), this cell is marked as a troubled cell and is subject to WENO recon-
structions. Of course, if too few cells are identified as troubled cells, oscillations and possible instability may not be avoided.
If too many cells are identified as troubled cells, the computational cost associated with the second step will increase. There-
fore, troubled-cell indicator is a very important issue for WENO limiters. However our main concern in this paper is on how
to design the new WENO limiter. We refer the readers to [22] about the comparison among different troubled-cell indicators.

We have given the details of identifying troubled cells using the TVB minmod limiters for the one-dimensional scalar case.
For two-dimensional scalar case on rectangular mesh, we perform the TVB minmod limiter in the x-direction and the y-
direction separately as in the one-dimensional case. For more details and unstructured meshes, see, e.g. [4]. For one-dimen-
sional and two-dimensional systems, we use the characteristic-wise TVB minmod limiters defined in [5,8], respectively.

3.2. Reconstruction of the new polynomials in the troubled cells using a WENO limiter: scalar case

In this subsection, we present the details of the reconstruction procedure for the new polynomials in the troubled cells
using our WENO limiter for scalar conservation laws. The idea of this WENO limiter is to reconstruct a new polynomial on
the troubled cell Ij which is a convex combination of polynomials on this cell and its immediate neighboring cells, with nec-
essary adjustments to keep the original cell average on the target cell. The construction of the nonlinear weights in the con-
vex combination coefficients follows the classical WENO procedure.

We start with the one-dimensional scalar case. Assume that the cell Ij is a troubled cell. Denote the DG solution polyno-
mial of u on the cells Ij�1; Ij; Ijþ1 as p0ðxÞ; p1ðxÞ; p2ðxÞ, respectively. In order to make sure that the reconstructed polynomial
maintains the original cell average of p1 in the target cell Ij, we make the following modifications:

~p0ðxÞ ¼ p0ðxÞ � ��p0 þ ��p1; ~p2ðxÞ ¼ p2ðxÞ � ��p2 þ ��p1; ð3:6Þ

where

��p0 ¼
1

Dxj

Z
Ij

p0ðxÞdx; ��p1 ¼
1

Dxj

Z
Ij

p1ðxÞdx; ��p2 ¼
1

Dxj

Z
Ij

p2ðxÞdx:

The final nonlinear WENO reconstruction polynomial pnew
1 ðxÞ is now defined by a convex combination of these modified

polynomials:

pnew
1 ðxÞ ¼ x0~p0ðxÞ þx1p1ðxÞ þx2~p2ðxÞ: ð3:7Þ

From (3.6) and (3.7), it is easy to prove that pnew
1 has the same cell average and order of accuracy as p1 if the weights satisfy

x0 þx1 þx2 ¼ 1.
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Following [15,14,1,16], the normalized nonlinear weights are defined as

xl ¼
�xlP
s
�ws
; ð3:8Þ

where the non-normalized nonlinear weights �wl are functions of the linear weights cl and the so-called smoothness indica-
tors bl as follows:

�xl ¼
cl

ðeþ blÞ
r : ð3:9Þ

We use e ¼ 10�6 and r ¼ 2 in all computations in this paper. As in [15,1], we use the following smoothness indicator for the
one-dimensional case:

bl ¼
Xk

s¼1

Z
Ij

Dx2s�1
j

@s

@xs
plðxÞ

� �2

dx: ð3:10Þ

For the two-dimensional case and more details about this smoothness indicator, we refer to [15,1,29]. Notice that, because
we have used the complete information of the three polynomials p0ðxÞ; p1ðxÞ; p2ðxÞ in the three cells Ij�1; Ij; Ijþ1, we do not
have extra requirements on the linear weights in order to maintain the original high order accuracy. The linear weights
can be chosen to be any set of positive numbers adding up to one. Since for smooth solutions the central cell is usually
the best one, we put a larger linear weight on the central cell than on the neighboring cells, i.e.

c1 � c0; c1 � c2:

Lower values of the ratio c1
c0
; c1
c2

yield better results on discontinuities while larger values are usually better for smooth solu-
tions. In our numerical tests we take

c0 ¼ 0:001; c1 ¼ 0:998; c2 ¼ 0:001; ð3:11Þ

which can maintain the original high order in smooth regions and can keep essentially non-oscillatory shock transitions in all
our numerical examples.

We summarize the WENO limiting procedure for one-dimensional scalar conservation laws as follows. Assuming that DG
solution at time level n is un, for j ¼ 1; . . . ;N,

1. Use the minmod limiter described in Section 3.1 to detect whether Ij is a troubled cell or not.
2. If Ij is not a troubled cell, then un;newjIj

¼ unjIj
.

If Ij is a troubled cell, then

(a) Denote un on the cells Ij�1; Ij; Ijþ1 as p0ðxÞ; p1ðxÞ; p2ðxÞ, respectively and modify p0ðxÞ; p2ðxÞ to ~p1ðxÞ; ~p2ðxÞ using (3.6).
(b) Determine the linear weights by (3.11).
(c) Compute the smoothness indicators bl using (3.10) for l ¼ 0;1;2.
(d) Compute the normalized nonlinear weights wl using (3.8) and (3.9) for l ¼ 0;1;2.
(e) The reconstruction polynomial is given by (3.7), i.e. un;newjIj

¼ x0~p0ðxÞ þx1p1ðxÞ þx2~p2ðxÞ.

