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The discontinuous Galerkin (DG) method is known to provide good wave resolution properties, especially
for long time simulation. In this paper, using Fourier analysis, we provide a quantitative error analysis for
the semi-discrete DG method applied to time dependent linear convection equations with periodic
boundary conditions. We apply the same technique to show that the error is of order k + 2 superconver-
gent at Radau points on each element and of order 2k + 1 superconvergent at the downwind point of each
element, when using piecewise polynomials of degree k. An analysis of the fully discretized approxima-
tion is also provided. We compute the number of points per wavelength required to obtain a fixed error
for several fully discrete schemes. Numerical results are provided to verify our error analysis.
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1. Introduction

In this paper, we consider the following time dependent linear
wave problem

ue + auy = 0, t >0,

u(x,0) = e,

x € [0,27],

(1.1)
x € (0,27,
with periodic boundary conditions, where a is the phase speed (for
simplicity, assume that a>0), i = v/—1 and w is the wave number
(for convenience, assume that o > 0). We develop a quantitative er-
ror analysis for the discontinuous Galerkin (DG) solution via Fourier
analysis and study the superconvergence property of the DG solu-
tion. Because the Eq. (1.1) as well as the DG scheme are linear, a
general [? initial condition can be written as a sum of the simple
waves e'* (Fourier series) and the numerical solution for such gen-
eral initial condition is just a superposition of the numerical solu-
tion of the Eq. (1.1) with the simple wave initial condition. The
results of this paper is therefore applicable to such general initial
conditions when we have a clear objective to the wave numbers
we would like to resolve. The quantitative analysis provided in this
paper can be used in the application to guide the choice of mesh
size and polynomial degree in the DG method, when we are solving
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a linear wave equation, would like to resolve the first k waves, to a
given threshold of error, up to a certain time t. The results of this
paper is also valid for one dimensional linear hyperbolic system,
and can provide useful guidelines when the DG method is used to
solve more complicated linear and nonlinear wave equations.

DG methods are a class of finite element methods using com-
pletely discontinuous piecewise polynomials as basis functions.
The first DG method was introduced by Reed and Hill [31] in
1973, to solve the neutron transport equation. The type of DG
methods we will discuss in this paper is the Runge-Kutta discon-
tinuous Galerkin (RKDG) method [22,21,19,18,23], which is using
explicit and nonlinearly stable high order Runge-Kutta method
for time discretization and the DG method for space discretization.
This method has several advantages, such as local conservation, the
allowance of arbitrary triangulation, excellent parallel efficiency,
the capability in h-p adaptivity and the ability to sharply capture
discontinuities (especially contact discontinuities) in the solution.
Furthermore, it has certain superconvergence properties.

The superconvergence behavior of the classical finite element
method has been analyzed for many years. For example, in [25],
Douglas and Dupont showed that for a general class of two-point
boundary value problems, the rate of convergence at the mesh
points is of order 2k when polynomials of degree k are used. In
[10], Bakker proved that the C° Galerkin solution of a two-point
boundary value problem using piecewise P* polynomials, has
superconvergence of order 2k at the knots and of order k+2 at
the Lobatto points of each segment, and the gradient is supercon-
vergent of order k + 1 at the zeros of a Legendre polynomial shifted
to the elements of the partition. In [11], the same author proved
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that for two classes of Galerkin methods: the Ritz-Galerkin meth-
od for 2mth order self-adjoint boundary value problems and the
collocation method for arbitrary mth order boundary value prob-
lems, the solution has the superconvergence of order k +2 at the
zeros of the Jacobi polynomial P;"" (o) shifted to the elements of
the partition, and the derivative of the solution is superconvergent
of order k+1 at the zeros of the Jacobi polynomial P,’f:]l'm’l(a)
shifted to the elements, where n=k+1 — 2m and k is the degree
of the finite element space.

Based on the results of Adjerid et al. [1] for singularly-perturbed
parabolic systems, Biswas et al. [12] used the assumption that the
DG solution of hyperbolic conservation laws using k-degree poly-
nomial approximation exhibited superconvergence at the roots of
Radau polynomial of degree k +1 (Radau points), to construct a
posteriori estimate of spatial discretization error.

Adjerid et al. [2] proved that the DG solution of the ordinary dif-
ferential equation (ODE) v’ — f(u) =0 is superconvergent of order
2k +1 at the downwind end of each element while maintaining
an order of k + 2 at the remaining Radau points. Numerical exam-
ples for the partial differential equations (PDEs) were also shown
without analysis. Later, these results were extended to two-dimen-
sional problems on rectangular meshes [4] and nonlinear hyper-
bolic problems [5]. Castillo [13] investigated the existence of
superconvergent points for DG methods applied to elliptic prob-
lems and showed that on each element the k-degree local discon-
tinuous Galerkin (LDG) solution gradient is superconvergent of
order k + 1 at the shifted roots of the k-degree Legendre polyno-
mial. For these cases, the model problems are independent of time.

In [3], Adjerid and Klauser showed that the LDG solutions of
convection-dominated problems are superconvergent of order
k +2 at the shifted Radau points on each element. For diffusion-
dominated problems, the derivative of the LDG solution is super-
convergent of order k+2 at Radau points. Later, Adjerid et al.
proved that the DG solution is superconvergent of order k + 2 at Ra-
dau points for linear symmetric hyperbolic systems [6] and for lin-
ear symmetrizable hyperbolic systems [7], when t=0(1). In this
paper, by investigating the quantitative error at Radau points using
Fourier analysis, we show that, even for t greater than O(1), the er-
rors at Radau points are of order k + 2 with the exception of the Ra-
dau point at the downwind end of the element, which is of order
2k + 1, when using DG method with piecewise polynomials of de-
gree k. See, for example [29,14-17,20] for more superconvergence
results of the DG method.

This work was motivated by [30], where the error analysis is gi-
ven using the finite difference method. We first provide an over-
view of this method solving the linear wave problem (1.1). The
exact solution of (1.1) is
U(X, f) _ eiw(x—at)_

Assume a uniform grid with Ax = 27, using the following second or-
der central finite difference method to approximate the spatial
derivative in (1.1)

Uiy — Uj
Dou = 2Ax
yields a semi-discrete version of (1.1) with a system of differential-
difference equations given by
duj(t) U (t) —uj(t)

Ty (12)

4;(0) = e,
It is easy to compute the solution of (1.2), which is
Uj(t) _ ei(:)(xj—ct)’
with the numerical phase speed
asiné
C =

P )

c

&= wAX.

