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Introduction

Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique,
which modifies neural excitability by applying weak currents via two or more electrodes placed
on the scalp (Nitsche and Paulus, 2000). It has been successfully used in the treatment of neu-
rological and neuropsychiatric disorders such as epilepsy (Fregni et al., 2006), Parkinson disease
(Boggio et al., 2006), depression (Boggio et al., 2007) and Alzheimer disease (Ferrucci et al.,
2008). In order to overcome the limitations of conventional bipolar electrode montages, multi-
channel tDCS can be combined with algorithmic-based optimization approaches (Dmochowski
et al., 2011).
To understand the effects of tDCS, it is necessary to consider the functionality of the brain. The
brain mainly consists of neuronal tissue, which can basically be seen as a complex network of
neurons. Neurons are electrically excitable cells that communicate among each other using elec-
trochemical signaling. At each neuron the incoming information is given in form of postsynaptic
potentials (PSP), which can be either excitatory or inhibitory. These potentials superimpose
and if a threshold is exceeded, an action potential is triggered, which will then move towards the
next neuron (Purves et al., 2004). The electric fields induced by tDCS in the brain are too weak
to trigger action potentials, but may induce shifts in the membrane potential while stimulation
and hence modify the intrinsic neuronal network activity (Karabanov et al., 2019).
Simply put, the question arising in tDCS is how to apply the current in order to achieve a
desired effect in the brain. To answer this question one first has to understand the relation of
applied current and electric field (the forward problem) and thereon, how to choose an optimal
current. Therefore one needs a mathematical model of the involved processes. As usual, there
is a trade-off between simplicity and accuracy of the model. The objective of this thesis is to
investigate the effect of two different electrode models on the electric field and on the optimal
electrode arrangements. The first model will be rich in detail, the so called complete electrode
model, while the other one will be a simplistic point electrode model.
Therefore this thesis consists of two parts. The first chapter only deals with the forward problem.
Understanding this problem is essential for further investigations. At the beginning of chapter
1 the partial differential equation (sec. 1.1) and the boundary conditions for each electrode
model will be introduced (sec. 1.3). We will prove that with certain assumptions the potentials
generated by both models converge to each other in the brain, when the electrodes decrease in
size. Section 1.4 focuses on how to solve the boundary value problems numerically. Before we
use these numerical solutions in the second chapter, we will try to compare them to analytical
solutions. In section 1.5 we will therefore derive a series expression of the complete electrode
model solution on a fairly simple domain. Afterwards, the different solutions are compared in
order to reveal differences and similarities. The second chapter will deal with the optimization
aspect, mainly with so called maximum intensity approaches, whose main goal is to generate as
much intensity in the target area along some desired direction. With the results from chapter 1
we will be able to show that the optimal montages for both electrodes will also converge, if the
electrode size decreases (or atleast there exists such a subsequence). The last section focuses
on the numerical solutions again. Therein optimal current montages for different targets in the
aforementioned simple domain and furthermore for a realistic head model are calculated.
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1. The Forward Problem

This chapter deals with several aspects of the forward problem for transcranial direct current
brain stimulation. As we have already mentioned in the introduction, neuronal activity is based
on electric currents. Therefore we want to start with a brief look into the Maxwell’s equations,
a system of four coupled differential equations, which will allow us to model the electromagnetic
effects.

1.1. Maxwell’s Equations
Starting point are the macroscopic formulations of Maxwell’s Equations, also known as Maxwell’s
equations in matter (cf. Nolting, 2001).

Definition 1 (Maxwell’s Equations). Let E be the electric field and B the magnetic field.
Furthermore we denote the displacement field by D and the magnetizing field by H. Then
Maxwell’s equations can be stated as

divD = ρ (1.1)
divB = 0 (1.2)

rotE = −∂B
∂t

(1.3)

rotH = J + ∂D

∂t
. (1.4)

Assuming that the tissue is linear dielectric and linear magnetic we can specify D = εE and
H = µB with ε, µ being electrical permittivity and magnetic permeability, respectively. In this
thesis we will only focus on the special case of tDCS. If we ignore the ramping in and out at
the beginning and at the end of a stimulation, the currents used will be constant, resulting in
a static problem. Hence the time derivatives vanish and the problem simplifies. In other cases
as e.g. tACS, where alternating currents are applied, one can use a quasi-static approximation
if the used frequencies are low enough (Plonsey and Heppner, 1967). We can therefore replace
(1.3) and (1.4) by

rotE = 0 (1.5)
rotH = J (1.6)

Thus E is a gradient field and we can express it by

E = −∇u.

Assuming that the tissue is linear conductive and that the current density caused by brain
activity is negligible compared to the stimulation induced currents we get

J = σE = −σ∇u, (1.7)

where σ is the conductivity tensor of the tissue. Plugging (1.7) into (1.6) and noticing that the
divergence of a curl is zero, yields

div(σ∇u) = 0. (1.8)

2
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We have implicitly assumed that all fields and coefficients are sufficiently smooth and that the
domain of E is simply connected. Equation (1.8) is the basis for our problem, as it describes the
electrical potential in the head. Transcranial direct current stimulation tries to modulate this
potential via the boundary conditions.

1.2. Mathematical Basics
We need to introduce some mathematical concepts in order to formulate the boundary conditions
and give meaning to the PDE even in the case of non-smooth conductivities. This section is
mainly based on Lions and Magenes (1972) and Rudin (1991), where most of the proofs can be
found.

Let Ω ⊆ Rn be an (non-empty) open subset. We denote the space of p-integrable functions on
Ω by Lp(Ω) with the usual norm ‖ · ‖Lp(Ω) and for p = 2 with the usual inner product 〈·, ·〉L2(Ω).
It is well known that L2(Ω) is a Hilbert space. For α = (α1, . . . , αn) ∈ Nn0 we define

Dα = ∂|α|

∂xα1
1 . . . ∂xαn

n
with |α| = α1 + · · ·+ αn.

Throughout this thesis, 0 < c < C will denote some generic constants that can change from
one occasion to the next. We will denote the euclidean norm on Rn by |x| or ‖x‖2 and other
p-norms by ‖x‖p. The standard inner product is denoted x · y.
The space of all infinetly differentiable functions on Ω with compact support is D(Ω). Let
K ⊂ Ω be a compact subset and denote DK(Ω) = {ϕ ∈ D(Ω) : suppϕ ⊆ K}. We can define the
seminorms

pj(ϕ) = max
x∈K
|α|≤j

|Dαϕ(x)|, j ∈ N0.

With this system DK(Ω) becomes a Fréchet-space. Let (Kn)n be an increasing sequence of
compact sets in Ω with ⋃Kn = Ω. Then we have⋃

DKn(Ω) = D(Ω).

We provide D(Ω) with the inductive limit topology. An explicit construction of this topology
can be found in Rudin (1991). These definitions are independent of the choice of Kn. We’ll
denote the dual space of D(Ω) by D′(Ω) and call its elements distributions. For T ∈ D′(Ω)
we will write 〈T, ϕ〉 instead of T (ϕ). Notice that we can identify L1

loc(Ω), i.e. functions being
integrable on compact subsets, with a subset of D′(Ω) by ϕ 7→ 〈f, ϕ〉 for f ∈ L1

loc(Ω). We will
mostly refer to weak differentiability, unless explicitly stated otherwise. Recall that if u, v are
locally integrable, then v is the weak αth-derivative of u if∫

Ω
uDαϕdx = (−1)α

∫
Ω
vϕ dx ∀ϕ ∈ D(Ω)

and we write Dαu = v. This also gives rise to a definition of a distributional derivative by
〈DαT, ϕ〉 = (−1)|α|〈T,Dαϕ〉.
Let m be an integer ≥ 0. We define the Sobolev space Hm(Ω) of order m on Ω by

Hm(Ω) = {u ∈ L1
loc(Ω) | Dαu ∈ L2(Ω) ∀|α| ≤ m} with ‖u‖2Hm(Ω) =

∑
|α|≤m

‖Dαu‖2L2(Ω). (1.9)

Then Hm(Ω) is a Hilbert space with inner product

〈u, v〉Hm(Ω) =
∑
|α|≤m

〈Dαu,Dαv〉L2(Ω).
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It turns out that in the case of Ω = Rn these spaces can also be defined via the Fourier transform
F : L1(Rn)→ C0(Rn), u 7→ û defined by

û(y) = (2π)−
n
2

∫
Rn
u(x)e−ix·y dx.

