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1 Introduction
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The earliest recorded reference to the brain dates back to the 17th century
B.C.E. [99]. The hieroglyph for brain can be found in the Edwin Smith
papyrus with descriptions of patients with head injuries. Indeed, the ori-
gins of our thoughts have been of great interest to humans since ancient
times, although our understanding has progressed slowly: for example,
until the 4th century B.C.E. our intelligence was attributed to the heart
[8]. At present age, neuronal networks in the brain and their dynamics
are understood to underlie behavior and cognition [99]. Interest in linking
cognition, behavior and the brain has particularly surged in the late 20th
century, when neuroimaging techniques quickly developed. However, the
actual emergence of human cognition as the result of the brain activity
remains a major scientific and philosophical question[36, 2]. The activity
in the brain can be inferred using a variety of methods, for example, by
measuring metabolic changes which indirectly reflect the underlying neu-
ral activity [36]. To study the workings of the brain, other techniques are
used to study the electrical signals produced in the brain.

Since bioelectric signals can be found in practically every organ in the
body [137], it comes as no surprise that the brain has been studied ex-
tensively by recording the cortical electrical currents. As early as 1875,
electric currents at the surface of the brain (electrocorticography, ECoG)
have been recorded in rabbits [30]. A few decades later, electric poten-
tials on top of the scalp (electroencephalography, EEG) were recorded in
animals [156] and humans [14].

Here we will delve into common electrophysiological measures and the
type of neuronal signals that they can pick up. Next, practical applications
of these measures and necessary steps for improved recording performance
will be discussed. Finally, a simulating approach to study electrophysio-
logical recordings using mathematical models will be covered.

1.1 Recording neuronal activity

Excitable neural cells are called neurons. An activated neuron produces a
transient and small electrical current which is called an action potential
(or spike) and forms the basis of communication between neurons. The
currents generate potential differences along the cell membrane that can



3

be recorded by electrodes. However, these potential differences fall off with
the square of the distance to the source. Consequently, at distances within
∼ 200 µm the potentials of individual neurons are below noise level and
cannot be discerned from the noise [28].

When recording from a larger distance (e.g., the surface of the brain
or scalp), the electrical signals can only be measured when large groups of
neurons are active synchronously [72, 141]. Therefore individual action po-
tentials are not expected to be picked up in these types of measurements,
because generally too few neurons fire in synchrony (the duration of the
membrane potential depolarization and repolarization of an action poten-
tial is only ∼1-2 ms) [183]. Rather, postsynaptic activity is regarded as
the main generator of extracellular potentials recorded at further distances
[26], because of its longer time scale (10-20 ms), which makes synchronous
activity more likely.

The electric current in neural tissue causes potential differences within
the human head, which can be measured with electrodes [123, 139]. Elec-
trophysiological recordings can coarsely be divided in three categories of
detail: microscopic (recording from areas up to ∼ 200 µm), mesoscopic
(up to several mm) and macroscopic (up to several cm), where each one
samples from an increasingly larger number of neurons (Fig.1.1).

EEG and magnetoencephalography (MEG) measure at a macroscopic
scale (i.e., the recorded signals has contributions from neuronal popula-
tions at distances up to several centimeters) [183].

At a mesoscopic scale, it is possible to record neuronal activity at a
distance of several millimeters from the electrode (e.g., ECoG) [44]. How-
ever, no clear consensus has been established yet on the spatial reach of the
recorded signals (i.e., the size of the region contributing to the recorded
signal) [115, 13, 119, 42]; estimates range from 200 µm (cat) [101] to 5 mm
(macaque) [98]. Comparing these different estimates is complicated since
they depend on several factors, such as the animal species, brain region,
electrode type, the stimulus that was used or the frequency band that is
being considered [113].

There is minimal spatial averaging of the neuronal activity for micro-
scopic electrophysiological experiments, where signals are picked up from
areas similar in size compared to that of a neural cell body (i.e., 50 µm
- 200 µm). Indeed, microelectrodes are perfectly suitable to accurately
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record single unit activity (SUA, i.e., action potential waveforms of single
neurons) or multi-unit activity (MUA, i.e., spikes of a local population
of neurons). The biophysical basis underlying spiking dynamics has been
uncovered especially thoroughly using microelectrodes and forms the ba-
sis of much of our understanding of neural dynamics (for an overview, see
[104]).

The bandwidth of EEG (up to 70 Hz), ECoG (10 - 200 Hz) and micro-
electrode (up to 6 kHz) recordings [176] is mostly limited by the frequency
dependent attenuation of the signal-to-noise ratio. For each type of record-
ing, measuring bioelectric signals requires the conversion of ionic currents
(the charge carriers in the body) into electric currents (electrons are the
charge carriers in metals) [137]. The interaction between the metal elec-
trode and the tissue that is being recorded from, results in changes in the
ion concentrations near the electrode. A perfectly polarizable electrode
alters the distribution of the ions (a displacement current flows), while
no current flows into the electrode (no charge transfer occurs between the
ion solution and the metal). Conversely, in a non-polarizable electrode,
Faradaic current (charge transfer between the ion solution and the metal)
passes into the electrode.

The biophysical mechanisms underlying the genesis of mesoscopic sig-
nals are difficult to interpret due to the complex configuration of the
currents generated by neuronal processes in the highly inhomogeneous
extracellular space [183]. The recorded signals are mainly the result of
summated synaptic currents emerging during synchronized cortical exci-
tation [130, 43, 183] at the scale of neuronal networks. Thus, in meso-
scopic recordings, the activity of individual neurons can not be resolved
as in microscopic recordings, but instead allows for assessing the coher-
ence of local circuit activation, which has functional relevance for decod-
ing [194, 19, 148]. Studying the neuronal circuit activity is of great value
considering the highly interconnected structure of the brain [27, 51]. For
example, cortical pyramidal cells are covered by approximately 104 to 105

synapses, with a typical balance between local interactions and long dis-
tance projections [177, 56].

ECoG is a useful and widely used methodology to monitor neuronal
activity at a mesoscopic level with limited neuronal invasiveness (com-
pared with intracortical recordings), making it especially suitable for clin-
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Fig. 1.1: Representation of recording electrodes at different spatial scales.
At a macroscopic scale, EEG signals contain information from neuronal
populations at several centimeters from the recording contact. The meso-
scopic ECoG signals have contributions from neurons at several millime-
ters from the recording contact. Finally, the microelectrodes can record
neuronal action potentials within ∼ 200 µm from the recording contact
[25, 150]. Adapted from [70].

ical studies involving humans. The ECoG signal samples from a larger
region than other mesoscopic recordings as it typically uses electrodes
with a smaller impedance and a larger surface area [186]. Furthermore,
the spatial resolution and signal quality (i.e., signal-to-noise ratio, SNR)
of ECoG recordings is better than macroscopic EEG recordings [6]. Un-
der experimental conditions, for instance, certain low frequencies fluctuate
with location in ECoG recordings but seem to be uniform in EEG mea-
surements [37]. Despite the advantages of ECoG, it is not as well studied
as other electrophysiological measurements. For example, search results on
EEG and microelectrodes in the past 4 years yield more than 20,000 pub-
lications, with only around 8,000 for ECoG. The main reason is given by
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the invasiveness of ECoG when compared to EEG. ECoG is indeed used,
for example, in the pre-surgical evaluation of drug-resistant focal epilepsy,
but also, in brain computer interfaces as described in the next section.

1.2 Applications: BCIs and neuroprosthetics

Electrophysiological recordings can be utilized in neuroprosthetic tech-
nologies to realize direct communication between the nervous system and
a device [1]. Additionally, information from the neuroprosthetic interface
can be fed back to the user for closed-loop control. In this way, patients
with physiological impairments (e.g., loss of motor function, hearing or
vision) can control a neuroprosthesis which replaces, restores or improves
[205] the natural nervous system output [1].

A large number of neuroprosthetic devices is used to apply electri-
cal stimulation for the treatment of diseases such as Parkinson’s disease,
depression, epilepsy, cardiovascular disorders, auditory disorders [83, 85].
Another type of neuroprosthesis allows the user to control devices such
as prosthetic limbs, wheel chairs or computer programs. This can restore
movement, for example, by using the interface to exert control over a
robot arm [32, 176]. Neuroprostheses that are controlled by activity in the
central nervous system are also called brain-computer interfaces (BCIs).

BCIs are essential for people with severe paralysis, in particular for
cases where a loss of voluntary muscular control is caused by neurode-
generative diseases or stroke. Recent developments in BCIs have shown
great promise, where the device can be used in an unsupervised fashion
at home to control a communication system by decoding motor intention
[194, 148]. A schematic representation of this type of BCI paradigm is
shown in figure 1.2.

In general, a BCI system requires recording of neural activity, real-
time interpretation of the activity, controlling a device in order to perform
the desired action and providing feedback to the user. Consistently and
accurately recording neural activity for a BCI is an important challenge
[206].

Specific and discrete mental processes (which characteristics are ex-
tracted out of the recorded signals) can be translated into commands for
the device. For this purpose, a variety of event-related neuronal activity
patterns have been examined, for example a discrete imagined hand grasp-
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Implanted electrodes

Signal acquisition

Signal processing

SMR

Fig. 1.2: A schematic representation of a BCI paradigm centered around
an imagined hand movement. The electrode strip is placed over sensorimo-
tor cortex to record a sensorimotor response (SMR) due to the imagined
movement. Next, neural signal acquisition hardware, such as amplifiers
and A/D converters, processes and digitizes the response. Real-time fea-
ture extraction is performed to decode if an imagined hand movement was
made after which a letter is selected in a typing application. Adapted from
[163].

ing movement [194]. Traditionally a single discrete signal was used, which
limits the speed at which the BCI can be controlled. Indeed, an important
challenge is to realize fast control over a device using a BCI. This could
be accomplished by decoding multiple populations across brain areas to
steer the BCI, for example by decoding hand gestures [19, 18]. Such an
approach requires an electrode spacing that is optimized to distinguish
between the activity patterns of interest.

Generally, for a successful BCI set-up, it is imperative to accurately
discriminate the electrical activity of a region of interest from background
activity of the surrounding neuronal tissue (as well as other types of noise).
Choosing the desired recording electrode type is essential for long-term
BCI systems.

Microelectrodes can be used to record neuronal spikes from individual
neurons to control a BCI with high SNR [103, 73]. However, for long-term
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usage of a BCI, recording from populations of neurons, rather than single
neurons, provides more reliable electrical activity to control a BCI [125].
A small number of neurons is likely to be less stable over time due to, for
example, neuroplasticity, since changes occur in the neuron morphology
and network connectivity of the brain [52]. As a further complication,
invasive microelectrodes have been correlated with neurodegeneration at
the electrode contact due to localized hemorrhage and inflammation [155,
96].

An EEG-based BCI is controlled by recording from a large aggregate
of neuronal population activity [67]. While EEG headsets can be used for
BCIs at home [47], there are limitations to the spatial resolution that can
be achieved, and thus the options for increasing the speed and versatility
of the BCI is limited.

Clinical ECoG grids

10 mm center-to-center

spacing

HD ECoG grids

3 mm center-to-center

spacing

ultra HD ECoG grids

1 mm center-to-center

spacing

a b c

Fig. 1.3: Three examples of ECoG grids with decreasing spacing. a) A
clinical Medtronic grid, b) a high density grid, and c) an (experimental)
ultra high density grid by Cortec.

ECoG is a promising candidate for stable and long-term use of a BCI
for at home usage, since it has a spatial resolution in between EEG and
microelectrodes [194, 148]. ECoG was introduced only recently as a sig-
nal to control neuroprosthetic devices [114, 161]. These electrodes can be
implanted for long-term use because the risk of damaging the cortical tis-

http://www.cortec-neuro.com/
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sue is limited (the cortical surface is usually not penetrated), resulting in
durable and stable recordings [31]. Furthermore, the high signal fidelity
renders ECoG well suited to decode motor- or sensory information used
for efficient BCIs [19].

1.3 Improving recording electrode performance

Despite the successful use of electrodes in neural prostheses, therapies,
diagnostics and surgical mapping, recent developments in electrode design
allow for improvements in these applications [198, 84]. Typically, a trade-
off needs to be made between many factors, such as electrode size, spacing,
and noise. Rather than assuming there exists a “universally” optimal elec-
trode for extracellular electrophysiological recordings, the electrode design
needs to be adapted for specific activity patterns of interest, as well as the
geometry and electrical characteristics of the region [198]. Generally, it
is assumed that larger electrodes can only record synchronous activity of
a large number of neurons (e.g., a typical EEG electrode diameter is 10
mm) [120], medium sized electrodes detect neuron population-level activ-
ity (e.g., ECoG electrode diameters ranging from 50 µm to 2 mm) [26],
and small electrodes record the activity from a few nearby neurons (e.g.,
microelectrode diameters smaller than 20 µm) [166]. In addition, the dis-
tance to the neuronal source largely determines the optimal size of the
electrode.

Biopotentials generated by neuronal activity in a particular area of the
brain are distinguishable using their spatial and temporal characteristics.
Spatial discrimination is influenced by parameters such as the electrode
grid position, geometry, and material. Feature extraction using temporal
characteristics involves various analysis methods of the recorded potentials
(e.g., event-related potentials or power spectral density features) [109].
The algorithms used for feature extraction do not depend on the electrode
design. Here, we will mainly focus on the effects of electrode grid properties
(i.e., the electrode-tissue interface and electrode configurations) on the
resulting recordings.

There is always a loss in the amplitude of a signal generated within
a small source region as it passes through any conductive medium. Thus,
in extracellular recordings the neuronal electrical signal of interest is in-
herently reduced with the distance between the neuron and the recording
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site. Many components in the recording set-up influence the signal atten-
uation, for example the impedance of the electrode and (in the case of
microelectrodes) the amplifier [135]. Additionally, practical factors cen-
tered around mechanical properties are of importance, for example the
flexibility and transparency of the silicon sheet in which the electrodes
are embedded. Here we will discuss three major challenges in achieving
efficient performance of recording electrodes:

1. Discriminate the neuronal activity of interest from other neural signals;
2. Minimize the intrinsic and extrinsic electrical noise;
3. Minimize tissue damage due to placement of the electrode grid.

Source discrimination An approach to improve the discriminability
of activity involves increasing the spatial resolution of electrode grids.
This is an emerging trend [166, 209] which allows researchers to detect
fine-grained details, such as interactions within neural networks. Recent
improvements in the electrode design allow for more accurate signals with
increased decodable features, resulting in improved diagnoses and mapping
for surgery [182]. An intuitive approach to achieve a high spatial resolution
is to increase the electrode density (ECoG grids with decreasing spacing
are displayed in Fig. 1.3).

Alternatively, using electrodes with a large surface area increases the
probability of recording close to neural activity of interest as well, since
a larger brain area will be covered. Additionally, larger electrodes record
from a larger population of neurons [202]. However, this has the downside
of averaging along the electrode surface, which decreases the signal-to-
noise ratio and some spatial detail of the neuronal activity will be lost
[28, 169].

On the other hand, high density grids (i.e., the spatial resolution of
the electrode grid) with small electrodes can be used to ensure a high
probability that an electrode contact is physically close to the neural ac-
tivity without spatial averaging [198]. However, it is not easy to increase
the number of electrodes, since, for example, it requires the development
of small electrodes, readout circuitry and wiring [181], which may in turn
negatively affect the noise level and quality of the signal classification [16].

Considering that large electrodes reflect the aggregate activity of many
neurons and small electrodes only record the signal of nearby neurons, an
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optimal trade-off of the electrode size can be found [28]. Due to the larger
area that large electrodes sample from, the SNR of the region of interest
can either decrease (since more neuronal background activity is picked up),
or increase (since neuronal noise gets averaged out) [76]. For example, to
accomplish spike sorting in the hippocampus an electrode diameter of 40
µm was estimated to be optimal (in a range between 10 µm and 200 µm).
This means that decreasing electrode size does not necessarily improve the
recording quality) [28].

An easy way to map the sensitivity of electrodes to source activity at
different locations in the brain is to use the Helmholz theorem of reci-
procity [86, 79, 152]. The reciprocity theorem states that the potential
difference VAB between two surface electrodes A and B that is generated
by a monopole current source of strength I0 at location #»r (Fig. 1.4A), is
equal to the potential at location #»r generated by current I0 passing be-
tween electrodes A and B (Fig. 1.4B). This holds for electrodes of any size.
We define the lead field of electrode pair AB, LAB,mono(

#»r ), as the potential
distribution throughout the volume generated by passing a unit current
between electrodes A and B. The reciprocity theorem implies that the po-
tential difference generated between A and B by any monopole of strength
m at location #»r is equal to LAB,mono(

#»r ) ·m. Consequently, LAB,mono(
#»r )

can be interpreted as the sensitivity of electrode pair AB to a monopole
source at location #»r : the smaller the lead field at location #»r , the smaller
the recorded potential for a source at that location. Notice that passing
a current between two electrodes defines the potentials within the volume
up unto a constant; the reciprocity theorem only holds when the lead field
is computed if the potentials at the electrodes are set equal but opposite
in sign (±1

2VAB).