By Taylor expansion, the leading term in the error between the ex-
act solution U(x,t) and the approximation solution u(x,t) is

waté?
=

It is evident that the error is a function of time. Under the assump-
tion of periodicity, the important quantity is not the time elapsed,
but rather the number of time periods, which is denoted by g, that
is,

e=|[lU—ul = &iﬁ\u(xjyt)*uj(f)\ﬁ (13)

_t
q - 27‘5,
Now the critical issue is: how many gridpoints are needed to re-
solve a wave, namely to make sure that the error is smaller than
a given tolerance ¢? We introduce the number of points per wave-
length, M, which is given by

N 2=m
M=—=—.
[ONENS

t = wat. (1.4)

(1.5)

Note that M has a theoretical minimum of 2, since it takes a mini-
mum of two points per wavelength to uniquely specify a wave.
Rewriting the error (1.3) in terms of M and g, yields

e:%(zﬁny. (1.6)

Then, the lower bound on M

1/2 12
M>2n(3) ()

required to ensure a specific error ¢ can be obtained from (1.6).

According to the analysis above, assume that we know for a gi-
ven problem the maximum wave number w needed to adequately
describe the solution. Then we can choose the number of points
such that the wave is well resolved. This can reduce the cost of
computation while preserving the accuracy. If more detailed infor-
mation is known about the spectral distribution of the Fourier
coefficients, then this can be used to obtain sharper comparisons
of efficiency by weighting the error function appropriately.

In 1974, Swartz and Wendroff [33] extended the ideas of [30] to
the finite element method, using smooth splines as basis functions
and presented an analysis of fully discretized approximation.
Our approach is to combine and extend the ideas of [30,33] to
the DG method, using the techniques introduced in [35] (see also
[34,36]) where the explicit formula of the DG solution is given by
Fourier analysis. See, for example [32,27,28,8,9] for recent develop-
ment and studies of the dispersion and dissipation errors of DG
methods using Fourier analysis.

This paper is organized as follows: we first present the DG algo-
rithm formulation for the model problem in Section 2. In Section 3,
we present the details of the error analysis by Fourier analysis and
provide the estimates of the necessary number of points per wave-
length required to obtain a fixed error. In Section 4, we show that
the DG solution is superconvergent at Radau points. In Section 5,
an analysis of fully discretized approximation with Runge-Kutta
methods as time discretization is presented. In Section 6, numeri-
cal experiments are provided to validate the results predicted by
the analysis. Finally, concluding remarks are provided in Section 7.

2. Discontinuous Galerkin formulation

In this section, we present the algorithm formulation of the DG
method solving the model problem
x € (0,27, t > 0,

X € [0,27],

U + auy =0,

u(x,0) = sin wx, (2.1)
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with periodic boundary conditions. The exact solution to (2.1) is
U(x,t) = sin(w(x — at)). (2.2)

To define the DG method for the model problem, we consider a
uniform partition of the computational domain [0,27] in N cells

of size Ax = 27. Denote the cell by I; = [x;_;,%; 1 X and the cell center
by x; = (ﬁw—x ) 1:17...,N,where
O0=x <Xy <o <Xy =21

and denote the approximation space as
Vi={v: ol e Py 1<j<N}, (2.3)

where PX(I ;) denotes the set of polynomials of degree up to k defined
on the cell I;. The semi-discrete DG method using the upwind flux
for solving (2.1) is defined as follows: find the unique function
u=u(t) € V¥ such that, forj=1, ..., N,

/I]u[vdx—a/uvxdx+au +17/()( > —aujj%v(x]t%) =0 (2.4)
holds for all test functions v e V}. Here and below u*, u~ denote the
left and right limits of the function u at the cell interface,
respectively.

We now look at the implementation of the scheme (2.4). If a lo-
cal basis oka( i) is chosen and denoted as d),( Yforl=1,2,...,k+1,
then the numerical solution can be represented as

k+1

= 44
=1

xel. (2.5)

After substituting (2.5) into (2.4) and inverting a local

(k+1) x (k+ 1) mass matrix, the DG scheme (2.4) can be written as

dui a

d—tj = Ax (Au; + Buj 1), (2.6)
T

where u; = (u},...,uj’f“) ,A and B are (k+1)x (k+1) constant

matrices.

As in [35], the local basis of P¥(I ;) is chosen to be the Lagrangian
polynomials, based on the following k + 1 equally spaced points

(2R,
Mo =%t o))

In this way, u;, the coefficients of the solution u inside the cell J; is a
vector of length k + 1 containing the values of the solution at these
points. The DG finite element scheme (2.6) becomes a finite differ-
ence scheme on a globally uniform mesh (with a mesh size £%).
However, it is not a standard finite difference scheme because each
point in the group of k + 1 points belonging to the cell J; obeys a dif-

ferent form.

1=0,...,k.

3. Error analysis

In this section, we present the details of DG algorithm formula-
tion with the basis functions discussed in Section 2 and derive the
error estimation of the semi-discrete scheme using piecewise P¢
polynomials, with k = 1, 2, 3. At the end of this section, We provide
an estimate of the necessary number of points per wavelength re-
quired to obtain a fixed error.

3.1. The case of P!

In this subsection, we consider the piecewise linear case, i.e.
k =1. We present the details of the error analysis for this case.

In this case, the local basis functions inside cell I; are
¢j,%(x),¢j+%(x), which are Lagrangian polynomials based on the

points 1 Xy 1. With these basis functions, the solution inside the
cell J; is then represented by

u(x) = ujf%lqﬁjf%(x) + uj+%¢j+%(x).

The finite difference representation of the DG method is

, a
uH_1 = IAx ( Sy, st 15y, ! 7uH_I +3uj+%)7

/ a (3.1)
uf+%:4Ax<uf*%_3uf 3+ 1y, — 9y, >
The scheme (3.1) can be rewritten into the matrix form
du;
G a (A B ). (3.2)
where

U 1/-7 -3 1/-5 15
L J=3 A== B=— . 3.3
1 <uj+3)’ 4(11 —9>’ 4(1 —3> (3-3)

To solve (3.2), the standard Fourier analysis is used here. This anal-
ysis depends heavily on the assumption of uniform mesh and peri-
odic boundary conditions. Assume

u;l(t) i l(t) .
1=z . 4 eiwxj (34)
uj+%(t) },(t)
and after substituting (3.4) into the DG scheme (3.2), the coefficient
vector satisfies the following ODE system

ﬂ’,%(t) il,},l(t)
i () - G( i (t) ) (3-5)

where G is the amplification matrix, given by

a —i¢ _
G:E(A+Be ), &= wAx. (3.6)

The two eigenvalues of G are

— 25 /e 2 £ 10e i — 2) (3.7)

ha=qp (—e’

and the corresponding eigenvectors are

—1 + € ¥ 4/1 + 10e¥ — 22
Vip = + (3.8)
1+ 116
Then the general solution of the ODE system (3.5) is
U a(t) ) :
s = Cne/']tV] + C]ze/'thZ. (39)
Uy (t)