For the two-dimensional scalar case with rectangular meshes considered in this paper, the limiting procedure is similar as
described above. The WENO reconstruction polynomial on the troubled cell Ii;j is a convex combination of the polynomials on
this cell and its four neighboring cells fIi;j�1; Ii;jþ1; Ii�1;j; Iiþ1;jg suitably modified to maintain the original cell average on the
target cell Ii;j. For our numerical tests, we put a larger linear weight 0:996 on the troubled cell Ii;j and the neighboring cells
fIi;j�1; Ii;jþ1; Ii�1;j; Iiþ1;jg get the smaller linear weight 0:001. The nonlinear weights of the convex combination follow the clas-
sical WENO procedure, with smoothness indicators still computed as the sums of L2-norm squares of all the derivatives of
the respective polynomials.

3.3. WENO limiting procedure for systems

In this subsection, we present the details of the WENO limiting procedure for systems.
One-dimensional systems. Consider Eq. (1.1) where u and f are vectors with m components. In order to achieve better

non-oscillatory qualities, the WENO reconstruction limiter is applied with a local characteristic field decomposition, see, e.g.
[29] for more details.

Denote the Jacobian matrix by Aj ¼ @f
@u

���
�uj

. Denote the left and right eigenvectors of Aj by lðpÞj ; rðpÞj ; p ¼ 1; . . . ;m, normalized so

that lðpÞj � r
ðqÞ
j ¼ dpq. Let Rð�ujÞ be the m�m matrix with the right eigenvectors as columns, i.e.

Rð�ujÞ ¼ rð1Þj ; rð2Þj ; . . . ; rðmÞj

� �
: ð3:12Þ
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Clearly, R�1ð�ujÞ is a m�m matrix with the left eigenvectors as rows, that is

R�1ð�ujÞ ¼ lð1Þj ; lð2Þj ; . . . ; lðmÞj

� �T
: ð3:13Þ

The WENO limiting procedure for one-dimensional system case is given as follows. Assuming that the DG solution at time
level n is un (for simplicity, we will use the notation u for the following description), for j ¼ 1; . . . ;N,

1. Compute R ¼ Rð�ujÞ and R�1 as defined in (3.12) and (3.13).
2. Compute Dþ�v j ¼ R�1 �ujþ1 � �uj

� �
, D��v j ¼ R�1 �uj � �uj�1

� �
, ~v j ¼ R�1 u�

jþ1
2
� �uj

� �
and ~~v j ¼ R�1 �uj � uþ

j�1
2

� �
, respectively.

3. Compute ~v ðmodÞ
j ¼ ~mð~v j;Dþ�v j;D��v jÞ and ~~v ðmodÞ

j ¼ ~mð~~v j;Dþ�v j;D��v jÞwith the modified minmod function ~m define in (3.5) for
each component of the vectors.

4. If

~v ðmodÞ
j ¼ ~v j & ~~v ðmodÞ

j ¼ ~~v j; ð3:14Þ

then Ij is not a troubled cell and unewjIj
¼ ujIj

.

Otherwise,

(i) Denote the DG polynomial u on the cells Ijþl as ujþl. Project ujþl into the characteristic fields v jþl ¼ R�1ujþl, for
l ¼ �1;0;1. Note that v jþl is a m-component vector and each component is a polynomial.

(ii) Perform Steps (a)–(e) as in the one-dimensional scalar case for each component of v j which is a troubled component,
namely the corresponding component makes the condition (3.14) not satisfied. The updated vector v j is denoted as
vnew

j .
(iii) unewjIj

¼ Rvnew
j .

Two-dimensional systems. Considering the following two-dimensional system (1.2) where u; f ðuÞ and gðuÞ are vectors
with m components. The DG scheme with Euler forward time discretization for solving (1.2) on a rectangular mesh isZ

Ii;j

unþ1 � u
Dt

vdxdy ¼
Z

Ii;j

f ðuÞvx dxdy�
Z

Ij

f̂ iþ1
2
ðyÞvðx�iþ1

2
; yÞdyþ

Z
Ij

f̂ i�1
2
ðyÞvðxþ

i�1
2
; yÞdy þ

Z
Ii;j

gðuÞvy dxdy

�
Z

Ii

ĝjþ1
2
ðxÞvðx; y�jþ1

2
Þdxþ

Z
Ii

ĝi�1
2
ðxÞvðx; yþ

j�1
2
Þdx; ð3:15Þ

where u ¼ un and f̂ and ĝ are monotone numerical fluxes. For two-dimensional systems, we need to be more careful when
using the characteristic-wise WENO limiting procedure, since there are two Jacobian matrices corresponding to fluxes in the
x and y directions, respectively, and therefore two sets of eigenspaces. We perform the characteristic-wise WENO recon-
struction in the x-direction and y-direction separately. Assume that Ii;j is a troubled cell,

1. In the x-direction, we choose the polynomials on the cells Ii�1;j; Ii;j; Iiþ1;j to reconstruct a new polynomial ux;new
i;j using the

characteristic-wise WENO limiting procedure with the Jacobian matrix @f
@u as in the one-dimensional system case.