The lead field interpretation can easily be extended to the more useful
case of dipole sources (if only because single current monopoles within a
bounded volume conductor cannot exist). We define the dipole lead field
as

#»

LAB,dip(
#»r ) = ∇LAB,mono( #»r ). Then the potential difference between

electrodes A and B resulting from a dipole of moment
#»

d at location #»r is
equal to

#»

LAB,dip(
#»r ) · #»

d . Before it became possible to calculate lead fields
by means of computer models in complex geometries where no analytical
solution is available, lead fields were actually measured in phantoms by
reciprocally energizing electrodes fixed to a tank model [123].
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Fig. 1.4: Schematic representation of the reciprocity theorem. A) The po-
tential difference VAB between two surface electrodes ElA and ElB that
is generated by a monopole current source of strength I0 at location #»r
is shown. This is equivalent to B), where the potential at location #»r is
generated by passing current I0 between electrodes ElA and ElB.

The reciprocity theorem implies that for a point electrode the sensi-
tivity to a dipole source decreases with the square of the distance between
electrode and source, which is completely consistent with the well known
potential distribution generated by a dipole source. Actual electrodes are
not points. If the electrode size is small compared to the distance toward
to source, it can reasonably be approximated as a point electrode. Close to
the electrode, however, the potential generated by the electrode as one of
a pair of current injecting electrodes drops linearly with the distance, and
consequently the lead field for dipoles as well. This demonstrates that the
electrode size cannot be ignored when sources are so close to the electrodes
that the electrode size is not much larger than the distance to the source.
We will show in this thesis that a good rule of thumb is that electrode size
must be taken into account when the distance to the source is equal to or
smaller than the electrode size.

Noise The characteristics of the electrode affect the level and type of
noise that is expected, as well as the SNR. Intrinsic noise is generated
in the signal for each recording electrode by the circuit itself. The most
common type of intrinsic noise is thermal noise, which emerges in a con-
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ducting material by random thermal motion [154]. According to Johnson
[94] the noise is proportional to the impedance, whereas the impedance is
inversely proportional to the surface area. Indeed, the size of the electrode
determines the contribution of thermal noise to the recorded signal [165].
Thus, as electrodes become smaller, the intrinsic thermal noise increases.
Another characteristic with a large influence on the electrode impedance
is the electrode-electrolyte interface [165]. This interface consists of an
electrical double layer with a layer of electrons, a layer of adsorbed ions,
and a diffuse double layer [61].

Much modeling research has focused on characterizing and improving
the performance of electrodes by the careful selection of the materials and
surface chemistry [90, 78, 102]. With a decreasing electrode size, the elec-
trode impedance increases. This results in signal attenuation due to the
voltage divider circuit, which is a common passive attenuator that dis-
tributes the input voltage over the impedances of the divider. It typically
consists of the electrode impedance, the routing capacitances and the am-
plifier impedance [135]. Therefore, amplifiers with a high input impedance
are necessary for small electrodes (diameters < 10 µm). As electrodes
become smaller it becomes increasingly difficult to provide an amplifier
impedance that is high enough, since a ratio between the impedance of
the electrode, Ze, and the amplifier, Za, of less than 0.1 (Ze/Za < 0.1) is
required for sufficient SNR [135, 198].

Carefully choosing the amplifier configuration can help to achieve suf-
ficient gain. For example, a closed-loop amplifier achieves a low effective
input impedance of the recording configuration by using a large input
capacitance and a small feedback capacitance [77, 197]. Alternatively, an
open-loop amplifier could be used (which depends on a low input transistor
gate capacitance [197]).

Extrinsic noise gets introduced by external sources, a common example
is 60 Hz line noise. Generally, extrinsic noise is decreased by using a ref-
erential, bipolar or multipolar configuration and subtracting one channel
from the other. Each configuration has its own requirements, for example,
a bipolar pair needs to be sufficiently close to ensure that the same noise
is recorded on both contacts, but far enough such that the neural activity
of interest is not recorded at both channels (and subsequently removed as
well) [86].
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Tissue damage Damage to the tissue or the electrode (e.g., due to
corrosion) is generally a concern in stimulating electrode neuroprosthet-
ics. Due to the high potentials, toxic electrochemical reactions and tissue
hyperexcitability (both leading to damage) may occur [127].

While the implantation of recording ECoG electrodes is not prone to
these issues, there is a risk of infection [147], since a craniotomy needs
to be performed. Furthermore, generally the grid is large and relatively
stiff (e.g., metal contacts do not bend along the brain surface), which may
result in mechanical damage [203]. Biocompatible grid material, improved
implantation procedures or smaller grids could circumvent these issues
[159].

1.4 Simulating recording electrodes

Despite the prevalence of extracellular recordings in neuroscience, our
understanding of the manufacturing of electrodes and interpretation of
the potentials they record can still be improved upon. A modeling ap-
proach is an effective way to investigate and develop electrode designs,
especially considering current advances in high-density electrode grids
[165, 134, 41, 169, 86]. Using various models, researchers can predict the
volume of activated tissue during stimulation [23], quantify the effect of
tissue and electrode types [29, 97, 65, 157, 196], and estimate the optimal
electrode spacing [181, 28].

Two of the approaches that can be used for mathematical models
of electrophysiological recordings are: models of the dynamical activity
of neurons phenomenologically translated into local field potentials (e.g.,
NEURON [82], The Virtual Brain [112] or NEST [46]) and volume con-
ductor models with source distributions [141, 71]. Volume conduction will
be the focus in this thesis.

Volume conduction modeling

Volume conduction can be described as the spread of electrical fields from
a current source (e.g., neuronal activity) through a volume (e.g., biologi-
cal tissue) to the location of a sensor (e.g., electrodes) [168]. This means
that the sensor is separated from the electric source by a medium. In neu-
roscience, volume conduction theory can help with addressing practical
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problems encountered when recording and interpreting electrophysiologi-
cal signals. It gives a detailed description of the transmission of currents
and potentials through the brain, skull, scalp, and electrodes.

While the fundamental laws governing a volume conductor (centered
around charge conservation and Ohm’s law) are well established, applying
them to electrophysiology is not trivial because of the large differences
in conductivities of the different tissues in the head [141, 71]. Volume
conduction models also provide a basis for source localization algorithms,
which involves solving the so-called forward and inverse problem.

In the forward problem the potentials in the volume due to sources
with a known location, orientation and magnitude are calculated. The in-
verse problem uses a set of repeated solutions (i.e., the lead field matrix)
of the forward problem to estimate the current sources underlying an elec-
trophysiological recording. Constrained with a no-flux boundary condition
(no current flows out of the head into the air) and some additional con-
straint, for example, fixing one electrode to zero potential, the forward
problem has a unique solution. On the other hand, the inverse problem is
ill-posed and requires additional assumptions to find a unique solution.

While forward solutions can be found analytically for simple geome-
tries, a numerical approach is needed for more complex geometries, with
compartments with different tissue types (with different conductivities)
and more extensive boundary conditions [29, 97, 65, 157, 196]. The forward
problem consists of a Poisson equation. It relates an applied (neuronal)
current source to the distribution of currents and potentials in the brain.
The Poisson equation is derived using Maxwell’s equations and has been
described extensively in literature [123, 69, 141, 92].

In the forward problem, developing a realistic model of the head can
be challenging: it requires a combination of experimental and theoreti-
cal methods. The head is inhomogeneous and to ensure an accurate for-
ward model, creating an accurate segmentation and finding the correct
conductivities of each material is essential. Although there are conduc-
tivity values that are commonly used [153, 141, 145], choosing an accu-
rate value is not straightforward since there is no consensus in the litera-
ture [124, 23, 128, 118, 211] as well as significant inter-subject variability
[126, 5].
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Another factor that influences how currents spread (non-uniformly)
within the volume conductor is tissue anisotropy. This means that the con-
ductivity is direction dependent, which is represented by a non-isotropic
conductivity tensor, and can, for example, be observed in the white mat-
ter (directions parallel vs orthogonal to the axon) [68], across the lamina
in the cortex (layer-dependent orientations of axons) [63] and in the skull
[124].

When simulating bio-electricity with volume conductor models at a
macroscopic scale, generally only resistive (Ohmic) currents are consid-
ered. Thus the volume conduction is considered linear [153, 141] and
instantaneous, despite the inhomogeneous and anisotropic tissue. This
is consistent with the so-called quasi-static approximation of Maxwell’s
equations. It means that phase shifts due to capacitive and inductive tis-
sue properties are negligible for the considered volume of tissue at a low
frequency range (<1kHz). More concretely, at a macroscopic scale, no
charge ”builds up“ in the medium and the electric potentials generated by
a source can be considered without any time delay (i.e., as if stationary).

Whether, and at what spatial scale, the extracellular medium can be
regarded as purely ohmic remains a topic of discussion [60, 10, 128, 118].
Especially at the scale of individual cells, recording close to the membrane,
describing capacitive currents cannot be omitted [66].

While capacitive effects are generally small at a macroscopic scale,
they can be more noticeable at the electrode-electrolyte interface. In fact,
the contact impedance, shape and size of the electrode can substantially
affect the forward solution [157, 29]. There are Faradaic and non-Faradaic
currents at the contact surface between the tissue and the electrode. Sev-
eral studies have addressed the effect of the presence of electrodes on the
forward solution [97, 24, 29, 65, 22, 196]. The overall conclusion of these
studies is that it is, for some stimulating electrodes and microelectrodes
set-ups, necessary to include electrode effects (both capacitive and resis-
tive) in volume conductor models.

Besides the tissue and electrode in the volume conduction model, an
approximation of the underlying sources, their location and orientation
must be chosen. The most common approach is to apply a source at a
mesoscale, such as a cortical dipole or dipole layer [141]. More realis-
tic sources and activity patterns can be generated by, for example, us-
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ing multi-compartment models of the laminar structure of the neocortex
for MEG [178] or microelectrode [136] recordings. In our models, dipole
sources were applied and approximated by two monopoles (i.e., a bipole,
Fig.1.5).

dipole bipole

Fig. 1.5: The electric field due to a point dipole (left), a physical dipole
approximated by two electric charges (right).

Despite the assumptions that need to be made regarding the volume
conductor model, forward computations are a valuable tool to make quan-
titative estimations of the relation between sources, electric parameters of
the tissue and recording equipment [141].

FEM There are many numerical approaches that can be used to solve
the forward problem, such as the boundary element method, the finite
difference method, the finite element method (FEM), or the finite volume
method [106]. The FEM was used in this thesis and here a short description
of the general concepts will be given. For more details, see, for example,
[107].

The FEM creates computational schemes for solving any partial dif-
ferential equation (PDE) on any domain [106]. It is particularly suitable
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for complex, anisotropic geometries and irregular shapes consisting of dif-
ferent types of materials. These geometries typically are not easy to deal
with in other numerical approaches. Furthermore, a variety of boundary
conditions can easily be implemented. The name ”finite element method“
stems from the process called discretization, where a domain is divided
into a finite number of regularly shaped elements (i.e., finite elements).
A triangulated domain (i.e., when using triangles, 2D, or tetrahedra, 3D,
as the element) is a mesh containing cells that are connected in terms of
their vertices. Creating a mesh representing the domain of interest is a
necessary first step for a numerical implementation.

The underlying idea of FEM is to calculate a ”stencil“ on a general
element and use it on each element in the mesh [106]. This is where the
strength of the FEM comes out and it requires two steps: 1) on each
element the solution is represented by a polynomial expression; 2) inte-
gration over each individual element as part of a variational formulation
of the PDE, resulting in a stencil of the PDE. In Step 1, an approximation
of the solution is represented by a linear combination of basis functions.
The variational formulation in step 2 is found by multiplying the PDE by
a so-called test function (which is also a linear combination of basis func-
tions). Next the terms in the equation are rewritten to only contain first
derivatives (the so-called ”weak“ form), such that the polynomial space
of the solution, the so-called trial function, only needs to be differentiable
once.

Finally, the element equations can be assembled into a global equation
in matrix form, which is solved at the nodes (when using Lagrangian FEM)
of the mesh. The resulting linear system of equations typically is solved
using Gaussian elimination. However, such a sparse LU (lower-upper) de-
composition can become memory demanding and slow (especially in some
of the cases in this thesis), in which case an iterative solver is necessary
(e.g., Krylov solvers). There are several packages (e.g. FEniCS [3]) that
provide a pipeline for assembling as well as offering different solver options,
which makes it possible for the user to focus on the physical formulation
of the problem at hand.
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1.5 Thesis outline

Brain recordings with high signal fidelity are essential for diagnosis, build-
ing neuroprosthesis and other fundamental scientific experiments. ECoG
has proven to be well suited to realize recordings that have both excellent
signal quality and long-term stability. While EEG and microelectrodes
have been extensively studied [141, 26] and are (relatively) well under-
stood, the interpretation and improvement of ECoG electrodes has a lot
of potential to be developed further. In this thesis, we focused on how
to better understand and improve ECoG recordings in terms of electrode
properties and their spatial configuration.

In Chapter 2, we develop an open-source, easy-to-use and flexible vol-
ume conduction modeling pipeline named FEMfuns. Since volume con-
duction has not been used abundantly to study ECoG measurements, a
versatile tool needed to be created to investigate what degree of detail
ECoG simulations require to be useful and accurate. The pipeline allows
for the simulation of multiple material compartments in volume conductor
models with as many compartments as needed (e.g., an arbitrary amount
of realistically shaped electrode can be used). Resistive, capacitive and
dispersive tissue properties can be used and different types of electrode
models are implemented. Furthermore, the Python code can be easily ad-
justed and extended to meet user needs.

Next, in Chapter 3 we use the FEMfuns pipeline to study how much de-
tail should be included in ECoG volume conduction models. In particular,
the importance of explicitly including electrode properties in volume con-
duction models for accurately interpreting ECoG measurements is shown.
As a simple rule of thumb, we recommend that when the distance be-
tween an electrode and the source is equal to or smaller than the size of
the electrode, electrode effects cannot be disregarded.

In Chapter 4 we study how sensitive ECoG electrodes in a particular
configuration are to the relative position of the underlying sources. Soma-
totopic activity of the fingers was simulated in the sensorimotor cortex
and we investigated whether movements of individual fingers can be sep-
arated from each other when recording with a high-density ECoG grid.
More generally, we provide an approach to estimate whether a particular
activity pattern is distinguishable with the electrode grid that is being
used.
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Finally, a discussion with limitations, possible improvements and fu-
ture research is described.
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2 FEMfuns: a volume conduction modeling pipeline
that includes resistive, capacitive or dispersive
tissue and electrodes

M Vermaas, MC Piastra, TF Oostendorp, NF Ramsey, and PHE Tiesinga.
This Chapter consists of a paper that has been published in Neuroinfor-
matics (2020).
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Abstract

Applications such as brain computer interfaces require recordings of rele-
vant neuronal population activity with high precision, for example, with
electrocorticography (ECoG) grids. In order to achieve this, both the
placement of the electrode grid on the cortex and the electrode prop-
erties, such as the electrode size and material, need to be optimized. For
this purpose, it is essential to have a reliable tool that is able to simulate
the extracellular potential, i.e., to solve the so-called ECoG forward prob-
lem, and to incorporate the properties of the electrodes explicitly in the
model.

In this study, this need is addressed by introducing the first open-source
pipeline, FEMfuns (finite element method for useful neuroscience simula-
tions), that allows neuroscientists to solve the forward problem in a variety
of different geometrical domains, including different types of source models
and electrode properties, such as resistive and capacitive materials. FEM-
funs is based on the finite element method (FEM) implemented in FEniCS
and includes the geometry tessellation, several electrode-electrolyte im-
plementations and adaptive refinement options. The Python code of the
pipeline is available under the GNU General Public License version 3 at
https://github.com/meronvermaas/FEMfuns.

We tested our pipeline with several geometries and source configura-
tions such as a dipolar source in a multi-layer sphere model and a five-
compartment realistically-shaped head model. Furthermore, we describe
the main scripts in the pipeline, illustrating its flexible and versatile use.
Provided with a sufficiently fine tessellation, the numerical solution of the
forward problem approximates the analytical solution. Furthermore, we
show dispersive material and interface effects in line with previous litera-
ture. Our results indicate substantial capacitive and dispersive effects due
to the electrode-electrolyte interface when using stimulating electrodes.

The results demonstrate that the pipeline presented in this paper is an
accurate and flexible tool to simulate signals generated on electrode grids
by the spatiotemporal electrical activity patterns produced by sources and
thereby allows the user to optimize grids for brain computer interfaces
including exploration of alternative electrode materials/properties.

https://github.com/meronvermaas/FEMfuns
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2.1 Introduction

Stimulating and recording the brain by means of electrodes provides a ver-
satile method to deepen our understanding of neural networks and their
role in cognitive processes. Reconstructing the spatio-temporal distribu-
tion of neural current sources underlying electrophysiological data, such
as electroencephalography (EEG) and electrocorticography (ECoG), as-
sists in studying neural processes. Estimating the sources corresponds to
solving the forward- and inverse problem.

The forward problem assumes a known source and solves for the elec-
tric potential in the brain. The inverse problem consists of estimating the
source configuration underlying the recorded potential. The inverse prob-
lem requires solving the forward problem first and consequently the accu-
racy of the estimated sources will depend on the accuracy of the solution
of the forward problem.

The Finite Element Method (FEM) is a suitable numerical method
to solve the forward problem; it can incorporate the complex geometry of
the head and allows for anisotropic conductivities, for example, to account
for the laminar structure of cortex [63]. FEM has been used to quantify
various volume conduction effects, such as the influence of skull anisotropy
[124], tissue inhomogeneities and anisotropies [23], and dispersive tissue
properties [65].