The coefficients C;; and C;; in (3.9) can be determined by the initial
condition

140\ [k
0) ) \er )

We thus have the explicit solution of the DG scheme with piecewise
linear polynomials for solving (2.1). Comparing with the exact solu-
tion (2.2) will give us the quantitative error. Now let us first intro-
duce some notations:

(3.10)

le 3l == max |Ue;.0) — 1y, (0) -
eyl == max U 1. ) — 1, (0)|.
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By a simple Taylor expansion, we get

ot 21, 1861
el =52 +75¢ ~ 27628 ~214720°
2808495 + 136422412\
1592524300

+

(—2854295t+965888¢3) g
33443020800

< 6386427605 +581426944¢% + 1359970304#‘)
+0(¢

12842119987200
48576117895t — 76431828483 +6799851520t5>

192631799808000

(3.12)

where t = wat.
From (3.12), for short time ¢, the first term 5} &%, which is inde-
pendent of t, dominates. As t increases to O(g>, the second term

%53 begins to dominate. If t continues increasing, another term

with higher degree of t as coefficient may dominate. This means,
during different time intervals, the dominant terms are different.

Att= O(%) the error can be approximated by the first two terms,

ie.

1
le_yl. \—z -1,

1 (3.13)
el = g & + o5 28"

Denote e; = maX{Hef%HOm |\e+%\|m}, where the subscript 1 is used

here to indicate the case k = 1. Clearly, the error e, satisfies

1, 1.
e =max {Jle L. leyll } ~ 57 + 5 (3.14)

Similar to the finite difference case, we would like to rewrite the er-
ror in terms of the number of points per wavelength M; and the

number of time periods q = 1,X

i1
J+z}

5~ Notice that two points { 1

are used for each cell, therefore,

2N 4m

M, o= (3.15)
Substituting (3.15) and (1.4) into (3.14), we get
1 /4n\* mgq
1 *ﬂ<1\/171> +36 <M1> (3.16)

Then the number of points per wavelength required to guarantee
the error e; < ¢ satisfies the following inequality

1 /4n\? mq /4m\>
2a\ar,) T36 g,

3.2. The case of P?

(3.17)

In this subsection, we use the same procedure as we did in the
piecewise linear case to present the details of the error estimation
of the DG method using piecewise P? polynomials.

In this case, the local basis functions {d)j,%(x), $i(%), d)H%(x)}

inside cell J; are the Lagrangian polynomials based on the points
X;_1,%;,X;.1. The solution inside the cell ; is then represented by

(0) = 1 45 4(X0) + (0 + 13854 ()

and the DG scheme can be written into the matrix form (2.6) with
U1 43 29 1 23 115 115
13 16 ~ 24 16 16 24 16
= | 88 _15 _15 |8 1 _s
u=|( % |, A=| % -§ 1| B= 16 8 16
U .1 _19 139 _ 71 1 S5 _5
I+3 1 24 16 16 24 16

(3.18)

The standard Fourier analysis is again used here. First we make an
ansatz of the form

Ujf%(f) ltlf%(t)
ut) | = do(t) |e. (3.19)
U4 (t) uy(t)

After substituting (3.19) into the DG scheme (2.6) with (3.18), the
coefficient vector satisfies

ﬂ/,%(t) ﬁf%(t)
Up(t) | =G| o(t) |, (3.20)
i (1) iy (1)

where G is given by (3.6) with A and B defined in (3.18). Then with
three eigenvalues of G and the corresponding eigenvectors com-
puted by Mathematica, the general solution of the ODE system
(3.20) is

(D)
(t) = Cz]EZl[V1 + C22€;'2[V2 + C23€)'3tV3.
uy(t)

i
(3.21)

The coefficients C,1, G2 and Cp3 in (3.21) can be determined by the
initial condition

u_4(0) e s
@ [=1 1 (3.22)
i,(0) o

We thus have the explicit solution of the DG scheme with P? poly-
nomials for solving (2.1). Comparing with the exact solution (2.2)
will give us the quantitative error estimates.

eyl = max U(x; 4, ¢) - uj,%(t)‘
_ &, 3230 241
" 1296 ' 3110400 1008000
110175241 2\,
(’134369280000*80000)g +0(&),

lleoll. == max |U(x:,0) = u(0)]

& 49798 11££°
T 240 15552000 1814400
28245223 2 ; 8
(2015539200000 * 432000)5 +0().

(= Mmax
eyl = max

Ulxj3,6) = ()]

_ 232 675678 | 263i°
=480 " 357696000 ' 4636800
451421052697 2N,
- (8174355148800000’368000)5 +0(&).

Clearly, the coefficients of high order terms depend on t. Similarly,
during different time intervals, the dominant terms are different.
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Denote e, := max {He%ﬂx, leoll ||e+%\|w}. Att= O(l) the error e,

satisfies

53
=240 (3.23)
Att= O(};) the error e, satisfies
oo & 49798 11
27240 15552000 1814400

28245223 N
(2015539200000 + 432000) < (3.24)

In this case, the number of points per wavelength M, satisfies
_ 3N _6m

M
2= z

(3.25)

since three points are used in each cell. Similarly, by rewriting
(3.23) and (3.24) in terms of M- and q = ., we can obtain the num-
ber of points per wavelength M, required to ensure that e, < &.

3.3. The case of P3

In this subsection, we apply the same procedure discussed in
the previous subsections to the DG method using piecewise P
polynomials.

The local basis functiops {qﬁj,%(x), ¢j.,%(x), d)H%(x), qu%(x)} ins.ide
cell I; are the Lagrangian polynomials based on the points
X3, X, With these basis functions, the DG scheme can
be written into the matrix form (2.6) with

3 Xiep X3

_ 15109 4521 255 403
6144 2048 2048 6144
43577 _ 7699 _ 1115 _ 959
A— 6144 2048 2048 6144
_ 11761 10747  _ 5629  _ 7097
6144 2048 2048 6144
_ 4723 7983 21993  _ 43211
6144 2048 2048 6144
and
_ 2865 12033  _ 20055 20055
2048 2048 2048 2048
1685  _ 7077 11795  _ 11795
B— | 204 2048 2048 2048
_ 365 1533 _ 2555 2555
2048 2048 2048 2048
_ 615 2583 __ 4305 4305
2048 2048 2048 2048

The standard Fourier analysis is once again used here to obtain the
explicit solution of the DG scheme. The error is also approximated

by the dominant terms of Taylor series. Denote
es = max{Jle gl le_yll.. eyl el }. At E=0(%),
e; ~ 0.00036369202628968253968253968254:*, (3.26)

AtE=0(3),

e; = 0.00036369202628968253968253968254:*
— 7.25319954423243464358961570099621 x 107°¢°
+7.08616780045351473922902494331066 x 1077¢¢7.