This mapping is linear and bounded.
A function u ∈ C∞(Rn) is rapidly decreasing, if for all α, β ∈ Nn0

pα,β(f) = sup
x∈Rn

|xαDβf(x)| <∞, where xα = xα1
1 . . . xαn

n .

We denote the space of all rapidly decreasing functions by Sn. It is also known as the Schwartz
space. Together with the collection of norms it forms a Fréchet-space. One can show that

F(Dαϕ) = (iy)αFϕ and DβFϕ = F((−ix)βϕ) ∀ϕ ∈ Sn. (1.10)

Furthermore the Fourier transform is a continuous, linear, bijective mapping of Sn onto Sn.
If we define ũ(x) = u(−x), then the continuous inverse is given by F−1ϕ = F̃ϕ. Since Sn is
dense in L2(Rn) and F is isometric with respect to the L2-norm, we can extend the Fourier
transform uniquely and obtain an isometric isomorphism F : L2(Rn) → L2(Rn), which we will
also call Fourier transform. Let us denote the dual of Sn by S ′n. Its elements are called tempered
distributions. Indeed, one can show that D(Rn) ↪→ Sn is continuous with dense image. Therefore
elements of S ′n are unique continuous extensions of elements in D′(Rn) and we can identify S ′n
with a subspace of D′(Rn).
By transposition we define the Fourier transform of tempered distributions F : S ′n → S ′n

〈Fu, ϕ〉 = 〈u,Fϕ〉 ∀ϕ ∈ Sn.

This map is also linear, continuous and bijective with its inverse given by transposition of
F−1 : Sn → Sn. Note that the properties (1.10) hold true for tempered distributions. One can
now show

Hm(Rn) = {u ∈ S ′n : (1 + |y|2)
m
2 Fu ∈ L2(Rn)}

and that the norm in (1.9) is equivalent to

|||u|||Hm(Rn) = ‖(1 + |y|2)
m
2 Fu‖L2(Rn).

The inner product is given by

〈u, v〉 =
∫
Rn
û(y)v̂(y)(1 + |y|2)m dy.

We see that we can extend our definition of Sobolev spaces on Rn to real orders s. These spaces
are again Hilbert spaces. One can show that (Hs(Rn))′ = H−s(Rn) with dual pairing

〈u, v〉 =
∫
Rn
ûv̂ dx.

The space D(Rn) is dense in Hs(Rn) for s ∈ R (Wloka, 1987, Thm. 5.1).
For s ≥ 0 we define the space Hs(Ω) as the restrictions of functions in Hs(Rn) to Ω, together
with the norm

|||u|||Hs(Ω) = inf ‖U‖Hs(Rn), U = u a.e. on Ω. (1.11)

There are other common definitions in the literature, which are equivalent if Ω has a Lipschitz
boundary. In this case the new definition is also consistent with the one given earlier for integer
orders. We will always assume that Ω has at least a Lipschitz boundary. We refer to Grisvard
(1985, 1.3 & 1.4) for more information. Notice we will give a precise definition of the regularity
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of a boundary later.
It follows that D(Ω̄) is dense in Hs(Ω), where D(Ω̄) are the restrictions of D(Rn) to Ω (Wloka,
1987, Lemma 5.1). Furthermore we define Hs

0(Ω) = D(Ω)Hs and H−s(Ω) = (Hs
0(Ω))′.

In later sections we will use results from Lions and Magenes (1972). In order to study boundary
value problems in Hs(Ω) for arbitrary s ∈ R, they impose strong regularity conditions on Ω and
the boundary Γ. As they mention in remark 8.2, the hypothesis could be specified for each s
separately. We won’t further investigate this and impose these strong conditions in the relevant
sections. Also notice that they define the spaces Hs(Ω) by using interpolation theory, but if Ω
is sufficient regular, this definition is equivalent to the definition above.
We denote the Hölder spaces by Ck,l(Ω) and define Ck,0(Ω) = Ck(Ω). From now on we’ll always
assume that Ω is bounded and denote it’s boundary by Γ. We call a bounded set a domain if
it is open, non-empty and connected. Following Grisvard (1985) we say that the boundary Γ is
of class Ck,l, if for every x ∈ Γ there exists a neighborhood V of x in Rn and new orthogonal
coordinates {y1, . . . , yn} such that

1. V is a hypercube in the new coordinates V = {(y1, . . . , yn) : |yi| < ai, i = 1, . . . , n}

2. there exists ϕ ∈ Ck,l(V ′) with V ′ = {y′ = (y1, . . . , yn−1) : |yi| < ai, i = 1, . . . , n− 1} such
that

a) |ϕ(y′)| ≤ an
2 ∀y

′ ∈ V ′

b) Ω ∩ V = {y = (y′, yn) ∈ V : yn < ϕ(y′)}

c) Γ ∩ V = {y = (y′, yn) ∈ V : yn = ϕ(y′)}.

.

Lions and Magenes (1972) consider a different object: We say that Ω̄ is an n-dimensional
submanifold of class Ck,l with boundary in Rn, if for every x ∈ Γ there exists a neighborhood
V of x in Rn and a mapping ψ : V → ψ(V ) ⊂ Rn such that

1. ψ is bijective

2. ψ and ψ−1 are of class Ck,l

3. Ω ∩ V = {y ∈ Ω : ψn(y) < 0}

This implies that the boundary is of class Ck,l, according to the definition above. The converse
is only true for k ≥ 1, which follows from the implicit function theorem (cf. Grisvard, 1985;
Wloka, 1987). Lions and Magenes (1972) require that Γ is infinitely differentiable, therefore it
is irrelevant which one we choose. When we speak of Lipschitz domains we refer to a domain
with a Lipschitz boundary.
Following Lions and Magenes (1972) we next define the spaces Hs(Γ) for real s, when Γ is
infinitely smooth. Let {O1, . . . , Ok} be a family of open bounded subsets of Rn covering Γ, such
that for each j = 1, . . . , k there exists an infinitely differentiable map

Oj →W = {(y′, yn) ∈ Rn : |y′| < 1, |yn| < 1} x 7→ ϕj(x) = y,

such that ϕj has an infinitely differentiable inverse and satisfies

ϕj(Oj ∩ Ω) = W ∩ {yn > 0}, ϕj(Oj ∩ Γ) = W ∩ {yn = 0}, ϕj(Oj ∩ Ωc) = W ∩ {yn > 0}.

Basically this is a composition of an orthogonal coordinate transformation and ϕ from the above
definition (together with a scaling). If we would assume less regularity on Γ, the functions ϕj
would be less regular. Furthermore we assume that if Oj ∩Oi 6= ∅, then there exists an infinitely
differentiable homeomorphism φi,j : ϕi(Oj ∩ Oi) → ϕj(Oj ∩ Oi) with positive jacobian and
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ϕj(x) = φi,j(ϕi(x)) for x ∈ Om ∩ Oi. Let {αj} be a partition of unity on Γ subordinate to
Oj ∩ Γ, i.e.

αj ∈ D(Γ), αj compact support in Oj ∩ Γ,
k∑
j=1

αj = 1 on Γ.

The space D(Γ) consists of restrictions of smooth functions to Γ. Now if u is a function on Γ we
can decompose u = ∑k

j=1(αju) and define functions ϕ∗j (αju) by

ϕ∗j (αju)(y′, 0) = (αju)(ϕ−1(y′, 0)), y ∈ W ∩ {yn = 0}.

