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0 Introduction
Epilepsy a�ects about 6 million people worldwide [BSea09]. Beyond the
diagnosis, more than five percent of people across the globe experience an
epileptic seizure once in their life [BSea09, p.3]. An electroencephalography
(EEG) can identify patterns in the brain of patients that accrue typical in
epilepsy. These patterns are caused by activity in the a�ected areas of the
brain and thus provide an indication of the presence of the disease.

The standard procedure in diagnostics involves an EEG, which results
in a high number of such recordings. The analysis of the collected data is
still a costly time investment. An interruption of the underlying background
activity in the brain has to be detected, which is also of minimal duration.
In addition to the time required, the expertise of the physician is essential for
identifying these patterns [KABea17]. Even for experienced sta� in epilepsy
diagnosis, the agreement on the interpretation between di�erent specialists
is comparatively low [KABea17]. Though there exist approaches to define an
epileptic pattern, individual subjective thresholds seem to be more decisive
than the morphological appearance [JHea19].

Machine learning algorithms are already achieving strong results in classi-
fication studies and provide new methods to analyse and predict data. They
improve image interpretation methods and have been used in various medical
applications.

Therefore, the implementation of these algorithms in the setting of in-
terictal epileptiform discharges (IED) detection seems to be a promising ap-
proach. A classification algorithm in the evaluation of EEG recordings would
provide a major preliminary work for the physician. In addition to the time
savings, a good basis for classification could be established in order to obtain
a standardised evaluation scheme.

The aim of this thesis is to implement a machine learning algorithm that
performs a binary classification of IEDs and no IEDs in an EEG recording.
For this purpose, it will be tested on simulated IED data and finally operate
on patient data. In contrast to the literature [LTCvPea19], it will also be
investigated whether a less deep network can be useful for this problem as a
decision maker. In this way, the time required to train such an algorithm is
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reduced.

In order to create an machine learning algorithm of an EEG, various
principles are first discussed. The underlying medical condition and the dif-
ficulty of recognising typical patterns of epilepsy are explained in chapter
one. Chapter two deals with the di�erent functional principles of an EEG,
dives deep into the pre-processing steps of recorded data and defines the
emergence of conspicuous patterns. Subsequently, the theoretical basics in
form of mathematical foundations of machine learning algorithms will be
explained in chapter three. The mechanisms of a Convolutional Neural Net-
work (CNN) for classifying images are then described in chapter four, so that
an own network can be set up. The collected and simulated data is described
in chapter five. Chapter six discusses the constructed network which is being
applied to the aforementioned data. Finally, a presentation of results and an
evaluation concern chapters seven and eight.
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1 Fundamentals
The basis of human action, feeling and thinking is built on our nervous sys-
tem. This can be broadly visualised as a complex network of connections
that transmit information through electrical impulses. The study of the hu-
man brain is a necessary prerequisite for understanding the basic mechanisms
of the EEG and the diagnosis of epilepsy. These foundations will be estab-
lished by a brief insight into neuroanatomy in the following chapter. For this
purpose, sources [Tre22, p.1-20] and [ED11, p.1-9] were used.

1.1 Basics of neuroanatomy
1.1.1 Structure and function of neurons
The nervous system is fundamentally divided into peripheral and central ner-
vous system (CNS). The latter is subdivided into the brain and the spinal
cord. The nervous system is made up of nerve tissue, which, in addition to
glial cells, consists of nerve cells. Neurons form the fundamental element of
these cells.

The main components of a neuron are the cell body (soma), the dendrites
and the axon. The soma is composed of an inner cell nucleus and is linked to
tree-like branched dendrites. These extensions are responsible for receiving
impulses which are delivered from the soma through the axon. The junction
between axon and soma is called axon hillock. It functions as a control centre
for incoming impulses and can release an action potential. An action poten-
tial refers to the short-term collapse of the membrane potential. A neuron
has a negative intracellular membrane potential compared to the extracellu-
lar space. Such an action potential is initiated if the sum of the incoming
signals is above a certain threshold value. This results in depolarisation and
subsequently a rapid repolarisation.
Nodular branches are found at the other end of the axon and are known as
terminal buttons. Together with the cell membrane of the subsequent cell
and the gap in between, they form a synapse. The transmission of impulses
from one neuron to another takes place at the synapses.
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Figure 1 Components of a neuron [WKea10, p.3]

1.1.2 Transmission of excitation
A transmitter is released at the synapses during excitation. This transmitter
causes the subsequent nerve cell to open or close its ion channels. This
synaptically induced membrane potential change can have an excitatory or
inhibitory e�ect. More precisely, a transmitter can lead to a negativisation of
the extracellular space in which a sodium or calcium ion influx is generated
or the potassium outflow is reduced. This leads to depolarisation of the
dendrites and thus to a decrease in the positive charge on the surface of
the cell. In addition, an influx of negatively charged chloride ions or an
outflow of positively charged potassium ions can also occur. It is known as
the positivation of the extracellular space.
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1.2 Epilepsy Diagnosis
Having established some basics of neuroanatomy, a brief introduction to the
clinical picture of epilepsy will follow. Epilepsy is a disease of the brain.
It a�ects approximately 60 million people worldwide, making it the second
most common neurological disease in the world. In order to be diagnosed
with epilepsy, the a�ected person must have experienced at least two seizures
within interval of at least 24 hours. More information on this topic can be
found in the sources [MG14, p.3-5] and [ED11, Chapter 12] used for the next
sub-chapters. The last two sub-sections are based on [BSea09, p. 29-36] and
[BSea09, p. 38-41; 100-109].

1.2.1 Seizure
Epileptic activity, pathophysiologically, occurs due to neuronal hyperexcitabil-
ity or hypersynchrony. During hyperexcitability, the neuronal response to a
stimulus is heightened. Subsequently, several action potentials are fired by
the cell in response to a synaptic input. Hypersynchrony works di�erently,
with increased local neuronal firing in the cortex. In this case, the cells fire
in close temporal and spatial proximity. These processes can be summarised
under the name epileptogenesis, on the basis of which an epileptic seizure
can occur. This leads to a temporary interruption of brain functions. The
diagnostic picture of such a seizure depends on the exact location of the firing
cortical neurons and their spreading pattern. For example, motor functions
or perception may be disturbed, while a combination of several disturbances
is also possible. More than five precent of people worldwide experience a
seizure once in their life.

1.2.2 Epilepsy
The recurrent and unprovoked occurrence of such seizures is described as
epilepsy. The origin of this diagnosis may be a chronic pathological condi-
tion or a genetic susceptibility. Seizures are grouped according to the site of
onset and pattern of spread, and are therefore referred to as focal or gener-
alised epilepsy. A focal (or partial) seizure has its origin in a localised region
of the brain.In this case, a spreading pattern is found locally or extended
to the whole brain, which is defined as secondary generalization. During
the seizure, impairments related to functions in this area can be observed.
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These disturbances have the potential to be severe enough to cause uncon-
sciousness or unresponsiveness, which is known as a complex seizure type. If
these functions remain undisturbed, the seizure is classified as simple. In a
generalised seizure, the discharges start in both hemispheres simultaneously.
The a�ected region spreads to the reciporal thalamocortical connections. As
many parts are involved, the clinical picture is broad and can range from
brief loss of responsiveness to severe convulsions and loss of consciousness.
The seizure types and a number of other characteristics such as age of onset,
precipitating factors, etc. are summarised under the term epilepsy syndrome.
Seizures are the main feature of this syndrome.

Figure 2 Illustration of the spreading pattern in the brain [MG14, p.4].

1.2.3 Diagnosis
A diagnostic identification of epilepsy requires a number of steps. There are
numerous other diseases that are similar to an epileptic seizure. In order to
avoid unnecessary and ine�ective therapy, a clear classification of the seizure
should be performed and other clinical pictures should be excluded where
possible. Di�culties can also arise if a patient su�ers from both non-epileptic
seizures and epileptic seizures. Di�erentiation of the seizures is particularly
important for targeted therapy. In addition, a distinction should be made
between provoked and unprovoked seizures. Approximately 50 percent of
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all seizures are caused by acute sympthomatics of the CNS, such as those
resulting from an acute infection or trauma. In order to be able to diagnose
an epileptic seizure clearly, a number of parameters should be observed. An
important factor is the detailed description of the event by the patient and
also by witnesses. This description can already provide initial information
about the a�ected brain regions. In this context, a detailed examination of
the patient’s medical, social and drug history is necessary. Further ques-
tions about the potential cause of the seizure may also be addressed. Blood
tests and an electrocardiogram (ECG) can provide deeper information about
triggers, such as cardiac arrhythmias. To distinguish between epileptic and
psychogenic seizures, an electroencephalogram (EEG) is used. Using elec-
trodes, it records patients’ brain waves. The recorded EEG of epilepsy pa-
tients shows a typical pattern, which we will be discussed in more detail in
the next chapter. In addition, a magnetoencephalogram (MEG) can be used
to record abnormalities that are not detectable by the EEG. In the event of
a seizure, a video EEG provides information about the neurological aspects
of the disorder and is usually used prior to epilepsy surgery. Finally, neu-
roimaging techniques, such as MRI, are an important tool to characterise
structural changes in the brain. After a range of examinations, it should be
assessed whether the physiological abnormalities and the patient history in
summary meet the criteria of epilepsy, in order to start with the most precise
treatment available.