(3.27)
In this case, the number of points per wavelength M; satisfies
4N 87
M3 =—= 2
= = (3.28)

since four points are used in each cell. Similarly, the number of
points per wavelength M3 required to ensure that e; < € can be ob-
tained by rewriting (3.26) and (3.27) in terms of M3 and g.

Table 3.1 shows the lower bound of M, to ensure the specific er-
ror ¢, which is a function of g we only present the leading term
here.

Table 3.1
Leading term of the lower bound of M as a function of gq.
t M, M, Ms
o)  of oF) o) o)
£=0.1 12¢* 6.53 74 6.17 6q’
£=0.01 264} 14.08 10q? 10.98 8q
£=0.001 56¢} 30.33 13¢% 19.52 12q7

4. Superconvergence

In this section, we study the superconvergence property of the
DG solution at Radau points.

4.1. Superconvergence at Radau points

In this subsection, we study the superconvergence property of
DG solutions at Radau points. The local basis functions of Pk(lj)
are chosen to be the Lagrangian polynomials, based on the follow-
ing k + 1 points
Xjir, = X; +%Ax, [=0,...k,
where {(} are the roots of the Radau polynomial Py.1(x) — Pi(x) and
Py(x) is the Legendre polynomial of degree k. Table 4.1 displays {(x}
fork=1,2, 3. Note that x;., = an is the downwind point of the ele-
ment ;.

Remark. The basis functions in this section are different from
those discussed in Section 3 and the amplification matrices are
different, but they have the same eigenvalues. These eigenvalues
are also the same with the ones derived in [32] using an
orthonormal basis of Legendre polynomials.

As in Section 2, the DG method with the above basis can be
written into a matrix form. The standard Fourier analysis is used
to find the explicit solution of the DG scheme as discussed in Sec-
tion 3. We do not repeat the details of this analysis procedure.
Denote

e = Max UG, 0) — (i O,

e

:= max \U(xj;%7 t) — u(xj;%, t)|.

71
21l 1<j<N

The followings are the error estimate results.

o k=1
1 /16
lerlloc = 251/g7 * 28 +0(¢%),
1 16
eyl =73\ g +BE+0E;
Table 4.1

{Ci}io: the roots Of Peuy(x) — Pi(X).

i

k=1 Lo=-3 =1
k=2 Go=-188, =126 1,=1
k=3 (30=-0.82282408097459210520890771246109

{31 =-0.18106627111853057827014749586234
{32=0.57531892352169411205048377975200
(33=1
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ller, ||.. = (0.00112979589711327123927891362988¢* — 72t00 &

+0(&°),
ller, ||, = 0.00082979589711327123927891362988¢*

t 5 6
mf +0(&%),

t2 +144/25 | N
_ VY25 5 | o),

o 7200

+

€1
2

ek=3
el = ‘4.58526548614820367915101051257673 %1075
+1.48442413127661313280202433713330 x 10 ¢
~2.95523546192529651029864723686194 x 10 /£2°

+0(&),

ller, ||, =4.81347804829324175268316712031863 x 10°&°
—1.74662334589086702133200039227532 x 10’657
+1.12983256993051227300311527010632 x 10’8f§8
+0(&),

ller, || =2.60817329279298238245105944584508 x 107° &
+1.86838652276109018545310450926279 x 10’657
+3.23693699988152665996155459585616 x 10’7f£8
+0(&),

/P +576/49 ,

~ 1412200 °©
 3:20791891379522690550503036041469 10*7E58

V576 +49¢2

He:l
2

+0(&9).

4.2. Superconvergence at the downwind point

In this subsection, we take a particular look at the error at the
downwind point of each cell.

Let Mi be the number of points per wavelength needed to guar-
antee the error } e;lj < & when using P* polynomials. According
to the results derivéd’in the previous subsection, when f is greater

than O(1), we have.

e k=1
_ 3
1 /16 t nq (41
- LN ek 2 £3 W I |
Cull. =72V9 T +O(g)—72‘5‘36<1vp;> se
(4.1)
e k=2
| VET144/25 e
eall. =" 7200 ¢ tO) =7300¢

5
_ mq (6rm X
= 3600 (Mf) <e. (4.2)

e k=3
| VET576/49 , £,
®ill. = 1a12200 © TOC) =1z11200°
7
__ ™ (8m
= 705600 (Mg> sé “3)
Therefore,
b 1 1
M, > 471(%)3(%)3, (4.4)
" T \E/q\3
M, > 67(5g55) (5) (4.5)
M > 8r(—T ) (1) 46
32 ”(705600) (E) : (4.6)

Table 4.2 shows the lower bound of M’,: as a function of q for three
representative values of ¢, when ¢ is greater than O(1).

5. Fully discrete schemes

The previous sections deal with the semi-discrete schemes. In
practice, the time discretization also plays an important role. An
analysis of fully discretized approximation will be presented in this
section with the basis functions discussed in Section 3.

5.1. The case of P!

In this subsection, we present the details of fully discretized er-
ror analysis for the piecewise linear case.

Let u be the approximation solution of the differential-differ-
ence Eq. (2.4) obtained by using p-stage explicit Runge-Kutta
methods of order p (RK (p,p)) [26]. Then

il;l iw"j,l t
-1 afe
N =R . - 1
<uj+%> (e'“’XHA ) n=. (5.1)
where
2 p
Re1+AaG+55¢ 4. A (5.2)
2! p!

with the amplification matrix G defined in (3.6). Let Q = [V, V5] be
the matrix with G’s eigenvectors as columns. Clearly, we have

1 0
Q]GQ:A:<O1 b). (5.3)
Denote R = Q'RQ. From (5.3) and (5.2), we have
R=Q'RQ =1 +AtA+~~+Ap—t'pA”
T+ Ath + 500 0
_< 0 1+AMZ+~--AP—TA‘2’>
Thus,
R'=(QRQ")"=QRQ"
_ (1+At21+-~~Ap‘{’)}1’ 0 )”Q1 50
0 1+At).2+---%")f2’ ' ’
Table 4.2
Lower bound of M{, as a function of q.

M M, M,
£=0.1 12¢ 7q 6q}
£=001 25¢5 11¢ 8q7
£=0.001 55¢3 18¢ 11q
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Substituting (5.4) into (5.1), we can determine the explicit solution
of the RKDG scheme for solving (2.1). Comparing with the exact
solution (2.2) will give us the quantitative error estimates, based
on the assumption cfl = a4L.