Since αj has compact support in Γ∩Oj , the function ϕ∗m(αju) has compact support inW ∩{yn =
0}. We can therefore consider ϕ∗j (αju) to be defined on Rn−1, by extending it by 0. One can
show that u 7→ ϕ∗j (αju) is a continuous mapping for L1(Γ) → L1(Rn−1), D(Γ) → D(Rn−1)
and extends by continuity to a continuous linear mapping D′(Γ) → D′(Rn−1). We can finally
define

Hs(Γ) = {u ∈ D′(Γ) : ϕ∗j (αju) ∈ Hs(Rn−1) ∀j = 1 . . . k}.

As u 7→ ψu is a continuous linear mapping for ψ ∈ D(Rn) from Hs(Rn) into itself, the definition
of Hs(Γ) is independent of the choice of local maps and partition of unity. Additionally we
define the norm

‖u‖2Hs(Γ) =
k∑
j=1
‖ϕ∗j (αju)‖2Hs(Rn−1)

which of course depends on the choice made. A different choice of local maps and partition of
unity yields an equivalent norm. Note that Hs(Γ) is a Hilbert space. For s ≥ 0 the space D(Γ)
is dense in Hs(Γ) and it holds (Hs(Γ))′ = H−s(Γ). Denote the unit outward normal ν. Since
D(Ω̄) is dense in Hs(Ω) one can prove that

u 7→
{
∂ju

∂νj
: j = 0 . . . µ

}

extends by continuity from D(Ω̄)→ (D(Γ))µ to a continuous linear mapping

Hs(Ω)→
µ∏
j=0

Hs−j− 1
2 (Γ)

where µ is the greatest integer such that µ < s− 1
2 . This map is surjective and has a continuous

right inverse. As mentioned earlier we can prove weaker results with weaker assumptions. For a
Lipschitz boundary one can also define the linear bounded surjective map γ0 : H1(Ω)→ H

1
2 (Γ),

which is uniquely determined by γ0u = u|Γ for u ∈ C0,1(Ω̄), see e.g. Grisvard (1985, Thm.
1.5.1.2) or Wloka (1987, Thm. 8.7 & 8.8) . Note that we can also derive a trace theorem for
negative order Sobolev Spaces by density arguments (cf. Lions and Magenes, 1972, Thm. 6.5)
Let v ∈ L1

loc(Ω)n and g ∈ L1
loc(Ω). Then g is the weak divergence of v if∫

Ω
gϕ dx = −

∫
Ω
v · ∇ϕdx ∀ϕ ∈ D(Ω).

We write div v = g. Further we define the space

H(div; Ω) = {v ∈ L2(Ω)3 : div v ∈ L2(Ω)} with ‖v‖2H(div;Ω) = ‖v‖2L2(Ω) + ‖ div v‖2L2(Ω).
(1.12)

This is a Hilbert space. When Ω has a Lipschitz boundary, the space D(Ω̄)n is dense inH(div,Ω).
Therefore one can show that the mapping γ̃ : v 7→ v · ν defined on D(Ω̄)n can be extended to
a linear continuous mapping γ̃ : H(div; Ω) → H−

1
2 (Γ) (Girault and Raviart, 1986, Thm. 2.4

6
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& 2.5). Usually we will write v · ν instead of γ̃v. Note that H 1
2 (Γ) can be constructed similar

in the case of Ω only having a Lipschitz boundary (Wloka, 1987). With these results one can
extend Green’s formula (Girault and Raviart, 1986, (2.17)) to∫

Ω
v · ∇φdx+

∫
Ω

div v φ dx = 〈v · ν, φ〉
H−

1
2 (Γ)×H

1
2 (Γ)

∀v ∈ H(div; Ω), φ ∈ H1(Ω). (1.13)

So far we considered complex valued functions and distributions. Since we will assume that
the conductivity σ and the applied current are real valued and the PDE is linear, we can
always construct real solutions from complex solutions and their complex conjugates. Further
the solutions will be unique, meaning that they will be real anyway. Hence we can restrict
ourselves to the subspaces of real valued functions resp. distributions. It is reasonable to define
real valued tempered distributions as tempered distributions, which take real values on real
Schwartz functions. With Fu(y) = Fu(−y) (for real functions and distributions) one can show
that the resulting spaces are real Hilbert spaces.
We will need two further theorems that we will often use:
The first one is the lemma of Lax-Milgram. Let V be a real Hilbert space and a : V × V → R
bilinear, coercive and bounded, i.e.

|a(u, v)| ≤ C‖u‖ ‖v‖ and c‖v‖2 ≤ a(v, v) ∀v, u ∈ V.

Further assume that l : V → R is linear and bounded. Then the problem

Find u ∈ V with a(u, v) = l(v) ∀v ∈ V

has a unique solution u ∈ V (Girault and Raviart, 1986, Thm 1.7). Note that a similar version
holds for complex Hilbert spaces (Yosida, 1995, Section 3.7).
In order to prove coercivity we will use the Poincaré inequality. Let Ω be a Lipschitz domain
and E ⊆ Ω have positive measure. We denote

uE = 1
|E|

∫
E
u dx.

Then there exists C > 0, only depending on Ω and E, such that for all u ∈ H1(Ω)∫
Ω
|u− uE |2 dx ≤ C

∫
Ω
|∇u|2 dx. (1.14)

A proof can be found in Leoni (2009, Thm. 12.23).

1.3. The Boundary Value Problem
Although there are different electrode models, we will mainly focus on on very simplistic one,
the point electrode model, and a very detailed one, the complete electrode model. Together
with the PDE (1.8) from section 1.1

div σ∇u = 0 on Ω, (1.15)

they each form a boundary value problem. We want to impose only weak regularity conditions
on σ. Therefore we can’t understand this equation in the classical sense, at most in the weak
sense of (1.12). From now on we will assume that Ω ⊂ R3 is a Lipschitz domain.
In transcranial direct current stimulation the user controls the current (resp. current density)
applied to the skin. Therefore it is natural to define the boundary conditions of the problem as

σ∇u · ν = f on Γ. (1.16)

7
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We assume that the conductivity tensor is bounded, i.e. σ ∈ L∞(Ω,R3×3), and that σ(x) is
symmetric positive definite for x ∈ Ω . Furthermore assume there exists c > 0 with ξTσ(x)ξ ≥
c|ξ|2 for all x ∈ Ω and ξ ∈ R3, or short σ(x) ≥ c ∀x ∈ Ω.
So far we didn’t specify f yet. We will start with a model that would probably best be described
as a continuum model, as one can control the current injection in every point on the skin. We
could assume e.g. f ∈ L2(Γ) with

∫
Γf dH2 = 0, where H2 is the 2-dimensional Hausdorff

measure, but we will start with a more general case.

Definition 2. Define H−
1
2� (Γ) = {g ∈ H− 1

2 (Γ) : 〈g, 1〉 = 0}. These are the permissible current
injections.

Assume f ∈ H−
1
2� (Γ). If u ∈ H1(Ω) and div σ∇u = 0, we can use Green’s formula (1.13) and

get ∫
Ω

div(σ∇u)v dx+
∫

Ω
σ∇u · ∇v dx = 〈σ∇u · ν, v〉

H−
1
2 (Γ)×H

1
2 (Γ)

(1.17)

for v ∈ H1(Ω). From (1.15) and (1.16) we therefore derive∫
Ω
σ∇u · ∇v dx = 〈f, v〉

H−
1
2 (Γ)×H

1
2 (Γ)

∀v ∈ H1(Ω). (1.18)

If (1.18) holds, we can choose v ∈ D(Ω), thus yielding div σ∇u = 0 in the weak sense and with
equation (1.17) we obtain f = σ∇u · ν.