2. Similarly, in the y-direction, we choose the polynomials on the cells Ii;j�1; Ii;j; Ii;jþ1 to reconstruct a new polynomial uy;new
i;j

using the characteristic-wise WENO limiting procedure with the Jacobian matrix @g
@u.

3. unewjIi;j
¼ 1

2 ux;new
i;j þ uy;new

i;j

� �
.

After limiting DG solution, we advance it to the next time level for the Euler forward time discretization byZ
Ii;j

unþ1 � unew

Dt
v dxdy ¼

Z
Ii;j

f ðux;newÞvx dxdy�
Z

Ij

f̂ ðux;newÞiþ1
2
ðyÞvðx�iþ1

2
; yÞdyþ

Z
Ij

f̂ ðux;newÞi�1
2
ðyÞvðxþ

i�1
2
; yÞdy

þ
Z

Ii;j

gðuy;newÞvy dxdy�
Z

Ii

ĝðuy;newÞjþ1
2
ðxÞvðx; y�jþ1

2
Þdxþ

Z
Ii

ĝðuy;newÞj�1
2
ðxÞvðx; yþ

j�1
2
Þdx:

The Runge–Kutta time discretization is just a convex combination of such Euler forward steps.

4. Numerical experiments

In this section, we provide numerical experiments to demonstrate the performance of the WENO limiter for RKDG meth-
ods described in Section 3. Even though the advantage of simplicity is most evident for higher-dimensional unstructured
meshes, we show in this paper only results for one and two dimensional structured meshes.
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For all the computational results, we use the local Lax-Friedrichs flux. For the one-dimensional examples, the CFL number
is set to be 0.3 for the P1 case, 0.15 for the P2 case and 0.1 for the P3 case (for the P3 case Dt is further reduced in the accuracy
test).

We have used both uniform and nonuniform meshes in the numerical experiments, obtaining similar results. The non-
uniform meshes are obtained from a 20% random perturbation of each node of the uniform mesh. Take the one-dimensional

case as an example. The cell boundary point is now xjþ1
2
þ 20% rjþ1

2
� 0:5

� �
Dx, where xjþ1

2
and Dx are taking values from the

uniform mesh and rjþ1
2

is a random number from the uniform distribution over the range ð0;1Þ. We will only show results

with accuracy tests on nonuniform meshes as representative tests.
For all the accuracy tests (Tables 4.1–4.8), in order to see the effect of the WENO limiter on the accuracy of the RKDG

method, we use the TVB minmod limiter with a small TVB constant M ¼ 0:01 to identify troubled cells, resulting in many
good cells being identified as troubled cells. For Figs. 4.1–4.12, the solid lines are for the exact solutions or grid converged
solutions, and the symbols ‘‘+’’ are for the numerical solutions (just one point per cell is plotted).

4.1. Scalar conservation laws

Example 4.1. We consider the Burgers equation:

ut þ
u2

2

� �
x

¼ 0; 0 6 x 6 2p ð4:1Þ

Table 4.1
1D Burgers equation. t ¼ 0:5. Uniform mesh with N cells.

N DG without limiter DG with WENO limiter (M ¼ 0:01)

L1 error Order L1 error Order L1 error Order L1 error Order

P1 20 3.81E�03 3.82E�02 7.65E�03 6.86E�02
40 9.46E�04 2.01 1.03E�02 1.90 1.81E�03 2.08 2.01E�02 1.77
80 2.35E�04 2.01 2.65E�03 1.95 3.06E�04 2.57 3.10E�03 2.70

160 5.89E�05 2.00 6.73E�04 1.98 5.93E�05 2.37 6.73E�04 2.20
320 1.47E�05 2.00 1.70E�04 1.98 1.47E�05 2.01 1.70E�04 1.98

P2 20 2.73E�04 5.07E�03 2.68E�04 5.08E�03
40 4.22E�05 2.69 8.96E�04 2.50 4.17E�05 2.68 8.96E�04 2.50
80 6.17E�06 2.77 1.60E�04 2.48 6.17E�06 2.76 1.60E�04 2.48

160 8.86E�07 2.80 2.55E�05 2.65 8.92E�07 2.79 2.55E�05 2.65
320 1.25E�07 2.82 3.79E�06 2.75 1.27E�07 2.81 3.79E�06 2.75

P3 20 1.85E�05 3.64E�04 2.17E�05 3.66E�04
40 1.00E�06 4.20 3.69E�05 3.30 1.03E�06 4.40 3.69E�05 3.31
80 6.08E�08 4.05 2.22E�06 4.06 6.17E�08 4.06 2.22E�06 4.06

160 3.76E�09 4.02 1.44E�07 3.95 3.83E�09 4.01 1.44E�07 3.95
320 2.33E�10 4.01 9.19E�09 3.97 2.45E�10 3.97 9.19E�09 3.97

Table 4.2
1D Burgers equation. t ¼ 0:5. Nonuniform mesh with N cells.