By a simple Taylor expansion, the error between the DG solu-
tion with RK (2,2) time discretization and the exact solution is

. & p
Iy~ Ul .0 =54 (1 _ 4icfl’t )e it
3i(—1+6cfl)t
254 (l — 6¢fl + 18Cﬂ2)cmxe*1 Gefl+18cM2
v3 5 3 -
. T\ it
576 ( — 8t — 24cfl® + 72cfl t)e
*3  3i(-146cf)E
576 (1 — 6cfl + 18cfl )‘“Me et 15
3i(—1+6¢fl)t
+§—4t( — 6¢fl + 18cﬂ2) e ot

where ¢ = wAx and t = wat.
In order to let the terms with coefficients (] — 6cfl + 18cﬂ2)°"“

go to 0 as Ax — 0, we assume |1 — 6¢fl + 18cfl?| < 1, i.e. cfl < 1. Then

22 3 23 3 23
B _ it € 2 & &2 & o & o3 .4
U, -Ux i, t)=e (24 61cﬂ t— 1576 72t —24cﬂ t+—8 cfl’t+0(¢ )).

1

Thus
le sl = max [, — UG, 1.0
— 2 37\ 3
1 \/—“Tvz (2t+7cﬂ t—18cfl t)f .
= =/ 1+ 16cfl*f2¢ )
24 144v/1 + 16cfI*f2
(5.5)

We keep the same notations here as in the semi-discrete case.
Similarly,

1 o, (204 7cfPE - 18cfPE)
leyll = =5 \/1+ 161228 + /1 0()
24 1441 + 16cfI*f2

(5.6)
and
er = max {fle .. lle.yl. }
= 27 37) 3
1 ., (2047t 18cfPE) ¢ \
=—1/1+16cfl*f2e? + +0(&%).
24 1441 + 16cfI*f2
(5.7)

Since it takes a minimum of two points per wavelength to uniquely
specify a wave, the largest wave number that can be represented on
the N cells (reminder: two points are used for each cell) is
@ =% = N. Therefore, we consider simple waves with 0<w < N.
If w is much less than N in magnitude, then there are many grid-
points per wavelength, and the solution is well resolved. In this
case, ¢ is a small number, and we can neglect O(£3) and obtain

ey ~ 214 V1 +16cfl*f2e2. (5.8)

If ¢ is large, corresponding to fewer gridpoints per wavelength in
the solution, then the P' solution is not a good approximation of
the exact solution and approximation polynomials of degree > 1
are required.

Similarly, when using RK (3,3) time discretization, the error
estimates under the assumption cfl < 0.418 are

.3
S p
eyl = |57 = 55 £(1+3c) |+ 0("), (5.9)
_f é 3 .4
eyl =57+ 55 E(1+3cf) +0(. (5.10)
AtE=0(1),
g 2. 3
61:24+ﬁt(1+3cﬂ). (5.11)

The necessary number of points per wavelength required to ensure
a specific error ¢ can be obtained by rewriting (5.8) and (5.11) in
terms of M; and g and setting e; < &

5.2. The case of P*

For k=2 and k = 3, the analysis procedure is the same.

In this subsection, we present the results of fully discretized er-
ror estimates when piecewise P? polynomials are used.

When using RK (3,3) time discretization, under the assumption
cfl < 0.327, we have

le_yll. = 12196 1+ 72321229532 cfl°f28® 4+ 0(&h), (5.12)
lleoll. :2%\/1 +100cfl°f2¢* 4 0(&Y), (5.13)
leyll. = % 1+ 7?280 cfl®2E® + 0(h). (5.14)
Thus,
e = max {[le_yl.. ol le.5]l. }

~ 2% \/mé. (5.15)

When using RK (4,4) time discretization, under the assumption
cfl < 0.351, we have

eyl = 12196C +120cﬂ4£4+0(65) (5.16)
leoll., = 210 “3+mcﬂ4£ +0(&), (5.17)
el '623063—mcﬂ4*4 +0(&). (5.18)
Att70<l%),

2310< +mcﬂ4é (5.19)

While at t =0(%), we need more terms of the Taylor series to
approximate e,. In this case,

~0.0041666666666667¢> +0.0083333333333333cfl*¢*f
—0.0003201517489712¢ + £°(—6.0626102292768959 x 10~°¢
—0.0000680298353909cfI*f +0.0008873456790123cfI’
—0.0029761904761905cf1°F) + ¢’ (—0.00013365952729388
+2.3148148148148148 x 1075 — 0.0000354938271605cfl* 2
+0.0002314814814815¢fI’F* +0.0001360596707819cfI* >

—0.0017746913580247cfI°# 4 0.005787037037037cfl'°#)|.
(5.20)

The necessary number of points per wavelength required to ensure
a specific error ¢ can be obtained by rewriting (5.15), (5.19) and
(5.20) in terms of M, and q and setting e; < .
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5.3. The case of P

For the cases k=1 and k = 2, the cfl condition is consistent with
the CFL,. table in [24]. However, for k =3, we cannot get the cfl
condition using the same procedure by Taylor expansion and
Mathematica due to limited memory. In this subsection, we pro-
vide the error estimates based on a fixed cfl = 0.1.

When using RK (4,4) time discretization, we have

He,%nx:54\/3,2541560538021135x 1078 +6.9444444444444444 10732 + 0(&%),

lle . = \/1431287]5187393769 x 107 +6.9444444444444444 < 10 *12 4+ 0(&%),

il

llesyllo=¢* \/ 1.3227188998669514 x 107 +6.9444444444444444 x 107 °f2 +-0(&%),

le gl =¢* \/ 9.3484606662364834 x 107 +6.9444444444444444 x 10 12+ 0(2%).

And

ey~ 54\/1 3227188998669514 x 1077 + 6.9444444444444444 x 10722,

(5.21)
When using RK (5,5) time discretization, we have
lle_s|.. = 0.0001803927951389¢*

+1.3888888888888889 x 107 8££° 4 0(¢%), (5.22)
lle_yl.. = 0.0000362335689484¢*

+ 1.3888888888888889 x 108> + 0(¢%), (5.23)
lley]l.. = 0.0003636920262897¢*

+1.3888888888888889 x 1078££° 4 0(¢%), (5.24)
lle3l.. = 0.0000966874379960¢*

+ 1.3888888888888889 x 108> + 0(¢&%). (5.25)
Att= o(iiz),
es ~ 0.0003636920262897¢* + 1.3888888888888889 x 107°¢°,

(5.26)

The necessary number of points per wavelength required to ensure
a specific error ¢ can be obtained by rewriting (5.21) and (5.26) in
terms of M3 and g and setting e3 < &.

Table 5.1 shows the M as a function of q (we only present the
leading term here), derived from the error estimates in each sub-
section. These estimates is computed at = O(}). Here we fix
cfl=0.3 for k=1, cfl=0.2 for k=2 and cfl = 0.1 for k = 3.