Problem 3. For f ∈ H
− 1

2� (Γ) the weak formulation of the continuum model (CM) forward
problem is given by:

Find u ∈ H1(Ω) with
∫

Ω
σ∇u · ∇v dx = 〈f, v〉

H−
1
2 (Γ)×H

1
2 (Γ)

∀v ∈ H1(Ω).

Lemma 4. The bilinear form a : H1(Ω)/R×H1(Ω)/R→ R defined by

a(u, v) =
∫

Ω
σ∇u · ∇v dx

is bilinear, bounded and coercive, i.e. it exists c > 0 with a(v, v) ≥ c‖v‖2H1(Ω)/R.

It is well known that if H is a Banach space and V ⊆ H is a closed subspace, then the quotient
space is a Banach space with the usual quotient norm. Furthermore if H is a Hilbert space,
then so is H/V .

Proof. Obviously a is well defined and bilinear. Let u, v ∈ H1(Ω)/R. It follows

|a(u, v)| ≤
∫

Ω
|σ∇u · ∇v| dx ≤

∫
Ω
‖σ‖∞|∇u||∇v| dx ≤ ‖σ‖∞‖u− c1‖H1(Ω)‖v − c2‖H1(Ω),

for c1, c2 ∈ R, where we used the Cauchy-Schwarz and Hölder inequality. Hence |a(u, v)| ≤
C‖u‖H1(Ω)/R‖v‖H1(Ω)/R. Furthermore using the Poincaré inequality we get

a(v, v) =
∫

Ω
σ∇v · ∇v dx ≥

∫
Ω
c|∇v|2 dx ≥ c‖v‖2H1(Ω)/R. (1.19)

Notice that the condition 〈g, 1〉
H−

1
2 (Γ)×H

1
2 (Γ)

= 0 implies, that g is well defined and continuous
on H1(Γ)/R. Therefore we can apply the lemma of Lax-Milgram and conclude:
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Theorem 5. For f ∈ H− 1
2 � (Γ) problem 3 has a unique solution u ∈ H1(Ω)/R, meaning that

the solution in H1(Ω) is only unique up to an additive constant. Furthermore there is C > 0
with ‖u‖H1(Ω)/R ≤ C‖f‖H− 1

2 (Γ)
.

Proof. Only the inequality remains to be proven. This easily follows from (1.19) and the trace
theorem, since for c̃ ∈ R

c‖u‖2H1(Ω)/R ≤ a(u, u) = 〈f, u〉 = 〈f, u− c̃〉 ≤ ‖f‖
H−

1
2 (Γ)
‖u− c̃‖

H
1
2 (Γ)
≤ C‖u− c̃‖H1(Ω).

The fact that the bilinearform is only coercive on the quotient space emphasizes that the elec-
tromagnetic potential is only unique up to the choice of the ground level, i.e. up to an additive
constant.
Even tough the continuum model is good to handle mathematically, it is unrealistic as one
cannot control the current at every point on the head but only through electrodes.

1.3.1. Point Electrode Model
When using small electrodes, a naive approach is to model them as having an infinitesimal
small surface, meaning that they are only points. In order to still let current flow through the
electrodes, we have to interpret the injected currents, or to be more precise, the current density,
as delta distributions. We assume that Ω has a smooth boundary. Let there be L electrodes,
denoted by xm ∈ Γ, m = 1, . . . , L. The corresponding delta distributions are denoted δxm . Then
we define

f =
L∑

m=1
Imδxm .

Similar to problem 3 we assume I = (I1, . . . , IL) ∈ RL� .

Definition 6. The elements of RL� =
{
I ∈ RL : ∑L

m=1 Im = 0
}
are called current patterns.

Since f is very singular, v ∈ H 1
2 (Γ) isn’t enough for f(v) to be well defined. As Ω ⊂ R3, we

only have f ∈ H−(1+ε)(Γ) for ε > 0, i.e. we require v ∈ H(1+ε)(Γ).
In this section we want to impose stronger conditions on σ near the boundary. This is necessary
because of the strong irregularity of the boundary condition. We assume there exists a compact
set K ⊂ Ω such that σ is smooth on Ω̄ \ K◦. Therefore we can decompose the conductivity
σ = σsχΩ̄\K + σnsχK into a smooth part σs ∈ C∞(Ω̄,R3×3) and a possibly non-smooth part
σns ∈ L∞(Ω,R3×3). We define Hs

�(Γ) for s ∈ R similar to the case of s = −1
2 . Furthermore we

denote
H1

loc(Ω) = {v ∈ D′(Ω) : v|U ∈ H1(U) for every open U with Ū ⊂ Ω}.

We’ll write U b Ω, if U is open and Ū ⊂ Ω. Now if u 6∈ H1(Ω), then either ∇u does not exist
or ∇u 6∈ L2(Ω) and we can’t interpret div σ∇u = 0 in the weak sense. But if u ∈ H1

loc(Ω), then
for ϕ ∈ D(Ω) we can consider ∫

Ω
σ∇u · ∇ϕdx

and therefore interpret div σ∇u = 0 in the distributional sense and the boundary condition in
the appropriate trace sense.

9
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Problem 7. For f = ∑
Imδm with I ∈ Rk� the distributional formulation of the point electrode

model (PEM) forward problem is given by

Find u ∈ H
1
2−ε(Ω) ∩H1

loc(Ω) with
∫

Ω
σ∇u · ∇ϕdx = 0 ∀ϕ ∈ D(Ω) (1.20)

and σ∇u · ν = f in the trace sense in H−(1+ε)(Γ). (1.21)

In section 1.2 we stated that one can extend the operator, which takes the normal jth-order
derivative on Γ to negative order Sobolev spaces. The same is true for more general boundary
operators with smooth coefficients under additional assumptions. We refer to Lions and Magenes
(1972, Ch. 2 Sec. 1.4 & 6.5). Since σ is smooth near the boundary we can therefore define the
needed trace operator for (1.21).

Theorem 8. For f ∈ Hs
�(Γ) there exists a unique solution u ∈ (Hmin{1,s+ 3

2}(Ω) ∩H1
loc(Ω))/R

solving div σ∇u = 0 on Ω and σ∇u · ν = f on Γ in the above sense. Moreover there is C > 0
with ‖u‖

Hmin{1,s+ 3
2 }(Ω)/R

≤ C‖f‖Hs(Γ).

The proof is based on Hanke et al. (2011b), where the statement is proven for the two dimensional
unit disc and σ equal to 1 near the boundary. We will abbreviate Ws(Ω) = Hmin{1,s+ 3

2}(Ω) ∩
H1

loc(Ω). In order to prove the existence, we require the following lemma.

Lemma 9. Let U,U0 ⊂ R3 be two bounded C∞ domains with U b U0. Assume σ is smooth
in Ū0 and that v ∈ Hs(U0)/R solves div σ∇v = 0 for s ∈ R in the sense of distributions. Then
‖v‖Hr(U)/R ≤ C(r)‖v‖Hs(U0)/R for r ∈ R and in particular we get v|U ∈ C∞(U)/R.

Proof. Basically the proof can be found in Hanke et al. (2011b, Lemma A.1.). Note, however,
the statement is only shown for the two dimensional case with σ = 1, but since σ is smooth the
proof follows analogously.

Proof of theorem 8. According to Lions and Magenes (1972, Remark 7.2.) the problem div(σs∇u) =
0 on Ω, σs∇u · ν = f on Γ has a unique solution u0 ∈ Hs+ 3

2 (Ω)/R with

‖u0‖
Hs+ 3

2 (Ω)/R
≤ C‖f‖Hs(Γ). (1.22)

The previous lemma shows that u0 is smooth on Ω and therefore u0 ∈ (Hs+ 3
2 (Ω) ∩H1

loc(Ω))/R.
Recall that we could split the conductivity in a smooth and a non-smooth part σ = σsχΩ̄\K +
σnsχK . We choose two C∞-domains V b V0 b Ω with K ⊂ V and a cut-off function ϕ ∈ D(V0)
with ϕ|V ≡ 1. Let us consider the variational problem∫

Ω
σ∇w · ∇v dx =

∫
Ω
σ∇u0 · ∇(ϕv) dx for v ∈ H1(Ω)/R. (1.23)

We will show that this problem has a unique solution w ∈ H1(Ω)/R and that u0 − w is our
desired solution. First define a : H1(Ω)/R×H1(Ω)/R→ R and l : H1(Ω)/R→ R by

a(w, v) =
∫

Ω
σ∇w · ∇v dx and l(v) =

∫
Ω
σ∇u0 · ∇(ϕv) dx.

