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Abstract

Numerical reservoir simulation models are used in the energy industry to forecast the
behavior of hydrocarbon reservoirs and connected surface facilities over long production
periods. The simulation of oil and gas reservoirs requires the construction and solution
of large, sparse linear systems with millions or tens of millions of unknowns at each step
of a Newton iteration. The problem size and complexity of these models is growing faster
than advances in computer hardware, therefore more accurate and robust numerical tech-
niques are necessary to reduce simulation turnaround time. In this paper, we compare the
computational performance of a Nonlinear Newton-Krylov solver with Inexact Newton-
Krylov and Quasi-Newton methods for a compressible, three-phase fluid model with an
incompressible rock model. The coupled system of nonlinear partial differential equa-
tions (PDEs) that describe fluid flow are discretized on a structured, rectangular grid
using finite volumes. An implicit method is used to solve for updates to the pressure
and saturations at each time step. Rock properties, like permeability and porosity are
generated from the top layer of the SPE10 model problem. We conclude with results
comparing different nonlinear and linear solvers and from an optimization strategy for
well placement that we experimented with as part of the Institute for Mathematics and
its Applications (IMA) summer industrial workshop.

1 Introduction

Numerical reservoir simulation is used in the oil and gas industry to model the flow of fluids
(e.g. hydrocarbons, water, vapor) through porous rock space. The ability to accurately
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and quickly simulate the performance of an oil or gas reservoir over time is important for
the petroleum industry to make accurate business decisions. Unfortunately, the physical
properties of an oil/gas reservoir are not well-known in advance. Therefore, reservoir engineers
create multiple reservoir simulation models to examine the sensitivity of the geology, fluid
properties, and other physical conditions to evaluate multiple development strategies.

A set of nonlinear, partial differential equations that govern the flow of the various phases
of the fluid (oil, gas, and water) is utilized. A derivation of the governing equations motivated
by [1, 7] can be found in Section 2. These equations are discretized in space using a finite
volume method and in time using a fully implicit strategy (which is discussed further in
Section 2.1). At each time step a nonlinear system is solved that requires solving a large,
sparse linear system to generate update values for the unknown quantities in question (in our
case, pressure and saturations). Solving a linear system can be computationally expensive,
and very time consuming. The quality of the nonlinear solver is directly related to the
CPU time required to solve the linear system. Ideally, a rapidly converging nonlinear solver
and a fast linear solver would be utilized. This paper is concerned with that particular
issue. We investigate different nonlinear solvers (Exact Newton and Inexact Newton [3])
along with iterative linear solvers and preconditioning to try to minimize the computational
time for a reservoir simulation. In Section 3, we describe the example problem that we used
for our numerical experiments. Section 4 describes an optimization strategy used to create
a sequence of different problems to test our numerical algorithms. The different choices
of nonlinear solvers that we tested is detailed in Section 5 and the linear solvers (along
with spectral properties of the coefficient matrices) used to solve for the Newton update is
discussed in Section 6. In Section 7 we conclude with some remarks about our findings from
this workshop.

2 Reservoir Simulation

Henry Darcy, a French engineer, established a relationship relating the volumetric flow rate,
Q, through porous media. The relationship is:

Q = −KA∆p

µL

where K is the permeability of the rock, A is the area, ∆p is the pressure drop, µ is the
viscosity, and L is the length of the media. This relationship is known as Darcy’s Law and
states that the flow rate is proportional to the permeability, area, and pressure drop; while,
the flow rate is inversely proportional to the viscosity and length of the media [1].

In three dimensions the differential form of Darcy’s Law becomes:

v =
Q

A
= −K

µ
∇p

where K is a symmetric, positive definite tensor. Applying the divergence theorem generates
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the equation that represents single phase flow in three dimensions:

∇ · ρk

µ
∇p =

∂

∂t
(φρ)

We begin derivations for a three phase fluid model with incompressible rock, through the
form of the phase continuity equation that includes compressibility [1]:

−∇ · (ρθvθ)
ρθ

= φ

(
cθ

(
∂

∂t
pθ

)
sθ +

(
∂

∂t
sθ

))
− qθ

ρθ
, (1)

where ρθ represents density (which is a function of pressure), vθ represents the velocity, sθ

represents saturation, qθ represents the source term, cθ represents the compressibility term
and φ represents the porosity. Note that θ could either be oil (o), water (w) or gas (g) phases.
We require that the saturations for all three phases must sum to one, therefore we have the
following relationship:

sg + sw + so = 1. (2)

and a similar relationship for capillary pressure:

pcow = po − pw (3)
pcgo = pg − po (4)
pcgw = pg − pw = pcgo + pcow (5)