1.2.4 Treatment
After an extensive diagnosis, the decision regarding the treatment is taken.
The aim is to allow the patient to live a normal life in society as best as pos-
sible while minimising the side e�ects of the treatment. A preliminary choice
is the selection of an antiepileptic drug (AED). Monotherapy with an AED
has a about 50% chance of success after the first drug. If this is not success-
ful, a second drug is taken, in which case the chances of success increase by
9 percent. After this, the usage of an additional AED will not significantly
increase the probability of being seizure free. In addition, fewer side e�ects
can be expected through monotherapy than with a combination of several
drugs. For this reason, a significant focus should be placed on the choice of
the first AED and this should be determined in dependence on seizure type
and epileptic symptoms. Other factors in the choice include patient-specific
characteristics such as age and gender. A successful choice of medication is
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intended to be lifelong. For this reason, the impact of side e�ects should also
be given considerable consideration. Patients with drug-resistant seizures
have an increased mortality rate compared to those who successfully take
a medication, and impairments may increase over time [BSea09, p.100-109].
After unsuccessful medication, a possible resection of the epilepsy provoking
area in the brain is considered. Prior to surgery, the patient undergoes a
detailed examination, including neuroimaging. The e�ects of surgery should
not cause further neurological or cognitive deficits. If these side e�ects are
expected to occur with a high probability, a number of other methods will
be considered. One option is vagus nerve stimulation (VNS), in which a
generator is implanted in the patient’s left chest. The generator then sends
impulses to the vagus nerve. A reduction in the severity and frequency of
seizures can be expected. Another possible treatment is the deep brain stim-
ulation. Electrical signals are emitted into the brain using this method. So
far, only short-term relief has been observed.

Figure 3 Illustration of the steps following after an epilepsy diagnosis [BSea09,
p.40].
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2 EEG
The following chapter is based on book [ED11]. The introduction and the first
section rely on the first two chapters of the book. For the ’Pre-Processing’
section, chapters two and three of the book are used. Finally, the description
of epilepsy follows chapter 12 and the paper [KABea17].

An electroencephalography (EEG) can be used to record, amplify and
document electrical potentials of the brain. In medicine and research, EEG
is used in many ways due to its cost-e�ectiveness, non-invasiveness and porta-
bility. For example, clinical epilepsy diagnostics use it to detect an epilep-
togenic lesion via subsequent source analysis or to register seizures that are
not recognised by patient self-awareness. For this reason, it provides in-
dispensable information about the disease pattern of the patient. In order
to understand the exact application of an EEG in epilepsy research, it is
necessary to understand the basic mechanisms of the device.

2.1 Functionality and structure
The basic principle of EEG is to measure the electrical potential fields gen-
erated in the brain on the surface of the head using electrodes and to display
them graphically along a time axis. The underlying neuronal structures of
this principle have already been explained in more detail in chapter 1 and
will now be applied to the EEG.
The mechanisms described in the mentioned chapter lead to a synaptically
induced membrane potential change, which generates a current flow that is
measured by the EEG. The recorded electrical activity depends on the type
of synaptic potentials and the localization as well as position of the synapses
in the cortex. One can distinguish between current sink and source. A sink
describes the place where a relative loss of positive charges is found in the ex-
tracellular space. The compensation of these charge changes in neighbouring
areas occurs through volume flows in the cells. A source is then defined as
the location of the positive compensation of the charge change. Furthermore,
the relative position of the cells to each other plays an essential role in the
recording of the measurement. If there is a parallel arrangement of the neu-
rons, the EEG sums up the recorded fields, known as open field. The opposite
is true for the closed field. There, the neurons are arranged randomly, which
includes a symmetrical non-parallel arrangement. A symmetrical alignment
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can lead to cancellation of the potentials in the EEG, so that it is not regis-
tered (as illustrated in figure 4). A further distinction is the relative position
in the cortex. When the neurons are in a perpendicular orientation with
respect to the brain surface, a negative field on the head surface is registered
by the EEG, known as radial dipole. If the neurons are aligned parallel to
the brain surface, the source is located between the potential maxima. In
this case, a so-called tangential dipole is given.

Figure 4 Example of an open (a.) and closed (b.) field [ED11, p.4].

EEG measures the fields described above. To better understand the exact
signal processing, a brief look at the individual components of an EEG needs
to be given. The basic components of an EGG are the electrodes and an
amplifier.
Typically there are 21 electrodes, whereas in research up to 256 are used.
They are evenly distributed on the surface of the head, usually according
to the 10-20 system, and named depending on their position on the sur-
face of the head. To better register the electrical activity, an electrolyte-
containing paste or liquid is applied between the metal electrodes and the
scalp. Through these electrodes EEG typical amplitudes of only 20-50 µV

can be recorded. However, the combination of metal and electrolyte causes
the e�ect of a battery, so that a direct current (DC) voltage is generated.
This overlaps with the actual measured signal. Furthermore, distortions of
the measurement by external sources, such as a power supply, cannot be suf-
ficiently shielded, so that, for example, a 50 Hz alternating voltage influences
the signal. In order to counteract this, the electrodes are connected to a
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di�erential amplifier. This amplifier is responsible for increasing the small
amplitudes while simultaneously suppressing almost identical interfering sig-
nals. The measured signals are usually displayed on a computer monitor and
processed afterwards.

2.2 Pre-processing
During the measurement, multiple artefacts may occur. Generally, a dis-
tinction is made between technical and biological artefacts. Both categories
overlay the actual measured signal, making the interpretation of the EEG
more di�cult. However, a number of features allow artefacts to be recog-
nized. For example, if an electrode does not lie completely on the scalp,
the technical interference can be distinguished from the normal EEG signal
because it is only visible on one channel. Eye movements (the eye forms an
electrical dipole) are continuously visible on the EEG, but can be classified
as such by topographical evaluation. If artefacts have become recognisable as
such, the next step is usually to remove them through various pre-processing
steps. Classic EEG devices still have built-in filters and montage methods,
unlike newer products. New devices thus o�er the advantage of not having
the measured signal pre-determined and being able to use di�erent filters only
in the digital transformation. To transform the signal to a digital medium,
an analogue-to-digital-converter is needed. The limitation to accurately rep-
resent the signal arises from the predetermined number of grid points for
recording the amplitudes. Measured signal waveforms are transferred to a
grid at discrete points in time so that recorded amplitudes are transferred to
the nearest numerical values available on the grid. The amount of amplitude
sampling per second is called the sampling rate and given in Hz. Depending
on this size, the storage space required for the measured file increases. There-
fore, in the course of processing, it may sometimes make sense to reduce the
size of the file by downsampling it. Using a digitally applied filter, a weighted
averaging of successive samples takes place, which are then multiplied by a
factor, depending on the choice of filter. High-pass and low-pass filters allow
a reduction of artefacts if they are used purposefully. This involves attenuat-
ing the measured signal above (low-pass filter) or below a certain frequency,
relative to the signal component of a fixed frequency. The aforementioned
interference in the signal caused by a 50 Hz AC voltage can be suppressed
by a notch filter. However, when used incorrectly, filters cancel clinically
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significant signal. For example, a high-frequency filter between 10-15 Hz can
cause epilsietypic patterns to be mistaken for eye movements [ED11, p.73].

Another option for pre-processing an EEG signal is to choose a so called
montage for the electrodes.The purpose of pre-processing is to separate clin-
ical signals from technical or biological artefacts and to classify the field po-
tential generated in the patient’s brain. Montages describe the representation
of voltage di�erences between electrodes and allow certain clinical patterns to
be highlighted accurately. Generally, a distinction is made between referen-
tial and bipolar montages. If a fixed electrode is used as a common reference
for all electrodes, the potential field itself is mapped. That is described as
reference montage. For the actual representation of the potential field, the
selected reference electrode itself should not lie in the active brain area. The
bipolar montage describes the visualisation of the potential di�erences of
neighbouring electrodes (see figure 6). This leads to the representation of
the gradient of the potential field. The resulting subtraction of the signal
of two electrodes is defined as channel. Classical montages can be modified
greatly and o�er advantages and disadvantages in reading the EEG signal
depending on the diagnostic background of the patient.