Obviously a is bilinear, bounded and coercive as we showed in lemma 4. It’s not directly clear
why l should be well defined. Therefore consider v ≡ 1. Then

l(1) =
∫

Ω
σ∇u0 · ∇ϕdx =

∫
V0
σ∇u0 · ∇ϕdx =

∫
V0\K

σ∇u0 · ∇ϕdx+
∫
K
σ∇u0 · ∇ϕdx.

10
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Since ϕ = 1 on K, the second integral vanishes. Furthermore we have σ = σs on V0 \K. This
yields

l(1) = −
∫
V0\K

div(σs∇u0)ϕdx+
∫
∂V0∪∂K

σs∇u0 · νϕ dH2.

The first integral drops out as u0 is (locally) smooth and solves div(σs∇u) = 0 on Ω in the
distributional sense. Since ϕ ∈ D(V0) and ϕ|V ≡ 1 we obtain,

l(1) =
∫
∂K
σs∇u0 · ν dH2 =

∫
K

div(σs∇u0) dx = 0.

Therefore l is well defined on H1(Ω)/R. Furthermore it is bounded in the quotient norm,

|l(v)| ≤ ‖σ∇(u0 − c1)‖L2(V0)‖∇(ϕ(v − c2))‖L2(V0) ≤ C‖u0 − c1‖H1(V0)‖v − c2‖H1(V0)

for c1, c2 ∈ R, where C > 0 is depended on Ω and ϕ. With (1.22) and lemma 9 we derive

|l(v)| ≤ C‖f‖Hs(Γ)‖v‖H1(Ω)/R.

Notice that l is independent of the choice of ϕ. Indeed, let ϕ2 be a second function with similar
properties and denote ϕ1 = ϕ. With the same reasoning as above and (1.13) we obtain∫

Ω
σ∇u0 · ∇(ϕiv) dx =

∫
V0\K

σs∇u0 · ∇(ϕiv) dx+
∫
K
σns∇u0 · ∇(ϕiv) dx

= −
∫
V0\K

div(σs∇u0)ϕiv dx+
∫
∂K
σs∇u0 · ηϕiv dH2+

∫
K
σns∇u0 · ∇(ϕiv) dx.

The first integral vanishes and the second and third one are independent of ϕi as both functions
are equal to 1 on V . Obviously l is linear. Hence we can apply the lemma of Lax-Milgram,
which yields existence and uniqueness of a solution w ∈ H1(Ω)/R to the problem (1.23). We
directly see

c‖w‖2H1(Ω) ≤ a(w,w) = l(w) ≤ C‖f‖Hs(Γ)‖w‖H1(Ω)/R. (1.24)
Since l is independent of ϕ, the same is true for w. We now want to show, that u = u0−w is the
desired solution. Therefore let v ∈ D(Ω). Starting with the distributional derivative we deduce

〈div(σ∇w), v〉=−
∫

Ω
σ∇w ·∇v dx=−

∫
Ω
σ∇u0 ·∇(ϕv) dx =

∫
Ω
σ∇u0 ·∇ [(1−ϕ)v]dx−

∫
Ω
σ∇u0 ·∇v dx.

The first integral vanishes since supp(1 − ϕ) ⊆ Ω \K, σ = σs on Ω \K, (1 − ϕ)v ∈ D(Ω) and
div(σs∇u0) = 0 on Ω in the distributional sense,∫

Ω\K
σs∇u0 · ∇((1−ϕ)v) dx =

∫
∂K∪∂Ω

σs∇u0 · ν(1−ϕ)v dH2 −
∫

Ω\K
div(σs∇u0)(1−ϕ)v dx = 0.

Thus we arrive at
〈div(σ∇w), v〉 = 〈div(σ∇u0), v〉 ∀v ∈ D(Ω).

Notice that div(σ∇w) = div(σ∇u0) only in the distributional sense and not in the weak sense,
as in general ∇u0 6∈ L2(Ω). By choosing test functions only supported away from K equation
(1.23) yields div(σ∇w) = 0 (a.e.) away from K. For ψ ∈ C∞(Ω̄) with suppψ ⊂ Ω̄ \ V̄0 we get

0 =
∫

Ω\V0
div(σ∇w)ψ dx =

∫
∂Ω
σ∇w · νψ dH2 −

∫
Ω\V0

σ∇w · ∇ψ dx.

The second integral vanishes since w solves (1.23) and the supports of ϕ and ψ are disjoint.
Thus σ∇w · ν = 0 on Γ. Hence u = u0 − w is a solution of div(σ∇u) = 0 on Ω, σ∇u · ν = f on
Γ, resp. in Hs(Γ). Combining (1.22) and (1.24) we obtain

‖u‖Hs(Ω)/R ≤ ‖u0‖Hs(Ω)/R+‖w‖Hs(Ω)/R ≤ C
(
‖w‖H1(Ω)/R+‖u0‖

Hs+ 3
2 (Ω)/R

)
≤ C‖f‖Hs(Γ). (1.25)
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It remains to prove uniqueness. Assume ũ is a second solution in Ws(Ω). Then h = u − ũ ∈
Ws(Ω) is a solution of div(σ∇h) = 0 on Ω \ K with σ∇ · ν = 0 on Γ and h = g on ∂K with
g ∈ H

1
2 (Γ)/R. Because σ is smooth on Ω \K we can apply remark 7.2 from Lions and Magenes

(1972) and therefore h|Ω\K ∈ H1(Ω \K). Since h|K◦ ∈ H1(K◦) and since h|K and h|Ω\K are
identical on ∂K, we derive h ∈ H1(Ω). Hence h satisfies div(σ∇h) = 0 on Ω and σ∇h · ν = 0
on Γ. We can now apply Green’s formula and derive∫

Ω
σ∇h · ∇v dx = 0 ∀v ∈ H1(Ω)/R.

The lemma of Lax-Milgram tells us that the solution of this variational problem is unique in
H1(Ω)/R. Obviously 0 solves this problem as well, hence h must be constant. Therefore u is
unique in Ws(Ω)/R.

Theorem 10. For I ∈ RL� problem 7 has a unique solution u ∈ H 1
2−ε(Ω)/R, ε > 0. Furthermore

there is C > 0 with ‖u‖
H

1
2−ε(Ω)/R

≤ C|I|.

Proof. Note that we can bound ‖∑L
m=1 Imδxm‖H−(1+ε)(Γ) by |I|. Hence the theorem follows

directly from the previous one.

Theorem 11. Under the assumptions of this section the Neumann-to-Dirichlet map Λ : Hs
�(Γ)→

Hs+1(Γ)/R, f 7→ u|Γ is well defined and continuous.