A realistic description of the geometry and correct values of the elec-
trical parameters of the biological tissues are essential to ensure an ac-
curate forward model. The electrical conductivity and relative permit-
tivity of biological tissues vary with frequency (i.e., they are dispersive,
[55, 128]). However, volume conductor models used in bio-electricity gener-
ally consider only resistive currents, which is consistent with the so-called
quasi-static approximation of Maxwell’s equations [153, 141], and capaci-
tive, inductive and propagation effects are assumed to be negligible [128].
Whether the extracellular medium can be regarded as purely ohmic re-
mains a topic of discussion [60, 10, 128, 118].

A limited number of studies have addressed the effect of the presence of
electrodes on the forward solution [97, 24, 29, 65]. The electric properties of
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electrodes are typically non-linear because of the properties of the current
density distribution along its surface [137]. In particular, when an electrode
is immersed in an electrolyte, the charge carrier between the two materials
changes from electronic in the metal to ionic in the electrolyte. As a result
an electrical double layer forms on the external surface of the electrode
where, in recording electrodes, a mix of faradaic (ohmic) and non-faradaic
(capacitive) currents occurs depending on the magnitude of the potential
difference across the interface [164].

These ohmic and capacitive currents across the electrode have been
implemented in FEM studies in a variety of set-ups, e.g., imposing faradaic
currents [97], non-faradaic currents [24] or a parallel combination of the
two [29, 65]. Models of recording electrodes, such as EEG, generally assume
a simple point electrode model, while only a handful studies considers
EEG forward models including the effect of electrode size and shunting
[143, 158].

In this study, we describe the workflow and capabilities of a volume
conduction modeling pipeline FEMfuns (FEM for useful neuroscience sim-
ulations). The goal of this pipeline is to provide a Python-based framework
centered around a general FEM toolbox, i.e., FEniCS [3, 117], to make
forward models available, easily exploitable and adjustable for the neuro-
science community. The volume conductor in FEMfuns can be described
by resistive, capacitive and dispersive material properties. Furthermore,
electrode interface effects can be flexibly added and the accuracy of the
forward solution is described.

2.2 Methods

In this work we conducted three different studies with the goal of demon-
strating the capabilities of our FEMfuns pipeline. In all the studies La-
grangian FEM [200] was applied to simulate the electric potential gener-
ated in a volume conductor by a known source. Both an internal dipolar
source and an externally induced stimulating electrode are implemented.
This can be useful considering the fact that the sensitivity of detecting
bioelectric signals and the distribution in electrical stimulation are inter-
changeable [123], due to the reciprocity theorem [79, 167, 87].
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Forward model

The electric potential ϕ generated in the brain can be computed through
the quasistatic approximation of Maxwell’s equations [153]. In our work,
we considered two representations of the volume conductor, namely a
purely resistive model and one that includes capacitive tissue properties.
In the resistive version with primary current density Jp (current produced
by neuronal activity, e.g. a dipole, or from stimulating electrodes), ohmic
currents are described in medium Ω with conductivity σ through the fol-
lowing equation:

−∇ · (σ∇ϕ) = ∇ · Jp, in Ω. (2.1)

When taking into account the capacitive tissue properties, the quasi-
static approximation of Maxwell’s equations does not hold anymore and
the following frequency-dependent Poisson equation [153] has to be con-
sidered instead:

−∇ · ([σ(ω) + jωε0εr(ω)]∇ϕ) = ∇ · Jp, in Ω, (2.2)

where j is the imaginary unit, ω = 2πf is the angular frequency of the
source, ε0 is the permittivity in vacuum (8.85× 10−12F/m) and εr is the
relative permittivity. In case of a stimulating pulse or periodic currents
generated by synchronous oscillations of neuronal circuits, a fast Fourier
transform (FFT) is performed on the time series of the source. Then, the
FEM is solved for each frequency separately and the signal in the tissue
is reconstituted using the inverse FFT. This FEM-Fourier approach is
comparable to several previous FEM studies [24, 65, 188]. It is essential
to ensure the correct relationship between the real and imaginary part of
an immittance, which is given by the Kramers-Kronig transforms [191, 9,
128, 11]. Both the medium [191, 55] and the electrode interface impedance
[192, 121, 164] values we use satisfy the Kramers-Kronig relationship.

In both the resistive (2.1) and capacitive (2.2) scenario, a homogeneous
Neumann boundary condition (BC) is applied on the exterior boundary
∂Ω,

σ∇ϕ · n = 0, on ∂Ω, (2.3)

where n is the unit outer normal vector on ∂Ω.
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The finite element method for solving the forward problem

Lagrangian FEM was used to solve the Poisson equation (2.1) [116, 107,
106]. The first step consists of deriving the so-called weak formulation of
the elliptic partial differential equation (2.1) [106]:

a(u, v) = L(v), ∀u, v in V ∈ H1(Ω), (2.4)

where a(u, v) =

∫
Ω
σ∇u · ∇v dx (2.5)

and L(v) =

∫
Ω
fv dx, (2.6)

whereH1 is the first-order Sobolev space. The weak form can be heuris-
tically derived by multiplication with a test function v ∈ V and subsequent
partial integration. Reorganization of some terms and applying the homo-
geneous Neumann BC leads to (2.5) and (2.6).

In the second step, equation (2.4) is discretized yielding the following
linear system:

Au = b, (2.7)

with Aij =
∫

Ω σ∇ϕi · ∇ϕj dx and bi =
∫

Ω fϕi dx, and {ϕi}i a set of
basis functions.

Next, the linear system (2.7) is solved and the finite dimensional solu-
tion u =

∑
j ujϕj is found.

In order to solve (2.2) with FEM, we had to deal with complex numbers
(i.e., admittivity y), whose direct use was not yet implemented in FEniCS.
In particular, we assembled complex numbers in a representation using
real-valued coupled-PDEs. Starting from the strong formulation in the
complex function space, i.e.,

−∇ · ((yr + jyj)∇ (ϕr + jϕj)) = fr + jfj in Ω, (2.8)

we split trial functions, test functions and the admittivity tensor into
a real and imaginary part, u = ur + juj , v = vr + jvj and y = yr + jyj ,
respectively, therefore considering the mixed space W = V × V . This
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results in a matrix doubled in linear size, composed of four blocks of the
matrix created for the real version.

The weak form can again be derived by multiplying with the test
function followed by partial integration, which for the left hand side gives
a real part:

ar(u, v) =

∫
Ω

(yr∇vr ·∇ur)−(yr∇vj ·∇uj)−(yj∇vr ·∇uj)−(yj∇vj ·∇ur) dx

and an imaginary part:

aj(u, v) =

∫
Ω

(−yi∇vj ·∇uj)+(yr∇vj ·∇ur)+(yj∇vr·∇ur)+(yr∇vr·∇uj) dx

Without an imaginary source, the right hand side weak form contains
real part Lr(v) =

∫
Ω frvr dx and imaginary part Lj(v) =

∫
Ω frvj dx.

Electrode-electrolyte interface There are several ways to approxi-
mate the impedance that results from the electrode-electrolyte interface
[29, 97]. When recording or stimulating with an electrode, ideally no elec-
trochemical reactions occur and hence all currents are capacitive. This
regime can be modeled with a capacitance and an infinite transfer resis-
tance at the (non-faradaic) interface of a stimulating or recording elec-
trode. [164] empirically find that a standard capacitor does not describe
the non-faradaic impedance accurately. This requires a pseudocapacitive
constant phase angle impedance ZCPA:

ZCPA = K(jω)−β, (2.9)

where K = 1.57 Ωm2s−β and β = 0.91 are physical constants [29,
164].

[97] estimated the electrode-electrolyte interface impedance by fitting
their FEM solutions to experimental data. In their model, the interface
currents are described with faradaic reactions using a thin-layer approxi-
mation with a real valued surface admittance yk (S/m2) expressed by the
so-called Robin BC applied at the k -th electrode:

−σ∂ϕ
∂n

= yk(ϕ− ϕmetalk), on Γ k
R
, k = 0, 1, . . . (2.10)
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where ϕmetalk is the electrical potential of the k -th electrode, Γ k
R

is its
boundary.

[29] and [65] considered a constant phase angle impedance (2.9) and
a charge transfer resistance set up in parallel. The double layer [80] is as-
sumed to be 1 nm thick and the overpotential-independent charge transfer
resistance can be described with the gas constant R, temperature T , num-
ber of electrons per molecule n, Faraday’s constant F and the exchange
current I0. The appropriate values for these parameters are discussed in
detail in [29]. The charge transfer resistance RCT (Ohm) is defined in
terms of these variables:

RCT =
RT

nFI0
. (2.11)

In our approach, we used Robin boundary conditions (2.10) to describe
the interface, with its surface admittance yk described by the pseudoca-
pacitance (2.9) and charge transfer resistance (2.11) set up in parallel.
Depending on the chosen yk, the interface processes can be described as
faradaic, non-faradaic or a combination of the two.

In the case of recording electrodes, equation (2.10) needs to be used
self-consistently, since for each electrode the value of ϕmetal is unknown.
We use the Lagrange multiplier method [75, 74, 4] to impose ϕmetal as the
surface integral over the electrode in Eq. (2.10):

ϕmetal =
1

S

∫
S
ϕ dS. (2.12)

Interface weak form The weak form of the Robin BCs (2.10) is found
multiplying trial function u by the test function v and integrating over the
boundary:

−
∫
∂Ω
σ
∂ϕ

∂n
v ds =

∑
k

∫
Γk
R

yk(ϕ− ϕmetalk) ds. (2.13)

To allow for complex numbers, similarly to the capacitive Poisson equa-
tion (2.2), the test and trial functions are split in real and imaginary parts.
The surface admittance yk is split into interface conductivity g and inter-
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face susceptivity b, i.e. yk = g + ib. Now the Robin BC can be written
as:

∫
Γk
R

yk(u− ϕmetalk)v ds =

∫
Γk
R

(g + jb)((ur + jui)− ϕmetalk)(vr + jvi) ds

(2.14)

Expanding this equation yield to the real part and imaginary parts:

Real:

∫
Γk
R

(gurvr−guivi−buivr−burvi) ds+

∫
Γk
R

(bϕmetalkvi−gϕmetalkvr) ds

(2.15)

Imaginary:

∫
Γk
R

(guivr + gurvi + burvr − buivi) ds −∫
Γk
R

(gϕmetalkvi + bϕmetalkvr) ds

(2.16)

The variational formulation a(u, v) = L(v) needs all integrals depend-
ing on the trial function u on the left hand side (a(u, v)) and the remaining
integrals on the right hand side (L(v)). Thus, the real and imaginary in-
tegrals from the Robin BC are split into two parts, with subscripts i and
r indicating the imaginary and real parts, respectively:

ar(u, v) =
∑
k

∫
Γk
R

(gurvr − guivi − buivr − burvi) ds, (2.17)

ai(u, v) =
∑
k

∫
Γk
R

(guivr + gurvi + burvr − buivi) ds, (2.18)

Lr(v) =
∑
k

∫
Γk
R

(gϕmetalkvr − bϕmetalkvi) ds, (2.19)

Li(v) =
∑
k

∫
Γk
R

(gϕmetalkvi + bϕmetalkvr) ds. (2.20)
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Geometrical models

In this study, three different geometries were used.

A four-layered sphere model (M1, Fig.2.1A) representing the human
head containing brain, cerebrospinal fluid (CSF), skull and scalp. The
radii of the spheres are 9.0 cm, 8.5 cm, 8.0 cm and 7.9 cm, respectively
[39, 7, 132]. The mesh consists of about 12 million tetrahedra with a
smallest inradius of 26 µm and a largest of 0.5 cm. The script to generate
the mesh used in this paper has been described in [132].

The second geometric model (M2, Fig. 2.1B) corresponds to a multi-
electrode array (MEA) set-up used in [97]. The volume consists of a cylin-
der (diameter: 19mm, height: 5mm) filled with Ringer’s solution and a
rectangular slab of neuronal tissue with dimensions similar to an embry-
onic mouse hindbrain-spinal cord. The MEA was positioned at the bottom
of the tissue, with 60 conical recording electrodes (base diameter: 80 µm,
height: 80 µm). The stimulating electrode was modeled as a rectangular
surface (width: 60 µm, length: 250 µm) on the same MEA (Fig. 2.1B, in-
set in upper panel). An external cylindrical ground electrode (diameter: 2
mm, height: 4.3 mm) was represented by a cavity in the Ringer’s solution
subdomain (Fig. 2.1B, purple cylinder positioned in the lower right re-
gion). We used the mesh that was generated by [97] using FEMLAB 3.1a
(COMSOL AB, Stockholm, Sweden). It consists of 63,214 tetrahedra.

The third geometry is a realistic head model (M3, Fig.2.1C) segmented
in scalp, skull, CSF, grey and white matter (Ernie, provided in SimNIBS,
[185]). For the grey and white matter, anisotropic conductivities estimated
in SimNIBS [185] were used during the FEM calculations. The mesh con-
tains approximately 4.2×106 tetrahedra, where the inradius of each tetra-
hedra is below 1 mm.

Simulation set-ups

The FEM simulations are performed using the open-source program FEn-
iCS [3, 117]. All simulations were done with Lagrange finite elements using
the PETSc Krylov Solver with either the Conjugate Gradient method or
generalized minimal residual method (GMRES) to solve the linear sys-
tems. Note however that a variety of other solvers is available.



31

A

C

B

recording electrodes

stimulating electrode

ground electrode

Ringer solution

brain tissue

19 mm

18 cm

21 cm

Fig. 2.1: Geometrical models M1-M3. A) Four-sphere head model [132],
where the layers represent the different conductivities of the brain, CSF,
skull and scalp compartments. B) Bottom view of an experimental MEA
set-up [97] with a 200 µm thick square slab of brain in the middle. The
remainder of the cylinder is filled with Ringer’s solution (in blue). In the
bottom right corner of the cylinder, the external cylindrical ground elec-
trode (in purple) is positioned. On the tissue surface (in yellow) 60 dis-
tributed conical recording electrodes (in grey) and one square stimulat-
ing electrode (in red) are placed. Other square electrodes were not used
for stimulation. The top panel displays a magnified region containing 8
recording and the stimulating electrode. C) Realistic head model [185],
segmented in scalp (red), skull (yellow), CSF (green), grey (light blue)
and white matter (blue).
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Table 1: Isotropic conductivities and
mean conductivities of the anisotropic
white and grey matter (left column)
[145]. Dielectric properties for tissues
at 10 MHz calculated using the four-
term Cole-Cole expression [55]. This
frequency serves as an example and
other frequencies yield comparable re-
sults. The frequency of biopotentials
and stimulating electrodes is generally
below 10 kHz.

Name σ (S/m) σ (S/m) 10 MHz εr 10 MHz

Grey 0.276 .29 320
White 0.126 .16 176
CSF 1.654 2 109
Skull 0.010 .04 36.8
Scalp 0.465 .2 362

Study 1: The linear system was numerically solved in the four-sphere
head model (M1) using an average zero reference and compared to the
analytical solution [132]. The dielectric parameters σ and εr of the four
layers were calculated using the four-term Cole-Cole expression [55] at 10
MHz (Table 1). This frequency serves as an example and other frequen-
cies yield comparable results. Furthermore, since there is no agreement on
the correct dispersive dielectric parameters [55, 128, 201], the values in
this paper serve as an example. We solved the capacitive Poisson equa-
tion (2.2) with the homogeneous Neumann BC (2.3) on the outer surface.
Dipoles were positioned at depths from 1 mm to 5 mm under the grey
matter surface and oriented radially, tangentially or at a 45-degree an-
gle. Dipoles were approximated with a positive and negative monopole
of magnitude 100 µA, at 1 mm distance from each other. Relative Dif-
ferences (RD = 1

N

∑N
i=1

|φi−ψi|
max|ψ| ), where φi is the numerical solution at

location i, ψi the analytical solution and N the number of locations, were
calculated on the surface between brain tissue and CSF at 32,400 evenly
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distributed locations to compare the analytical and numerical solutions.
These locations on the brain surface represent ECoG point-electrodes.

Study 2: The capacitive Poisson equation (2.2) was solved in M2, tak-
ing into account four combinations of capacitive dispersive material effects:
a) capacitive tissue and a capacitive electrode interface surface admittance,
b) capacitive tissue and a pseudocapacitance electrode interface surface ad-
mittance, c) dispersive tissue and a capacitive electrode interface surface
admittance, d) dispersive tissue and a pseudocapacitance electrode inter-
face surface admittance. A 200 µs rectangular pulse was applied by the
stimulating electrodes and decomposed in 50,001 frequencies (between 0
and 1/(2 dt) Hz, where dt is 10 µs). In the dispersive case, the conductivity
and permittivity values of the tissue and Ringer’s solution were calculated
for each frequency using the four-term Cole-Cole equation (Eq (8), [55]).
For the capacitive case, the conductivity and permittivity values were cal-
culated using the four-term Cole-Cole equation at the average frequency
of the pulse FFT. The ground and stimulating electrode surface admit-
tance was implemented as a Robin BC (2.10). The pseudocapacitive case
consisted of an equivalent impedance of a pseudocapacitance (Eq. (2.9))
and a charge transfer resistance (Eq. (2.11)) set up in parallel [29]. The
capacitive electrode case used the capacitance and resistance of the par-
allel pseudocapacitive circuit at the average frequency of the pulse FFT.
Note that the capacitive reactance of the electrode remains dependent on
frequency.

Study 3: As a proof of principle, Eq. (2.1) with BC (2.3) was solved
in a realistic head model (M3). Tissue properties (Table 1 first column)
were resistive and anisotropic. The dipole was tangentially and radially
oriented with regard to the average normal of one of the electrodes at a
distance of 1 mm.