Figure 5 Representation of the bipolar longitudinal montage. When processing
an EEG in digitally, it is often abbreviated as a ’longitudinal’ montage. There are
di�erent variations of this reference method [ED11, p.23].
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As mentioned above, the EEG is used in various situations in everyday clin-
ical practice. In this thesis, the application of EEG in epilepsy diagnostics
will be considered.

2.3 Epilepsy
EEG can be used to evaluate the diagnosis of epilepsy and is one of the most
important methods. A number of epilepsy-typical waveforms may appear in
patients with epilepsy, but they are not a necessary condition for diagnosis.
Nevertheless, these temporal appearance potentials correlate approximately
90% with the presence of focal temporal epilepsy. Conversely, the patterns
are only typical for epilepsy but not specific. Meaning they can also occur
in healthy patients. Overinterpretation of EEG is among the most common
reasons of wrong diagnosis. Thus, between 25 and 30% of drug resistant
patients presented in epilepsy centers actually do not su�er from epilepsy.
This leads to serious consequences such as the occurrence of medication side
e�ects.
For successfully diagnosed patients, however, the EEG can be extremely help-
ful, such as for preoperative source analysis. In addition, the number of inter-
ictal potentials is a measure for assessing the e�ectiveness of an antiepileptic
drug. The fewer of these potentials are found in the EEG, the less likely a
seizure is to occur. Patients who are dependent on drugs that cause severe
side e�ects have thereby the possibility to at least lower the dosage.

2.3.1 Epilepsy typical potentials
The EEG can record interictal and ictal typical patterns. Ictal epilepsy typ-
ical activities may be di�cult to read due to abrupt onset of tonic postural
seizures, as they are thus overlapped. Also, they may be located in spe-
cific frontal brain regions, so that electrodes can not record them. Interictal
epilepsy potentials are measurable much more frequently and can be used
significantly for the above-mentioned diagnostic procedures.
Visual analysis of the EEG is still considered the standard in order to recog-
nise patterns . Yet the classification of patterns is not unambiguous. There
are no quantifiable characteristics, so that experience of the rater plays an
essential role in the assessment of an EEG. Nevertheless, there are several
attempts to define qualitative criteria for recognition. In [ED11][p.125], inter-
ictal epilepsy potentials are described as combinations of spikes and waves. A
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spike is considered to have the following properties: It has a between 20 and
70 milliseconds long sharp asymmetric morphology and is bi- or triphasic.
Further, the amplitude is variable, but the main phase is usually negative.
Another important factor is the interruption of the basic activity caused by
the pattern. A sharp wave also satisfies the criteria of a spike, but lasts for ap-
prox. between 70 and 200 milliseconds. Combinations of these two patterns
called spike-wave-complexes occur with di�erent frequencies, such as the typ-
ical 3-Hz-spike-wave-complex, where the wave decays slowly. Polyspikes have
more than three phases and generate a polyspike-wave-complex when com-
bined with a slow wave.
The occurrence of these properties in combination with a recognisable electric
field distribution starting from a cerebral generator defines an IED accord-
ing to [ED11, p.125]. This definition is consistent with the International
Federation operational definition [KABea17].

Figure 6 Illustration of a sharp spike-wave complex. Recorded from a patient with
frontal epilepsy [ED11, p.133].

2.3.2 Quality of visual IED detection
Based on the aforementioned problem of interpreting an EEG, this can lead
to di�erently classified patterns depending on the physician. In a study from
2020, seven raters were asked to mark IEDs in EEGs of 100 patients with
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and without epilepsy. Their markings were finally compared with those of
two experts. The IFCN criteria were applied in sensor space according to
figure 7. Considering all five criteria visible in the EEG, the raters achieved
a specificity of 95.65% and sensitivity of 81.48%. The accuracy was 88%.
The interrater agreement was moderate when classifying IED using all five
criteria. The di�culty of pattern recognition lies not only in recognising the
regular appearance of a spike in the irregular basic activity, but also in not
confusing it with other patterns. Some activities have an epileptic appear-
ance but are not associated with epilepsy, such as wicket spikes [ED11, p.100].

Figure 7 [KABea17]
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3 Machine learning
The previous chapters have given a medical introduction to epilepsy diagno-
sis. In the following, the mathematical foundations for the development of a
machine learning algorithm will presented.
If not stated otherwise, the lecture [JKea21] was used as source. The two
introductory chapters refer to chapter 2.1 of the lecture. The definition of the
loss function and the gradient descent follows 1.1. and 4.1 course chapter.

3.1 Vectorized description
In this section we want to give a general introduction to the mathematical
point of view of deep learning. Given m, n œ N we define a function A :
R

n
æ R

m by A(x) = Wx + b with x œ R
n
, W = (wij) œ R

n◊m and b œ R
m.

3.1 Definition (a�ne function) Given Ë, m, n œ N, s œ N0, � = (�1, ..., �Ë) œ

R
Ë and Ë Ø s + mn + m we can define a function A

�,s

m,n
: Rn

æ R
m by

A
�,s

m,n
(x) =

Q

ccccccca

�s+1 �s+2 · · · �s+n

�s+n+1 �s+n+2 · · · �s+2n

�s+2n+1 �s+2n+2 · · · �s+3n

... ... . . . ...
�s+(m≠1)n+1 �s+(m≠1)n+2 · · · �s+mn

R

dddddddb

Q

ccccccca

x1
x2
x3
...

xn

R

dddddddb

+

Q

ccccccca

�s+mn+1
�s+mn+2
�s+mn+3

...
�s+mn+m

R

dddddddb

=

Q

ccccccca

y1
y2
y3
...

ym

R

dddddddb

Hence we get
yj =

nÿ

i=1
xi�s+(m≠1)n+i + �s+mn+j

for j = 1, · · · , m. We call A an a�ne function associated to (�, s).

3.2 Example Let Ë = 6, m = 1, n = 2, s = 2 and � = (1, 2, ≠3, 4, 2, 0) be
given. Than it holds that 6 Ø 2+2+2 and we have a function A

(1,2,≠3,4,2,0),2
1,2 :
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R
2

æ R as in 3.1 with

A
(1,2,≠3,4,2,0),2
1,2

A
1
2

B

= (≠3, 4)
A

1
2

B

+ 4

= 5 + 4
= 9.

3.3 Definition (Vectorized description of artificial neural networks)
Now let Âk : Rlk æ R

lk be functions with L œ {2, 3, · · · }, k œ {1, 2, · · · , L}

and l0, l1, ..., lL œ N. Furthermore let Ë satisfy

Ë Ø

Lÿ

k=1
lk(lk≠1 + 1)

and � œ R
Ë. Then we call the composition

N
�,l0
Â1,Â2,··· ,ÂL

: Rl0 æ R
lL

x ‘æ (ÂL ¶ A
�,

q
L≠1
k=1 lk(lk≠1+1)

lL,lL≠1 ¶ ÂL≠1 ¶ A
�,

q
L≠2
k=1 lk(lk≠1+1)

lL≠1,lL≠2

· · · ¶ Â2 ¶ A
�,l1(l0+1)
l2,l1 ¶ Â1 ¶ A

�,0
l1,l0)(x) (1)

the realization of the fully connected feedforward artificial neural network as-
sociated to � with L≠1 layers with dimensions (l0, l1, · · · , lL) and activation
functions (Â1, Â2, · · · , ÂL), input dimension l0, output dimension lL and out-
put activation function ÂL.

We will now specify the function defined in the introduction to look at it
in the context of artificial neural networks.

3.4 Definition (Weights and biases of artificial neural networks) Let
L œ {2, 3, · · · }, ‹0, ‹1, · · · , ‹L≠1 œ N0, l0, l1, · · · , ll œ N, � œ R

‹ , Ë as above,
satisfy

‹k =
kÿ

i=1
li(li≠1 + 1),

for all k œ {0, 1, · · · .L ≠ 1}. Then for all k œ {1, 2, · · · , L} we have an a�ne
function

A
�,‹k≠1
lk,lk≠1 : Rlk≠1 æ R

lk

x ‘æ Wkx + bk
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where Wk œ R
lk◊lk≠1 and bk œ R

lk satisfy for all k œ {1, 2, · · · , L} that

Wk =

Q

ccccccca

�‹k≠1+1 �‹k≠1+2 · · · �‹k≠1+lk≠1

�‹k≠1+lk≠1+1 �‹k≠1+lk≠1+2 · · · �‹k≠1+2lk≠1

�‹k≠1+2lk≠1+1 �‹k≠1+2lk≠1+2 · · · �‹k≠1+3lk≠1... ... . . . ...
�‹k≠1+(lk≠1)lk≠1+1 �‹k≠1+(lk≠1)lk≠1+2 · · · �‹k≠1+lklk≠1

R

dddddddb

¸ ˚˙ ˝
weights

and

bk =

Q

ccccccca

�‹k≠1+lklk≠1+1
�‹k≠1+lklk≠1+2
�‹k≠1+lklk≠1+3

...
�‹k≠1+lklk≠1+lk

R

dddddddb

¸ ˚˙ ˝
biases

.