Using these relationships, we can alter the three phase continuity equations to derive a system
of three equations with three unknown variables (or vectors): pw, sg and sw. These equations
are:
−∇ · (ρwvw)

ρw
= φ

(
cw

(
∂

∂t
pw

)
sw +

(
∂

∂t
sw

))
− qw

ρw
(6)

−∇ · (ρgvg)
ρg

= φ

(
cg

(
∂

∂t
(pw + pcow(sw) + pcog(sg))

)
sg +

(
∂

∂t
sg

))
− qg

ρg
(7)

−∇ · (ρovo)
ρo

= φ

(
co

(
∂

∂t
(pw + pcow(sw))

)
(1− sg − sw) +

(
∂

∂t
(1− sg − sw)

))
− qo

ρo
. (8)

After finite volume analysis, Darcy velocity approximation, simplications and discretiza-
tion, we have:

F (t, sw(t), sg(t), pw(t), q(t)) =∆D̃−1(Qw −Awpw) (9)

− [(cwsw)i](pk
w − pk−1

w )− (sk
w − sk−1

w )

G(t, sw(t), sg(t), pw(t), q(t)) =∆D̃−1(Qo −Ao(pw + pcow))− (10)

− [(co(1− sg − sw))i](pk
w − pk−1

w + pk
cow − pk−1

cow

− (sk−1
g − sk

g + sk−1
w − sk

w)

H(t, sw(t), sg(t), pw(t), q(t)) =∆D̃−1(Qg −Ag(pw + pcow + pcog))− (11)

− [(cgsg)i](pk
w − pk−1

w + pk
cow − pk−1

cow + pk
cog − pk−1

cog )

− (sk
g − sk−1

g )
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Numerically, we approximate the solution to this set of coupled, nonlinear equations using
Newton’s method (more information about Newton’s method can be found in Section 5).
This requires the creation of the Jacobian matrix, so we need to take derivatives of F, G and
H with respect to the unknown variables pw, sw and sg [1, 7]. Due to space constraints we
omit the partial derivatives required for the computation of the Jacobian used in Newton’s
method. We state that the Jacobian matrix is of the form:

J(pw, sw, sg) =




∂F
∂pw

∂F
∂sw

∂F
∂sg

∂G
∂pw

∂G
∂sw

∂G
∂sg

∂H
∂pw

∂H
∂sw

∂H
∂sg




and that updates for Newton’s method are calculating from solving the system of equations

Jk(pw, sw, sg)xk = R

where R is the term containing entries F , G, and H, from equation (9).

2.1 IMPSAT

Our workflow for generating updated pressure and saturations is from the IMPSAT (implicit
pressure and saturation) procedure described in [6].

1. Load initial phase saturations s0
θ.

2. For k = 1, ...K do:

(a) Set well rates qk

(b) Solve the discretized state equations for pk, sk
θ :


f
g
h


 =




0
0
0




solve




f
g
h


 =




0
0
0


 using Newton’s Method where sk

o = 1− sk
g − sk

w.

3 Simulation Model

For the computational experiments in this study, we use a simulation model with porosity
and permeability generated from the top layer of the SPE10 model problem (see Figure 1).
This problem is 60 units in the x−direction and 220 units in the y−direction. We use a
structured, uniform grid with injecting wells placed at each corner of the simulation domain
and producing wells are placed randomly along the interior of the simulation domain. We
run sensitivities with this model using a compressible, three phase reservoir simulator with
capillary pressure and an incompressible rock model written in Matlab. The permeability
field varies by five orders of magnitude, while the porosity varies from 0 to 0.5.
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Figure 1: Porosity and permeability fields for the SPE10 Top Layer.

4 Optimization

An algorithmic approach is needed for well placement because it is very difficult to tell a
priori the best location for producing/injecting wells in the reservoir that maximizes sweep
efficiency. One could randomly place wells and see how each set of random well distributions
performs, but this would be a very computationally expensive procedure, and it would be
possible that a small change in the position of one of the wells could have a significant impact
on production over the life of the oil field.

We discuss a framework for performing well placement optimization, and then we present
results for a couple of test cases, to demonstrate the value of the optimization procedure.