N DG without limiter DG with WENO limiter (M ¼ 0:01)

L1 error Order L1 error Order L1 error Order L1 error Order

P1 20 3.84E�03 4.01E�02 6.35E�03 7.39E�02
40 9.85E�04 1.96 1.28E�02 1.65 1.93E�03 1.72 2.07E�02 1.84
80 2.44E�04 2.02 3.09E�03 2.05 3.16E�04 2.61 3.16E�03 2.71

160 6.14E�05 1.99 8.28E�04 1.90 6.22E�05 2.35 8.28E�04 1.93
320 1.53E�05 2.00 2.36E�04 1.81 1.53E�05 2.02 2.36E�04 1.81

P2 20 2.86E�04 4.87E�03 2.79E�04 4.88E�03
40 4.43E�05 2.69 7.68E�04 2.66 4.38E�05 2.67 7.68E�04 2.67
80 6.37E�06 2.80 1.61E�04 2.25 6.37E�06 2.78 1.61E�04 2.25

160 9.08E�07 2.81 2.83E�05 2.51 9.16E�07 2.80 2.83E�05 2.51
320 1.30E�07 2.81 4.12E�06 2.78 1.32E�07 2.80 4.12E�06 2.78

P3 20 1.85E�05 3.91E�04 1.85E�05 3.95E�04
40 1.01E�06 4.20 3.20E�05 3.61 1.03E�06 4.17 3.20E�05 3.62
80 6.42E�08 3.97 2.79E�06 3.52 6.55E�08 3.97 2.79E�06 3.52

160 4.40E�09 3.87 2.80E�07 3.32 4.42E�09 3.89 2.80E�07 3.32
320 2.72E�10 4.02 1.66E�08 4.07 2.77E�10 4.00 1.66E�08 4.07
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Table 4.3
2D Burgers equation at t ¼ 0:25. Uniform mesh with N � N cells.

N � N DG without limiter DG with WENO limiter (M ¼ 0:01)

L1 error Order L1 error Order L1 error Order L1 error Order

P1 20� 20 7.56E�03 1.22E�01 1.11E�02 2.07E�01
40� 40 1.92E�03 1.98 3.55E�02 1.78 3.09E�03 1.85 6.57E�02 1.65
80� 80 4.79E�04 2.00 9.36E�03 1.92 6.60E�04 2.23 9.36E�03 2.81
160� 160 1.20E�04 2.00 2.39E�03 1.97 1.23E�04 2.43 2.39E�03 1.97
320� 320 2.99E�05 2.00 6.04E�04 1.98 2.99E�05 2.04 6.04E�04 1.98

P2 20� 20 8.62E�04 4.37E�02 8.62E�04 4.37E�02
40� 40 1.16E�04 2.89 6.08E�03 2.84 1.16E�04 2.89 6.08E�03 2.84
80� 80 1.50E�05 2.96 9.60E�04 2.66 1.50E�05 2.96 9.60E�04 2.66
160� 160 1.90E�06 2.98 1.35E�04 2.83 1.90E�06 2.98 1.35E�04 2.83
320� 320 2.43E�07 2.97 1.83E�05 2.88 2.44E�07 2.96 1.83E�05 2.88

Table 4.4
2D Burgers equation at t ¼ 0:25. Nonuniform mesh with N � N cells.

N � N DG without limiter DG with WENO limiter (M ¼ 0:01)

L1 error Order L1 error Order L1 error Order L1 error Order

P1 20� 20 7.70E�03 1.38E�01 1.24E�02 2.82E�01
40� 40 1.99E�03 1.96 4.62E�02 1.58 3.48E�03 1.84 8.75E�02 1.69
80� 80 4.93E�04 2.01 1.21E�02 1.93 6.86E�04 2.35 1.21E�02 2.85
160� 160 1.24E�04 2.00 3.38E�03 1.84 1.28E�04 2.42 3.38E�03 1.84
320� 320 3.10E�05 1.99 8.50E�04 1.99 3.10E�05 2.05 8.50E�04 1.99

P2 20� 20 8.95E�04 5.48E�02 8.92E�04 5.48E�02
40� 40 1.21E�04 2.89 8.18E�03 2.74 1.21E�04 2.88 8.18E�03 2.74
80� 80 1.55E�05 2.96 1.37E�03 2.57 1.57E�05 2.95 1.37E�03 2.57
160� 160 1.95E�06 3.00 1.98E�04 2.79 1.99E�06 2.97 1.98E�04 2.79
320� 320 2.50E�07 2.96 2.77E�05 2.84 2.60E�07 2.94 2.77E�05 2.84

Table 4.5
2D Euler equation with initial condition qðx; y;0Þ ¼ 1þ 0:2 sinðxþ yÞ; uðx; y; 0Þ ¼ 0:7; vðx; y0Þ ¼ 0:3; pðx; y;0Þ ¼ 1 at t ¼ 2p. Uniform mesh with N � N cells.