Let Âk : Rlk æ R
lk , k œ {1, 2, · · · , L}, be functions. Then it holds that

N
�,l0
Â1,Â2,··· ,Âl

= ÂL ¶ A
�,‹L≠1
lL,lL≠1 ¶ ÂL≠1 ¶ A

�,‹L≠2
lL≠1,lL≠2 ¶ · · · ¶ Â1A

�,‹0
l1,l0 .

3.2 Activation function
There are many ways to choose an activation function. For an image classi-
fication the ReLU function is appropriate [HH18, p. 22]

3.5 Definition (ReLU) We define the rectified linear unit function as ReLU :
R æ R which satisfies for all x œ R that

ReLU(x) = max{0, x}.

To describe deeper networks, we define the concept of a multidimensional
function and apply it to activation functions:

3.6 Definition (Multidimensional function) Let Â : R æ R be a func-
tion. Then we can define by Md,Â with d œ N the d≠dimensional version of
Â via:

Md,Â : Rd
æ R

d

x ‘æ (Â1(x), Â2(x), · · · , Âd(x)).
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3.7 Example Let d œ N. For Â = ReLU we set ReLUd := MReLU,d the
d≠dimensional ReLU function with ReLUd : Rd

æ R
d.

3.8 Example (An artificel neural network using ReLU) We will now
explain the mechanisms of a neural network in more detail using an example.
In doing so, we will also discuss the motivation behind the development of
the algorithm.
Let I, H œ N, � = (�1, �2, · · · , �HI+2H+I), x = (x1, x2, · · · , xI) œ R

I and
let ReLU be the activation function as in 3.5. We now look at the func-
tion N

�,I

MReLU,H,idR(x). The activation function ReLU acts as a function that
mimics the behaviour of neurons in the human brain. It will fire, if a certain
threshold is reached, i.e. the output of the function is x. Otherwise, it will
remain inactive, i.e. the output is equal to zero. The composition with an
a�ne function provides a weighting of the output of the activation function,
so that we obtain the following equation:

N
�,I

MReLU,H,idR(x) = ((idR) ¶ A
�,HI+H

I,H
¶ MReLU,H ¶ A

�,0
H,I

)(x)
= A

�,HI+H

I,H
(MReLU,H(A�,0

H,I
(x)))

=
Ë Hÿ

k=1
�HI+H+k ReLU

1Ë Iÿ

i=1
xi�(k≠1)I+i

È
+ �HI+k

2È

+�HI+2H+1

=
Ë Hÿ

k=1
�HI+H+k max

Ó
0,

Ë Iÿ

i=1
xi �(k≠1)I+i¸ ˚˙ ˝

weights

È
+ �HI+k¸ ˚˙ ˝

biases

ÔÈ

+�HI+2H+1.

The input is altered by scaling (weighting) and shifting (biasing) the argu-
ment. As a consequence, a single real number is generated by each neuron
in each layer, which is then passed on to the neurons in the next layer. A
simplified representation of the network is shown in figure 8.

The example presented here has only one hidden layer. Deep learning is a
loosely-defined term, it refers to a network with multiple hidden layers.

3.3 Loss function
Let’s have a look at a general setup of a neural network to touch on more
conceptional ideas. Let M œ N be the number of available input-output
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Figure 8 Illustration of a neural network with one input layer, one hidden layer
and one output layer.

data pairs, with input dimension d œ N. The basic idea behind machine
learning is that a yet unknown function E œ C(Rd

,R) exists that matches
the ith input data xi œ R to the corresponding ith output data yi œ R for
i œ {1, 2, · · · , M}, i.e.

yi = E(xi), for all i œ {1, 2, · · · , M}.

With the knowledge of the M input-output pairs (x1, y1) = (x1, E(x1)),
(x2, y2) = (x2, E(x2)), · · · , (xM , yM) = (xM , E(xM)), and without explicit
knowledge of the function E , we want to compute the output E(xM+1) œ R

of the (M + 1)th input data xM+1 œ R
d. To do this, we need to solve

the optimization problem of finding the global minimum of the function
� : C(Rd

,R) æ [0, Œ) which satisfies for all „ œ C(Rd
,R) that

�(„) =
Mÿ

m=1
|„(xm) ≠ ym|

2
. (2)

Note that �(E) = 0, so that the function E is the global minimizer of �. The
function � is called loss function and indicates the quality of the prediction.
We want to take a closer look at an example from book [Mur12, p. 56-57].
This function is also used later in the algorthmus.

3.9 Example (binary cross entropy) We can define the entropy H(p) of
a discrete random variable X with distribution function p and sample space
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� = {1, ..., M} as

H(p) = ≠

Mÿ

m=1
p(X = M)log(p(X = m)).

The cross entropy H(p, q) between two distribution functions p and q is then
defined as

H(p, q) = ≠

Mÿ

m=1
p(ym)log(q(ym)),

where ym is the output data. Then the Kullback-Leibler divergence provides
a measure of the dissimilarity of two distribution functions via the equation

KL(p||q) = ≠H(p) + H(p, q).

With the notation above now assume that we have a binary classification
problem, i.e. y1, · · · , yM œ {0, 1}. Then we can first state that p(ym) = 1

M

for all m œ � and the binary cross entropy function can be defined as follows

H(p, q) = 1
M

Mÿ

m=1
ymlog(q(ym)) + (1 ≠ ym)log(1 ≠ q(ym)).

3.4 Gradient descent
We now want to repeat the already known concept of gradient descent in
order to be able to look at a specific optimizer.
To do this, we recall the above-mentioned optimization problem from chap-
ter 3.3 and thus look for the minima of the equation (2). Because of � œ

C(Rd
,R) it is not amenable for discrete numerical computations, so we as-

sume a spatially discretized version of the problem. More precisely, consider
� restricted to a set of realization functions of neural networks.
Let d, h œ N and l1, l2, · · · , lh such that

d = l1(d + 1) + [
hÿ

k=2
lk(lk≠1 + 1)] + lh + 1.

We define R a subset of the Banach space C(Rd
,R) as the set of realization

functions of the neural network, i.e.

R = {(x ‘æ N
◊,d

Ml1 ,Ml2 ,··· ,Ml
h

,idR(x) œ R)|x, ◊ œ R
d
}
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Here think of N
◊,d

Ml1 ,Ml2 ,··· ,Ml
h

,idR(x) as described in the map (1). Now equa-
tion (2) can be reformulated and we want to approximately compute the
minimal of the function

f : Rd
æ [0, Œ)

◊ ‘æ

Mÿ

m=1

---(N ◊,d

Ml1 ,Ml2 ,··· ,Ml
h

,idR(xm) ≠ ym)
---
2
.

Using the now generated approximation of the Banach space C(Rd
,R), we

can start solving the optimization problem.

3.10 Definition (Gradient descent) [JKea21, p.89 �.] Let d œ N and
› œ R

d. Let (“n)nœN ™ [0, Œ). Let (“n)nœN be a sequence in RØ0, f : Rd
æ R

a function and � = (�t)tœ[0,Œ) : [0, Œ) æ R
d be a continuously di�erentiable

function which satisfies
�t = (Òf)(�t)

for all t œ [0, Œ). Then ◊ = (◊n)nœN0 : N0 æ R
d is called the gradient descent

process for the function f with generalized gradient � and initial value › if
and only if ◊ satisfies for all n œ N that

◊0 = › and ◊n = ◊n≠1 ≠ “n(Òf)(◊n≠1).

In a general setup we call (“n)nœN the step size, but in the context of machine
learning it is also called the learning rate.

Now, as already announced, we will study a specific example of a gra-
dient descent optimizer. We will look at the adaptive moment estimation
optimizer, which is also called the Adam optimizer in the literature. As also
quoted in the lecture [RN21, Lecture-notes 20: Deep Learning: Optimization
Techniques], the Adam optimizer appears to be one of the best choices for
gradient descent optimization in machine learning algorithms.

We want to look at an example of such an optimizer and use source
[JKea21, p.130].