4.1 Framework

Our goal is to maximize the profit which is based on the production rates of each producer,
the injection rates at each injector, the price at which the oil and gas can be sold, the cost
to inject water, and the costs of constructing a producer or injector. The general idea is to
maximize the revenue from producing oil and gas, while minimizing the costs of injecting
water and building wells. Thus, we cannot just build a very large number of wells, which by
itself would maximize the production. We also need to know the time-span that we want to
optimize over.
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Combining these pieces, we created the following objective function,

max F =
NP∑

i=1

∫ T

0

[
Cox

i
o(t) + Cgx

i
g(t)

]
dt−

NI∑

j=1

∫ T

0
Cwxj

w(t) dt− CWP NP − CWINI ,

where NP and NI are the number of producers and injectors, Co and Cg are the prices at
which oil and gas are sold, Cw is the cost of injecting water, CWP and CWI are the costs
associated with constructing producers and injectors, xi

o and xi
g are the production rates of

oil and gas for producer i, and xj
w is the injection rate of injector j. We will denote the site

of producer i by (yi
1, y

i
2) and injector j by (zj

1, z
j
2), and the vector of all of these values will

be y. F denotes the profit generated by the field.

This must be optimized subject to the constraints

NP , NI ∈ Z+, NP ≥ 1, NI ≥ 0, xi
o, x

i
g, x

i
w ≥ 0

(yi
1, y

i
2) ∈ D1, (z

j
1, z

j
2) ∈ D,

where D is the spatial grid of the simulator and D1 is a restriction of the grid by some number
of gridpoints along each side, because we want the producers to be away from the edge of the
domain. To make the problem more realistic, we cap the producing and injecting well rates.

This optimization problem is complicated by two important issues. First, analytically
calculating the gradient or Hessian matrix of F is impractical, as the x values are generated
by the solutions of the partial differential equations which govern the system. Approximating
these numerically would also be computationally expensive, especially for the Hessian matrix.
Secondly, we cannot simultaneously perform the optimization over the well sites and the
number of wells.

The first problem cannot be avoided, although we could pick a method such as gradient
ascent to avoid trying to compute the Hessian. Calculating the Hessian might be possible,
but given the computational effort our efforts are better utilized in other areas.

The second problem can be alleviated by a careful choice of procedure. We start with a
fixed number of producers (NP ) and injectors (NI), then we maximize the objective function
for the well sites with the numbers of producers/injectors fixed. Then we repeat for neigh-
boring points on an (NP , NI) grid. For instance, one could solve the optimization problem
for the four immediate neighbors, or for the eight surrounding values. Of those values we pick
the largest one and then repeat the procedure. To save on overall computational effort, the
maximized object values F ∗(NP , NI) are stored, along with the set of values which defines
the well locations. This amount of storage is not very large, especially in comparison to the
effort to recompute those values.

The objective function can also be modified to reflect present values or approximate
predictions of future prices for the various components. We restrict our focus to the stated
case.
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4.2 Results

For our test problems, we fix the number of injectors at NI = 2. The injectors are also
fixed at the southwest and northeast corners of our computational domain. We solve the
optimization problems for NP = 1 with T = 200 and NP = 2 for T = 100 days, which is a
very small time-span for this type of problem. This was done to be able to demonstrate how
the method works. We assume that Co = 70 dollars per barrel, which is the approximate
price for a barrel of West Texas Intermediate crude oil at the culmination of this workshop in
August 2009. We set Cg = 0, which essentially means that the gas is flared, and Cw = 0, for
simplicity. Finally, we let LP = LI =$2 million. Due to the short time periods, our objective
F is negative. Due to the assumptions, the optimization problem is seen as maximizing oil
production.

For both of these problems, we follow a similar procedure. First, we randomly select the
initial positions of the producing wells. Then we calculate the value of F for those positions.
Next, a numerical approximation of the gradient is computed using the points (yi

1 + 1, yi
2)

and (yi
1, y

i
2 +1) for each i. If the gradient has an infinity norm greater than one, we normalize

the gradient by dividing by the infinity norm. Then, we search in the gradient direction,
calculating F at y + 2k∇F for k = 3, 2, 1, 0 (in that order). Such a point will likely not be
a grid point, so we round the entries to move the point to a grid point. We stop the search
when the value of F at the test point is greater than the value of F at the current point. We
repeat this process until the search fails to find an improvement, at which time we stop and
accept the current point.