So far, in every case, we have expressed e, as a function of M,
and g. Now the work per wavelength to obtain the error e, when
integrating to time t using RK (p,p) is given by

Table 5.1
Leading term of the lower bound of My as a function of gq.
RK (p.p) M M, M3
RK(2,2) RK(3,3) RK(3,3) RK(44) RK(4,4) RK(5,5)
£=0.1 12¢¢ 12¢5 5¢5 3q 2qH 2¢
£=001 394 26¢5 11g 8qi Aq 2¢

£=0.001 1224} 57¢ 24¢ 10g3 8qh 4q5

t
Wk:2(k+1)XMkXEXP~,

which is a product of the number of operations per mesh point per
time step 2k + 1, the number of points per wavelength M, = 2241,

the total number of time steps ; and the number of stages per time
step p. Using wat = 27q and cfl = a 4L, we obtain

2mq
waAt

2
—2(k+ l)Mkp%w—ZX —2(k+1)

2mnq
wAxcfl

Wi :2(k+1)Mkpé:2(k+1)Mkp =2(k+1)Myp

q Me 2 0
M 6 171 = e PIMe

6. Numerical results

In this section, we provide numerical experiments to demon-
strate the predicted results presented in the previous sections.

To verify the predicted results for the semi-discrete scheme, we
adopt SSPRK (9,9) [26] to make the temporal error negligible
compared to the spatial error. This time discretization method
for solving du/dt = Lu, where L is a spatial discretization operator
(for this SSP method to be ninth order, L needs to be linear) is
defined as follows:

u® =y 4 AUV, i=1,...,8,

7
u® =3 "otg,u® + aog (u“” + AtLu“‘)),
k=0

Table 6.1
When using PX polynomials on a uniform mesh of N cells, = 1.

N Numerical results Predicted by analysis

k=1 e Order e Order

20 4.4639E-03 4.5430E-03

40 1.0763E-03 2.05 1.0819E-03 2.07

80 2.6333E-04 2.03 2.6375E-04 2.04

160 6.5072E-05 2.02 6.5096E—05 2.02

k=2 e, Order [ Order

20 1.2796E-04 1.2825E-04

40 1.6139E-05 2.99 1.6119E-05 2.99

80 2.0179E-06 3.00 2.0177E-06 3.00

160 2.5231E-07 3.00 2.5230E-07 3.00

k=3 es Order es Order

20 3.6972E-06 3.5497E-06

40 2.2928E-07 4.01 2.2153E-07 4.00

80 1.3858E-08 4.05 1.3840E-08 4.00

160 8.6484E-10 4.00 8.6494E-10 4.00
Table 6.2

When using P¥ polynomials on a uniform mesh of N cells, f = 100.

N Numerical results Predicted by analysis

k= e Order e, Order
20 4.5526E-02 4.7177E-02

40 6.3632E-03 2.84 6.4111E-03 2.88
80 9.2878E-04 2.78 9.2990E-04 2.79
160 1.4831E-04 2.65 1.4837E-04 2.65
k=2 ey Order ey Order
20 1.3370E-04 1.3463E-04

40 1.6120E-05 3.05 1.6164E-05 3.06
80 2.0172E-06 3.00 2.0180E-06 3.00
160 2.5226E-07 3.00 2.5230E-07 3.00
k=3 e3 Order e3 Order
20 3.5443E-06 3.5570E-06

40 2.2147E-07 4.00 2.2148E-07 4.01
80 1.3831E-08 4.00 1.3838E-08 4.00
160 8.6229E-10 4.00 8.6490E-10 4.00
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Table 6.3
When using P* polynomials on a uniform mesh of N cells, £ = 1000.
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Uniform meshes are used in the calculation and the CFL condition
cfl = a4t is chosen from the table in [24].

Tables 6.1, 6.2, 6.3 list the error between DG solution and exact
solution for fixed f with different cell size N, where N =&, The
numerical results are computed using PX polynomials and RK
(9,9) time discretization. The predicted results are computed using
the formulas derived in Section 3. The predicted errors agree with
the computed results very well. These tables also show that the or-
ders of the errors are different at different final time t. This is be-
cause the higher order terms of the error dominate for large t.

Figs. 6.1, 6.2, 6.3 show the time evolution of the L*° error and e
error when using P polynomials with three different time discret-
ization methods. One is the same order as the spatial error, another
one is one order higher than the spatial error and the last one is the
RK (9,9) which makes the temporal error negligible comparing
with the spatial error. The numerical L> error is computed by
taking a uniform partition of each element with 20 points. These
figures show that the time discretization method needs to be at
least one order higher than the DG method, in order to get the
same result as the semi-discrete case. The order of the RK method
higher than k + 1 makes little difference when the DG method is
using P* polynomials. Also, the figures demonstrate that the pre-
dicted errors in general agree with the computed results very well.

Tables 6.4, 6.5, 6.6 list the numerical errors and their orders at
Radau points for different final time t. These tables verify the
results derived in Section 4: the errors at the downwind point of

The errore,

o
o
2]

T
o
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————— RK(2,2) Predicted
014F o RK(3,3) Numerical oo
0.12 RK(3,3) Predicted b-d

v RK(9,9) Numerical
Semi-dicrete error -

o

Fig. 6.1. Time evolution of L™ error (left) and e; error (right) for P! DG solution with N = 40, cfl = 0.3.

N Numerical results Predicted by analysis
k=1 e, Order e, Order
20 3.5039E—01 4.3476E-01
40 5.3261E-02 2.72 5.4858E—02 2.99
80 6.9551E—03 2.94 6.9858E—03 297
160 9.0479E—04 2.94 9.0535E—04 2.95
k=2 e Order e Order
20 4.4844E—04 8.2153E—04
40 2.0799E-05 443 2.1489E-05 5.26
30 2.0575E-06 3.34 2.0589E-06 3.38
160 2.5111E-07 3.03 2.5261E-07 3.03
k=3 es Order es Order
20 3.7047E—06 3.7487E—06
40 2.2252E-07 4.06 2.2298E-07 4.07
30 1.3902E-08 4.00 1.3850E—08 401
160 8.6496E—10 4.01 8.6499E-10 4.00
where
_ 16687 o _ 2119 o _ 103
™0~ 45360° ~™° " 5760° ™ 560’
e 53 - 11 M 1
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Fig. 6.2. Time evolution of L error (left) and e, error (right) for P> DG solution with N = 80, cfl = 0.2.
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Fig. 6.3. Time evolution of L error (left) and e error (right) for P*> DG solution with N = 160, cfl = 0.1.