Implementation

The workflow of the simulation pipeline FEMfuns for the potential is vi-
sualized in a schematic overview (Fig. 2.2) and has the following steps:

1. Create the mesh (top yellow boxes in Fig. 2.2)

(a) Define the different materials into separate subdomains and mark
interfacial regions as boundaries
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(b) Convert geometry to FEniCS format
2. Choose simulation parameters for the (Parameters module in Fig. 2.2):

(a) Type and location of source (e.g. electrode, monopole, dipole)
(b) Capacitive/resistive/dispersive tissue (Table 1)
(c) Electrode-tissue interface (Eq (2.10))

3. Create FEM simulation class instance (FEM simulation in Fig. 2.2)
4. Run simulation (main in Fig. 2.2)
5. Visualize
6. Compare to analytical solutions (when possible)

Since only simple geometries can be created within FEniCS, other
tools like gmsh [57] or integrated realistic head models [185] should be
considered for the generation of a tetrahedral mesh. The steps performed
outside Python/FEniCS environment are indicated in yellow in Fig. 2.2. In
this study we used both gmsh [57] and SimNIBS [185]. After creating the
mesh, parameters regarding the materials, sources and electrodes need to
be set (Fig. 2.2, in red are the Python classes and their use and in green the
main output is shown). A subsection of the mesh can be cut out, creating
a new smaller mesh. This is useful when solving for the potential in a
whole head is not necessary (e.g. when using microelectrodes close to the
source). The FEM simulation class contains functions (indicated in pink,
in blue is its main output) which set-up and solve the linear system. Dipole
locations can be calculated (source locations) based on distance and
orientation with respect to an electrode, as well as inter-dipole distances.
A procedure for mesh refinement in a region of interest is implemented,
for example to study convergence, where a minimum cell inradius can
be set. The stiffness matrix Aij is computed in FEniCS with the main

function. Based on the parameters that are chosen, resistive, dispersive
or capacitive properties are used in the FEM calculation when calling
main. In the frequency dependent analysis, a square pulse, alpha function
or sine wave can be used as the activity waveform (e.g., make pulse).
Alternatively, a custom combination of frequencies can be given as input
as well.

The Python code to obtain potentials from stimulating or recording
electrodes, with three examples comparable to study 1-3, is available un-
der the GNU General Public License version 3 at https://github.com/

meronvermaas/FEMfuns.

https://github.com/meronvermaas/FEMfuns
https://github.com/meronvermaas/FEMfuns
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main
FEM calculation

solution

volume and electrode potentials

FEM_simulation
load geometry and parameters

simulation class

Delaunay tetrahedralization

MRI segmented surfaces

and electrode surfaces

FEM_geometry
read the geometry

geometry class

mesh, domains and boundaries

FEM_subgeometry
cut out cubic area

subgeometry class

cubic submesh, subdomains and boundaries

Parameters
set tissue and electrode

parameters default module

conductivity, permittivity and interface

re!ne_sources
re!ne region of interest

re!ned geometry function

mesh, domains, boundaries

source_locations
!nd dipole locations

dipole coordinates function

distance and orientation to electrode

make_pulse
(dipole) activity

activity  function

time series and FFT of activity

Visualization

Fig. 2.2: Sketch of the FEniCS pipeline (workflow goes from top to bot-
tom). Red background indicates Python classes, green background the
(main) output of respective the class. Purple background indicates func-
tions in a class, blue the (main) output of the function and yellow indicates
steps outside Python/FEniCS.
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2.3 Results

Study 1: Validation

In study 1 we validated the accuracy of the numerical simulation in a
four-sphere model with resistive and capacitive material properties (2.2)
by comparing it with the analytical solution. Numerical and analytical
potentials were compared on the outer surface of the sphere representing
the cortical surface, which is comparable to an ECoG grid location. These
observation points are close to the dipolar source (human cortical thickness
is at most 5 mm), with the distances between the dipole and the surface
ranging from 1 mm to 5 mm. The analytical solution adopted in this
comparison consists of a series expansion [132] with 1000 terms. Only the
conductivity in the analytical solution was changed into the admittivity,
containing a real (conductance) and imaginary (susceptance) part. We
computed the relative difference (RD) in the frequency domain at 10 MHz
and visualized the results in Fig. 2.3. The RD values are typically small
(below 0.04), whereas dipoles very close to the brain surface display the
largest RDs. This is visible for the radial dipole in particular.

Study 2: Dispersive Electrode and Tissue Implementation

The effect of capacitive and dispersive materials under voltage-controlled
stimulation was investigated in this study and the results are visualized
in Figure 2.4. The applied square pulse is shown in blue. The line in red
shows the voltage waveform at a vertex on the inside of the interface when
the dielectric properties of the tissue are dispersive (conductivity σ(ω) and
relative permittivity εr(ω)) and the electrode interface is pseudocapacitive
(a parallel pseudo-capacitance and charge transfer resistance). Dispersive
tissue and a parallel RC electrode interface are shown in green, capacitive
tissue and pseudocapacitive electrode interface in purple and capacitive
tissue and RC electrode interface in light blue.

From Fig. 2.4 we notice that the voltage waveform at a vertex on the
inside of the interface is deformed due to capacitive effects. The deforma-
tion of the potential at the vertex on the inside of the interface can mainly
be explained by the time constant of the circuit representing the electrode
interface. The two curves with a pseudocapacitive interface are overlapping
(green and light blue curves), as well as the curves with an RC electrode
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interface (red and purple curves). Thus, in this geometry, the effect of
the dispersive compared to capacitive tissue properties is negligible. Note
the oscillations due to the Gibbs phenomenon which are minimized by
increasing the padding around the pulse and the sampling frequency [58].
These results indicate substantial capacitive and dispersive effects due to
the electrode-electrolyte interface when using stimulating electrodes.

Study 3: Realistic Head Model

As a proof of concept, in the last example we solved Eq. (2.1) in a realistic
head model with anisotropic resistive material properties. A radial dipole
was positioned at 1 mm below the surface of one of the electrodes and
the resulting potential distribution is shown in Fig. 2.5. In Fig. 2.5A the
potential distribution resulting from a tangential dipole is displayed on the
cortical surface. The transition from the positive to the negative potential
can be observed clearly on the cortical surface. Figure 2.5B illustrates
the potential distribution of a radial dipole on the cortical surface. The
different polarity of the gyrus and the sulcus due to the relative angle of
the surface with the dipole can be observed.

2.4 Discussion

The purpose of this paper is to describe and introduce a Python-based
framework centered around FEniCS for FEM forward calculations in elec-
trophysiological recordings. We developed FEM scripts which allow neu-
roscientists to compute both resistive and frequency dependent capacitive
material properties. Using three geometries, we show examples of the use
of the FEMfuns pipeline. The main novelty that is presented here is the
possibility to easily include electrode and capacitive material effects.

In study 1, we looked at dipole positions at several depths in a four-
sphere head model and visualized the error at the surface directly on top
of the brain, where ECoG grids are positioned (results in Fig. 2.3). The
accuracy of the capacitive Poisson equation (2.2) was calculated, which
expands on the original approach where the resistive Poisson equation
(2.1) is solved on top of the scalp [132]. With a tetrahedron inradius of 26
µm at the region of interest, accurate numerical estimates were achieved
with relative error values below 0.04. The RDs for dipoles very close to
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°

Fig. 2.3: Relative difference (RD) of ECoG potentials calculated with the
four-sphere model for a radial, tangential, and 45-degree dipole. Both ca-
pacitive and resisitive electrical properties of the tissue are taken into
account via Eq. (2.2). The depth of the dipole below the cortical surface
is varied (x-axis), error values are calculated at the surface of the grey
matter.

the brain surface are the highest. The two monopoles that were used to
approximate a dipole need to be sufficiently close to each other. If the
distance between the dipole and the recording location is much larger than
the distance between the monopoles, the dipole will be more accurately
approximated. Overall, these results demonstrate that dispersion effects
can be accurately modeled.

Electrode effects have been studied extensively in stimulation studies
[165, 24, 29, 65]. Because of the reciprocity theorem, stimulating electrodes
are useful models for recording electrodes as well. Non-linear behavior of
the electrode-electrolyte interface is expected at high frequencies and at
low frequencies provided that the applied signal amplitude is high [164].
Recording electrodes are unlikely to show major non-linear effects be-
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Fig. 2.4: Waveform potential at a stimulating electrode vertex. Frequency
decomposition of a stimulating square pulse allows to infer the effect of dis-
persive material [55]. The dielectric properties of the electrode-electrolyte
interface are calculated with a parallel pseudocapacitive component and
resistance [29] or a capacitive component and resistance at the average
frequency of the FFT. The original pulse and pulses at a vertex at the
interface of the stimulating electrode are plotted and the combinations of
electrode interface and tissue properties are indicated in the legend.

cause the charge transfer resistance, Eq. (2.11), dominates the interface
impedance.

In study 2, dispersion effects of the electrode interface [29] and the
tissue properties [55] were examined in the stimulating electrode configu-
ration (Fig. 2.4). The shape of the simulated voltage waveforms is com-
parable with dispersion effects reported in the literature [24, 65]. As the
driving potential amplitude and frequency increase, the dispersion effect
becomes more noticeable [29]. The interface impedance acts as a high-pass
filter in study 2 (i.e., the interface time constant is short compared to the
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A B

Fig. 2.5: Grey matter region of potentials calculated in a realistic head
model, with a tangential dipole left and radial dipole right. The dipole is
placed 1 mm below the grey matter surface and the colormap is normal-
ized.

time period of the input waveform) [91]. Thus, the charging and discharg-
ing of the capacitance is faster than the change of the input waveform.

In our example, due to the small surface area of the recording elec-
trodes, the interface impedance is high (e.g., 400 kΩ at 100 Hz and 6 kΩ at
10000 Hz, using the pseudocapacitive interface impedance). This resulted
in negligible interface (capacitive or dispersive) effects of the recording
electrodes and it is in line with previous literature which shows minimal
effect of the recording electrode [131, 97, 134]. However, if larger electrodes
are used, interface effects due to the recording electrode can be observed
[143, 158].

As a proof of principle (study 3), the forward solution was computed in
a realistic head model with radial and tangential dipoles. The four-sphere
model simulations demonstrated that numerical errors are negligible if
tessellation is sufficiently fine. With no analytical solution available in the
realistic head-model, convergence can be checked using adaptive refine-
ment while monitoring percent change between the solutions.
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Other open-source pipelines for solving the EEG and/or the magne-
toencephalography (MEG) forward problems with FEM, or simulating
electric stimulations are available [70, 138]. Fieldtrip [144], for example, is
a MATLAB software toolbox for MEG, EEG, iEEG and NIRS analysis,
that includes functions aiming at solving the EEG forward problem with
FEM. Fieldtrip internally calls the C++ open source library called SIM-
BIO ([200], https://www.mrt.uni-jena.de/simbio/). To the best of our
knowledge, in Fieldtrip it is not possible to simulate electrical stimulation
and neither is it possible to easily change the properties of the electrodes.
Another open-access tool dealing with solving partial differential equations
in neuroscience is duneuro [142]. Duneuro is an open-source C++ software
library based on the DUNE library and its main features include solving
the EEG [45] and MEG [151] forward problem and providing simulations
for brain stimulation. There are Python and MATLAB wrappers which ex-
tend the usability of the software to a broader audience. In the present
implementation of duneuro, neither the capacitive model nor the electric
properties of the electrodes are incorporated in the workflow. A further
example of open-source tools dealing with simulations in neuroscience is
SimNIBS [204], whose aim is to provide an easy-to-use pipeline for con-
ducting brain simulations with FEM in realistically shaped head models.
SimNIBS is limited to brain simulations and it is not flexible for adjusting
the type of electrode or adding capacitive material properties.

The main limitations of the pipeline concern mesh generation, which
currently needs to be done in external software such as FSL [93] or gmsh.
Segmentation of the different head materials was not addressed in the
current study. Furthermore, currently only tetrahedral mesh elements can
be used in FEniCS. While they can fit the complex geometry of the brain
better, it requires several non-trivial steps to convert the hexahedral voxels
of an anatomical MRI.

A further limitation concerns the time needed for running the simula-
tions. Depending on the geometry, tissue type and electrode implementa-
tion, the linear system that needs to be solved can become very large. In
this study, the calculation time was around 1.5 hours per simulation for
the four-sphere model (M1), 6 s per simulation in the FEM-Fourier exam-
ple (M2), and under 2 minutes in the realistic head model with anisotropic
tissue properties (M3) running on a Intel(R) Xeon(R) CPU E5-2640 v3

https://www.mrt.uni-jena.de/simbio/
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@ 2.60GHz processor. Furthermore, to achieve the desired convergence
rate and accuracy, the solver, preconditioner, number of iterations and/or
convergence tolerance need to be adjusted. For example, when using ca-
pacitive tissue, the Conjugate Gradient method will not converge, while
GMRES will.

A further advantage of the FEMfuns pipeline, is that it is easy to con-
trol factors affecting the convergence. Furthermore, a variety of families
(e.g., Discontinuous Lagrange, Nedelec, Raviart-Thomas) and degrees (lin-
ear, quadratic or higher) of elements are supported in FEniCS. This means
that the pipeline can also be used in combination with neuron simulation
software to provide extracellular potentials.

The results of this study have shown the first open-source, easy-to-
use and flexible pipeline, allowing for the simulation of multiple material
compartments in volume conductor models with as many compartments
as needed (e.g., an arbitrary amount of electrode volumes can be used).
Resistive, capacitive and dispersive tissue properties can be used and dif-
ferent types of electrode are implemented. Furthermore, the Python code
can be easily adjusted and extended to meet the users needs.

Information Sharing Statement

The FEMfuns code for using the new methods is publicly available at
https://github.com/meronvermaas/FEMfuns and is licensed under the
General Public License (GPL) v3. Documentation is provided at github,
for support please contact the first author.

https://github.com/meronvermaas/FEMfuns
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3 When to include ECoG electrode properties in
volume conduction models

M Vermaas, MC Piastra, TF Oostendorp, NF Ramsey, and PHE Tiesinga.
This Chapter consists of a paper that has been published in Journal of
neural engineering (2020).
https://doi.org/10.1088/1741-2552/abb11d

https://doi.org/10.1088/1741-2552/abb11d
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Abstract

Objective

Implantable electrodes, such as electrocorticography (ECoG) grids, are
used to record brain activity in applications like brain computer inter-
faces. To improve the spatial sensitivity of ECoG grid recordings, electrode
properties need to be better understood. Therefore, the goal of this study
is to analyze the importance of including electrodes explicitly in volume
conduction calculations.

Approach

We investigated the influence of ECoG electrode properties on potentials
in three geometries with three different electrode models. We performed
our simulations with FEMfuns, a volume conduction modeling software
toolbox based on the finite element method.

Main results

The presence of the electrode alters the potential distribution by an amount
that depends on its surface impedance, its distance from the source and
the strength of the source. Our modeling results show that when ECoG
electrodes are near the sources the potentials in the underlying tissue are
more uniform than without electrodes. We show that the recorded po-
tential can change up to a factor of 3, if no extended electrode model is
used.

In conclusion, when the distance between an electrode and the source
is equal to or smaller than the size of the electrode, electrode effects cannot
be disregarded. Furthermore, the potential distribution of the tissue under
the electrode is affected up to depths equal to the radius of the electrode.

Significance

This paper shows the importance of explicitly including electrode proper-
ties in volume conduction models for accurately interpreting ECoG mea-
surements.
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Keywords: Finite element method, ECoG, Electrode properties, Forward
problem

3.1 Introduction

Brain-computer interfaces (BCIs) translate recorded neuronal signals into
input for a computer system, e.g., to control communication software [194].
To improve upon BCIs, recordings of relevant neuronal population activ-
ity need to be acquired with high resolution, to capture the detail of the
cortical topography. In order to achieve that, both the precise placement
of the electrode grid on the cortex and the electrode properties, such as
the electrode size and material, need to be optimized, for instance, with
regard to the subject’s head anatomy [181]. Designing an optimal elec-
trode configuration in a sophisticated manner requires a description of the
relation between the spatial distribution of neural current sources and the
recorded electrophysiological data, such as electroencephalography (EEG)
and electrocorticography (ECoG). In addition, accurate electrode models
might increase the accuracy of source localization results [157, 158].

Volume conduction models are used to solve the forward problem,
i.e., compute the electric potential in the brain given by a known source.
Many factors can be included in the forward computations, such as skull
anisotropy [124], tissue inhomogeneities and anisotropies [23], and disper-
sive tissue and electrode properties [65]. Modeling of recording electrodes
is commonly approached by incorporating the electrodes as voltage mea-
surement devices with infinite input impedance and a surface area of zero,
i.e., the so-called point electrode model [171, 143, 207, 158].

However, if the electrodes are relatively large or the contact impedance
is relatively low (e.g. in EEG [100]), shunting effects due to the electrode-
electrolyte interface occur [143, 158]. The potential within the electrode
is homogeneous and thus the potential under the interface becomes more
similar to the one of the electrode. In a multi-electrode array (MEA) sim-
ulation [136], it was found that the effects of not including the electrode
in the model are negligible when the distance between the electrode and
the source is at least 2 times the electrode radius. The effects of the elec-
trodes are negligible for most MEAs, considering their small surface area.
However, these effects are expected to be especially relevant in ECoG be-
cause of the large electrode surfaces close to the current source covering
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a relative large area. Since a low contact impedance is desired to achieve
a high signal-to-noise ratio [110], not including electrode shunting in the
model can lead to erroneous results of forward simulations.