3.11 Definition (The Adam gradient descent optimization method)
Consider again the setup as in Definition 3.10 and in addition let ‘ œ N,
(–n)nœN, (—n)nœN ™ [0, 1) be given. Then we call ◊ = (◊(1)

, ◊
(2)

, · · · , ◊
(d)) :
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N0 æ R
d the Adam gradient descent process for the function f with gener-

alized gradient �, learning rates (“n)nœN, momentum decay factors (–n)nœN,
second moment decay factors (—n)nœN and initial value ›. if and only if there
exists functions m = (m(1)

, m
(2)

, · · · , m
(d)), M = (M(1)

,M
(2)

, · · · ,M
(d)) :

N0 æ R
d such that the function ◊ satisfies for all n œ N, i œ {1, 2, · · · , d}

◊0 = ›, m0 = 0, M0 = 0,

mn = –nmn≠1 + (1 ≠ –n) �(◊n≠1),
M

(i)
n

= —nM
(i)
n≠1 + (1 ≠ —n) |�i(◊n≠1)|2,

and ◊
(i)
n

= ◊
(i)
n≠1 ≠ yn

5
‘ +

5
M

(i)
n

1 ≠
r

n

l=1 —l

6 1
2
6

≠15
m

(i)
n

1 ≠
r

n

l=1 –l

6
.
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4 Convolutional neural network
In this chapter we will look at the architecture of a convolutional neuronal
network (CNN), based on [AH17, Chapter 3]. A CNN can consist of several
layers that filter the input by applying di�erent functions. Since the filters
are only applied repetitively to subsets of the input, the weight matrix is
extremely sparse compared to a standard neural network. A CNN is inspired
by the human visual cortex, hence the entries in the model correspond ma-
trix are called neurons. In the following chapter, we will always assume a
grayscale image with width W œ N and height H œ N.

4.1 Convolutional layer
CNNs are mostly applied to images. So consider as input a grayscale image,
then it has W · H = K œ N pixel. We assume that there are N neurons in
the first hidden layer. The neurons can be rearrange into l blocks of M1 ◊M2
matrices, such that M1 ·M2 · l = N and M1, M2, l œ N. Considering that each
pixel in the image is correlate with its neighbors, than with pixels that are far
a way, we can connect each neuron of one block to an R1 ◊R2 pixel region in
the image. This matrix is called the receptive field of the neuron and implies
that neurons in one block cover all the pixel of the image. Now we choose a
weight w

i

a,b
with i œ {1, 2, · · · , l}, a œ {1, 2, · · · R1}, b œ {1, 2, · · · R2} for each

block, so that all neurons in one block share the same weight.

If we define a neuron by its position in the M1 ◊ M2 matrix, i.e. denoted
by (p, q) and a pixel by its position in the R1 ◊ R2 matrix, we get a function
f

l(p, q), that compute the output of the l-th matrix. Specifically, we define
a function

f
l(p, q) = (M)

1 R1≠1ÿ

i=0

R2≠1ÿ

j=0
im(p + i, q + j)wl

i,j

2
.

Here M is a activation function and im is a function that refers to the pixel
(p + i, q + j) of the image. The function f

l describes a convolution which
is denoted by ú in the literature. A convolution layer consists of l-many
M1 ◊ M2 filters which are convolved with the image. The output of the
layer results in l images on which the activation function M is applied and
is called feature map. If the image is multi-coloured, a third dimension is
added so that initially a W ◊ H ◊ C matrix is considered. Here, the variable
C represents the number of channels.
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Figure 9 [RN21, Chapter 19] Visualization of weight sharing in the feature map.

4.2 Filter
4.1 Definition (Filter) Let X œ R

W ◊H be an image. Then the convolution
of the image with a filter f œ R

P ◊Q is given by

(X ú f)(m, n) =
P ≠1ÿ

i=0

Q≠1ÿ

j=0
X(sm + i, sn + j)f(i, j), (3)

with sm œ {0, 1, · · · , H ≠ 1}, sn œ {0, 1, · · · , W ≠ 1} and s œ N. We refer
to f œ R

P ◊Q as kernel and s denote the stride of the layer. The variable
s, P, Q œ N has to be choosen, such that W ≠P

s
+ 1 ◊

H≠Q

s
+ 1 œ N. The

resulting ouput matrix lies in R

1
W ≠P

s
+1

2
◊

1
H≠Q

s
+1

2

.

4.2 Notation (Pooling) Pooling, also called downsampling, is the process
of dividing the image X œ R

W ◊H in a d ◊ d, d œ N region every s œ N pixels.
The application of a function g on the region leads to just one entry in the
feature map of the respective region. The parameter s of the pooling layer is
denoted as stride and d ◊ d refers to the kernel. If s Æ d holds, the pooling
regions overlap.

Overall, the use of a pooling layer leads to a reduction of the spatial
dimension of the feature maps without any significant loss of information.
By applying a function g to the regions in the image, information from the
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Figure 10 [JRea21][Chapter 9] Example of di�erent strides s in a layer.

neighbouring pixels is included. The choice of the function g specifies the
pooling layer.

4.3 Example

1. If g = max
iœ{0,1,··· ,d≠1}

xi, then we speak of max pooling. This type of pooling
is often used in the literature and leads to good results [AH17][p.97].

2. Choosing g = 1
d

q
d≠1
i=0 xi leads to average pooling.

4.4 Notation (Zero-padding) Padding describes the extension of the im-
age matrix X(p,q) œ R

W ◊H by k zero rows and columns. More precisely let
(p, q) denote the position of a pixel, then

padding(X(p,q)) =

Y
__]

__[

0 , for p œ {0, 1, · · · , k} fi {W + 1, W + 2, · · · , W + k} or
q œ {0, 1, · · · , k} fi {H + 1, H + 2, · · · , H + k}

im(p, q) , otherwise.
.

Padding is used to keep the size of the image constant after applying filters
[AH17][p.140].

Now that all the important elements for creating a CNN are defined,
they need to be combined. The source [AH17][Chapter 3.3, Chapter 3.5.1]
was used as a reference for the next chapter.
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Figure 11 [JRea21][Chapter 9] Visualization of max and average pooling in one
layer.

4.3 Network architecture
There are many options for building a CNN and there exists no golden rule
for designing one. Usually, the design of the network starts with a first
architecture and afterwards adjusting the parameters.Through literature re-
search, one can discover which architectures already have been successful for
the same type of input data. Furthermore, there are already many available
network architectures that are widely used, for example LeNet or VGG.
As a rule of thumb, a CNN consists of several layers, with the activation
function placed before the pooling layer. Furthermore, it ends with a fully
connected layer in order to perform a classification. When choosing the pa-
rameters, it should be ensured that the feature maps passed have suitable
dimensions for the next layer.

Performance parameters are used to classify such networks. The following
introduction to the topic is based on [Tra19, chapter 3.2.].
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Figure 12 [RN21][Chapter 19] LeNet: Example of a CNN architecture.

4.4 Performance parameter
For binary classification problems, the quality of the network is easily mea-
sured by the output of the functions accuracy, specificity and sensitivity.
To calculate these functions, the true positive (TP ), true negative (TN),
false positive (FP ) and false negative (FN) values must be computed after
the network has been created. With the scikit-learn library [Sl] the above
parameter can be visualized by a confusion matrix.

import sklearn
import seaborn
#Predicting the output values
y_pred = model.predict(x_test)
y_test_pred = np.argmax(y_pred, axis=1)
#Calculating the entries for the confusion matrix
Matrix_prediction = sklearn.metrics.confusion_matrix(y_test, y_test_pred)
#Visualize matrix
cf_matrix= seaborn.heatmap(Matrix_prediction, annot=True, cmap=’Blues’)
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cf_matrix.set_title(’Confusion Matrix with labels\n\n’)
cf_matrix.set_xlabel(’\nPredicted Values’)
cf_matrix.set_ylabel(’Actual Values’)
cf_matrix.xaxis.set_ticklabels([’False’,’True’])
cf_matrix.yaxis.set_ticklabels([’False’,’True’])

plt.show()

Figure 13 Confusion matrix implementd with the above code

4.5 Definition (Accuracy) The accuracy is a function that outputs the
percentage of correct classification:

accuracy = TP + TN

TP + TN + FP + FN

4.6 Definition (Sensitivity) The sensitivity function measures the per-
centage of correctly positive predictions compared to all positive predictions:

sensitivity = TP

TP + FN
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4.7 Definition (Specificity) The specificity function measures as a coun-
terpart of the sensitivity the percentage of correctly negative predictions
compared to all negative predictions:

specificity = TN

TN + FP
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5 Collected Dataset
In this chapter, the used datasets are presented. The first section explains
how IEDs, or short ’spikes’, were simulated using the software Curry [Cur]
and MATLAB [MAT]. The following section deals with data collected from
a patient at the Institute of Biomagnetism and Biosignalanalysis in Münster.
Details of the studies can be found in the used source [ARWea19] and [Kai22].
These datasets were pre-processed with the MATLAB based open source
software Brainstorm [Bra].