N � N DG without limiter DG with WENO limiter (M ¼ 0:01)

L1 error Order L1 error Order L1 error Order L1 error Order

P1 20� 20 2.67E�03 6.33E�03 2.68 8.31E�03 2.36E�02
40� 40 3.35E�04 3.00 1.84E�03 1.78 7.63E�04 3.45 3.92E�03 2.59
80� 80 5.92E�05 2.50 5.38E�04 1.77 6.20E�05 3.62 5.97E�04 2.72
160� 160 1.40E�05 2.08 1.44E�04 1.90 1.64E�05 1.92 1.54E�04 1.95

P2 20� 20 8.92E�05 7.41E�04 9.73E�05 7.42E�04
40� 40 1.08E�05 3.04 1.06E�04 2.81 1.14E�05 3.10 1.06E�04 2.81
80� 80 1.29E�06 3.08 1.39E�05 2.93 1.33E�06 3.09 1.39E�05 2.93
160� 160 1.56E�07 3.05 1.76E�06 2.98 1.60E�07 3.06 1.76E�06 2.98

Table 4.6
2D Euler equation with initial condition qðx; y;0Þ ¼ 1þ 0:2 sinðxþ yÞ;uðx; y;0Þ ¼ 0:7;vðx; y0Þ ¼ 0:3; pðx; y;0Þ ¼ 1 at t ¼ 2p. Nonuniform mesh with N � N cells.

N � N DG without limiter DG with WENO limiter (M ¼ 0:01)

L1 error Order L1 error Order L1 error Order L1 error Order

P1 20� 20 2.76E�03 7.20E�03 8.14E�03 2.62E�02
40� 40 3.52E�04 2.97 2.70E�03 1.41 8.28E�04 3.30 4.51E�03 2.54
80� 80 6.21E�05 2.50 6.87E�04 1.98 7.01E�05 3.56 7.60E�04 2.57
160� 160 1.49E�05 2.06 2.09E�04 1.72 1.49E�05 2.23 2.12E�04 1.85

P2 20� 20 9.25E�05 8.32E�04 1.08E�04 8.53E�04
40� 40 1.12E�05 3.05 1.27E�04 2.71 1.22E�05 3.14 1.27E�04 2.74
80� 80 1.31E�06 3.09 1.59E�05 3.01 1.40E�06 3.13 1.59E�05 3.01
160� 160 1.58E�007 3.05 2.05E�06 2.95 1.65E�07 3.09 2.05E�06 2.95
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Table 4.7
2D Euler system of Smooth Vortex Evolution at t ¼ 2. Uniform mesh with N � N cells.

N DG without limiter DG with WENO limiter (M ¼ 0:01)

L1 error order L1 error order L1 error order L1 error order

P1 20� 20 2.11E�03 1.63E�01 4.05E�03 3.33E�01

40� 40 4.57E�04 2.20 4.04E�02 2.01 8.74E�04 2.21 7.52E�02 2.15
80� 80 8.88E�05 2.36 1.28E�02 1.66 1.37E�04 2.67 1.54E�02 2.29
160� 160 1.67E�05 2.41 2.90E�03 2.14 2.05E�05 2.74 3.24E�03 2.25

P2 20� 20 5.44E�04 1.01E�01 1.95E�03 1.18E�01

40� 40 6.19E�05 3.14 9.99E�03 3.34 8.72E�05 4.48 9.87E�03 3.58
80� 80 7.70E�06 3.01 1.28E�03 2.97 1.24E�05 2.81 1.59E�03 2.63
160� 160 1.08E�06 2.84 1.78E�04 2.85 1.41E�06 3.14 2.21E�04 2.85

Table 4.8
2D Euler system of smooth vortex evolution at t ¼ 2. Nonuniform mesh with N � N cells.

N DG without limiter DG with WENO limiter (M ¼ 0:01)

L1 error order L1 error order L1 error order L1 error order

P1 20� 20 2.15E�03 1.67E�01 4.16E�03 3.31E�01
40� 40 4.81E�04 2.16 4.08E�02 2.04 9.29E�04 2.16 7.69E�02 2.10
80� 80 9.89E�05 2.28 1.21E�02 1.75 1.51E�04 2.62 1.80E�02 2.10
160� 160 1.91E�05 2.38 2.79E�03 2.12 2.34E�05 2.69 3.29E�03 2.45

P2 20� 20 5.68E�04 9.37E�02 2.37E�03 1.46E�01
40� 40 6.67E�05 3.09 1.10E�02 3.09 1.03E�04 4.53 1.14E�02 3.68
80� 80 8.09E�06 3.04 1.13E�03 3.28 1.52E�05 2.75 1.63E�03 2.80
160� 160 1.11E�06 2.86 1.67E�04 2.77 1.62E�06 3.23 2.42E�04 2.76

+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
++++
+++++

+

+

+
++++++

++++
+++
+++
+++
+++
+++
+++
+

x

u

0 1 2 3 4 5 6
-0.5

0

0.5

1

1.5

+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
++++
+++++

+

+

+
++++++

++++
+++
+++
+++
+++
+++
+++
+

x

u

0 1 2 3 4 5 6
-0.5

0

0.5

1

1.5

+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
+++
++++
++++++

+

+++++++
++++
+++
+++
+++
+++
+++
+++
+

x

u

0 1 2 3 4 5 6
-0.5

0

0.5

1

1.5

Fig. 4.1. Burgers equation at t ¼ 1:5 with N ¼ 80 cells.