In this work, we investigated the influence that ECoG electrode prop-
erties have on the simulated recorded potentials in volume conduction
models, as well as on the distribution of the extracellular potential under
the electrode surface. The Finite Element Method for useful neuroscience
simulations [195] (FEMfuns1) was used as the forward simulation method,
because of its flexibility in including sub-domains and interior and exte-
rior boundary conditions representing the electrodes. This study aims to
discover what type of electrode model should be used when recording from
large electrodes relatively close to the source. Several parts of the recording
device were explicitly modeled, for example, the metal part of the elec-
trode, which generally is neglected because of the high input impedance
of the amplifier. The importance of a detailed electrode model was tested
using various source configurations and geometries and a general recom-
mendation is provided of when an electrode model should be used.

3.2 Methods

Forward model

The electric potential ϕ generated in the brain can be computed through
the quasistatic approximation of Maxwell’s equations [153]:

−∇ · (σ∇ϕ) = ∇ · Jp, in Ω, (3.1)

with a given primary current density Jp (current produced by neuronal
activity or from stimulating electrodes) in a medium Ω with conductivity
σ.

A homogeneous Neumann boundary condition (BC) is applied on the
exterior (non-electrode) boundary ∂Ω,

σ∇ϕ · n = 0, on ∂Ω, (3.2)

where n is the unit outer normal vector on ∂Ω. The insulating condi-
tion (3.2) ensures that no currents flow out of the boundary.

1 https://github.com/meronvermaas/FEMfuns

https://github.com/meronvermaas/FEMfuns
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Electrode-electrolyte interface In this work we focused on model-
ing the recording electrodes as surfaces or volumes and incorporated a
real-valued contact impedance representing the interface. The interface
currents are described as Faradaic reactions in a thin-layer approximation
with a real-valued surface admittivity yk (S/m2) expressed by the Robin
BC applied at the k-th electrode:

−σ∂ϕ
∂n

= yk(ϕ− ϕmetalk) on Γ k
R
, k = 0, 1, . . . (3.3)

where ϕmetalk is the voltage of the k-th electrode and Γ k
R

is the bound-
ary of the k-th electrode. In the case of recording electrodes, equation
(3.3) needs to be used self-consistently, since for each electrode ϕmetalk is
unknown. Using a Lagrange multiplier, ϕmetalk with electrode surface S
can be found in a standard saddle-point problem by requiring:

ϕmetalk =
1

S

∫
S
ϕ dS. (3.4)

Three geometries and model parametrizations

Three studies were performed to investigate the effect of the presence of
the electrode surface on the recorded potential and in the tissue under the
electrode. In all the studies Lagrangian FEM [200] was applied to simulate
the electric potential generated in a volume conductor by a known source.
The FEM simulations were performed using the open-source forward mod-
eling implementation in FEMfuns2, which is built upon the open-source
software FEniCS [3, 117].

Validation with in-vitro data

In the first study, a validation was performed on an in-vitro MEA set-up
[97]. The geometric model (M1, Fig. 3.1A) that corresponds to the MEA
set-up consists of a cylinder (diameter: 19 mm, height: 5 mm) filled with
Ringer’s solution (Fig. 3.1A, blue). The MEA was positioned at the bottom

2 Code from FEMfuns allows neuroscientists to solve the forward problem in a variety of
different geometrical domains, including various types of source models and electrode
properties, such as resistive and capacitive materials, and can be found at https:

//github.com/meronvermaas/FEMfuns

https://github.com/meronvermaas/FEMfuns
https://github.com/meronvermaas/FEMfuns


48

B

0.5 mm

30 cm

4 mm

60 cm

C

21 cm

recording electrodes
stimulating electrode

ground electrode

Ringer solution

19 mm

A

Fig. 3.1: Geometrical models M1-M3. A) Bottom view of an experimental
MEA set-up [97] cylinder filled with Ringer’s solution (in blue). In the bot-
tom right corner of the cylinder, the external cylindrical ground electrode
(in purple) is positioned. On the cylinder bottom surface 60 distributed
(in a 4 by 15 rectangular grid) conical recording electrodes (in black) and
one square stimulating electrode (in red) are placed. The top panel dis-
plays a close-up containing 8 recording sites and the stimulating electrode.
B) 3D schematic representation (not to scale) of the semi-infinite cylin-
der with a perpendicular bipole. C) Realistic head model [185], with scalp
(red), skull (yellow), CSF (green), grey (purple) and white matter (blue)
compartments.
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of the cylinder, with 60 conical recording electrodes (base diameter: 80 µm,
height: 80 µm). The stimulating electrode was modeled as a rectangular
surface (width: 60 µm, length: 250 µm) on the same MEA (Fig. 3.1A,
red rectangle in the close-up top panel). An external cylindrical ground
electrode (diameter: 2 mm, height: 4.3 mm) was represented by a cavity in
the Ringer’s solution subdomain (Fig. 3.1A, purple cylinder positioned in
the lower right region). We used the mesh that was generated by [97] using
FEMLAB 3.1a (COMSOL AB, Stockholm, Sweden), which consisted of
63,214 tetrahedra.

With this MEA set-up (M1), we replicated the simulation performed
by [97], comparing modeled electric potentials to experimentally recorded
potentials. In addition to [97], the range of the nodal potential values on
each recording electrode surface was computed. The whole domain was
uniformly filled with Ringer’s solution (σRinger = 1.65 S/m), where the
purely resistive version of Poisson’s equation was solved, i.e. Eq.(3.1), with
the homogeneous Neumann BC (3.2). The stimulating and ground metal
voltages (ϕmetalk in (3.3)) were set to 754.4 mV and 0 mV, respectively.
As reported in [97], surface conductance (yk in (3.3)) was 338 S/m2 for
the stimulating electrode and 975 S/m2 for the ground electrode. The ex-
perimental data, provided by [97], and our simulated data were compared
using a regression analysis.

Electrode shunting

In the second study we investigated the shunting effect of the electrode. We
used a geometry (M2, Fig. 3.1B) that is composed of two cylinders: a first
cylinder (C1) (height and radius: 30 cm) representing the volume conduc-
tor and, a second cylinder (C2) (diameter: 4 mm, height: 0.5 mm) placed
at the center of the bottom surface of C1, representing the electrode. The
surface area of electrodes is thus 12 mm2, which is comparable with Re-
sume II, Medtronic, ECoG electrodes [194]. C1 is a good representation of
a semi-infinite halfspace, i.e., volume conductor with homogeneous Neu-
mann BC at the lower surface and homogeneous Dirichlet BC elsewhere.
The mesh was generated with gmsh [57] and contained approximately
17 · 106 tetrahedra, with the tetrahedron inradius ranging between 3 µm
and 0.4 cm, being more refined close to the electrode.
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The boundary value problem in the semi-infinite halfspace (M2) was
governed by Eq. (3.1) with insulating BCs on the bottom Eq. (3.2) of
cylinder C1. Homogeneous Dirichlet BCs were applied to the sides and
top of C1. In this study we considered three different configurations (for
a schematic overview, see Fig. 3.3) for the electrode C2:

a) insulating BCs (3.2) at the interface between C1 and C2;

b) explicit metal subdomain with insulating BCs (3.2) on the outer facets;

c) surface conductance (3.3) at the internal boundary between the tissue
and metal region, i.e., between C1 and C2, and the metal subdomain
with insulating BCs (3.2) on the outer facets.

Conductivities of the tissue (C1) and metal were 0.3 S/m and 107 S/m,
respectively. Three surface conductances representing the interface were
used. A parallel combination of a pseudo-capacitance and charge trans-
fer resistance yielded interface impedances of 372, 46 and 5.6 Ω at 100,
1000, and 10000 Hz, respectively [29]. As a source model, a perpendic-
ular and parallel oriented bipole source (i.e., a dipole approximated by
two monopoles with a magnitude of 1 µA separated by 0.5 mm, with a
dipole moment of 5·10−10 Am) was positioned 1 mm above the center of
the electrode surface.

In addition, we reported the proportion between the simulated elec-
trode potentials of electrode configuration (a) and the other configurations,
(b) and (c), for the perpendicular bipole. The electrode potentials of elec-
trode configuration (a) were calculated using either the point-electrode
approximation or the disc-electrode approximation. The point electrode
approximation is the simplest and most commonly used electrode ap-
proximation [171, 207], where the electrode potential is described as the
value assumed at the midpoint of the electrode, disregarding both its size
and interface impedance. In the disc-electrode approximation, the aver-
age potential on the electrode surface is calculated. The reported propor-
tion between these two electrode potentials for configuration (a) and the
other electrode configurations, (b) and (c), indicates by which factor the
recorded potential differs if a more complete electrode model is used.

Electrode implementations a) and b) were calculated several times
with a bipole source positioned at increasing distances from the electrode.
Furthermore, potentials at horizontal cross sections at increasing distance
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from the electrode surface were calculated with electrode implementations
a) and b) using one bipole at 1 mm distance from the electrode.

Finally, the Root Mean Squared Errors (RMSE):

RMSE =

√∑N
i=1(φi − ψi)2

N
, (3.5)

and the Relative Differences (RD):

RD =
1

N

N∑
i=1

|φi − ψi|
max|ψi|

, (3.6)

where φi is the numerical solution at location i, ψi the analytical solu-
tion and N the number of locations, were calculated in a 1 cm cube cen-
tered around the electrode position, using electrode implementation a), to
compare the analytical [92] and numerical solutions. When the compari-
son between the solutions of two models is calculated, the RMSE will be
called the Root Mean Squared Difference (RMSD).

Realistic head model

In the third study, as a proof of principle, we used a realistic head model
(M3, Fig. 3.1C) with scalp, skull, cerebrospinal fluid (CSF), grey and white
matter compartments (available in SimNIBS, [185]). Two cylindrical elec-
trode surfaces (≈12 mm2, 1 cm distance between centers) were manually
added using Blender [17] and all head surfaces were subsequently tessel-
lated using TetGen [179]. This resulted in approximately 4.8·106 tetrahe-
dra, where the inradius of all tetrahedra was below 0.5 mm. The tetrahedra
were comparable to or smaller than the semi-infinite halfspace tetrahedra
in M2, being more refined close to the electrode.

The boundary value problem (3.1) with homogeneous Neumann BCs
(3.2) on the outer surface was solved in the realistic head model (M3).
Tissue properties were resistive with conductivities of the grey and white
matter [108], CSF [54], skull [162] and scalp [160] being 0.28, 0.25, 1.59,
3.5·10-3 and 0.17 S/m, respectively. Two electrode models were considered,
one perfectly insulating and one consisting of metal with insulating BCs. A
bipole radially oriented with regard to the average normal of the surface of
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Fig. 3.2: Replication of the validation study in [97]. The red points corre-
spond to the modeled and experimental values. A linear regression (blue
line) with R2 = 0.999 and p value < 0.0001 is shown. Furthermore, the
total range of nodal potential values on the surface of each electrode is
depicted by the red error bars.

one of the electrodes was positioned at a 2 mm distance from the electrode.
To make our results specific, we have chosen a bipole consisting of two
monopoles of 1 µA separated by 1 mm (i.e., a dipole moment of 10−9

Am). As results directly scale with bipole size the calculated values can
be easily adapted to the particular situation at hand by scaling.

The difference between the potentials given the two electrode models
was computed for tetrahedra in the grey matter within distance of 20
mm from the electrode surface. Box plots of these differences were binned
into a range of 1 mm distance from the electrode. The root mean square
(RMS) of the potentials was also calculated in bins to show the effect of
the electrode relative to the magnitude of the potential.
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3.3 Results

Study 1: Validation with in-vitro data

The results of the simulation of this monopolar stimulation experiment [97]
are visualized in Fig. 3.2. The electrical potential in this stimulation set-
up was recorded at 60 electrodes and compared to experimental recorded
values. Using Robin BCs (3.3), as reported by [97], results in an excellent
fit between experimental and modeled potentials (Fig. 3.2, R2 = 0.999,
p < 0.0001).

In addition to [97], we displayed error bars in Fig. 3.2 to indicate the
range of the nodal potential values on each recording electrode surface.
The recording electrodes closest to the stimulating electrode (i.e., with
the highest potential) show the largest range of values along its surface.
These results motivated us to further investigate effects of more complete
recording electrode models.

Study 2: Electrode shunting

The focus of Study 2 was on the effect of the three different electrode con-
figurations, i.e., (a), (b) and (c), and of the point- versus disc-electrode ap-
proximation on the electric potential computed with FEMfuns in a purely
resistive medium (M2) according to equation (3.1).

We analyzed and compared the potentials on the midline along the
surface of the electrode (in green, Fig. 3.3, left panels) of the geometrical
model (M2), see Fig. 3.1B.

Table 2: Ratio between recorded electrode potentials of different electrode
models with as the source distribution a perpendicular bipole. The val-
ues represent the ratio between the recorded potentials of the insulating
electrode model (a) with a disc- and point-electrode approximation (rows)
and the more complete electrode models (columns).

Interface 372 Ω (c) Interface 46 Ω (c) Interface 5.6 Ω (c) Metal (b)

Disc-electrode 1.06 1.2 1.29 1.33
Point-electrode 3 3.4 3.67 3.77
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(a) (b) (c)

A

B

C

Fig. 3.3: Vertical (A) and horizontal (B, C) cross sections of potential distributions in a semi-
infinite cylinder, with in the top panel an overview of the different electrode configurations
indicated in the legend (a-c). For a complete overview and description of the domain, see Fig.
3.1B. The potential on the midline along the surface of the electrode is plotted from top to
bottom describing: a) only tissue (blue) with no electrode (i.e. insulating BCs), b) tissue (blue)
and explicit electrode (grey) domain (insulating BCs at the boundary of the electrode), c)
similar to b) but including a thin-layer approximation of the interface ((red), Robin BC with
conductivities indicated in the legend). Note the different scaling on the x-axis of the vertical
and horizontal cross section. A and B are potential distributions due to a perpendicular bipole,
C is the potential when using a parallel bipole at a distance of 1 mm from the electrode surface.
Since the magnitude of the potential scales linearly with the magnitude of the bipole, we are
interested in the distribution of the potential and not the magnitude, therefore the axis labels
are omitted here.
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Fig. 3.4: A) Horizontal cross-section of a semi-infinite cylinder displaying
the potentials on the midline along the surface of the electrode (in green,
Fig. 3.3, left panels) with varying bipole positions (perpendicular bipole in
the top panels and parallel bipole in bottom panels). The potential distri-
bution at the metal electrode is shown in green, the potential distribution
at the insulating electrode is shown in orange. On the x-axis the electrode
is shown as a grey bar. The y-scales of the panels are different. B) Root
mean squared differences (RMSD) between the potentials of the two elec-
trode configurations on the midline along the surface of the electrode are
shown at increasing distances. The grey dashed line indicates the diam-
eter of the electrode. In the top right corner of the plots, the RMSD is
displayed on a logarithmic y-axis.
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The results are displayed in Fig. 3.3, where, on the one hand, in the
vertical cross section (Fig. 3.3A), we notice that the potential distribu-
tions of the five electrode implementations are overlapping in the tissue
(the main cylinder, C1). On the other hand, the difference between the
insulating (a) and more elaborate electrode implementations (b)-(c) in the
horizontal cross section is remarkable. While the insulating electrode im-
plementation (a) leads to a parabolic potential distribution peaking at the
center of the cylinder C1 (see Fig. 3.3B perpendicular bipole, Fig. 3.3C
parallel bipole), the potential distributions computed with (b) have a con-
stant value within the electrode. As the interface impedance increases,
the shape of the potential distribution returns from constant value (b) to
the parabolic one in the point electrode model (a). Indeed, with higher
impedances, the Robin BC (Eq. (3.3)) reduces to a homogeneous Neu-
mann BC (3.2). Note that the potential magnitude is omitted in Fig. 3.3,
since the magnitude of the potential scales linearly with the magnitude of
the bipole. Only the potential distribution along the electrode surface is
of interest here.

Regarding the point- versus disc-electrode approximation, we inspected
the effects of the electrode model on the recorded potential for the per-
pendicular bipole of Fig. 3.3B. The proportions between the point- and
disc-electrode approximation of the insulating electrode (a) and the more
complete (configuration (b) and (c)) are reported in Table 2. Since the
bipole is centered exactly at the midpoint of the electrode, the point-
electrode approximation overestimates the recorded potential by at least
factor 3. The disc-electrode approximation is less sensitive to the posi-
tion of the source, which reduces the effect of the electrode model on the
recorded potential by at most 33% (factor 1.33).

The influence of the electrode on the forward solution The differ-
ence between an insulating and a metal electrode in relation to its distance
to the source was examined. In Fig. 3.4A, the potentials on the midline
along the surface of the electrode (in green, Fig. 3.3, left panels) are de-
picted for four source-electrode distances for a perpendicular and a parallel
bipole. Potential values are displayed for a single-point electrode (config-
uration (a), Fig. 3.4 in orange) and for an explicit representation of the
electrode (configuration (b), Fig. 3.4 in green). The RMSD (Eq. (3.5))
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between the potentials using electrode configuration (a) and (b) was cal-
culated for source distances between 0 and 10.5 mm from the electrode
(Fig. 3.4B). As sources are positioned increasingly further, the voltage be-
comes more homogeneous in both electrode implementations. Thus, the
difference between (a)-(b) is smaller for sources at a distance further than
the diameter of the electrode (dashed vertical line in Fig. 3.4B).