5.1 Pre-Processing
The pre-processing of the datasets was based on the paper by Lorenco et al.
[?] who were able to successfully detect IEDs with EEG data. In summary,
the following steps were performed:

• Application of a bandpass filter between 0.5 and 30 Hz

• Lowering the sample frequency to 125 Hz

• Applying a longitudinal bipolar montage

• Splitting the data into two second non-overlapping samples

The steps applied correspond to the visualisation techniques used by physi-
cians in daily clinical practice. In [ED11, p. 187], Ebner recommends using
a filter between 1.6 and 30 Hz for the pattern detection of spikes. Further-
more, the use of a longitudinal bipolar montage increases the visibility of
a phase inversion, which also occurs as a classification feature in epileptic
activity [ED11, p. 22]; 2.3.1. Lowering the sample frequency only acts as a
minimization of the data memory.
If not stated otherwise, this process was carried out in Brainstorm and ap-
plied to all recordings.

5.2 Simulated Data
In order to test the algorithm later, simulated IED data were first created.
This provides a theoretical basis in which various noise-signal-ratios can be
tested. The basis of the noise file was still real data which was clinically
inconspicuous.
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5.2.1 Recording
An EEG and an MEG measurement of a subject from a studie at the Institute
for Biomagnetism and Biosignalanalysis were taken simultaneously in 2022.
Afterwards, the MEG was examined by a physician for abnormalities and
assessed as clinically inconspicuous.

5.2.2 Electrodes
Since the measurement was carried out with only 54 electrodes instead of 84,
the default available longitudinal montage was not applicable in Brainstorm
and thus the only standard pre-processing skipped. In order to simulate
natural noise, the electrodes closest to the actual montage were selected.
FIG illustrates the choice of electrodes. The selection of the electrodes and
the associated subtraction was carried out in a separate Matlab file.

5.2.3 Spike simulation
The following steps for the spike simulations were produced with the software
Curry. Curry contains a tool for simulating data, for which an empty file of
variable duration is first created. To match the noise data two seconds were
used. A sample file with 28 electrode positions is included in the standard
Curry version and was used for this simulation. A preferred dipole position
was then selected in the default brain. The selected position is frontal, in the
area of electrode F3, as is often the case for epilepsy patients [ED11, Chapter
12.2.2]. With the dipole position now selected, a spike can be simulated. A
spike in the software is defined by its strength, shape and duration. I used
the average values of each category from chapter 2.3.1 as a guide, so that
in summary the spike wave complex has a strength of 80 µAmm at the
spike peak and 20 µAMm at the wave peak and lasts 125 ms. The starting
time of the spike wave complex was shifted by 402 ms, starting at 0, so
that 6 files were created. For a better overview, the exact parameters can
be read from the file names. The file name is divided into the following
parts Dipole_Startingtime_Duration_x ≠ y ≠ z ≠ Coordinates_Spike ≠

Strength.
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5.2.4 Simulated Spike file
The merging of the simulated spike-wave complex and the noise file were
completed in python. At the beginning, the selected spike file should be
classified by specifying the start time of the spike. Then both files are loaded
and a signal-to-noise ratio (SNR) can be selected. Before combining the two
matrices, five channels of the noise file are permuted, so that the number of
samples increases by a factor of 120. The resulting file is created in a for
loop by adding the spike to each of the 250 noise files. Both matrices can be
multiplied in this step by any factor chosen beforehand. The result of the
addition is stored in the vector epoch_all. In parallel, a classification vector
event_all is created, which receives the entry one for each of these resulting
matrices. The control data consisted of noise data without an additional
spike. These were also stored in the epoch_all vector and received the entry
zero in the event_all vector. In summary, the permutation of the electrode
channels created 30000 samples containing a spike and 30000 without.

Figure 14 Simulated Spike data
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Figure 15 Simulated Spike with a SNR of 1

5.3 Patient history
The patient is a 20-year-old female, who was diagnosed with epilepsy at the
age of 14. Her seizure semiology is described as distributed thinking and the
inability to speak or follow conversations. Motor symptoms or impairment
of awareness are not present. Despite several antiepileptic drug(AED) treat-
ments, the patient did not become seizure free, so presurgical evaluation was
done, including the implantation of four invasive electrodes in the frontal
lobe. During the examinations a FCD(Focal cortical dysplasia) was found
near Broca’s area. Resective epilepsy surgery was not considered and the
electrodes were removed since only typical spread patterns instead of seizure
onset patterns were recorded. After another unsuccessful attempt to allevi-
ate the seizures with medication, the patient was re-examined in 2019. In
order to perform a better source analysis, the medication was temporarily
discontinued in 2019 in consultation with a physician. The EMEG recording
with 1050 IEDs discussed in this paper was then recorded.

5.4 Recording 2019
Simultaneous EEG and MEG measurement was performed for a total of 47
minutes. The measurement is divided into six parts. The first measurement
is only seven minutes long and contains somatosensory evoked potentials
and fields (SEP/SEF). Hence it was omitted. The remaining 40 minutes are

34



equally divided into five sessions of eight minutes each. All measurements had
a sample frequency of 2400 Hz. The EEG system consisted of 80 electrodes
and the MEG system (VMS MedTech Ltd) included of 275 third order axial
gradiometers. The patient remained in a supine position. She was then
instructed to close her eyes and relax during the recording.
After the measurements, an epileptologist marked 1050 IEDs with the highest
negativity in the EEG channel F3.

Figure 16 Preprocessed file with spike annotation

5.4.1 Data multiplication
In order to be able to train the machine learning algorithm, a large number
of data samples is needed. Since only 997 samples were generated after
pre-processing the data, the number was artificially multiplied in this step,
following the example of C. Lourenç et al. [LTCvP21]. The first step was
to apply two additional montages: Since brainstorm contains three di�erent
variants of a longitudinal montage, the other two available were applied:
"Longitudinal 1" and "Longitudinal 2". This led to a threefold multiplication
of the number of samples. In addition, the time window of the samples was
shifted forward by one second on each of the three montages. This lead to
an overall temporal and spatial change of the IED location and to a dataset
that is about six times larger than before.
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Montage # samples # IED samples % IED samples/ samples

Montage_all 6961 4044 58,1%
Longitudinal_1 1991 1183 59,42%
Longitudinal_2 2206 1260 57,12%
Longitudinal_3 2764 1601 57,92%

Figure 17 Same sample as figure 16 with a di�erent montage

5.5 Recording 2021
At the time of measurement in 2021, the patient was 23 years old and par-
ticipated in a double-blind sham-controlled pilot/feasibility clinical trial to
investigate the e�ect of personalized and dCMI-optimized tDCS on IED fre-
quency. The study took place at the University Hospital Münster. An activ
sham method was used to control the e�ect, which included stimulation with
adjacent cathodes and anodes. For the study, the patient was stimulated
twice a day for twenty minutes with a 20 minute break between blocks. A
one-hour EEG was recorded before and after the stimulation. This was car-
ried out on five days within one week. For a better baseline measurement,
a two hour long EEG measurement was taken on the first day before stim-
ulation instead of one hour. After five weeks, the active sham method was
applied. It is structured in the same way as the stimulation week, with
the stimulation blocks being replaced by the activ sham blocks. The tDCS
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IED Marker # IED samples % IED samples/ samples

SPIKE_1 1647 4,32%
SPIKE_2 1258 3,3%
SPIKE_3 5472 14,35%
SPIKE_all 568 1,49%

SPIKE_1 or SPIKE_2 2825 7,41%
SPIKE_3 or SPIKE_2 6466 16,96%
SPIKE_1 or SPIKE_3 5607 14,7%

SPIKE_1 or SPIKE_2 or SPIKE_3 6597 17,3%

used was a model from Starstim developde by neuroelectrio and the headcap
choosen is the neo19 neoprene with 39 predefined positions based on a subset
of 10-20 EEG system. The 19 electrodes of the EEG were etched according
to the template of the cape. The EEG had a sampling frequency of 200 Hz.

5.5.1 IED Marking
Three epileptologists independently performed the marking of IEDs. The
study was completely blinded, i.e. the epileptologists were not able to see
the time of recording the EEG data or similar.

5.6 Pre-processing of the IED Marking
For pre-processing this recordings the same steps were applied as for the 2019
recordings. Since fewer electrodes were available, a two-second epoch now
contains only 12 channels instead of 18. The markers of the three epileptogens
were saved as "SPIKE_1", "SPIKE_2" and "SPIKE_3" respectively as labels
of the file. An additional marker was defined under the name "SPIKE_all"
which is defined as the intersection of the annotations of all three epileptol-
ogists with a tolerance of 8 ms. Splitting the data set in two-second epochs,
a total of 38 132 samples were generated.
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5.7 Marking Agreement
When comparing the label of the two seconds epochs, the following distribu-
tion of the labeled data emerges.