Only one trial with NP = 1 was performed because it is not realistic. The initial point was
(45, 195), where the total oil production was calculated as 1863.26 barrels. This corresponds
to F = −5, 869, 571.80. The final point was (49, 190) with a total production of 1874.19
barrels, which corresponds to F = −5, 868, 806.70.

Three trials were performed with NP = 2. The data for these trials is listed in Table 1.
The first trial has the most dramatic change in well placement and total output. Figure (2)

Initial Well Placement (26, 197), (44, 206) (37, 12), (47, 201) (38, 164), (42, 87)
Initial Output 1838.55 1871.92 1869.33
Initial F −7, 871, 301.50 −7, 868, 965.60 −7, 869, 216.90
Final Well Placement (39, 175), (43, 207) (42, 5), (44, 208) (37, 162), (42, 87)
Final Output 1880.71 1878.46 1874.54
Final F −7, 868, 350.56 −7, 868, 507.80 −7, 868, 782, 20

Table 1: Initial and final data for three trials of the optimization method with NP = 2

shows the initial and final well placement for this case on top of plots of the permeability and
porosity fields.

The well closest to the northeast corner does not move very much, but the other well
moves quite a bit. That well moves from a location with low permeability and porosity to a
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Figure 2: Well positions at the beginning and end of the optimization procedure. The well
locations are indicated by black circles with X’s inside.

location with higher permeability and porosity.

5 Nonlinear

In a reservoir simulation, the solution of a set of nonlinear equations is required at each
time step. For typical grids in the oil and gas industry, this requires a significant amount
of computational effort, computer memory, and time. One of the goals of this workshop is
to experiment with different types of nonlinear solvers to reduce the computational effort
required to solve the governing equations. Traditionally, a classical exact Newton method
is used to calculate updates to the nonlinear system. In this paper we explore two different
approaches to numerically solve the nonlinear equations that arise after discretization of the
governing equations. They are:

• Inexact Newton’s method

• Quasi-Newton methods based on Broyden’s method

We begin by describing each of these methods, then summarize this section with results we
obtained from implementing these numerical techniques in our Matlab simulator.

5.1 Newton’s Method

Consider the system of nonlinear equations

F (x) = 0 (12)

where F : Rn → Rn is a nonlinear mapping such that
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i. There exists an x∗ ∈ Rn such that F (x∗) = 0.

ii. F is continuously differentiable in a neighborhood of x∗.

iii. F ′(x∗) is nonsingular.

A classical algorithm and perhaps the best known method for finding successively better
approximations to the zeroes of a function is Newton’s method. The algorithm is:

Given an initial guess x0, we compute a sequence of steps {sk} and compute a sequence
{xk} as follows:

FOR k=0 STEP 1 UNTIL Convergence DO
Solve F ′(xk)sk = −F (xk)
Set xk+1 = xk + sk.

Typically, Newton’s method converges quadratically for a sufficiently good initial guess. We
implemented a Newton-Krylov method for our simulations using GMRES (generalized min-
imal residual method), preconditioned with an incomplete LU matrix factorization to solve
the linear equation for the Newton update. We computed the Jacobian matrix analytically
and did not approximate it. Our objective was to compare the number of iterations taken by
a Newton-Krylov method with a fixed stopping tolerance with the iteration counts obtained
from an inexact Newton method with an adaptive stopping tolerance (see Section 5.3).

5.2 Inexact Newton-Krylov

In last section, we introduced the classical Newton method. The most computationally
expensive part of this method is solving the linear equations

F ′(xk)sk = −F (xk) (13)

at each step of the nonlinear iteration for the update, sk. Solving this equation accurately may
not be justified when xk is far from the solution, x∗, therefore it is reasonable to solve (13)
approximately. Such ‘Inexact Newton-Krylov’ methods offer a trade-off between accuracy
with which the Newton equations are solved and the amount of computational work per
iteration.

An Inexact Newton method is an extension of classical Newton’s method for approximating
x∗ as follows:

‖F ′(xk)sk + F (xk)‖ ≤ ηk‖F (xk)‖. (14)

Algorithm IN: Inexact Newton Method
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Given x0 (Typically, x0 is zero or from the previous iterate.
FOR k=0 STEP 1 UNTIL “Convergence” DO

Find ηk ∈ [0, 1) and sk which satisfies (14)
Set xk+1 = xk + sk.