From Figure 3.4B, we can indeed see that the RMSD curves decrease
almost exponentially for increasing distances (top right insets display the
RMSD values on a logarithmic y-axis). The largest RMSD values can be
observed for bipole distances within the diameter of the electrode, i.e., 4
mm, for both perpendicular and parallel bipoles (Fig. 3.4B left and right,
respectively). From RMSDs of 42.5 µV and 49.2 µV for a bipole at 1 mm
from the surface of the electrode, we observe RMSD values of 1.1 µV and
2.7 µV for a bipole at 4 mm from the electrode surface, for the perpen-
dicular and parallel bipoles, respectively. The pace with which the RMSD
decreases with the distance of the source depends on the conductivity of
the medium, in addition, the magnitude of the potentials scales with the
magnitude of the bipole. Therefore, it is essential to consider the mag-
nitude of the RMSD (Fig. 3.4B) with respect to the magnitude of the
potentials themselves (Fig. 3.4A).

In addition, the potentials at a horizontal cross section at increasing
distances from the electrode surface using one source location was ex-
amined using the insulating (a) and metal electrode (b) implementations
(Fig. 3.5). The potentials on the midline along the surface of the electrode
are depicted at four distances from the electrode for a perpendicular and
parallel bipole (Fig. 3.5A). As the distance from the electrode surface in-
creases, the difference between the two implementations decreases. In the
bottom panel (3.5B), the RMSD (Eq. (3.5)) between the insulating (a)
and metal electrode (b) implementations is illustrated, showing that only
close (i.e., at distances of the radius of the electrode) to the electrode,
there is an effect in the potential of the tissue underneath the electrode.

Specifically, from RMSD values of 42.5 µV and 49.2 µV on the elec-
trode surface, to RMSD values of 2.9 µV and 6.6 µV at 2 mm away from
the electrode, with a drop of 39.6 and 42.6, for perpendicular and parallel
bipoles, respectively. The pace at which the RMSD decreases with the dis-
tance from the electrode is dependent on the conductivity of the medium
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Fig. 3.5: A) Horizontal cross-section of a semi-infinite cylinder displaying
potentials on the midline along the surface of the electrode at increasing
distances from the electrode surface with a perpendicular (top panels)
and parallel (bottom panels) bipole. The bipole is located 1 mm above
the electrode. The potential distribution at the metal electrode is shown
in blue, the potential distribution at the insulating electrode is shown in
pink. On the x-axis the electrode is shown as a grey bar. The y-scales of the
panels are different. B) Root mean squared differences (RMSD) between
the potentials of the two electrode configurations on the midline along
the surface of the electrode are shown as the distance from the electrode
increases. In the top right corner of the plots, the RMSD is displayed on
a logarithmic y-axis.
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and the magnitude of the potentials scales with the magnitude of the
bipole. Therefore it is essential to consider the magnitude of the RMSD
(Fig. 3.5B) with respect to the magnitude of the potentials themselves
(Fig. 3.5A).

The numerical accuracy was checked by calculating the RMSE (Eq.
(3.5)) and RD (Eq. (3.6)) for the insulating electrode implementation,
since there was an analytical solution available [92]. The RMSE was 0.007
and 0.009, and the RD was 3.6·10-7 and 2.7·10-7 for the perpendicular and
parallel bipole, respectively.

Study 3: Realistic head model

As a proof of principle, in the last study, we simulated the effect of elec-
trodes in a realistic head model with resistive material properties (3.1).
A radial bipole was positioned at 2 mm below the surface of one of the
electrodes. The resulting potential distribution is shown in Fig. 3.6A-C. In-
sulating electrodes (Fig. 3.6A) lead to an inhomogeneous potential distri-
bution along the surface of the electrode. In contrast, electrodes consisting
of a highly conductive metal have a homogeneous potential distribution
over the surface of the electrode (Fig. 3.6B). This is comparable to the
findings in Fig. 3.4, except that the radial bipole here is not centered on
the middle of the electrode. The difference between the simulated results
for the insulating and the ones for the metal electrode is between -7 µV
and 80 µV (clipped to 7 µV in Fig. 3.6C). Note that the difference is non-
zero not only under the surface of the electrode, but also in the nearby gyri
(Fig. 3.6C). This is depicted in more detail in Fig. 3.6D. The difference
between the two solutions is shown in the box plots as a function of binned
distance from the electrode. The root mean square of the actual potentials
of both solutions is also plotted for reference. The difference between the
two electrode configurations at distances up to 3 mm from the electrode
is large, with an RD (Eq. (3.6)) of the binned RMS values of 0.4. As the
distance to the electrode increases, the differences become smaller (RD is
0.08 at 5-6 mm).
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Fig. 3.6: In the top left panels (A,B), the potentials over the surface of
electrodes in a realistic head model are displayed, with insulating BCs
(3.2) (A) and explicit metal with insulating BCs (B) given by a radial
bipole at 2 mm distance below the left electrode. The difference between
the potential with and without the metal electrodes is displayed on the
grey matter surface (C), and the two electrodes on the central gyrus are
overlayed in transparant black. (D) The root mean square of the poten-
tials of all cells at a distance from the electrode are displayed for both
electrode implementations with a bipole at 2 mm distance below one of
the electrodes. Box plots of the difference between the two solutions at the
same distances from the electrode are also shown.
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3.4 Discussion

The purpose of this study was to determine whether the presence of ECoG
electrodes has a significant influence on the electric potentials on the elec-
trode surface and underlying tissue. Three studies with three different ge-
ometrical models were performed using the open-source forward modeling
implementation in FEMfuns.

In Study 1, we replicated a stimulation study [97] and in addition il-
lustrated that the potential distribution along the surface of MEA conical
electrodes close to the source is inhomogeneous (Fig 3.2). Applying a sur-
face conductance via Robin BCs (3.3) to the recording electrodes did not
affect the fit of the model with the experimental data. Thus, the investiga-
tors of study [97] used homogeneous Neumann BCs and disregarded an ef-
fect of the interface impedance. However, depending on the the magnitude
of the surface impedance and the electrode size, the potential distribution
under the electrode could be altered.

The effect of the electrode on the potential distribution was further
examined in Study 2 using a semi-infinite halfspace and several electrode
implementations. The shunting effect of the electrode alters the potential.
A low interface impedance and the high metal conductivity ensure an
approximately homogeneous potential distribution under the electrode.
When the interface impedance goes to infinity the potential distribution
over the electrode surface becomes inhomogeneous and varies with distance
from the source. This is clear from equation (3.3), where a high surface
impedance yk reduces (3.3) to a homogeneous Neumann BC (3.2).

A number of EEG modeling studies ([143, 158]) conclude that assum-
ing a surface instead of a point is necessary when the electrode surface
impedance is very low or the electrodes are large compared to the head.
Ref. [158] reports that a more extensive electrode model can improve EEG
forward model accuracy. However, this will be mostly prominent in neona-
tal EEG, where the electrode diameter is large relative to the head. Few
studies have considered the effect of recording electrodes close to the source
(e.g., ECoG, MEA) [136].

We show that large electrodes relatively close to the source (i.e., dis-
tances equal or smaller than the size of the electrode itself) require a
surface rather than a point electrode modeling approach (Fig. 3.4). This
result is comparable to previous findings, which conclude that an insulat-
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ing point electrode is only sufficiently accurate within 4 times the elec-
trode radius [136]. The set-ups that were used here represent commonly
used ECoG grids [194], where the electrodes are cylinders with a diam-
eter of 4 mm. Considering that the average thickness of grey matter is
around 3 mm [199], the distance from the source to ECoG electrodes is in
many cases smaller than the diameter of the electrode and therefore it is
necessary to model the electrode explicitly.

Thus, when simulating large electrodes near the source, choosing the
appropriate electrode model is essential. In Table 2, we show that using
a point-electrode approximation largly overestimates the recorded poten-
tials, as compared to any of the more elaborate electrode models. The dif-
ference between the disc-electrode approximation and the elaborate elec-
trode models is less pronounced. Therefore the disc-electrode approxima-
tion could be considered as a minimally required electrode model when
recording close to the source; especially because of its straightforward im-
plementation. A more complete electrode model should be considered if
the electrode interface impedance is low to prevent an overestimation of
the recorded potential by up to 33%.

In general, we have to consider that no clear consensus has been es-
tablished yet on exactly how local the signal recorded by ECoG grids is
[98, 42]. However, due to the decrease of the potential with distance, the
majority of the signal will represent mainly local sources.

To better understand the electrode effect, one should consider that the
value recorded by an electrode can be described as the integral over its sur-
face (3.4), or more completely with Robin BCs (3.3) [29, 134, 158]. Thus,
the potential given by larger electrodes is the average over an increasingly
inhomogeneous potential distribution, resulting in a loss in spatial resolu-
tion. When recording close to the source, the potential distribution over
the electrode surface is likely to be more inhomogeneous. In contrast, when
recording a faraway source, the potential distribution over the electrode
surface will be homogeneous.

When including an amplifier input impedance to the electrode model
(results not shown), values around 10 MΩ are already sufficiently high,
so that there is no difference from the case with a perfectly insulating
(infinite impedance) amplifier [135] considered in our calculations.
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The shunting effects that cause the potential averaging over the elec-
trode surface only affect the tissue in its proximity (Fig. 3.5). When record-
ing close to the source with a low contact impedance, the potential dis-
tribution under the electrode is affected up to the radius of the electrode.
Depending on the electrode size and the area that needs to be recorded
from, it is thus important to ensure a sufficiently high surface impedance,
so that current flow in the underlying external cortical layers is not af-
fected.

We should note that comparing electrode configuration (a) and (b) de-
pict a worst case scenario. Depending on the size of the surface impedance,
electrode effects could be less pronounced. However, the surface impedance
of the electrodes is not generally measured, and also can require extensive
simulations [97]. An optimal surface impedance for a specific electrode set-
up should thus be computed in order to assure that one can record without
affecting the underlying tissue, and also in order to keep the impedance
as small as possible to increase the signal-to-noise ratio [110].

As a proof of principle (Study 3), the difference between point elec-
trode and metal electrode recorded potentials generated by a bipole in a
realistic head model is visualized on a realistically shaped cortex (Fig. 3.6).
The difference between the two electrode types relative to the RMS of the
potentials is small for sources at a location further away (a distance of the
diameter of the electrode). However, when the source is placed closer the
electrode effect becomes more pronounced in the nearby tissue. The po-
tential distribution on the electrode surfaces (Fig. 3.6 A,B) demonstrates
the need for a disc-electrode approximation. The recorded potentials using
a point-electrode approximation are highly dependent on the position of
the electrode midpoint.

Using a more complete electrode model can be important in determin-
ing the ideal spatial resolution of electrode grids recording close to the
source. Adopting more elaborate source models could also assist in deter-
mining optimal grid design for these electrodes. Furthermore, both study
2 and 3 suggest that using the inhomogeneous potential distribution over
the electrode surface using a point electrode could lead to significant errors
in applications such as source reconstruction. Thus including a more com-
plete electrode model could be necessary to improve source localization
errors.
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Including an explicit region for the electrode in the volume conductor
can also shed light on the effect of a non-bending electrode with respect to
the curvature of the brain, which affects the distance between the source
and the electrode. With recent advances in high-density ECoG grids, the
shunting effects of the electrodes might be aggravated, if, for example, the
combined contact surface of the high-density ECoG electrodes covers a
relatively large area of the underlying tissue. Which is in accordance with
findings in EEG simulation studies [157, 158]. In future work we plan to
use the electrode models to create sensitivity maps and receiver operating
characteristic for high-density ECoG grids.

3.5 Conclusion

In conclusion, if the distance between an electrode and the source is equal
to or smaller than the size of the electrode itself, electrode effects should
not be disregarded in simulation studies. In the examples that were pre-
sented, typical ECoG electrode sizes of 2 mm radius [194] were used, indi-
cating that modeling studies for these types of grids require a more exten-
sive electrode model. Furthermore, it was shown that with a low electrode
contact impedance and nearby sources, the potential distribution of the
tissue lying directly under the electrode is affected by the presence of the
electrode.
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Abstract

Brain-Computer Interfaces (BCIs) controlled by electrocorticography (ECoG)
are currently being explored to restore and replace communication in
severely paralyzed people. To date, implantable BCIs have mainly focused
on the sensorimotor cortex, resulting in a stable albeit slow control by the
patients. The performance could be improved by considering more dis-
crete classes of movement to steer the BCI. A promising candidate could
be to decode individual finger movements and hand gestures to exploit
(attempted) sign language. This requires a deeper understanding of the
spatial resolution of the ECoG grid because it depends on activity in
smaller regions of the cortex.

Here, we investigated whether simulated somatotopic activity of in-
dividual fingers in M1 and S1 can be separated from each other when
recording with a high-density ECoG grid. We performed our simulations
with FEMfuns, a volume conduction modeling software toolbox based on
the finite element method. A realistic head model and ECoG grid was used
to construct lead field matrices (LFMs) for somatotopic source patterns
representing the fingers in M1 and S1 based on recent fMRI data. Singular
value decomposition is used to describe how separable the LFMs of fingers
are.

We find high separability values of the somatotopic activity of individ-
ual fingers in sensorimotor cortex if the ECoG grid has sufficient coverage
of the hand-selective region. Furthermore, due to low signal magnitude of
deep sources, minimal separability is found between deep and superficial
sources.

In conclusion, we show that sources representing finger activity close to
the electrodes and with sufficient grid coverage are separable when using
a high-density grid. This approach can be used to estimate the spatial
resolution of the recording equipment.

Keywords: Brain-computer interface, Finite element method, ECoG, Sin-
gular Value Decomposition, Source separability, Somatotopy, Electrode
properties, Forward problem
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4.1 Introduction

The development of clinical brain-computer interface (BCI) solutions to
restore and replace motor function or communication in severely paralyzed
people, has surged in the last decades [15, 38, 194]. Most BCIs are cen-
tered around the sensorimotor cortex, because of its direct relation with
(attempted or imagined) movement. The sensorimotor cortex consists of
the primary motor (M1) and primary sensory (S1) cortex. Both are orga-
nized in a predictable order (the somatotopic homunculus), where specific
areas control different body parts [149].

In a recent BCI study [194], the somatotopic organization of the senso-
rimotor cortex was exploited. The BCI-implanted patient accurately con-
trolled a computer typing program by attempting hand grasping move-
ments. This attempted movement was decoded online from electrocorticog-
raphy (ECoG) signals, where electric potentials are recorded directly from
the cortical surface. The BCI proved to be sufficiently reliable for unsuper-
vised home use, albeit with a low typing speed (two letters per minute),
which should conceptually be extendable by employing more degrees-of-
freedom (i.e., discrete classes of movement).

In particular, the representation of fingers [173, 89] and hand ges-
tures [33, 21, 19] are promising candidates to improve BCIs since they
are amenable to decoding from sensorimotor cortex, as shown with Mag-
netic Resonance Imaging (MRI) [173, 89] or high-density (HD) ECoG [18].
However, using the neuronal activity during finger movements and hand
gestures to control a BCI system requires a sufficiently high spatial reso-
lution of the ECoG grid [18, 173]. Since the representation of the different
fingers along M1 and S1 covers a cortical surface area of approximately 1
cm2 [122, 180], standard clinical grid electrodes (1 cm pitch) that are used
for long-term implanted BCIs [194, 181] would fail to capture neuronal
activity at this spatial scale.

A modeling approach can investigate optimal spacing or placement
of electrodes [181, 208] and the sensitivity of the recording electrodes to
deep or superficial sources [59]. These studies are centered around vol-
ume conduction models to solve the forward problem, i.e., compute the
electric potential in the brain given by a known source. Using volume
conduction models to find the optimal electrode spacing depends on the
source that a researcher wants to distinguish. For example, recording fo-
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cal sources would require an electrode grid with many contact points at a
close spacing [181]. Rather, it would be valuable to study the limitations
of what a particular electrode grid, available to the experimentalist, can
record (i.e., is a particular activity pattern of interest distinguishable) and
if there is an optimal electrode spacing tailor made for the demands of the
experimentalist.

In the present study, we use volume conduction models to quantify the
separability of realistic somatotopic activity of individual fingers in M1
and S1 when recording with a HD ECoG grid. Based on literature, the
sensorimotor hand area can be decoded using a HD ECoG grid [18, 173].
We assess how separable neuronal activation in individual finger regions
is, using the singular value decomposition of the modeled recorded grid
potentials (i.e., the lead field matrices, LFM) [81, 193]. The separability
measure gives an estimation of whether areas of neural activity can be
decoded from a particular recording electrode grid.

Furthermore, the spatial spread (i.e., the cortical tissue that contributes
to the recorded signals) of ECoG remains a topic of discussion [98, 113, 42].
Here, we consider the relation between the depth of the sources and the
separability of the activity.

Additionally, we address the influence of ECoG electrode properties on
the LFM when recording with an ECoG grid on top of the sensorimotor
cortex. In [196, 42, 136], it was indeed found that in some cases more
detailed electrodes need to be included in ECoG modeling simulations.

4.2 Materials and methods

Anatomical data acquisition

One patient with intractable epilepsy was intracranially implanted with
a HD ECoG grid in order to localize the epileptic focus. The HD grid
had 64 electrodes with 1 mm exposed surface diameter and 4 mm center-
to-center distance (PMT Corporation, Chanhassen, USA). A T1-weighted
structural preoperative MRI scan was acquired on a 3T scanner (Philips
Achieva, Best, the Netherlands), with an isotropic voxel size of 1 mm. Ad-
ditionally, a post-operative high-resolution Computed Tomography (CT)
scan was acquired to locate the electrodes (Philips Tomoscan SR7000),
with voxel sizes of 0.49 mm × 0.49 mm × 0.7 mm.
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A

B C

Fig. 4.1: A) Head model with scalp (red), skull (yellow), CSF (green),
grey (purple) and white matter (blue) compartments and electrode contact
surfaces (white). B) Grey matter with the electrode grid position (yellow).
C) The ECoG grid with 8 × 8 electrode contact surfaces (black).