Proof. This proof is based on Hanke et al. (2011b, Thm. A.3.).
Let f ∈ Hs

�(Γ). Further let u ∈ Ws(Ω) and u0 ∈ Hs+ 3
2 (Ω) be defined as in the previous proof

of theorem 8. Recall the splitting of the conductivity in a smooth and non-smooth part and
in this context the definition of K. We choose a C∞-domain V b Ω with K ⊂ V and another
two C∞-domains U b U0 b Ω \K with ∂V ⊂ U . Now u solves div(σ∇u) = 0 in Ω \ V in the
distributional sense. With the appropriate trace theorem and the continuous dependence on the
boundary data (Lions and Magenes, 1972, Remark 7.2), we obtain

‖u‖Hs+1(Γ)/R ≤ C‖u‖Hs+ 3
2 (Ω\V )/R

≤ C(‖f‖Hs(Γ) + ‖σ∇u · ν‖Hs(∂V )). (1.26)

According to lemma 9, there is C > 0 with ‖u‖
Hs+ 3

2 (U)/R
≤ C‖u‖

Hmin{s+ 3
2 ,1}(U0)/R

. Using the
trace theorem, the inequality form theorem 8 and the fact, that σ is bounded, we conclude

‖σ∇u · ν‖Hs(∂V ) ≤ C‖u‖
Hs+ 3

2 (U\V )/R
≤ C‖u‖

Hs+ 3
2 (U)/R

≤ C‖u‖
Hmin{s+ 3

2 ,1}(U0)/R
≤ C‖f‖Hs(Γ)

and hence the proof is finished.

1.3.2. Complete Electrode Model
Although the PEM offers some advantages for the FEM discretization, as we will see later, this
is a fairly unrealistic model. In order to incorporate size and shape of the electrodes, one could
go back to the CM and try to specify the current density injection on each electrode em ⊂ Γ by

σ∇u · ν = Jm on em, m = 1, . . . , L (1.27)

and
σ∇u · ν = 0 on Γ \

⋃
em. (1.28)

12
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Unfortunately in practice we are not able to control the current density on the electrode, only
the total current. Therefore it is reasonable to replace the condition (1.27) by∫

em

σ∇u · ν dH2 = Im, m = 1, . . . , L. (1.29)

Since electrodes are highly conductive, current will shunt through the electrode, causing the
potential to be nearly constant at the electrode. Naively we can make the assumption of perfect
conducting electrodes and therefore additionally impose the condition

u|em = Um ∈ R, m = 1, . . . , L.

Notice that Um is unknown as well and becomes part of the problem. We can see that this
effect is compatible with (1.29), as current can freely flow in and out of the electrode, as long
as the overall current on the electrode is equal to Im. These boundary conditions are called the
shunt model. According to Holder (2004) it predicts that the current density has a singularity
of the form O(r− 1

2 ), where r is the distance to the edge of the electrode. The potential, while
still continuous, has the asymptotics O(r 1

2 ). Cheng et al. (1989) investigated different modeling
approaches in electrical impedance tomography (EIT) and compared these to real measurements.
The forward problem of EIT is closely related to the tDCS problem. They found out, that there
is still a discrepancy between the predictions of the shunt model and the measurements. In
medical applications a contact impedance layer between skin and electrode exists. Somersalo
et al. (1992) assume this is due to a electrochemical effect at the saline-electrode interface, where
a thin, highly resistive layer forms, which we will characterize by the effective contact impedance
zm ≥ 0, m = 1, . . . , L. Therefore the shunting effect is modified and the potential is no longer
constant underneath the electrode. The voltage drop is given by zmσ∇u · ν, thus

u+ zmσ∇u · ν = Um on em, m = 1 . . . L. (1.30)

According to Holder (2004) a nonzero contact impedance removes the singularity in the current
density, however there still occur high current densities at the edges of the electrodes. The new
boundary conditions (1.28), (1.29) and (1.30) are called the complete electrode model (CEM).
We will mostly follow Somersalo et al. (1992) in this section. Further we will only assume that
Ω is a Lipschitz domain and drop the additional regularity assumption of σ near the boundary.
We identify each electrode with some subset em ⊂ Γ. Furthermore we assume that e1, . . . , eL
are open connected subsets of Γ whose closures are disjoint. For simplicity we assume that
the boundaries of the electrodes are smooth curves in Γ. Furthermore we impose zm > 0 for
m = 1, . . . , L and assume the contact impedance to be constant on each electrode. With the
new unknowns, our solution space is given by H = H1(Ω)⊕ RL.
The CEM forward problem for I ∈ RL� is given by

div(σ∇u) = 0 on Ω (1.31)

in the weak sense with

u+ zmσ∇u · ν = Um on em, m = 1, . . . , L, and σ∇u · ν = 0 on Γ \
⋃
em (1.32)

in the trace sense, i.e. in H− 1
2 (Γ), and∫
em

σ∇u · ν dH2 = Im, m = 1 . . . L, (1.33)

where (u, U) ∈ H. Since σ∇u ·ν ∈ H− 1
2 (Γ), it’s not immediately clear how to understand (1.33).

But (1.32) yields

σ∇u · ν =
L∑

m=1

1
zm

(Um − u)χem (1.34)
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with the equality holding in H− 1
2 (Γ) and therefore σ∇u ·ν ∈ L2(Γ). Actually one gets σ∇u ·ν ∈

Hs(Γ) for −1
2 ≤ s < 1

2 , since the boundaries of the electrodes are smooth (Khor and Rodrigo,
2020). Therefore the integral can be understood in the classical sense. We define a : H×H → R
and l : H → R by

a((u, U), (v, V )) =
∫

Ω
σ∇u · ∇v dx+

L∑
m=1

1
zm

∫
em

(u− Um)(v − Vm) dH2, l((v, V )) =
L∑

m=1
ImVm.

Now let I be a current pattern and (u, U) ∈ H a solution of the CEM. Let (v, V ) ∈ H be
arbitrary. We can use Green’s formula (1.13) and derive

0 =
∫

Ω
div(σ∇u)v dx = 〈σ∇u · ν, v〉

H−
1
2 (Γ)×H

1
2 (Γ)
−
∫

Ω
σ∇u · ∇v dx.

Plugging in (1.34) yields

0 =
L∑

m=1

1
zm

∫
em

(Um − u)v dH2 −
∫

Ω
σ∇u∇v dx. (1.35)

Since σ∇u · ν ∈ L2(Γ) we can write

1
zm

∫
em

u− Um dH2 = −
∫
em

σ∇u · ν dH2 = −Im−

Thus
L∑

m=1

1
zm

∫
em

−(u− Um)Vm dH2 =
L∑

m=1
ImVm.

Adding this to (1.35) we obtain∫
Ω
σ∇u · ∇v dx+

L∑
m=1

1
zm

(u− Um)(v − Vm) =
L∑

m=1
ImVm.

Now conversely let (u, U) ∈ H satisfy

a((u, U), (v, V )) = l((v, V )) ∀(v, V ) ∈ H.

With choosing ϕ ∈ D(Ω) and V = 0 we see that div(σ∇u) = 0 in the weak sense. Next we
choose v ∈ H1(Ω) and V = 0, thus∫

Ω
σ∇u · ∇v dx+

L∑
m=1

1
zm

∫
em

(u− Um)v dH2 = 0.

Since σ∇u ∈ H(div; Ω), we can use Green’s formula and derive

〈σ∇u · ν, v〉 =
L∑

m=1

1
zm

∫
em

(u− Um)v dH2.

Since H 1
2 (Γ) are the traces of H1(Ω) functions, we obtain σ∇u · ν = ∑L

m=1
1
zm

(u − Um)χem in
H−

1
2 (Γ). Hence σ∇u · ν ∈ L2(Γ) and∫

em

σ∇u · ν dH2 = 1
zm

∫
em

(Um − u) dH2,

which is equal to Im. Indeed, we can choose v = 0 and V equal to the lth standard unit
vector

− 1
zm

∫
em

(u− Um) dH2 = Im.
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Problem 12. For a current pattern I ∈ Rl� the weak formulation of the CEM forward problem
is given by

Find (u, U) ∈ H1(Ω)⊕ RL with a((u, U), (v, V )) = l((v, V )) ∀(v, V ) ∈ H1(Ω)⊕ RL. (1.36)

As we have already encountered earlier, the potential is only unique up to an additive constant.
Therefore the bilinearform a isn’t coercive. a((v, V ), (v, V )) = 0 only implies v = V1 = · · · =
VL = const. As we want to use the lemma of Lax-Milgram in order to prove existence, we need
to show that a is coercive on H/R. To be precise by R ∈ H we mean the subspace R · (1, 1)
where 1 ∈ H1(Ω) is the constant function of value 1 and 1 ∈ RL with 1 in each component.
Therefore we want to define a norm which is equivalent to the quotient norm by

‖(u, U)‖2∗ = ‖∇u‖2L2(Ω) +
L∑

m=1

∫
em

|u− Um|2 dH2.