Note that (14) expresses both a certain reduction in the norm of F (xk)+F ′(xk)sk, the local
linear model of F , and a certain accuracy in solving the Newton equation, F ′(xk)sk = −F (xk),
the exact solution of which is the Newton step. In many applications, notably Newton iterative
or truncated Newton methods, each ηk is specified first, and then an sk is determined so that
(14) holds. The role of ηk is to force ‖F (xk) + F ′(xk)sk‖ to be small in a particular way;
therefore, ηk is often called a forcing term [3].

The choices of the forcing terms are to achieve desirably fast local convergence and to
avoid oversolving the linear system. All of the proposed choices incorporate information
about F but are scale independent so they do not change if F is multiplied by a constant.
We examine three choices for ηk from work by [3]. They are:

• Choice 1.1 :

ηk =
‖F (xk)− F (xk−1)− F ′(xk−1)sk−1‖

‖F (xk−1)‖ , k = 1, 2, · · · (15)

• Choice 1.2 :

ηk =
‖F (xk)‖ − ‖F (xk−1) + F ′(xk−1)sk−1‖

‖F (xk−1)‖ , k = 1, 2, · · · (16)

• Choice 2 : Given γ ∈ [0, 1], α ∈ (1, 2],

ηk = γ

( ‖F (xk)‖
‖F (xk−1)‖

)α

, k = 1, 2, · · · (17)

5.3 Comparison between Exact and Inexact Newton

We apply Alogrithm IN to our two phase problem described in Section 3. The results com-
paring each forcing term to an exact Newton method for a simulation that was run to 5000
days are summarized in the following table. MNI and MLI are averages of the numbers of
inexact Newton steps and linear iterations, respectively. GMNI and GMLI are geometric
means of inexact Newton steps and linear iterations, respectively. I is the total number of
linear iterations and P is the percentage of improvement with respect to the exact Newton’s
method.
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ηk choice MNI GMNI MLI GMLI I P
0 (exact) 3.06 3.04 131.43 131.03 26285
Choice 1.1 3.34 3.30 115.15 114.17 23029 12.39%
Choice 1.2 3.18 3.16 115.50 114.49 23100 12.12%
Choice 2, α = 2, γ = 1 3.06 3.05 117.33 116.80 23466 10.72%
Choice 2, α = 2, γ = 0.9 3.06 3.04 117.93 117.41 23585 10.27%
Choice 2, α = 2, γ = 0.5 3.02 3.01 119.78 119.17 23955 8.86%
Choice 2, α = 1+

√
5

2 , γ = 1 3.23 3.19 117.14 116.49 23427 10.87%
Choice 2, α = 1+

√
5

2 , γ = 0.9 3.19 3.15 116.35 115.74 23270 11.47%
Choice 2, α = 1+

√
5

2 , γ = 0.5 3.07 3.06 116.90 116.36 23379 11.06%

From the table above, the best overall performance was obtained from Choice 1.1 and
Choice 1.2. Taking γ = 0.5 in Choice 2 resulted in significantly less efficiency with α = 2.

The results for Choice 2 illustrate that more aggressive choices of the forcing terms. i.e.,
choices that are smaller or result in faster asymptotic convergence, may decrease the number
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of inexact Newton steps, but through oversolving the linear system may also lead to more
linear iterations. Less aggressive choices may reduce the number of linear iterations, but may
also result in increased numbers of inexact nonlinear iterations.

For the three-phase model (simulation run for a total time of 100 days), we found a
significant improvement in the number of linear iterations when an inexact Newton method
is applied. Our results are summarized in the following table:

ηk choice MNI GMNI MLI GMLI I P
0 (exact) 4.76 4.67 96.76 95.52 4877 0%
Choice 1.2 3.76 3.65 39.82 39.84 1991 58.73%
Choice 2, α = 2, γ = 0.9 3.76 3.65 43.7 43.28 2185 54.59%
0.1 3.76 3.75 48.98 48.15 2487 49.36%

From the data above we can see that the general shape of the graph representing the
number of linear iterations for each type of forcing term does not change, but the use of an
inexact Newton method reduces the number of linear iterations. Choice 1 is the best option
in our simulation, where we were able to obtain an improvement of 58.73% for the Newton
method with fixed tolerance for the three phase model. Even though the number of linear
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iterations is different between the two methods, the solution, i.e. cumulative gas , water and
oil production, is the same. Therefore, the use of these ‘inexact’ nonlinear strategies have no
impact on the accuracy of the solution, but only the computational performance.