Head model

The final ECoG grid electrode coordinates were calculated using the AL-
ICE procedure [20].

The grey and white matter compartments of the head model were
segmented using FreeSurfer (https://surfer.nmr.mgh.harvard.edu/).
The skull compartment was created by thresholding the CT [140]. Finally,
Fieldtrip [144] was used to create the scalp and CSF compartments, and
Seg3d [35] was utilized for manual corrections.

After the masks of the five compartments were assembled, a volumet-
ric tetrahedral mesh was created in iso2mesh [48]. The mesh was refined
near the electrode coordinates using the Finite Element Method for use-

https://surfer.nmr.mgh.harvard.edu/
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ful neuroscience simulations [195] (FEMfuns3) resulting in ∼6.9 million
tetrahedra. The ECoG grid was defined as a layer representing the silicon
sheet and 64 surfaces representing the contacts, with an average electrode
surface of 0.8 mm2 (the actual electrode surface was 0.785 mm2).

Source model

Two source configurations were created (Fig.4.2 1&2), with 10 patches
per configuration representing the five digits in M1 and S1. The sources
in configuration 1 are partially covered by the electrode grid, while source
configuration 2 is positioned directly under the grid. The positions of the
patches in source configuration 2 are based on somatotopic maps estimated
in [173]. Neuronal sources of each digit were described as synchronously ac-
tive patches of bipole sources, i.e., dipoles approximated by two monopoles
that are separated by 1 mm [12]. The magnitude of all bipoles combined in
each patch was normalized to a total of 1 µA. This magnitude was chosen
to ensure that the resulting simulated ECoG signals reflect realistic data
(i.e., an experimental hand gesture task showed root mean square (RMS)
values in the high frequency band of HD-ECoG recordings between 1.5 µV
and 4 µV). The distance of the patches along the gyrus representing the
somatotopic map, from thumb (d1) to pinky (d5), spans ∼ 17 mm, which
is in accordance with the literature [122, 170].

Bipole coordinates were calculated by taking vertices on the grey mat-
ter surface that were identified as M1 and S1 based on visual inspection
(i.e., pre- and post-central gyrus and the central sulcus) and are visualized
in Fig.4.2. Each vertex coordinate was projected 1.5 mm into the brain
along the normal of the grey matter surface. The monopoles representing
the sink and source of the bipoles were oriented radially with respect to the
nearest grey matter surface facet. Only bipoles that were located within
the brain and at a distance of 0.5 mm from the grey matter surface were
used in the calculations. This resulted in a total of 1597 and 1037 bipoles
for all M1 and S1 patches in source configuration 1 and 2, respectively.

Additionally, each of the 10 patches of source configuration 2 were
split in superficial and deep regions, i.e., at the gyrus or at the sulcus. The

3 https://github.com/meronvermaas/FEMfuns

https://github.com/meronvermaas/FEMfuns
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Fig. 4.2: a) Grey matter with the electrode contact surfaces (black) and
the source patches in configuration 1 (top) and 2 (bottom). The central
sulcus (CS, black line) separates M1 (anterior to the CS) and S1 (posterior
to the CS). b) The source patches (each finger colored differently) curved
along S1 are displayed in a coronal slice, M1 sources are not shown for
clarity at this angle. In 2b a black line indicates the distinction between
deep and superficial patch activity. c) A horizontal view with respect to
the grid, showing the position of the finger patches under the grid. The
electrode contact surfaces are shown in black. The color coding of the
digits is displayed in the bottom.

average distance of the bipoles in the superficial and deep patches to any
electrode is 2.7 mm and 8.1 mm, respectively.
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Electrode model

We previously showed that when the distance between an electrode and
the source is equal to or smaller than the size of the electrode, electrode
effects cannot be disregarded [196]. To determine which electrode model
is required in this particular geometry, we considered four electrode con-
figurations:

a) point-electrode approximation, without an insulating layer;
b) disc-electrode approximation, with an insulating layer;
c) metal electrode, without an insulating layer;
d) metal electrode, with an insulating layer.

In electrode model (a) the potential at the midpoint of each electrode
was computed, assuming skull where the electrodes were positioned. In
electrode model (b) a perfectly insulating layer (σ = 0 S/m) was included,
representing the silicon sheet, and the electrode potentials were evalu-
ated as the average over the electrode surface. Electrode model (c) had a
metal electrode with a surface conductance of 105 S/m2 [97, 195, 196]. The
insulating layer representing the silicon sheet was not included. Finally,
electrode model (d) is the same as (c), but also includes the insulating
layer. The point-electrode approximation with a silicon grid and the disc-
electrode approximation without a silicon grid have been omitted here.

FEM simulations

The ECoG forward problem was solved by applying a Lagrangian FEM
[200] to simulate the electric potential generated in the volume conductor
by a source representing finger activity. The FEM simulations were per-
formed using the open-source forward modeling implementation in FEM-
funs [195], which is built upon the open-source software FEniCS [3, 117].

The boundary value problem was solved with homogeneous Neumann
boundary conditions (BCs) on the outer surface of the head model. Tis-
sue properties were resistive with conductivities, σ, of the grey and white
matter [108], CSF [54], skull [162] and scalp [160] being 0.28, 0.25, 1.59,
3.5·10-3 and 0.17 S/m, respectively. The surface conductance of the elec-
trode contacts was applied using a Robin BC [97, 195].

The LFM (channels × patches, i.e., 64 × 10) was assembled for each
electrode model and for each source configuration, and a common average
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reference was applied. The difference between the LFMs of the electrode
models was visually inspected to determine the effect of the ECoG grid
on the simulated potentials.

Separability of recorded activity

If the maximum potential of the LFM of a finger patch was above noise
level (1 µV, taken from RMS values in the high frequency band of HD-
ECoG recordings during rest), this patch was further analyzed on the
separability it has from other sources. The LFM of pairs of patches (A,
with size 2 × 64) above noise level was decomposed using singular value
decomposition (SVD) into a product of 3 matrices:

A = UΣV T (4.1)

where U and V are orthonormal matrices and Σ is a diagonal matrix.
The diagonal entries of Σ, i.e., the singular values (σ1 > σ2), are arranged
in decreasing order. The separability index (SI), i.e., the ratio between the
singular values, was computed for each pairwise SVD:

SI =
σ2

σ1
(4.2)

as a measure for how separable the pair of patches is. The magnitude of
a singular value is indicative of its importance in explaining the data. More
precisely, the square of a singular value is proportional to the variance
explained by it.

A SI close to one indicates that both the first and second component
of the SVD contain a large amount of signal information; thus the two
patches are separable. If the SI is close to zero, the first component is
sufficient to describe the signal information of both patches, indicating
they are not separable.

4.3 Results

Electrode model simulations

The LFMs cooresponding to the four electrode model simulations (a-d)
are visualized in Fig.4.3 for a single exemplary source patch, represent-
ing M1 thumb activity (Fig.4.3E). The LFM during the activation of the
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patch, when using the different electrode models (a-d), is displayed with
a 2D Delaunay triangulation (Fig.4.3A-D). A dipolar distribution can be
observed and related to the dipoles along the gyrus (for a clear view of
the source positions, see the red sources in Fig.4.2B).

The potential distributions on the electrode grid are similar regardless
the electrode model (a-d) that is used in the simulation. The average
percent difference of all patches and electrodes (i.e., the 64 × 10 LFM)
between the least extensive electrode model (a) and the most extensive
electrode model (d) is 0.23%, with a standard deviation of 3.2%.

A B

C Metal electrode & insulating layer (d)

Insulating layer model (b)

Metal electrode model (c)

Point electrode model (a) 

D

E

Fig. 4.3: A-D) The constructed 2D Delaunay triangulation from the LFM
of one patch in M1 using the four different electrode model (a-d). The
electrode positions are displayed in black. E) Position of the source patch
(red) in M1 and the electrode positions (black).
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Digit separability in M1 and S1

A

S1 M1

S1 M1

d1

d5
d2 d4d3

B

SI maximum μV

Fig. 4.4: SVD of the LFMs of pairs of the 5 patches corresponding with
thumb (d1) to pinky (d5) for M1 and S1 in source configuration 1 (A)
and source configuration 2 (B). The SI (Eq.4.2) was computed for patches
above noise level. The maximum potential of the LFM for each source
patch is displayed in gray along the x and y-axis. The position of the
source patches and color coding of the digits is shown in the bottom left
corners of A) and B).

A pairwise SVD for all patch combinations was computed and the SI
(Eq.4.2) was visualized (Fig.4.4) for patches that are above noise level. The
maximum LFM potential is displayed around the edges in gray, where a
darker hue in combination with a high SI indicates the sources are both
measurable and recordable.

In source configuration 1 (Fig.4.4A), the SIs of patches representing
M1, digit 1-4, and S1, digit 1-3, are visible, since only their LFMs are
above noise level. The SI of digits in S1 with other digits in S1 is lower
than the SIs of source pairs including M1 digits. Furthermore, the SI of
M1-d4 is lower compared with the other SIs, which is related to the smaller
maximum potential in this source patch compared with the other patches.

Source configuration 2 (Fig.4.4B) shows an improvement in terms of
patches that are above noise level, with almost all digits visible in the SI
matrix. Furthermore, the SIs are high, with many equal to or bigger than
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0.7 (green and yellow). The checkerboard pattern observed for SI pairs of
M1 d1-d3 with the other digits is related to the maximum potentials that
alternate between larger and smaller magnitudes.

Deep and superficial source depth separability

A distinction between deep and superficial (Fig. 4.2, black division line in
2b) was considered only in source configuration 2, since the signal mag-
nitude of all source patches was higher. However, the signal magnitude of
the deep sources of both M1 and S1 was close to or below noise level for
all digits. Thus, rather than inspecting the SIs, the maximum recorded
potentials are displayed (Fig. 4.5). In addition, the spatial resolution of
the electrode grid was decreased (4 electrodes, comparable to a clinical
grid [194]) and increased (maximum of 1215 electrodes) by adding nodal
points on the grid surface.

The maximum potential of the LFM of deep sources of M1 (gray) and
S1 (yellow) is close to the noise threshold (red line) (Fig. 4.5A). Increasing
the spatial density of the electrodes has no effect on the magnitude of the
simulated potentials of deep sources.

The maximum potentials of the superficial sources are above the noise
threshold (Fig. 4.5B). Different from the deep sources, increasing the spa-
tial density of the electrodes for the superficial sources does affect the
maximum potential in most cases (Fig. 4.5B). The number of electrodes
at which the maximum LFM potential converges is different for each patch,
but around 200 contact points for most source patches. However, the effect
of increasing the electrode spacing on the SI is limited, with mean values
of 0.35, 0.59 and 0.65 for 4, 64 and 204 electrodes, respectively. Increasing
the number of electrodes further did not increase the mean SI.

4.4 Discussion

In this study we have shown the separability of the somatotopic activity
of individual fingers in sensorimotor cortex using a HD ECoG grid.

Grid coverage is crucial for finger separability. If the sources represent-
ing the fingers in M1 and S1 were covered by the ECoG grid (Fig.4.4), the
recorded potentials were above noise threshold showing high SIs (Eq.4.2).
Only sources underneath the grid were separable, with source configura-
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BA

Fig. 4.5: A) The maximum potential at the LFM of the deep sources of
digits in M1 (gray) and S1 (yellow) and the noise threshold (red) plotted
against number of electrodes. B) The maximum potential at the LFM of
superficial sources for all digits plotted against number of electrodes.

tion 1 (partial grid coverage) showing a limited amount of separable fingers
(Fig.4.4A) and source configuration 2 (full grid coverage) allowing for all
fingers to be separated (Fig.4.4B). Our findings are in line with previous
studies which show that grid coverage is essential in source localization
[81] or when decoding hand gestures [19] using ECoG recordings.

Deep sources are not separable. We found minimal separability of deep
sources (in the central sulcus, faraway from the electrode grid) from su-
perficial sources (at the pre- and post central gyrus, close to the electrode
grid). Recently, the spatial spread of ECoG was shown to be fairly local
(distances of 3 mm) [42]. Indeed, the superficial sources clearly dominate
the signal (Fig.4.5), while sources in the sulcus describe only a minor por-
tion of the recorded signal that is often below noise threshold, because of
the large distance between the source and the electrodes.

Increasing the number of electrodes did not result in an increased max-
imum signal at any electrode for deep sources (Fig.4.5A). This implies that
adding more electrodes at a closer spacing does not increase the distance
between the deep sources and the electrodes. An increased number of elec-
trodes did improve the maximum signal at any electrode for the superfi-
cial sources (Fig.4.5B). The maximum signal converges once an electrode
is added directly above (i.e., is as close as possible) the source patch. Us-
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ing only four electrodes with a larger spacing, comparable to clinical grid
electrodes [194], resulted in a large decrease in both the number of source
patches above noise threshold and the SIs. Increasing the number of elec-
trodes beyond 64 only slightly improved the separability of the underlying
sources.

Surprisingly, the spacing of the 64 electrode grid was 4 mm, while the
optimal spacing for ECoG electrodes has been estimated to be around 1.4
mm [50, 181]. Assuming this electrode spacing for the ECoG grid used
in this study would result in 400 contact points. However, this number
of electrodes is not distinctly optimal in our simulations (i.e., the spacing
where the magnitude of the recorded signal or the SI converges). The dif-
ference between these results can partially be attributed to the distributed
source model that was used here, while the authors in [181] assume a single
dipole. Furthermore, we consider the separability of sources recorded at
the channels, while [181] determine the optimal grid spacing based on the
attenuation of the signal. Thus, our approach estimates if a particular elec-
trode spacing is sufficient to distinguish a particular source (distribution)
of interest.

A valuable future step would involve relating the SI, as an estimation
of which fingers can be decoded, to experimental ECoG data during a
finger flexion-extension task [173]. In addition, there is limited research
addressing to what extent ECoG can be used to localize the underlying
sources [81, 193]. The approach presented in this study could be used to
optimize the constraints in the source localization algorithm. A limitation
of this study concerns the uncertainty in the noise thresholding for each
source patch. Both the noise threshold and the simulated recorded po-
tentials are simplified representations of realistic data. However, the noise
level and source magnitude can be adjusted based on the brain region of
interest. Additionally, by inspecting both the SI and the maximum LFM
potential (Fig.4.4, outer gray bars), areas that are more and less likely to
be separated can be estimated. A further limitation concerns that the re-
sults were obtained assuming homogeneous, isotropic tissue conductivity,
which can largely affect the recorded potentials.

In addition, we showed that the effect of ECoG electrode properties
on the recorded signal was small (Fig.4.3). This is in accordance with our
previous findings [196]. There, we showed that ECoG electrode properties



79

are expected to affect the recorded potential if the distance between an
electrode and the source is equal to or smaller than the size of the electrode
itself. Indeed, in our model, the sources are positioned 1.5 mm under the
gray matter surface and their distance to the electrode grid generally is
larger than the diameter of the electrodes (1 mm).

4.5 Conclusion

In conclusion, this study shows that sources representing finger activity in
sensorimotor cortex are separable when using a HD ECoG grid. In order
to ensure recorded signals that are above noise level, it is essential that
the grid fully covers the sources of interest. Furthermore, deep sources
generally produce signals below noise level on an ECoG grid, irrespective
of the spatial resolution of the grid. Finally, the presented separability
measure can be used to estimate what the effective spatial resolution of the
recording grid is, while taking into account the neural source distribution.

Acknowledgment

This work is part of the perspective programme NeuroCIMT with project
number 14906, which is financed by the Dutch Research Council (NWO).



80

5 General discussion
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5.1 Main summary

Electric activity generated by neuronal processes in the brain can be
recorded, for example at the surface of the brain (electrocorticography,
ECoG). Using ECoG, neuronal activity at several millimeters from the
recording contact can be picked up. However, there is no consensus yet on
the precise size of the region contributing to the recorded signal [115, 13,
119, 42].

The main goal of the research described in this thesis is to better
understand and advance the electrophysiological recording efficiency and
selectivity in terms of electrode properties and their spatial configuration,
in particular in ECoG.

ECoG is used clinically for seizure localization in epilepsy patients. Fur-
thermore, ECoG signals can be used in a brain-computer interface (BCI),
where the activity in the central nervous system is utilized to control a
neuroprosthetic device (e.g., a prosthetic limb or a computer program).
The temporal stability of mesoscopic ECoG grids has been invoked to ar-
gue that it is the preferred recording technique for BCIs, as compared to
microscopic and macroscopic scale measurements [194, 31], this view has
not been widely established or rigorously validated. Furthermore, prior
efforts to understand and improve the recording quality of mesoscopic
measurements via a computational approach are sparse [181]. Here we
will summarize and discuss the results of the studies we performed, as
well as describe prospects and desirable future steps.

We first developed new suite of modeling tools, which were used to fur-
ther investigate how to perform volume conduction simulations that take
the presence of electrodes and the frequency components of the signal into
account, in particular in the case of ECoG. Modeling approaches have been
used predominantly to investigate and develop microscopic and macro-
scopic electrode designs [165, 141, 169, 86]. In our first study (chapter
2), we presented the first open-source, easy-to-use and flexible pipeline
(named ”Finite Element Method for useful neuroscience simulations“,
FEMfuns), allowing for the simulation of multiple material compartments
in volume conductor models. We created FEM scripts which allow neuro-

https://github.com/meronvermaas/FEMfuns
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scientists to use resistive, capacitive and dispersive tissue properties and
different types of electrodes [195].