Lemma 13. ‖ · ‖∗ is a norm on (H1(Ω)⊕ RL)/R and equivalent to the quotient norm.

Proof. We can see that ‖ · ‖∗ is well defined on H/R, absolute homogeneous, non-negative and
that it satisfies the triangle inequality. Furthermore ‖(u, U)‖∗ = 0 implies that u is constant by
the Poincaré inequality (1.14), thus U1 = · · · = UL = u = const. Hence (u, U) = 0 in H/R. Next
we will show that the norms are equivalent. Let (u, U) ∈ H/R and further be c ∈ R arbitrary.
First note the elementary inequality (a+b)2 ≤ 2a2 +2b2, which we’ll use quite frequently. Hence

‖(u, U)‖2∗ ≤ ‖∇(u− c)‖2L2(Ω) +
L∑

m=1

∫
em

(
|u− c|+ |Um − c|

)2
dH2

≤ ‖∇(u− c)‖2L2(Ω) + 2
L∑

m=1

∫
em

|u− c|2 dH2 + 2
L∑

m=1
|Um − c|2|em|.

Using the trace theorem we can further derive
L∑

m=1

∫
em

|u− c|2 dH2 ≤ ‖u− c‖2L2(Γ) ≤ C‖u− c‖
2
H1(Ω).

Combining this yields

‖(u, U)‖2∗ ≤ C
(
‖∇(u− c)‖2L2(Ω)) + ‖u− c‖2H1(Ω) +

L∑
m=1
|Um − c|2

)
≤ C(‖u− c‖2H1(Ω) + |U − c|2

)
.

Note that C can be choose independent of the electrode set up, as |em| ≤ |Γ|. Since c ∈ R was
arbitrary we deduce ‖(u, U)‖2∗ ≤ C‖(u, U)‖2H/R.
We want to show the opposite estimate. Let (u, U) ∈ H/R. Then it follows

‖(u, U)‖2H/R = inf
c∈R
‖u− c‖2H1(Ω) +

L∑
m=1
|Um − c|2 = inf

c∈R
‖u− c‖2H1(Ω) +

L∑
m=1

1
|em|
‖Um − c‖2L2(em)

≤ inf
c∈R
‖u− c‖2H1(Ω) +

L∑
m=1

2
|em|

(
‖u− c‖2L2(em) + ‖u− Um‖2L2(em)

)
.

Since the electrode set up is fixed, we can bound |em|−1. Applying the trace theorem yields

‖(u, U)‖2H/R ≤ C
[

inf
c∈R
‖u− c‖2H1(Ω) + ‖u− c‖2L2(Γ) +

L∑
m=1
‖u− Um‖2L2(em)

]

≤ C
[

inf
c∈R
‖u− c‖2H1(Ω) +

L∑
m=1
‖u− Um‖2L2(em)

]
.

15
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We can now apply the Poincaré inequality (1.14), thus

‖(u, U)‖2H/R ≤ C
[
‖∇u‖2H1(Ω) +

L∑
m=1
‖u− Um‖2L2(em)

]
= C‖(u, U)‖2∗.

Theorem 14. Assume zm > 0 for m = 1 . . . L, then for I ∈ RL� the CEM forward problem has
a unique solution (u, U) ∈ (H1(Ω)⊕ RL)/R. Furthermore there is C > 0 with

‖(u, U)‖H/R ≤ C|I|.

Proof. Obviously a is symmetric, bilinear and satisfies

a((u, U), (u, U)) ≥
∫

Ω
c|∇u|2 dx+ 1

maxm zm

L∑
m=1

∫
em

(u− Um)2 dH2 ≥ c‖(u, U)‖2∗. (1.37)

Furthermore with the Cauchy-Schwarz inequality we can derive

|a((u, U), (v, V ))| ≤ ‖σ‖L∞(Ω)‖∇u‖L2(Ω)‖∇v‖L2(Ω) +
L∑

m=1

1
zm

∫
em

(u− Um)2 dH2
∫
em

(v − Vm)2 dH2

≤ C‖(u, U)‖∗‖(v, V )‖∗.
(1.38)

Since the norms are equivalent, a is coercive and bounded w.r.t the quotient space norm. The
map l : H/R → R is well defined since I ∈ RL� , i.e. l((1, 1)) = 0, and it is clearly linear. Now
assume (v, V ) ∈ H/R. Let us choose c ∈ R such that

(‖v − c‖2H1(Ω) + ‖V − c‖2RL)
1
2 ≤ ‖(v, V )‖H/R + ε.

Using Cauchy-Schwarz inequaltiy we get

|l((v, V ))| = |
L∑

m=1
ImVm| = |

L∑
m=1

Im(Vm − c)| ≤ |I|‖V − c‖RL ≤ |I|(‖(v, V )‖H/R + ε).

Since ε > 0 was arbitrary, we deduce that l is continuous. Applying the lemma of Lax-Milgram
completes the proof.

Corollary 15. Under the above assumptions there exists a unique solution (u, U) ∈ H1(Ω)⊕RL
satisfying ∑L

m=1 Um = 0.

1.3.3. Convergence of CEM towards PEM solution for small electrodes
So far we have introduced the point electrode model and the complete electrode model as two
separate models, which at first sight have little in common. We want to prove that under
realistic assumptions the solutions of the CEM locally converges towards the solution of the
PEM, when the diameter of the electrodes decreases. The whole section will guide us to this
main theorem 18. We follow Hanke et al. (2011a). Let the assumptions of section 1.3.1 hold,
even though we could probably relax the regularity assumptions on Ω, as we only need the
results for small s. Let us further assume that the electrodes em ⊂ Γ are simply connected and
that 0 < Z < zm < Z̃, m = 1, . . . , L. In the previous section we showed that the norms ‖ · ‖∗
and ‖ · ‖H/R are equivalent, i.e. there exist constants C1, C2 > 0 with

C1‖(u, U)‖∗ ≤ ‖(u, U)‖H/R ≤ C2‖(u, U)‖∗

16
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for all (u, U) ∈ H/R. Unfortunately, with this norm C2 cannot be independent of em. Since we
are interested in the behavior as |em| → 0, this should not be the case. Therefore we define a
quite similar norm on H1 ⊕ RL by

‖(u, U)‖2 = ‖u‖2H1(Ω) +
L∑

m=1
‖Um‖2L2(em) = ‖u‖2H1(Ω) +

L∑
m=1
|Um|2|em|

and denote the resulting quotient norm by ‖ · ‖�. Notice that this norm clearly is equivalent
to ‖ · ‖H/R for a fixed electrode set-up. The new norm has the advantage that there exists
C1, C2 > 0, now independent of em, m = 1, . . . , L, with

C1‖(u, U)‖∗ ≤ ‖(u, U)‖� ≤ C2‖(u, U)‖∗.

Let us denote Γe = ⋃
em and identify U = ∑L

m=1 Umχem . The proof is very similar to the one
we have done before.

Proof. We can derive

‖(u, U)‖2� = inf
c∈R

(‖u−c‖2H1(Ω)+‖U−c‖2L2(Γe)) ≤ inf
c∈R

(‖u−c‖2H1(Ω)+2‖U−u‖2L2(Γe)+2‖u−c‖2L2(Γe)).