5.4 Broyden’s Quasi-Newton Method

Broyden’s Quasi-Inexact Newton method uses an approximation to the Jacobian to generate a
sequence of successive approximations to the nonlinear problem. In general, this method pro-
vides superlinear convergence (compared with quadratic convergence for Newton’s method),
but do not require the calculation of the full Jacobian. In general, a Quasi-Newton method
uses some damping parameter (between 0 and 1) to reduce the step size from a full step to
a partial step. That is, after obtaining sn = −(Jn)−1Fn from the equation

Jnsn = −Fn,

the next step in the iteration is computed as xn+1 = xn + λsn, where λ lies between 0 and
1. The damping factor, λ, helps prevent oversolving, and thus may increase the rate of
convergence.

We tested Broyden’s Method, which is a secant-like method. It replaces the Jacobian
matrix Jn with an approximate one, Bn, that satisfies

Bnsn = −Fn.

While this approximation of the real Jacobian might sacrifice some accuracy, it saves the
expensive computation (and storage) of the Jacobian. At each iteration, the Jacobian is
updated by

Bn+1 = Bn +
(y −Bns)sT

sT s
,

where y = f(xn+1) − f(xn) and sn = xn+1 − xn. B−1
n can be updated directly using the

Sherman-Morrison formula (also known as Woodbury formula) as below,

Sherman-Morrison Assuming C and I + BV C−1U are two nonsingular matrices, then

(C + UBV )−1 = C−1 − C−1U(I + BV C−1U)−1BV C−1.

Consequently, we have an update formula for B−1
n ’s. In our study, we will use a line search

to find the damping term for each step. The drawbacks to Broyden’s method are that:

• The line search may fail.

• It is sensitive to the initial data.

When testing this technique inside of our Matlab simulator we found that both the line
search failed and that the initial guess we gave to Broyden’s method was not close enough
to the original. Therefore, Broyden’s method did not converge, so we conclude that its not
suitable for our problem.
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6 Linear Solvers

During a Newton iteration, a large, sparse linear system of equations need to be solved. To
speed up the solution process, efficient linear solvers are required. We focus our efforts on
iterative solvers because the memory costs associated with sparse direct solvers is prohibitive
for current three dimensional reservoir simulation models. We have tried iterative methods,
such as GMRES and BICGStab, with preconditioning and looked into using Krylov reuse
methods for added efficiency.

6.1 Comparison Iterative Methods with Preconditioners

Each step of a nonlinear solve involves the solution of a linear system. Thus, an efficient
linear solver will improve the computational speed of the simulation.

We began by trying linear solvers without any preconditioning. This effort was largely
unsuccessful, as convergence was either nonexistent or very slow. The methods tested were
GMRES, TFQMR, and BiCGStab. GMRES was restarted every 50 iterations. As we will
discuss later, the matrices involved in the linear solve are ill-conditioned and have poor
eigenvalue clustering, so creating effective preconditioners for this systems was required.

Preconditioning greatly improves the performance of both GMRES and TFQMR. How-
ever, BiCGStab still suffered from poor convergence rates, so it was removed from consider-
ation. The initial preconditioning matrices were incomplete LU decompositions with a drop
tolerance of 10−4. The success of this preconditioner led to the investigation of other precon-
ditioning methods, as well as the effects of varying the drop tolerance for the incomplete LU
method. One alternative to incomplete LU that we attempted was Jacobi preconditioning.
This method uses the diagonal of the matrix as a preconditioner. Unfortunately, this matrix
is either singular or very close to singular, so the method failed.

The effects of varying the drop tolerance for the incomplete LU decomposition were
reasonably similar for GMRES and TFQMR. Increasing the drop tolerance to 10−3 was
effective in improving the speed of the overall code, even though both linear solvers required
a higher number of iterations to converge. Increasing the drop tolerance further continued
to improve the speed, but the number of iterations of the nonlinear solver began increasing.
TFQMR began exhibiting stagnation before reaching the convergence tolerance, and GMRES
began requiring numerous restarts. It appears that the best choice of drop tolerance for this
problem is approximately 10−3. Refer to Table 2 for details for TFQMR, and to Figures 3
and 4 for a comparison of TFQMR and GMRES. The simulation time was 1000 days, with
a time-step of 25 days. The norm of the relative residual (or tolerance) used for convergence
was 10−5.