# Spike_1 fl Spike_2 # Spike_1 fl Spike_3 # Spike_2 fl Spike_3
80 1512 264

Table 1

Only 5% of the other IED markings match the results from epileptologists
with annotation ’SPIKE_2’. Evaluators with the marking ’SPIKE_1’ and
’SPIKE_3’, on the other hand, share about 91% of the same labeld IED
epochs in the case of ’SPIKE_1’. This variance may result from inaccurate
marking and other used classification methods.
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6 IED Detection
6.1 Related work
The detection of IEDs in the EEG using neural networks has been studied in
previous works. More recently, in 2021, C. Lourenço et al. [LTCvP21] used
a VGG network (abbreviation for Visual Geometry Group) on a dataset of
166 patients. Time shifting and montage changes have further increased the
number of epochs with IEDs. The network is visualised in Figure 18. An
Adam optimizer with learning rate 2 ú 10≠5 and ReLU as activation function
was used. In addition, the dataset was divided so that 80% belonged to the
training set and 20% to the test set. The results were a specificity of up to
99% and a sensitivity of up to 96%.

In a work two years earlier a specificity of 98% on the training data and
93% on the test data was achieved with the same network.[LTCvPea19] Here,
the author used 112747 two-second epochs as input files. The training and
testing of such a deep network required more than 75 hours.

Figure 18 [LTCvP21] Visualization of a VGG convolutional neural network, that
was used for detecting IED in EEG data
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6.2 Algorithm
The following CNN was built in Python 3.8 using the tensorflow [Ten] and
scikit-learn [Sl] library.
The architecture of the network follows the design already successfully tested
by Lourenço et al.[?]. Since a much larger data set was chosen in the referred
studies in order to train the CNN, which was not available in this study,
viewer layers were used. By reducing the number of layers, only 1052 pa-
rameters were trained, and the time required to train and test the data was
limited to a maximum of 30 minutes. Besides the already mentioned param-
eters in previous chapters, one could also determined a dropout_rate. If the
network can only predict the given data e�ectively, but cannot be adapted
to other data, we speak of overfitting. By using a droput layer, this problem
can be reduced. The principle here is that the dropout sets a certain rate of
arbitrary neurons to zero for the next calculation step [HH18, Chapter 7.2].
The following code sample shows the preselection of the parameters:

filter = 2
kernel_size = 2
pool_size = 2
opt = Adam(lr=0.00002)
dropout_rate = 0.5

if Data_2021_load == 1:
input_shape =(12,250)

else:
input_shape=(18,250)

In another document, the CNN was then defined as a function.

#Function call of the CNN model
import CNN_Function as CNN
model = CNN.Modell(dropout_rate = dropout_rate, input_shape=

input_shape,pool_size = pool_size, filter =filter,
kernel_size =kernel_size)

from tensorflow import keras
from keras.layers import Dense, Flatten, Dropout, Conv1D, MaxPool1D
from keras import Sequential
from keras.optimizers import Adam

def Modell(filter, kernel_size,pool_size,dropout_rate, input_shape):
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model = Sequential()

model.add(ZeroPadding1D(padding=1, input_shape = input_shape))
model.add(Conv1D(filters = filter, kernel_size = kernel_size,

activation = "relu"))
model.add(MaxPool1D(pool_size= pool_size, strides= 1))
model.add(Flatten())
model.add(Dropout(rate = dropout_rate))
model.add(Dense(units = 2, activation="relu"))

opt = Adam(lr=0.00002)
model.compile( loss = ’binary_crossentropy’, optimizer = opt,

metrics = [’accuracy’])

return model

Notice that at the end the network receives a flatten-layer which transforms
the input feature map into a one dimensional array ([tf.b]). Then the last
layer, called dense, operates as a fully connected layer where unit represents
the size of the output ([tf.a]). During the subsequent traning of the model,
only as much tranings data is used per run as the specified batch_size indi-
cates. This process is repeated according to the number of epochs.

model.fit(x_train, y_train, batch_size= batch_size, epochs=epochs,
verbose=0, validation_data=(x_test,y_test),
callbacks=[history])
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7 Results
This chapter presents the results of the CNN introduced in section 6.2. We
distinguish between the three datasets from chapter 5, with the last chapter
explaining the use of multiple datasets. Generally, the number of epochs, the
batch-size and the train-test-ratio were modified. The test size is presented
as a decimal number to represent its proportion to the total sample data.
Additional data-specific changes are described in the respective sub-chapters.

Figure 19 Study design and architecture of the CNN. Here, ConLayer refers to a
convolutional layer.
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7.1 Results Simulation
The data generated in chapter 5.2 is considered to be the input file of the
algorithm to test it under controlled conditions. Selecting the spike start
time fixed as zero, the following results were calculated.
In general, an improvement of the accuracy with a simultaneous increase of
the signal-to-noise ratio can be noted. Otherwise, parameter changes do not
lead to significant reductions. The only outlier arises from the performance
results of the signal-to-noise ratio 100 with an accuracy that has decreased
by approx. 50% in comparison between test size 0.4 and size 0.3.

Signal-Noise-ratio test_size epochs batch_size accuracy sensitivity specificity

100 0.4 250 32 92,99% 87,67% 100%
100 0.3 250 32 42,33% 0% 84,14%
100 0.2 250 32 100% 100% 100%
10 0.4 250 32 99,46% 99,08% 99,84%
10 0.3 250 32 99,44% 99,56% 99,33%
10 0.2 250 32 99,8% 100% 99,64%
1 0.4 250 32 49,87% 100% 0%
1 0.3 250 32 57,09% 71,53% 42,83%
1 0.2 250 32 51,01% 1,88% 98,67%

Signal-Noise-ratio test_size epochs batch_size accuracy sensitivity specificity

100 0.4 250 64 100% 100% 100%
100 0.4 250 32 92,99% 87,67% 100%
10 0.4 250 64 95,31% 97,68% 92,96%
10 0.4 250 32 99,46% 99,08% 99,84%
1 0.4 250 64 50,29% 0,19% 99,77%
1 0.4 250 32 49,87% 100% 0%
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Figure 20 This curve is denoted as ROC curve and is used for evaluation of the
performance of the algorithm. The area below the curve is abbreviated as AUC. If
the AUC is equal to one, the algorithm operates perfectly. Accordingly, the closer
it is to one, the higher is the performance of the CNN. Here, the ROC curve is
calculated with the simulated data and a SNR of one.

7.2 Results Data 2019
The data set from 2019 receive a maximum accuracy of 57% on the tranings
data and 59% on the test data. This can be achieved with a test size of 2088
data, which represents 30% of the total input data.

test_size epochs batch_size train_accuracy test_accuracy

0.4 250 32 58,9% 56,88%
0.3 250 32 58,76% 56,53%
0.2 250 32 41,51% 43,5%

Changing the other parameters does not result in a significant improve-
ment of the accuracy.
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test_size epochs batch_size train_accuracy test_accuracy

0.3 1000 32 58,76% 56,53%
0.3 500 32 58,76% 56,53%
0.3 250 32 58,61% 57,05%

7.3 Results Data 2021
As already mentioned in chapter 5.5, the data set of 2021 contains four mark-
ers. In the first part of this chapter, we look at the results of the CNN, which
results from applying the algorithm using the respective annotations. The
second part analyses the annotations of all physicians, which is, by definition,
a union of all markers.

Keeping all parameters constant except for the test_size, the model
achieves the best accuracy result on the test data for all classes except for
’SPIKE_1’ with a test size of 0.4. Using the annotation ’SPIKE_1’, the test
size 0.3 performs slightly better (95.66%). The table visualises the results of
all markings, with the number of epochs set to 250.

IED Marker test_size train_accuracy test_accuracy

SPIKE_1 0.4 95,61% 95,63%
SPIKE_1 0.3 95,68% 95,66%
SPIKE_1 0.2 95,08% 94,98%
SPIKE_2 0.4 96,79% 96,37%
SPIKE_2 0.3 96,85% 96,36%
SPIKE_2 0.2 96,78% 96,37%
SPIKE_3 0.4 85,31% 85,63%
SPIKE_3 0.3 85,04% 85,17%
SPIKE_3 0.2 85,49% 85,75%
SPIKE_all 0.4 98,48% 98,41%
SPIKE_all 0.3 98,52% 98,37%
SPIKE_all 0.2 98,45% 98,26%

By changing only the number of epochs, the accuracy does not increase
significantly for each marker. The table shows the results of the di�erent
epochs with a test size of 0.3.
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IED Marker epochs train_accuracy test_accuracy

SPIKE_1 1000 95,69% 95,67%
SPIKE_1 500 95,65% 95,66%
SPIKE_1 250 95,68% 95,66%
SPIKE_2 1000 96,85% 96,36%
SPIKE_2 500 96,83% 96,38%
SPIKE_2 250 96,85% 96,36%
SPIKE_3 1000 85,6% 85,77%
SPIKE_3 500 85,36% 85,29%
SPIKE_3 250 85,04% 85,17%
SPIKE_all 1000 98,55% 98,43%
SPIKE_all 500 98,42% 98,24%
SPIKE_all 250 98,52% 98,37%

In the group comparison, the marker ’SPIKE_all’ performs best with a
highest train accuracy of 98.55% and test accuracy of 98.43%.