We investigated the frequency dependency of the Poisson equation,
which includes non-linear effects, and we did not find major effects for
recording electrodes. It is known from literature that at low driving poten-
tials the electrode-electrolyte interface impedance is generally linear. For
high driving potentials (often during stimulation) nonlinear characteris-
tics may emerge [175, 164, 49, 29]. Thus, we did not find major nonlinear
effects for recording electrodes with small sources representing brain ac-
tivity. However, when larger electrodes are used, interface effects due to
the recording electrode can be observed [143, 158].

Although other open-source toolboxes for solving forward problems
with FEM are available [144, 204, 138, 142], neither the frequency de-
pendent properties of biological tissue nor the electric properties of the
electrodes are incorporated in these packages. In addition, the Python

code of our pipeline can be easily adjusted and extended.

The main limitation of the pipeline concerns mesh generation, which
currently needs to be done in external software such as FSL [93] or gmsh
[57]. Furthermore, currently only tetrahedral mesh elements can be used
since FEniCS [3], the general FEM toolbox around which FEMfuns is
centered, only supports these. These shortcomings will be addressed in
the future steps (Section 5.2).

Next, in chapter 3, the FEMfuns pipeline was used to investigate
the influence of the presence of electrodes on the potential distribution
on the electrode surface and in the underlying tissue. Few studies have
considered the effect of the electrode [143, 136, 158] and only EEG and
microelectrodes were considered.

Therefore, we investigated ECoG grids and showed that large elec-
trodes relatively close to the source (i.e. distances equal or smaller than
the size of the electrode itself) need to be modeled by a surface rather than
a point electrode modeling approach. This indicates that especially simu-
lations of clinical ECoG grids with common sizes of 2 mm radius would
benefit from using a more extensive electrode model.

Furthermore, we showed that, with a low electrode contact impedance
and nearby neural activity, the potential distribution of the tissue lying
directly under the electrode is affected by the presence of the electrode
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(up to the radius of the electrode). Therefore, it is important to ensure a
sufficiently high electrode surface impedance, so that current flow in the
underlying cortical layers is not affected.

The electrode surface impedance is generally not measured, because
this is a challenge in itself [174, 97]. By choosing a very low contact
impedance in our simulations, the worst case scenario was depicted. For
any electrode set-up it may be useful to estimate an optimal surface
impedance such that recordings can be performed without affecting the
underlying tissue, while keeping the impedance as small as possible to
increase the signal-to-noise ratio [110].

As discussed in the introduction (1.2), choosing the desired recording
electrode type for long-term BCI systems requires careful consideration.
By knowing the limitations of the available recording electrodes, experi-
mentalists at medical centers could improve the BCI system. In the final
study (chapter 4), we utilized the FEMfuns pipeline to estimate the ef-
fective spatial resolution of ECoG grids (i.e., whether particular electrical
potentials are distinguishable by the grid). Specifically, a quantification
was made of the separability of realistic somatotopic activity of individ-
ual fingers in sensorimotor cortex when recording with an HD ECoG grid
implanted in an epileptic patient at the Utrecht Medical Center.

We showed that superficial sources representing finger activity in sen-
sorimotor cortex are separable when using an HD ECoG grid that fully
covers the sources of interest. Furthermore, deep sources generally pro-
duce signals below noise level on an ECoG grid, irrespective of the spatial
resolution of the grid. In contrast, for superficial sources, decreasing the
electrode spacing improves the separability. Finally, the separability mea-
sure we used can be used more generally to estimate the effective spatial
resolution of any recording grid, while taking into account a neural source
distribution of interest. This approach could be adapted for model-based
optimization to design more efficient electrode grids.

A limiting factor in this approach is the uncertainty in choosing realis-
tic noise values and a source distribution that represents a certain behavior
(e.g., a hand grasping movement [194]). However, since we adjusted the
noise level and source magnitude according to a realistic ballpark estimate,
it gives an approximation of those areas that are more and less likely to be
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separated by the electrode grid. Possible improvements in creating realistic
noise levels and source distributions will be discussed in section 5.2.

5.2 Future research

This thesis aims to increase our understanding of electrophysiological
recording electrodes in order to improve their efficiency in neuroprosthetics
applications. A simulation of the recorded grid potentials due to the spa-
tiotemporal electrical activity patterns generated by neural activity can
inform a neuroscientist how to, for example, optimize grid design for elec-
tric stimulation mapping in epileptic patients or BCI systems in locked-in
patients, including the exploration of alternative electrode properties.

Creating an easy-to-use approach for neuroscientists to perform sim-
ulations and determine the optimal recording grid for a particular neu-
ral signal still is an unfulfilled opportunity for further advancement. To
achieve accurate models it is necessary to simulate the non-homogeneous
and anisotropic tissue properties, the electrode properties and the neural
activity.

The pipeline presented in chapter 2 allows for these types of sim-
ulations. It was applied to study recording and stimulating electrodes
(chapter 3), and for estimations of the selectivity of a grid (chapter 4).
However, several manual steps are still required, decreasing the practical-
ity of the pipeline for non-expert users. Integrating the FEMfuns source
code in a versatile and widely used toolbox, such as FieldTrip [144] or
Brainstorm [184], would drastically improve its usability as well as reach
the part of the scientific community that could benefit from the pipeline
the most.

Since mesh generation is not included in FEMfuns (several manual
steps and external software packages are needed), integrating FEMfuns in
an established toolbox (with meshing routines already present) would sim-
plify the use of the pipeline. Furthermore, the data analysis and source
reconstruction algorithms present in, e.g., the FieldTrip toolbox can be
combined with the forward solutions generated in our FEMfuns pipeline.
Indeed, FEMfuns will be implemented in FieldTrip as part of the “In-
toTheBrain” project, which we recently started.

Another possible improvement of FEMfuns involves automatic gener-
ation of electrode grid models in the mesh. Generally electrodes are not
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explicitly included in the mesh, but represented by a point. Automated
segmentation, placement and tesselation of an electrode grid could be de-
veloped based on a recent publication [88]. The authors in [88] created
scripts that allow the user to automatically position EEG or intracra-
nial electrodes with various shapes in a mesh, or by simply providing the
electrode coordinates. Building upon this, routines for positioning stereo
EEG, ECoG and other types of (depth) electrodes could be developed in
FEMfuns.

In chapter 3 we investigated the effects of recording electrodes on
the forward solution. However, we did not rigorously investigate the same
for stimulating electrodes. While these electrodes have been considered in
the literature to some degree [23, 29, 97, 65, 86], a full overview of which
types of stimulating electrodes require which electrode model has not been
published yet to our knowledge.

The results and electrode model approach introduced in chapter 3
could additionally be employed to design and optimize the electrode con-
tact impedance for parameters such as the signal-to-noise ratio. The ef-
fective contact impedance may for example be related to different elec-
trode shapes such as a disc, a pad or a ring. With FEMfuns, electrodes
with a variety of sizes, shapes and materials (each influencing the contact
impedance and SNR) can be simulated to study their effects in neural
recording and stimulation set-ups.

As already discussed in section 5, the electrode impedance generally
is not measured, since it is challenging of its own accord [174, 97]. Rather
than an extensive experimental assessment of the electrode impedance
[111, 172], a modeling approach can be employed. FEMfuns could be ex-
tended to allow for an optimization procedure that estimates the electrode
impedance by combining simulations with a limited amount of experimen-
tal data (e.g., comparable to the approach in [97]).

The pipeline presented in chapter 2 includes the possibility of us-
ing capacitive properties of the tissue and the electrode interface [195]. A
test-case with recording and stimulating microelectrodes was presented,
however, we did not further explore the effect of frequency on the cur-
rent density distributions. These types of electrode effects have mainly
been considered in stimulation studies [165, 24, 29, 65], because in most
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Fig. 5.1: Bode magnitude (| Z |) and phase (φ) spectra (a and b, re-
spectively) of gold electrodes with various sizes placed on top of a layer of
tissue. The electrodes with a larger surface area (i.e., a smaller impedance)
show a plateau in the magnitude plot (a), and a peak in the phase plot
(b) due to the capacitive tissue layer. Reprinted from [105].

cases resistive currents are dominant in the recording electrode interface
impedance.

However, a recent study shows the importance of the ratio between the
impedance of tissue and electrode (Fig. 5.1) to achieve efficient recording
sensitivity [105]. In Fig. 5.1a, due to the R-C circuit of the electrode a
resistive behavior can be observed at high frequencies and a capacitive
region at low frequencies (for electrodes smaller than 2 mm x 2 mm). For
these electrode sizes a simple scaling is sufficient to find the magnitude of
the impedance. However, for larger electrodes, the presence of a capaci-
tive tissue membrane becomes apparent from both phase and impedance
values (102-103 Hz). These effects are mostly related to the ratio between
the tissue and electrode impedance [105]. Thus, extending the findings in
chapter 3 to include capacitive electrode and tissue properties would be
a useful addition to the current literature.

In chapter 4 we compared the optimal electrode spacing used in our
distributed source model with the single dipole model in [181]. While a
separability measure allows the user to estimate the effective resolution of
the grid, this estimation is highly dependent on the activity pattern that



87

is used. Thus these modeling approaches require careful consideration in
choosing the sources and their dynamics.

Deciding the amount of detail required in a source model, in relation
to the electrode properties, is not trivial. Generally single current dipoles
are sufficient source approximations to produce accurate simulations of
recorded EEG and MEG signals [133]. Some studies consider more complex
electric sources by using simulated neuron geometry and network activity
to describe MEG and EEG activity patterns (e.g., [178, 133]). However,
these types of sources typically are not adequate for smaller electrodes
recording closer to the electrical source, such as ECoG [133].

FEMfuns can be used to better understand the neural origin of ECoG
signals by studying the contributions of neuronal sources modeled at dif-
ferent spatial resolutions on the recorded potentials. Specifically, it can
be used to give an estimation of the resolution at which sources can be
distinguished depending on the electrode properties (the contact surface
and impedance). Subsequently this would indicate what type of sources
are suited for a particular recording grid in future simulation studies.

Many tools to simulate the electrical patterns of neural activity more
accurately are widely available (e.g., NEURON [82], BRIAN [62], NEST
[46], LFPy [70]). For example, NEURON can be used to create a multi-
compartment model of the laminar neocortical architecture to simulate
the sources of human MEG signals [178].

Additionally, the calculated dynamic activity of neurons can be used
in a forward modeling scheme and can be used to estimate when the
capacitive part of the tissue impedance becomes dominant in the sim-
ulation (Fig. 5.1). This type of approach has been applied in a volume
conduction study with a detailed thalamocortical source model to cal-
culate the potentials recorded by microelectrodes [136]. Computational
models of brain circuitry are widely accessible and can be efficiently re-
trieved (e.g., https://senselab.med.yale.edu/modeldb/ or https://

www.opensourcebrain.org/) and used as the building block for more de-
tailed volume conduction simulations.

In a hybrid modeling scheme, detailed multicompartment neuronal
models could be used to calculate the electrical sources used in FEM-
funs. The findings in chapter 4 could be extended and single current
dipoles, distributed dipoles and a realistic laminar neocortical neuron as

https://senselab.med.yale.edu/modeldb/
https://www.opensourcebrain.org/
https://www.opensourcebrain.org/
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a source model could be compared. Furthermore, we could calculate the
separability of sources in the different layers of the gray matter and es-
timate whether, and with which electrode spacing, these laminar sources
can be decoded. Recent findings indeed suggest the anisotropic proper-
ties across cortical depth can be relevant in the design of intracortical
neuroprostheses [189].

To validate the modeling approaches, the simulation results need to
be matched with experimental data. This is a complex problem that can
be tackled with a wide variety of approaches (e.g., [40, 95, 64]). Valida-
tion of volume conduction models can, for example, be tackled by using
both stimulating electrodes and recording electrodes in an experimental
set-up (e.g., [97]). The electric potentials at the stimulating and recording
electrode are known and can be compared with the simulated recorded
potentials. Using this approach, inferences can be made about, for exam-
ple, the spatial extent of the electrical signals, the tissue conductivity and
the electrode impedance.

Furthermore, as an extension of chapter 4, the simulated separability
of fingers could be related to experimental ECoG recordings during a finger
flexion-extension task. The accuracy of the separability measure would be
computed using different types of electrodes and tissue properties, as well
as a variable number of compartments in the volume conductor. Next, the
accuracy of the decoded ECoG recordings during the finger movements can
be related to the simulated separability measures. This assists in describing
what the least complex model with sufficient precision is.

The validation and testing of forward solutions can also be approached
using source localization methods, whose accuracy is influenced by the
accuracy of the forward solutions. While many advancements are done to
reconstruct sources from EEG and MEG data, ECoG signals are generally
rather studied at a sensor level. A source localization is not attempted
because of the limited coverage of the grid and the electrodes being close
to the neuronal sources [190].

Many source reconstruction methods and algorithms have been de-
scribed, but, in both EEG and ECoG, tuning the multitude of neces-
sary parameters and deciding the optimal algorithm is not straightforward
[129]. Especially source localization of ECoG recordings is not well estab-
lished, and has primarily focused on epileptic seizure activity [53, 210, 34].
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Currently, only a handful of studies have considered the advantages and
limitations of source reconstruction methods of ECoG recordings [146,
81, 187]. However, many factors still require further research, such as the
types of sources (e.g., distributed vs localized), ECoG noise levels and
regularization parameters.

Finally, as a continuation of the separability measure (chapter 4),
forward solutions generated using FEMfuns can be applied to perform
source reconstruction on ECoG recordings during a finger flexion-extension
task. We anticipate that the reconstructed sources of each finger would
allow us to construct a somatotopic map. These results can be compared
with the hand somatotopic map generated using fMRI [173], serving as a
ground truth.

This thesis shows that FEMFuns is a useful tool in modeling and in-
terpreting ECoG signals and can be used for calculated electrode design
and efficient ECoG recordings. Furthermore, it can be applied to other
research questions as well. We have recently started the IntoTheBrain
project that aims to make this tool easily available for researchers whose
research involves recording bio-electric signals.
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[206] Jonathan R Wolpaw, José del R Millán, and Nick F Ramsey. Brain-
computer interfaces: Definitions and principles. In Handbook of Clin-
ical Neurology, volume 168, pages 15–23. Elsevier, 2020.

[207] Carsten Wolters and Jan C de Munck. Volume conduction. Schol-
arpedia, 2(3):1738, 2007.

[208] YiZi Xiao, Edgar Peña, and Matthew D Johnson. Theoretical opti-
mization of stimulation strategies for a directionally segmented deep
brain stimulation electrode array. IEEE Transactions on Biomedical
Engineering, 63(2):359–371, 2015.

[209] Günther Zeck, Florian Jetter, Lakshmi Channappa, Gabriel
Bertotti, and Roland Thewes. Electrical imaging: investigating cellu-
lar function at high resolution. Advanced Biosystems, 1(11):1700107,
2017.

[210] Yingchun Zhang, Wim van Drongelen, Michael Kohrman, and Bin
He. Three-dimensional brain current source reconstruction from
intra-cranial ECoG recordings. NeuroImage, 42(2):683–695, 2008.

[211] Julius Zimmermann and Ursula van Rienen. Ambiguity in the in-
terpretation of the low-frequency dielectric properties of biological
tissues. Bioelectrochemistry, 140:107773, 2021.



111

6 Research Data Management

This thesis research has been carried out under the institute research data
management policy of the Donders Instutute for Brain, Cognition and
Behavior (as of 25.2.2020, https://www.ru.nl/publish/library/397/
rdmpolicy_di_20190110.pdf).

This research followed the applicable laws and ethical guidelines. Re-
search Data Management was performed according to the FAIR principles.
The information below details how this was achieved.

Ethical Approval

The thesis is based on simulation results and realistic data was taken from
open-source libraries and previously collected anatomical patient data at
University Medical Center Utrecht. The latter data-set contained personal
data as defined in the General Data Protection Regulation (EU) 2016/679.
The ECoG data collected at the University Medical Center Utrecht were
acquired following signing informed consent in accordance with the Dutch
Medical Research Act and the Declaration of Helsinki (2016). The indi-
vidual subjects were not identifiable in the data shared with publications.
Further, subjects were informed about and gave written consent for the
future use of their anonymized data for publication and sharing with other
researchers and the public prior to starting the data collection.

Findability and Accessibility

The table below details where the data and research documentation for each chapter
can be found on the Donders Repository (DR) and/or Github. All data archived as a
Data Sharing Collection remain available for at least 10 years after termination of the
studies.

Chapter Data Sharing Collection

2, 3, 4 https://doi.org/10.34973/yfh0-6c23 / https://github.com/

meronvermaas/FEMfuns

Interoperability & Reusability

All data collections have been structured in a standardized way that is described in
accompanying text files. The documentation includes specifications on:

a) Data pre-processing

https://www.ru.nl/publish/library/397/rdmpolicy_di_20190110.pdf
https://www.ru.nl/publish/library/397/rdmpolicy_di_20190110.pdf
https://doi.org/10.34973/yfh0-6c23
https://github.com/meronvermaas/FEMfuns
https://github.com/meronvermaas/FEMfuns
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b) Saved results
c) Accompanying codes for reproducing of the results
d) Source code for full pipeline
e) Conda environment to ensure correct version numbers for the software used
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