Choosing whether to use GMRES or TFQMR is somewhat ambiguous. TFQMR seems to
perform slightly better than GMRES, but applying the methods to the full three-dimensional
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Figure 3: Runtimes (seconds) in Matlab for GMRES and TFQMR plotted against drop
tolerance for the incomplete LU factorization

0 1 2 3 4 5

x 10
−3

0

500

1000

1500

2000

2500

droptol for luinc

m
ax

(it
er

at
io

ns
 fo

r 
lin

ea
r 

so
lv

e)

 

 

TFQMR

GMRES

Figure 4: Maximum iterations per solve for GMRES and TFQMR plotted against drop
tolerance for the incomplete LU factorization
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Drop Tolerance Runtime (s) in Matlab Maximum iterations per solve
10−4 4291 15

5× 10−4 2841 30
10−3 2390 50

2× 10−3 2151 70
3× 10−3 1985 110
4× 10−3 1917 430
5× 10−3 1864 2070

Table 2: Computation details for TFQMR

multi-phase flow problem may change that performance. The major concern with GMRES is
that running it without restarts is impractical due to memory concerns, as it requires storing
a set of orthonormal vectors. Restarting helps with this, but affects the convergence rate,
and can even induce stagnation of the method. TFQMR avoids this issue, as it does not use
as much storage as GMRES, but as we have seen, it can also stagnate.

6.2 Spectral properties

Since the coefficient matrix is large and sparse, we investigated the spectral properties of
this matrix. In the following figures, we show some graphs of the pseudospectra, where we
consider the only 20 largest magnitude eigenvalues.

dim = 39600 → 42 x 41
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dim = 39600 → 42 x 41
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The pseudospectra is significant because: The eigenvalues of a matrix operator A are the
roots of the characteristic polynomial for A. If A is highly non-normal, analytic functions of
A such as polynomials are very sensitive to small perturbation of A. The closer the smallest
(in magnitude) eigenvalue is to 0, and the more non-normal the operator. From the above
two graphs, we see the high singularity of the coefficient matrix. These two graphs show that
how the contour lines for different values of ε approach a set of disjoint small regions around
the eigenvalues of coefficient matrix.

6.3 Krylov Subspace Reuse

When solving a nonlinear problem using a Newton-Krylov method, a sequence of linear
systems must be solved to calculate an update to the Newton step. Therefore, it seems
promising to try using a Krylov subspace reuse method to speed up the convergence of the
iterative method. During this workship, we compared a Krylov reuse method, [9], with
ordinary GMRES preconditioned with an incomplete LU decomposition.

The method developed in [9] could be applied to the solution of sequences of general
matrices without assuming these matrices are pairwise close or convergent, hence this method
should be very adaptive especially for our problem which has pairwise close matrices. In
addition, the methods discussed in this report should be adopted to get different subspaces,
based on the computed information from the matrix and the context of the problem.

Before describing the Krylov reuse method, recall the Krylov Subspace (for a linear system
Ax = b) is
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Kr(b) = span{b, Ab, Ab2, ....Abr}.

The Arnoldi recurrence in GMRES leads to the following relation, which we denote as the
Arnoldi relation

AVm = Vm+1Hm,

where Vm ∈ Cn×m, and Hm ∈ C(m+1)×m is upper Hessenberg. Let Hm ∈ Cm×m denote the
first m rows of Hm.

In the previous simulations, the Krylov spaces generated during each solve of the linear
system are discarded after each linear solve. In this section, we describe a strategy to save a
subspace of the Krylov vectors to reduce the number of iterations for solving the next system.
The basic idea about recycling the Krylov subspace is that we pick the recycled subspace,
and during each cycle, we minimize the residual over this subspace, keeping the orthogonality
with the image of this space in the Arnoldi recurrence.

We know there are the other ways of solving the sequence of linear problem, but most of
the other techniques have more strict solution requirements. (i.e. require that the systems
are available simultaneously).

A good mechanism is needed to find the best vectors to keep. In general, we truncate
when we lose orthogonality, and will result in a suboptimal correction. Basically,the worst-
case bound on the convergence is reduced by improving the spectrum. The method used in
this workshop, GCRO-DR, is combination of GMRES-DR and GCRO to solve the sequence
of the linear systems. After computing the ith system of the equation, GCRO-DR retains k
approximate eigenvectors, as follows:

Ỹk = [ỹ1, ỹ2, ....ỹk]

In our results, we found that the GCRO-DR improves the computation, even for a small
sequence of linear systems by significantly reducing the number of matrix-vector products
when compared with GMRES.