Table 6.4
Error at Radau points using P! DG and RK (9,9) on a uniform mesh of N cells.
N t=1 t=10 t =100
Error Order Error Order Error Order
lerg |l 20 4.75E-04 4.25E-03 4.17E-02
40 5.91E-05 3.01 5.37E-04 2.98 5.36E-03 2.96
80 7.38E—06 3.00 6.73E-05 3.00 6.72E-04 3.00
160 9.22E-07 3.00 8.42E-06 3.00 8.41E-05 3.00
ezl 20 6.97E-04 4.28E-03 4.18E-02
: 40 8.87E-05 2.97 5.39E-04 2.99 5.35E-03 297
80 1.12E-05 2.99 6.77E-05 2.99 6.72E-04 2.99
160 1.40E-06 3.00 8.48E-06 3.00 8.41E-05 3.00

Table 6.5
Error at Radau points using P2 DG and RK (9,9) on a uniform mesh of N cells.
N t=1 t=10 t=100
Error Order Error Order Error Order
maxo<<1{[ler |l } 20 1.05E-05 1.23E-05 4.97E-05
40 6.73E-07 3.96 6.37E-07 4.27 1.83E-06 4.76
80 4.25E-08 3.98 3.88E-08 4.07 7.30E-08 4.65
160 2.67E-09 3.99 2.56E-09 3.92 3.27E-09 4.48
llet,ll 20 1.09E-06 4.34E-06 4.23E-05
: 40 3.44E-08 4.98 1.36E-07 4.99 1.33E-06 5.00
80 1.08E-09 5.00 4.26E-09 5.00 4.15E-08 5.00
160 3.37E-11 5.00 1.33E-10 5.00 1.30E-09 5.00
Table 6.6
Error at Radau points using P> DG and RK (9,9) on a uniform mesh of N cells.
N t=1 t=10 t=100
Error Order Error Order Error Order
maxXo<i<zler || 20 1.64E-07 1.46E-07 1.48E-07
40 4.70E—-09 5.12 4.60E—09 4.99 4.60E—-09 5.01
80 1.44E-10 5.02 1.44E-10 5.00 1.44E-10 5.00
160 4.50E-12 5.00 4.50E-12 5.00 4.50E-12 5.00
llesull 20 1.86E—08 2.24E-09 2.13E-08
: 40 2.12E-10 6.45 1.76E-11 6.99 1.67E-10 7.00
80 5.09E-13 8.70 1.38E-13 7.00 1.31E-12 7.00
160 3.75E-16 10.41 1.08E-15 7.00 1.02E-14 7.00

each element are superconvergent of order 2k +1 and at other for k=2, 3, the leading terms of the errors do not depend on ¢,
Radau points are superconvergent of order k+2 when using
piecewise P* polynomials. These tables also show the relation
between the error and t: for k = 1, errors are proportional to t while

thus the errors are almost the same for £ under O(%) We have also

tested the P? case at final time t = 500, the error maxo<; {|le;, ..}
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achieves fifth order. This is because as t increases to 500, the fifth We have also used a non-uniform mesh which is 60% random
order term dominates. This verifies the fact that during different perturbation of the uniform mesh. For example, the right end of
time intervals, the dominant terms are different. the cell J; is now x;,, + 60%(rj,; — 0.5)Ax, where x;,;, Ax are taking
Table 6.7
Error at Radau points using P! DG and RK (9,9) on a random mesh of N cells.
N t=1 t=10 t=100
Error Order Error Order Error Order
ler Il 20 1.82E-03 6.73E-03 6.33E—02
40 2.39E-04 2.93 7.68E—-04 3.13 7.50E-03 3.08
80 3.23E-05 2.89 9.05E-05 3.08 8.87E—-04 3.08
160 3.11E-06 3.37 1.22E-05 2.89 1.20E-04 2.89
320 4.98E-07 2.64 1.49E-06 3.03 1.42E-05 3.08
lle I 20 1.19E-03 6.81E-03 6.34E—02
: 40 1.50E-04 2.98 7.80E—-04 3.13 7.51E-03 3.08
80 2.27E-05 2.72 8.96E-05 3.12 8.87E—-04 3.08
160 2.36E-06 3.27 1.22E-05 2.88 1.20E-04 2.89
320 3.51E-07 275 1.43E-06 3.09 1.42E-05 3.08
Table 6.8
Error at Radau points using P? DG and RK (9,9) on a random mesh of N cells.
N t=1 t=10 t =100
Error Order Error Order Error Order
ler Il 20 3.20E-05 3.14E-05 1.31E-04
40 2.63E-06 3.61 2.58E-06 3.61 4.63E-06 4.82
80 1.55E-07 4.08 1.99E-07 3.70 2.11E-07 4.45
160 1.32E-08 3.56 1.37E-08 3.86 1.11E-08 4.25
320 7.70E-10 4.10 7.85E-10 412 7.25E-10 3.94
He ) 20 1.81E-05 1.39E-05 9.31E-05
F2lloo 40 4.87E-07 5.21 5.20E-07 4.74 2.81E-06 5.05
80 6.06E—08 3.01 3.66E—08 3.83 9.28E-08 492
160 2.34E-09 4.69 1.25E-09 4.87 2.74E-09 5.08
320 1.33E-10 4.14 6.55E-11 4.26 1.01E-10 4.76
Table 6.9
Error at Radau points using P> DG and RK (9,9) on a random mesh of N cells.
N t=1 t=10 t=100
Error Order Error Order Error Order
ller Il 20 3.90E-07 4.16E-07 4.71E-07
40 4.73E-08 3.04 3.55E-08 3.55 3.74E-08 3.65
80 1.10E-09 5.43 8.65E-10 5.36 1.04E-09 5.17
160 2.71E-11 5.34 3.18E-11 4.76 2.94E-11 5.14
320 1.25E-12 444 1.43E-12 447 1.40E-12 4.39
Hei‘ H 20 2.29E-07 2.71E-08 4.51E-08
F2lloo 40 1.80E-08 3.67 8.42E-09 1.69 3.91E-09 3.53
80 2.97E-10 5.92 1.16E-10 6.19 4.84E-11 6.34
160 8.42E-12 5.14 3.56E-12 5.02 1.25E-12 5.27
320 2.49E-13 5.08 1.05E-13 5.08 4.71E-14 473
Table 6.10
Necessary number of points per wavelength for e, < ¢ when time period q = 1.
RKDG (p.k +1) £=0.1 £=0.01 £=0.001
Numerical Predicted Numerical Predicted Numerical Predicted
RKDG (2,2) 15.02 14.63 42.87 42.47 130.06 129.81
RKDG (3,2) 13.43 14.09 34.32 34.62 92.60 92.73
RKDG (9,2) 13.14 13.82 33.83 34.14 91.86 91.99
RKDG (3,3) 8.00 6.78 15.74 14.62 31.69 31.49
RKDG (4,3) 7.61 6.66 14.37 14.20 30.17 30.46
RKDG (9,3) 7.63 6.53 14.46 14.08 30.00 30.33
RKDG (4,4) 6.16 6.17 11.10 10.98 19.25 19.52
RKDG (5,4) 6.16 6.17 11.10 10.98 19.24 19.52
(9.4)