The sensitivity is very low in all cases, while the specificity is high. If
only the batch_size is varied, a maximum sensitivity of 13.76% is reached
by all classes for ’SPIKE_1’. Using the union of the markers, we get a very
liberal marking with 6597 IED samples. If the test size is varied in this case,
a test accuracy of 82.16% is obtained when dividing the data for testing and
training in half. It can also be observed that all other test sizes achieve
similar results.
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IED Marker test_size epochs batch_size accuracy sensitivity specificity

SPIKE_1 0.4 250 64 80,72% 13,76% 83,72%
SPIKE_1 0.4 250 32 94,42% 2,29% 98,55%
SPIKE_2 0.4 250 64 95,34% 1,29% 98,82%
SPIKE_2 0.4 250 32 96,22% 0,37% 99,76%
SPIKE_3 0.4 250 64 83,04% 4,4% 96,01%
SPIKE_3 0.4 250 32 84,71% 1,62% 98,42%
SPIKE_all 0.4 250 64 97,38% 1,27% 98,89%
SPIKE_all 0.4 250 32 97,95% 0,42% 99,49%

test_size epochs batch_size train_accuracy test_accuracy

0.5 500 64 82,31% 82,16%
0.4 500 64 80,88% 79,96%
0.3 500 64 82,39% 81,86%
0.2 500 64 82,39% 81,86%

With a constant test size of 0.4 and varying number of epochs, the best
train accuracy of 82.69% is achieved with 300 epochs. The maximum test
accuracy (82.88%) is reached with 250 epochs.

test_size epochs batch_size train_accuracy test_accuracy

0.4 10000 64 80,97% 79,83%
0.4 1000 64 82,67% 82,76%
0.4 500 64 80,88% 79,96%
0.4 300 64 82,69% 82,67%
0.4 250 64 81,94% 82,88%
0.4 100 64 75,29% 75,29%

When comparing the batch size of 64 and 32, the latter performs better
in terms of accuracy (82, 55%). Note that with a batch site of 64, a much
higher sensitivity (29, 10%) is achieved.
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test_size epochs batch_size accuracy sensitivity specificity

0.4 250 64 66,06% 29,1% 74%
0.4 250 32 82,55% 0,34% 99,69%

7.4 Results mixed Data
For this section, we will follow the same procedure as for the previous sec-
tion. First, we use only the individual markings of each physician for the
CNN and then their union. Furthermore, the data set from the year 2019
is always added. As the 2019 dataset consists of 6 more channels than the
dataset from 2021, only channels 3 to 14 of the 2019 dataset are selected.
For clarity, the tables only show which IED marker was used.

If the test size changes, there is only a slight di�erence in ther perfo-
mance within the respective markings used for the input file. The best re-
sults are obtained when using the marker ’SPIKE_2’ and a test size of 0.4
(train_accuracy = 90, 63%).

IED Marking test_size epochs batch_size train_accuracy test_accuracy

SPIKE_1 0.4 250 32 89,92% 89,68%
SPIKE_1 0.3 250 32 89,93% 89,67%
SPIKE_2 0.4 250 32 90,63% 90,61%
SPIKE_2 0.3 250 32 90,38% 90,35%
SPIKE_3 0.4 250 32 81,05% 80,61%
SPIKE_3 0.3 250 32 81,46% 80,94%

No significant changes were observed when di�erent batch sizes were used,
except for the marker ’SPIKE_2’, which showed an increase in accuracy when
using a batch size of 32. This is also the highest achieved accuracy (96.38%)
compared to the other markers.
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IED Marking batch_size accuracy sensitivity specificity

SPIKE_1 64 89,08% 71,71% 91,65%
SPIKE_1 32 89,68% 71,40% 92,38%
SPIKE_2 64 88,3% 77,56% 89,76%
SPIKE_2 32 96,38% 77,00% 99,20%
SPIKE_3 64 79,61% 43,78% 89,40%
SPIKE_3 32 80,61% 43,36% 90,79%

Table 2 Performance parameter measured with epochs = 250 and test_size =0.5

Figure 21 Accuracy trend as dependent on the number of epochs for the data set
with the marker ’SPIKE_1’ combined with the data set from 2019
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Figure 22 Accuracy trend as dependent on the number of epochs for the data set
with the marker ’SPIKE_2’ combined with the data set from 2019

Considering all markings, the maximum test accuracy is 76.46% and the
train accuracy 76.88%. The results were reached using 500 epochs and a test
size of 0.5. No significant di�erences in performance were observed when
varying the test size.

test_size epochs batch_size train_accuracy test_accuracy

0.5 500 64 76,88% 76,46%
0.4 500 64 76,44% 75,95%
0.3 500 64 76,25% 75,24%
0.2 500 64 76,41% 75,4%

Modification of the epoch size leads to a decrease in accuracy but an
general increase in sensitivity.
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test_size epochs batch_size accuracy sensitivity specificity

0.4 500 64 75,95% 0,23% 99,73%
0.4 250 64 74,96% 43,01% 85%
0.4 100 64 58,85% 18,49% 71,52%

8 Discussion
The created CNN reached high accuracy for both the simulated data and the
collected data set. Considering only simulated data, the algorithm is able
to achieve an accuracy, sensitivity and specificity of at least 99.44% when
the signal-to-noise ratio (SNR) is greater or equal to ten. It o�ers further
important research approaches, such as evaluating which minimal SNR can
be used for a good performance. Furthermore, it can possibly explain which
ratio of IED and normal samples should be used for a balanced classification.
Thus, this simulated data may serve for performance evaluation of the CNN
and potentially be combined with actual recorded IEDs. This would replace
the method of increasing the data set described in the chapter 5.4.1 and pos-
sibly lead to an improvement in sensitivity and accuracy as described in the
cited paper [LTCvP21].

Using the CNN on the data set from 2019, most of the parameter choices
did not achieve high values. One reason for this may be that training 1052
neurons of the CNN with a maximum of 5569 samples is not su�cient for a
complex IED detection. Nevertheless, an optimal overall accuracy of 82.75%
was achieved in 1000 epochs.

The application of the algorithm to the data from 2021 leads to high speci-
ficity and accuracy. A maximum accuracy of 98.55% was achieved. However,
the sensitivity is very low. A potential factor might be the low number of
IED samples, so that the CNN is not able to learn the appearance of a spike.

The combination of both EEG recordings created a balanced data set. It
contains enough data for training the algorithm and provides enough samples
with an IED. Both potential described problems have been solved and a sta-
ble performance has been observed. Compared to the individual use of the
data, the accuracy only decreased by a maximum of 8%, but the sensitivity
increased by up to 77%. Besides, the performance parameters were in most
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cases not significantly influenced by changes in the CNN parameters.
It is also important to note that learning depends very much on the labelled
input data. The best results are achieved with the ’SPIKE_2’ labels, which
leads to an accuracy di�erence of up to about 15% (Table 2).

Overall, the presented CNN reaches a high accuracy for all data sets.
Using the data from 2019 and from 2021 with the union of the marker, an
accuracy of 76.88% is achieved, this being the lowest value compared to
the other combined data sets, but is still a good achievement. The highest
accuracy value was obtained with the data set from 2021 and applying the in-
dividual markers. It was higher than the accuracy achieved by physicians in
the visual detection of IEDs (accuracy = 88%, [KABea17]). Automatic IED
detection can save a significant amount of time in the everyday clinical rou-
tine. It has been observed that the markings within physicians di�er widely
[KABea17], Table 1, thus, such an algorithm could serve as a conservative
evaluator. In the paper [KABea17], the lack of an automatic spike detection
tool with high specificity is highlighted. Such a tool would allow physicians
to subsequently review the IED samples that are flagged too conservatively
as spikes.Therefore, it would be necessary to analyse only the samples that
are classified as IEDs by the CNN.
Although the CNN is not very deep compared to other models applied in
the context of spike detection, it achieves high performance parameter with
a running time of only 30 minutes. Deeper networks require several hours of
training [LTCvP21].

On of the limitation of the present study is that it is based on a single
patient file. Fortunately, the algorithm was also able to classify simulated
files. This suggests that other patient files can also be classified with the
CNN. Consequently, one of the next steps would be to test the algorithm on
di�erent files.In addition, it could be helpful to analyse whether the CNN
is able to distinguish patterns that look typical of epilepsy, such as wicket
spikes, but do not occur in epilepsy. as a consequence, false diagnoses could
be reduced.
Moreover, fine tuning techniques such as earlystopping by calculating an op-
timal epoch size can manifest the choice of parameters e�ectively. In this way,
the algorithm could be optimised while simultaneously saving computational
time.
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