Fig. 4.2. 2D Burgers solution at t ¼ 0:75 with 80� 80 cells.
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with the initial condition uðx;0Þ ¼ 0:5þ sin x and periodic boundary conditions. The exact solution is smooth up to t ¼ 1,
then it develops a moving shock which also acts with the rarefaction waves. We can get the exact solution by Newton iter-
ation. For details, see [13]. The errors at t = 0.5 when the solution is smooth are listed in Tables 4.1 and 4.2. We can see that
the WENO limiter maintains both the designed order of accuracy and the magnitude of the errors of the original RKDG meth-
od. In Fig. 4.1, we show the RKDG solutions with a WENO limiter at t ¼ 1:5 using 80 cells. We can see that the schemes of all
orders perform well in capturing this discontinuity without oscillations.

Example 4.2. A two-dimensional version of Example 4.1

ut þ
u2

2

� �
x
þ u2

2

� �
y
¼ 0; 0 6 x; y 6 2p ð4:2Þ
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Fig. 4.3. 2D Burgers solution that cuts along the diagonal at t ¼ 0:75 with 80� 80 cells.
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Fig. 4.4. Buckley–Leverett problem at t ¼ 0:4 with 80 cells.
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Fig. 4.5. Sod problem. t ¼ 2. M ¼ 0:01. N ¼ 100. Density.
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is tested with initial condition uðx; y;0Þ ¼ 0:5þ sinðxþ yÞ and periodic boundary conditions. The exact solution is one-
dimensional depending only on n ¼ xþ y; however, our meshes are rectangular in the ðx; yÞ coordinates, and thus this exam-
ple is a truly two-dimensional test problem. As in Example 4.1, we collect the L1 and L1 errors at t ¼ 0:25 (smooth solution)
in Tables 4.3 and 4.4. At t ¼ 0:5, a shock begins to form. We compute the solutions of the RKDG methods using Pk polyno-
mials with a WENO limiter with 80� 80 meshes until t ¼ 0:75 and plot the solution surfaces in Fig. 4.2 and the solution cuts
in the diagonal cells in Fig. 4.3. Again, we can see that the WENO limiter obtains uniform high order accuracy and sharp, non-
oscillatory shock transitions for the RKDG methods.
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Fig. 4.6. Sod problem. t ¼ 2. M ¼ 30. N ¼ 100. Density.
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Fig. 4.7. Lax problem. t ¼ 1:3. M ¼ 0:01. N ¼ 100. Density.
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Fig. 4.8. Lax problem. t ¼ 1:3. N ¼ 100. Density.
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Example 4.3. Our last scalar example is the Buckley–Leverett problem that is governed by the equation

ut þ
4u2

4u2 þ ð1� uÞ2

 !
x

¼ 0; ð4:3Þ

with the initial condition u ¼ 1 for � 1
2 6 x 6 0 and u ¼ 0 elsewhere. The exact solution is a shock-rarefaction-contact discon-

tinuity mixture. The solution is computed up to t ¼ 0:4. Fig. 4.4 shows the numerical solutions of RKDG methods with a
WENO limiter using N ¼ 80 cells. Again, all schemes perform similarly well for this example.

4.2. Euler system in one dimension

The 1D Euler system is given by

ut þ f ðuÞx ¼ 0; ð4:4Þ
where u ¼ ðq; qv; EÞT and f ðuÞ ¼ qv ;qv2 þ p;vðEþ pÞ

� �T . Here q is the density, v is the velocity, E is the total energy, and p is
the pressure, with

p ¼ ðc� 1Þ E� 1
2
qv2

� �
; ð4:5Þ

c ¼ 1:4 is used in the computation. For details of the Jacobian, its eigenvalues, eigenvectors, etc., see [13,26]. We consider the
following typical examples.

Example 4.4. We consider here two well-known problems of the Euler equation (4.4) which have the following Riemann
type initial conditions:

uðx;0Þ ¼
uL; x < 0;
uR; x > 0:

	
ð4:6Þ

The first one is the Sod problem [33]. The initial data are

ðqL; vL; pLÞ ¼ ð1; 0; 1Þ; ðqR; vR; pRÞ ¼ ð0:125; 0; 0:1Þ: ð4:7Þ

The second one is the Lax problem [17], with the initial data

ðqL; vL; pLÞ ¼ ð0:445; 0:698; 3:528Þ; ðqR; vR; pRÞ ¼ ð0:5; 0; 0:571Þ: ð4:8Þ
The numerical results with the WENO limiter are in Figs. 4.5–4.8. To save space, we only show the plots for density. The fig-
ures for velocity and pressure are not shown. For Figs. 4.5 and 4.7, we use the TVB constant M ¼ 0:01. We can see that there
are no oscillations near the discontinuities, however we also observe rather severe smearing, especially for the contact dis-
continuity, due to this strong limiter. For the Sod problem, relaxing the limiting by taking M ¼ 30 improves the smearing at
the price of slight over- and under-shoots, comparing Fig. 4.6 with 4.5. The Lax problem is more sensitive to the parameter M,
we relax the limiting by taking M ¼ 7; 30; 50 for k ¼ 1; k ¼ 2; k ¼ 3 respectively, see Fig. 4.8.