6.16 6.17 11.10 10.98 19.24 19.52
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Table 6.11
Necessary number of points per wavelength for e, < ¢ when time period q = 10.
RKDG (p,k+1) e=0.1 £=0.01 &=0.001
Numerical Predicted Numerical Predicted Numerical Predicted
RKDG (2,2) 39.46 38.60 122.60 122.06 386.36 385.97
RKDG (3,2) 26.74 27.38 60.85 61.03 140.86 140.93
RKDG (9,2) 26.08 26.72 59.48 59.67 138.16 138.23
RKDG (3,3) 13.47 11.27 26.07 24.27 53.43 52.30
RKDG (4,3) 11.38 13.58 18.83 19.86 32.85 33.11
RKDG (9,3) 11.51 13.53 18.94 19.64 32.47 32.32
RKDG (4,4) 8.00 6.19 12.65 11.00 20.45 19.57
RKDG (5,4) 8.00 6.19 12.64 10.99 20.35 19.53
RKDG (9,4) 8.00 8.70 12.64 12.65 20.36 20.35
Table 6.12
When time period g = 1.
Type of scheme Order Multiplies per meshpoint Stages per timestep Wi
e=0.1 £=0.01 £=0.001
RKDG (2,2) 2 4 2 2900 24,000 224,700
RKDG (3,2) 2 4 3 4000 24,000 172,000
RKDG (3,3) 3 6 3 1400 6400 29,800
RKDG (4,3) 3 6 4 1800 8100 37,100
RKDG (4,4) 4 8 4 3000 9600 30,500
RKDG (5,4) 4 8 5 3800 12,000 38,100
Table 6.13
When time period ¢ = 10.
Type of scheme Order Multiplies per meshpoint Stages per timestep Wi
£=0.1 £=0.01 £=0.001
RKDG (2,2) 2 4 2 201,400 1,995,300 19,891,700
RKDG (3,2) 2 4 3 149,900 745,000 3,972,500
RKDG (3,3) 3 6 3 38,100 176,800 820,400
RKDG (4,3) 3 6 4 51,800 157,800 438,600
RKDG (4,4) 4 8 4 30,600 96,900 306,300
RKDG (5,4) 4 8 5 38,300 120,800 381,500

values under the uniform mesh and r;,, is a random number from
the uniform distribution over the range (0,1). Tables 6.7, 6.8, 6.9
list the errors and their orders at Radau points in this case for dif-
ferent final time f, when using piecewise P* polynomials. We can
see that the error at Radau points is of order around k + 2, including
the downwind point. We have also tested the cases of P? and P
using 1% random perturbation of the uniform perturbation. The
numerical results still do not show the strong superconvergence
of order 2k + 1.

Tables 6.10 and 6.11 list the necessary number of points per
wavelength required to guarantee e, < ¢ for various RKDG schemes
and values of ¢. Denote RKDG (p,k + 1) to be the scheme using the
RK (p,p) method for time discretization and the DG method with
piecewise P* polynomials for space discretization. For these
schemes with RK (9,9) method, the results of semi-discrete case
are used as the predicted results. These two tables also verify our
conclusions about the error estimates with different time discreti-
zation methods, which states that the RK method needs to be at
least one order higher than the DG method, in order to get the
same result as the semi-discrete case; and there is little difference
among the RK methods of order higher than k +1 when the DG
method is using piecewise P* polynomials.

Tables 6.12 and 6.13 list the work per wavelength of the
scheme RKDG (p,k + 1), wy, required to obtain the error ¢ when
time period q=1and q=10. We should point out that we could
have increased the order of the RK method used in the scheme
RKDG (k + 2,k + 1) without significantly affecting the number of
points per wavelength, but the numbers of stages per timestep

would then increase considerably and so is the work per

wavelength.

It is clear that even for short time period, high order methods

are the most appropriate choice when accuracy is the primary
consideration. When using P* polynomials for the DG method, RK
(k+1,k + 1) needs less work than the RK (k + 2,k + 2) for the short
time period. While for long time period, the better choice is RK
(k+2,k+2).
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Fig. 6.4. Necessary points per wave for |e|., < é&.
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Fig. 6.5. Comparison of time evolution of the error He,%Hx with two different initial interpolations.

In Fig. 6.4, we compare the necessary number of points per
wavelength required to obtain a fixed error 0.01 between two
second order accurate methods. One is the DG method with P!
polynomials and the other is the second order finite difference
method. It can be seen clearly that, even for a short time period,
the DG method needs much less points per wavelength. Also, the
necessary number of points per wavelength of the finite difference
scheme grows faster with time than the RKDG method. This is be-
cause the leading term of the error for the RKDG method does not
depend on £, while the finite difference method does. This conclu-
sion also holds for higher order schemes between the DG method
and the finite difference method with the same order. In [33],
Swartz and Wendroff computed the necessary number of intervals
per wavelength required to obtain a fixed error for the finite ele-
ment method using smooth splines as basis functions and various
time discretization methods, such as the trapezoidal method and
the leap-frog method. With the same order of time discretization
method and space discretization method, the RKDG method re-
quires less intervals per wavelength than the finite element meth-
od with smooth splines as basis functions in order to obtain a
specified error. Moreover, the leading term of the error of this finite
element method using smooth splines depends on t. This means
the necessary number of interval per wavelength for the finite ele-
ment method using smooth splines also grows faster with time
than the RKDG method.

Remark. All the numerical results and the predicted results take
point value collocation as initial conditions in this paper. The usual
way of taking initial conditions in a finite element method is via an
L? projection. However this does not affect the results in our paper.
See Fig. 6.5.

7. Conclusion

In this paper, by Fourier analysis, we have derived the quantita-
tive error estimates of the DG solutions using piecewise P¥ polyno-
mials with 1 <k<3, for solving time dependent linear wave
problems. We have proved the superconvergence property of the
DG solution at Radau points. The error of the DG solution is of order
2k + 1 superconvergence at the downwind point of each element
and is of order k + 2 superconvergence at other Radau points. We
also provide a fully discretized error analysis with various Run-
ge-Kutta methods. We have computed the necessary number of
points per wavelength required to obtain a fixed error for several
RKDG schemes. A very important implication of the discussion in
this paper is that the dominant terms of the error for the RKDG
schemes are different during different time intervals. This further

justifies the advantage of choosing DG methods for long time sim-
ulation of linear wave equations.

The technique of Fourier analysis discussed in this paper can be
extended to the hyperbolic systems with constant coefficients.
Theoretically, it can also be extended to the multidimensional case,
however the algebraic manipulations may become prohibitively
complicated.
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