Also, when the dimension of the recycle subspace increases, the elapsed time decreases, so
the dimension of the subspace does effect our result. Since we only tried the three phase case,
which means that the size of the systems may not be big enough. The difference between
the GRCO-DR and GMRES is small , but as the size goes up, the advantage of the invariant
subspace we selected grows [9].

Tolerance GMRES Krylov Reuse
10−3 45 34

2140.27 2013.8
10−4 45 52

2073.93 2031.67
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This algorithm did not work well when the tolerance was set at 1e−4. We have two
possible reasons for this unexpected result, one is the size of the sequence of the system. The
GRCO-DR method may perform better with a larger number of systems to solve. Another
idea is that by including more information about the problem itself, we could make small
changes to accommodate the algorithm. Both of these possibilities are worth considering in
future work.

7 Conclusion

In this paper, we began by describing (from first principles) a compressible, three phase
fluid model with incompressible rock described by a coupled system of nonlinear PDEs. The
system of coupled nonlinear PDEs that describe fluid flow are discretized spatially using a
finite volume technique on a structured, rectangular grid. The state variables (pressures
and saturations) are defined at node centers and the fluxes represent connections from one
node to another. We tried different linear and nonlinear solvers to speed up the calcula-
tions. For linear solvers, we tried GMRES, BICGStab and TFQMR methods coupled with
an ILU preconditioner. We investigated the spectral properties and compared a Krylov reuse
method with GMRES. The preliminary results for this technique look promising. For non-
linear solvers, we tried a Newton method, Inexact Newton method and Broyden line search
techniques. The inexact Newton method saved 50% percent of the linear iterations when
compared to the exact Newton method for a three phase model. Finally, we consider a op-
timization problem with respect to the numbers of injectors, producers and placements to
maximize profit for a given oil field.

8 Acknowledgment

We would like to express our deepest appreciation to the organizers of this workshop and
the IMA for hosting this wonderful and successful workshop, without their help this meet-
ing would not have been possible. We thank the generosity of NSF and the University of
Minnesota for all of their thoughtful arrangements and help. We would like to thank our
mentor, Robert Shuttleworth, for being such an interesting, resourceful and helpful person,
whom we have learned a lot from. We are grateful to ExxonMobil and the other industrial
sponsors which gave us this opportunity to learn from all the mentors. Finally, we want to
acknowledge our teammates and students from other groups for their support and fellowship
throughout the workshop.

References

[1] Aziz, K. and Sattari, A. Petroleum Reservoir Simulation. Chapman and Hall, 1979.



Fast Computational Methods for Reservoir Simulation 20

[2] Dembo, Ron S.; Eisenstat, Stanley C.; Steihaug, Trond Inexact Newton meth-
ods. SIAM J. Numer. Anal. 19 (1982), no. 2, 400–408.

[3] Eisenstat, Stanley C.; Walker, Homer F. Choosing the forcing terms in an
inexact Newton method. Special issue on iterative methods in numerical linear algebra
(Breckenridge, CO, 1994). SIAM J. Sci. Comput. 17 (1996), no. 1, 16–32.

[4] Kelley, C.T. Solving Nonlinear Equations with Newton’s Method North Carolina
State University. Raleigh, North Carolina. Society for Industrial and Applied Mathe-
matics Philadelphia. 2003. Society for Industrial and Applied Mathematics.

[5] Kelley, C. T. Iterative methods for linear and nonlinear equations. Frontiers in ap-
plied mathematics, 16. 1995. Philadelphia: Society for Industrial and Applied Mathe-
matics.

[6] Quandalle, P.; Savary, D. An Implicit in Pressure and Saturations Approach to
Fully Compositional Simulation Society for Petroleum Engineers, 1989.

[7] Peaceman, D. W. Fundamentals of Numerical Reservoir Simulation. Elsevier Scien-
tific Publishing Company, 1977.

[8] K. D. Wiegand. GMRES experiments with a matrix derived from the inhomogeneous
lattice Dirac equation Parts I and II.

[9] Parks, M.; de Sturler, E.; Mackey, G.; Johnson D.; Maiti, S.. Recylcing
Krylov Subspaces for Sequences of Linear Systems, SIAM J. Sci. Comput. 28 (2006),
no. 5, 1651–1674.