Example 4.5. To demonstrate the advantage of higher order methods, we use the Euler Eq. (4.4) with initial condition

ðqL; vL; pLÞ ¼ ð3:857143; 2:629369; 10:333333Þ; when x < �4;
ðqR; vR; pRÞ ¼ ð1þ 0:2 sinð5xÞ; 0; 1Þ; when x P �4:

ð4:9Þ

This example was used in [32]. It describes the interaction of a Mach 3 shock with a density wave. A Mach 3 shock is initially
located at x ¼ �4 and moves to the right. A sine wave is superimposed to the density in the right region of the shock. It con-
tains both shocks and fine structures in smooth regions. Our results are shown in Figs. 4.9, and 4.10. The solid lines are the
referenced ‘‘exact’’ solution, which is a converged solution computed by the fifth order finite difference WENO scheme [15]
with 2000 grid points. Again, we explore the effect of the TVB constant M in the minmod limiter to identify troubled cells. If
M is adjusted adequately, schemes of all orders can perform extremely well, see Fig. 4.10.

Example 4.6. We consider the interaction of blast waves of the Euler equation (4.4) with the initial condition

uðx;0Þ ¼
uL; 0 6 x < 0:1;
uM ; 0:1 6 x < 0:9;
uR; 0:9 6 x < 1;

8><
>: ð4:10Þ

where qL ¼ qM ¼ qR ¼ 1, vL ¼ vM ¼ vR ¼ 0; pL ¼ 103; pM ¼ 10�2; pR ¼ 102. A reflecting boundary condition is applied to
both ends. See [35,13]. The computed density q is plotted at t ¼ 0:038 against the reference ‘‘exact’’ solution, which is a con-
verged solution computed by the fifth order finite difference WENO scheme [15] with 16000 grid points. The results are in
Figs. 4.11, and 4.12. For the P3 case, we add the positivity-preserving limiter [34] to avoid negative density or negative pres-
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sure during the time evolution. We can see that the pictures are satisfactory, except for the smearing of contact discontinu-
ities, which seems more serious for this problem. For this problem, we have not noticed any significant difference for taking
M from 0:01 to 300.

4.3. Euler system in two dimension

The 2D Euler system is given by

ut þ f ðuÞx þ gðuÞy ¼ 0;

u ¼

q
qu

qv
E

0
BBB@

1
CCCA; f ðuÞ ¼

qu
qu2 þ p

quv
uðEþ pÞ

0
BBB@

1
CCCA; gðuÞ ¼

qv
quv

qv2 þ p

vðEþ pÞ

0
BBB@

1
CCCA: ð4:11Þ

Here q is the density, ðu;vÞ is the velocity, E is the total energy, and p is the pressure, with

p ¼ ðc� 1Þ E� 1
2
qðu2 þ v2Þ

� �
; ð4:12Þ

c ¼ 1:4 is used in the computation.

Example 4.7. This example is to test order of accuracy for RKDG methods with our WENO limiter. The initial condition is set
to be qðx; y;0Þ ¼ 1þ 0:2 sinðxþ yÞ; uðx; y;0Þ ¼ 0:7, vðx; y;0Þ ¼ 0:3; pðx; y;0Þ ¼ 1 and the boundary conditions are periodic.
The exactly solution is qðx; y; tÞ ¼ 1þ 0:2 sinðxþ y� tÞ; uðx; y; tÞ ¼ 0:7, vðx; y; tÞ ¼ 0:3 and pðx; y; tÞ ¼ 1. We collect the L1 and
L1 errors at t ¼ 2p in Tables 4.5 and 4.6. Again, we can see that the WENO limiter maintains both the designed order of
accuracy and the magnitude of the error of the original RKDG method.
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Fig. 4.9. The shock density wave interaction problem. t ¼ 1:8. M ¼ 0:01. N ¼ 200.

+++++++++++++++++++++++++++++++++++++++++++++++
++
+
+++++++++++++++++++

++++++++++++++++++++
++
++++++++++++++++++

++
+++++
+++
+
++
+
++
+
+++
+
++
+
++
+
++
+

+
++
+
++
+
+

+

+

+++++
+++++++++++++++++++++

++++
+++++++++++++++++++++

x

de
ns
ity

-5 -3 -1 1 3 50

1

2

3

4

5

+++++++++++++++++++++++++++++++++++++++++++++++++
+
+++++++++++++++++++

++++++++++++++++++++
+
+++++++++++++++++++

++
+++
++

+
+
+

+

++

+
++
+

+
+
+

+

++
+

++

+

++

+

+
+

+
+++
+

+
+

+

+++++
+++++++++++++++++++++

++++
+++++++++++++++++++++

x

de
ns
ity

-5 -3 -1 1 3 50

1

2

3

4

5

+++++++++++++++++++++++++++++++++++++++++++++++++
++++++++++++++++++++

++++++++++++++++++++
++++++++++++++++++++

++
+++
++

++
+

+
+
+

+
++

+
+
+
+

++++

++

+
+
+

+

+
+

++
+
+

+
+

+

+

+++++
+++++++++++++++++++++

++++
+++++++++++++++++++++

x

de
ns
ity

-5 -3 -1 1 3 50

1

2

3

4

5

Fig. 4.10. The shock density wave interaction problem. t ¼ 1:8. M ¼ 300. N ¼ 200.
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Fig. 4.11. The blast wave problem. t ¼ 0:038. M ¼ 0:01. N ¼ 400.
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Fig. 4.12. The blast wave problem. t ¼ 0:038. M ¼ 200. N ¼ 400.
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Fig. 4.13. Double Mach reflection problem. M ¼ 0:01. 960� 240 cells. Twenty-nine equally spaced density contours from 1:3 to 23. Top: k ¼ 1. Bottom:
k ¼ 2.
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Example 4.8. We consider the two-dimensional vortex evolution problem [29,14], which is an idealized problem for the 2D
Euler equations (4.11). The set up of this problem is as follows: The mean flow is q ¼ 1; p ¼ 1, and ðu;vÞ ¼ ð1;1Þ (diagonal
flow). We add, to this mean flow, an isentropic vortex (perturbations in ðu;vÞ and the temperature T ¼ p

q, no perturbation in
the entropy S ¼ p

qc:

ðdu; dvÞ ¼ �
2p

e0:5ð1�r2Þð��y; �xÞ; dT ¼ �ðc� 1Þ�2

8cp2 e1�r2
; dS ¼ 0; ð4:13Þ

where ð�x; �yÞ ¼ ðx� 5; y� 5Þ; r2 ¼ �x2 þ �y2, and the vortex strength � ¼ 5. Since the mean flow is in the diagonal direction,
the vortex movement is not aligned with the mesh direction. The computational domain is taken as ½�5;15� � ½�5;15�,
extended periodically in both directions. It is clear that the exact solution of the Euler equation with the above initial
and boundary conditions is just the passive convection of the vortex with the mean velocity. We compute the solution
to t ¼ 2 for the accuracy test. The accuracy results are shown in Tables 4.7 and 4.8. Again, we can see that the
WENO limiter maintains both the designed order of accuracy and the magnitude of the error of the original RKDG
method.

Example 4.9. We consider the double Mach reflection problem [35]. It contains strong shock waves and contact discon-
tinuity which is a good example to test the numerical scheme to show the ability to capture strong shock wave and the
resolution for small scale structure. The computational domain for this problem is chosen to be ½0;4� � ½0;1�. The reflect-
ing wall lies at the bottom, starting from x ¼ 1

6. Initially a right-moving Mach 10 shock is positioned at x ¼ 1
6 ; y ¼ 0 and

makes a 60� angle with the x-axis. For the bottom boundary, the exact postshock condition is imposed for the part from
x ¼ 0 to x ¼ 1

6, and a reflective boundary condition is used for the rest. At the top boundary, the flow values are set to
describe the exact motion of a Mach 10 shock. We compute the solution up to t ¼ 0:2. As in [35], only results in
½0;3� � ½0;1� are shown. Two different uniform meshes, with 480� 120 and 960 cells, and three different values of
the TVB constant, M ¼ 0:01; M ¼ 100 and M ¼ 200, are used in the numerical experiments. The density is plotted in
Fig. 4.13 for M ¼ 0:01 and in Fig. 4.14 for M ¼ 100. In all the plots, we use 29 contours equally distributed from
q ¼ 1:3 to 23. It is not easy to observe any significant difference among these results in the picture. However, if we
show a ‘‘blown-up’’ portion around the double Mach region, as in Figs. 4.15 and 4.16, it is clear that one observes an
increased resolution with an increasing k on the same mesh. Also, the resolution is slightly better as M increases from
M ¼ 0:01 to M ¼ 200; however, this difference is not significant. Finally, we list in Table 4.9 the percentage of troubled-
cells among all the cells.
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Fig. 4.14. Double Mach reflection problem. M ¼ 200. 960� 240 cells. Twenty-nine equally spaced density contours from 1:3 to 23. Top: k ¼ 1. Bottom:
k ¼ 2.
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5. Conclusion

In this paper, we have developed a new limiter for the RKDG method solving hyperbolic conservation laws using the
WENO methodology, which is particularly simple to implement. The general framework is to first identify troubled cells sub-
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Fig. 4.15. Double Mach reflection problem. 480� 120 cells. M ¼ 0:01 (top), M ¼ 100 (middle) and M ¼ 200 (bottom). Twenty-nine equally spaced density
contours from 1:3 to 23. Left: k ¼ 1. Right: k ¼ 2.
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ject to the WENO limiting procedure (we use a TVB minmod limiter in this paper, but other troubled cell identification tech-
niques can of course also be used), then reconstruct a new polynomial on the troubled cell by a WENO reconstruction. The
idea of this simple WENO limiter is that the reconstruction polynomial on the troubled cell is a convex combination of the
polynomials on this cell and its immediate neighboring cells, with the nonlinear weights of the linear combination following
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Fig. 4.16. Double Mach reflection problem. 960� 240 cells. M ¼ 0:01 (top), M ¼ 100 (middle) and M ¼ 200 (bottom). Twenty-nine equally spaced density
contours from 1:3 to 23. Left: k ¼ 1. Right: k ¼ 2.
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the classical WENO procedure. Since this procedure uses information only from immediate neighbors and simple positive
linear weights, it is significantly simpler to implement than previous WENO type limiters for RKDG methods. Numerical re-
sults are provided to show that this limiting procedure can obtain both uniform high order accuracy and sharp, non-oscil-
latory shock transitions for the RKDG methods. The numerical performance is similar to previous WENO limiters which are
much more complicated to implement. Generalization of this procedure to unstructured meshes is ongoing. Improving the
procedure for identifying troubled cells and implementing the limiter for higher dimensional problems also constitute ongo-
ing work.
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