We can continue

‖(u, U)‖2� ≤ inf
c∈R

(‖u− c‖2H1(Ω) + 2‖u− c‖2L2(Γ)) + 2‖U − u‖2L2(Γe)

≤ C inf
c∈R

(‖u− c‖2H1(Ω) + 2‖u− c‖2H1(Ω)) + 2‖U − u‖2L2(Γe)

≤ C‖∇u‖2L2(Ω) + 2‖U − u‖2L2(Γe) ≤ C‖(u, U)‖2∗

where we used the trace theorem and Poincaré inequality. Conversely for c ∈ R

‖(u, U)‖2∗ = ‖∇u‖2L2(Ω) + ‖U − u‖2L2(Γe) ≤ ‖u− c‖H1(Ω) + 2‖u− c‖2L2(Γe) + 2‖U − c‖2L2(Γe)

≤ C(‖u− c‖H1(Ω) + ‖U − c‖2L2(Γe)).

We used the trace theorem and Poincaré inequality again. Hence

‖(u, U)‖2∗ ≤ C‖(u, U)‖2�.

Notice that in both cases C > 0 can be chosen independent of em.

When we showed that a is coercive and bounded w.r.t. ‖ · ‖∗ in (1.37) and (1.38) the constants
were independent of em, m = 1, . . . , L, as well. Next we consider l : H/R → R. It remains
continuous w.r.t. ‖ · ‖�. For c ∈ R it follows

|l((v, V ))|= |
L∑

m=1
Im(Vm−c)|≤

L∑
m=1

∫
em

|Im|
|em|
|Vm−c| dH2≤

∥∥∥ L∑
m=1

|Im|
|em|

χem

∥∥∥
L2(Γ)

∥∥∥ L∑
m=1
|Vm−c|χem

∥∥∥
L2(Γ)

=
(∫

Γ

L∑
m=1

|Im|2

|em|2
χem dH2

) 1
2
(∫

Γ

L∑
m=1
|Vm − c|2χem dH2

) 1
2

=
(

L∑
m=1

I2
m

|em|

) 1
2

‖V − c‖L2(Γe).

Hence for the solution of the CEM we get

‖(u, U)‖2� ≤ C‖(u, U)‖2∗ ≤ Ca((u, U), (u, U)) = Cl((u, U)) ≤ C
(

L∑
m=1

I2
m

|em|

) 1
2

‖(u, U)‖�.

17
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Thus there is C > 0 independent of the electrode set up with

‖(u, U)‖2� ≤ C
L∑

m=1

I2
m

|em|
. (1.39)

We can derive a similar estimate for σ∇u · ν ∈ L2(Γ). For c ∈ R we see

‖σ∇u · ν‖2L2(Γ) =
∥∥∥ L∑
m=1

1
zm

(Um−u)χem

∥∥∥2

L2(Γ)
≤ 2
Z

[∥∥∥ L∑
m=1

(Um−c)χem

∥∥∥2

L2(Γ)
+
∥∥∥ L∑
m=1

(u−c)χem

∥∥∥2

L2(Γ)

]

≤ C
(
‖U − c‖2L2(Γe) + ‖u− c‖2H1(Ω)

)
,

where we once again used Young’s inequality and the trace theorem. Combining this with the
inequality (1.39) we obtained before, we can derive

‖σ∇u · ν‖2L2(Γ) ≤ C‖(u, U)‖2� ≤ C
L∑

m=1

I2
m

|em|
. (1.40)

We see that the constant is independent of the electrode setup as well.
At the beginning of this section we mentioned that we want to shrink the electrodes. We will
make this more precise now. We will denote the electrodes by ehm, m = 1 . . . L, where h > 0
can be interpreted as the size of the electrodes. We assume that h > 0 is bounded above by h0.
Let xm ∈ Γ be the position of the mth point electrode. We assume there is a fixed convex open
bounded reference domain

Q ⊂ R2 with |Q| = 1, 0 ∈ Q,
such that for h ∈ (0, h0) each electrode ehm ⊂ Γ, m = 1, . . . , L, is given by the parametriza-
tion

ehm = Xh
m(Qh) with Qh = hQ,

where X̃h
m : Uh → X̃h

m(Uh) is a C∞-diffeomorphism, Qh × {0} ⊂ Uh and Xh
m = X̃h

m ◦ ι for the
embedding ι : R2 → R3. The Hausdorff measure on ehm is given by

H2(A) =
∫
Xh

m
−1(A)

√
det

(
DXh

m
T
DXh

m

)
dx.

We denote σhm =
√
DXh

m
T
DXh

m, which can be interpreted as a local stretching factor. We
have ∫

eh
m

g dH2 =
∫
Qh

(g ◦Xh
m)σhm dx

for every integrable function g on ehm. We assume that the stretching factor is bounded c ≤
σhm ≤ C by constants c, C > 0 independent of m and h, e.g. the parametrizations Xh

m could
remain the same for h→ 0 and only Qh could shrink. Further we require that

‖Xh
m‖C2(Qh) ≤ C (1.41)

for all h ∈ (0, h0) and m = 1, . . . , L. We can derive

‖ψ ◦Xh
m‖H1(Qh) ≤ C‖ψ‖H1(eh

m) ∀ψ ∈ H1(ehm), (1.42)

whereH1(ehm) consists of restrictions of functions fromH1(Γ) with the appropriate norm, similar
to (1.11). Indeed, let ψ ∈ H1(ehm). Then for every ψ̃ ∈ H1(Γ) with ψ̃|eh

m
= ψ it follows

‖ψ ◦Xh
m‖H1(Qh) = ‖

k∑
j=1

(αjψ̃) ◦ ϕ−1
j ◦ ϕj ◦X

h
m‖H1(Qh) = ‖

k∑
j=1

ϕ∗j (αjψ̃) ◦ ϕj ◦Xh
m‖H1(Qh),

18
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where the notation of section 1.2 for the local charts was used. Note, when Xh
m(x) 6∈ Oj , then

αj(x) = 0. Since the αj have a compact support and ϕm, Xh
m are smooth, with (Ziemer, 1989,

Sec. 2.2) and (1.41) we obtain

‖ψ ◦Xh
m‖H1(Qh) ≤ C

k∑
j=1
‖ϕ∗j (αjψ̃)‖H1(R2) = C‖ψ̃‖H1(Γ).

for C > 0 (independent of h). Additionally, we can derive for every smooth curve γ ⊂ ehm

|γ| ≤ C|Xh
m
−1(γ)|.

Let γ : [0, 1]→ ehm be a smooth curve, then

|γ| =
∫

[0,1]

|Dγ| dx =
∫

[0,1]

|D(Xh
m ◦Xh

m
−1◦ γ)| dx ≤

∫
[0,1]

‖DXh
m‖L∞(Qh)|D(Xh

m
−1◦ γ)| dx ≤ C|Xh

m
−1(γ)|.

Further we can obtain
|ehm| =

∫
Qh
σhm(x) dx = h2

∫
Q
σhm(hx) dx,

meaning that we can bound
ch2 ≤ |ehm| ≤ Ch2. (1.43)

We assume that xm = Xh
m(0) and in order to derive O(h2) convergence results, we impose

1
|Qh|

∫
Qh
xσhm(x) dx = 0. (1.44)

Notice that the preimage of xm can be interpreted as the weighted center of mass of Qh, i.e. the
point electrode has to be in the center of ehm in the appropriate sense.
From now on we will denote the solution of the CEM for the electrode size h by (uh, Uh) ∈
(H1(Ω)⊕ RL)/R and the solution of the PEM by u ∈ H 1

2−ε(Ω)/R.

Lemma 16. There exists C > 0 independent of ehm, m = 1, . . . , L, and in particular of h, such
that uh satisfies

‖σ∇uh · ν‖2H1(Γe,h) ≤ C
L∑

m=1

|Im|2

|ehm|
.

Proof. From theorem 11 we know that the Neumann-to-Dirichlet map Λ : Hs
�(Γ)→ Hs+1(Γ)/R,

f → u|Γ is well defined and bounded. Therefore we get

‖uh‖2H1(Γ)/R ≤ C‖σ∇u
h · ν‖2L2(Γ).

Thus equation (1.40) yields

‖uh‖2H1(Γ)/R ≤ C
L∑

m=1

|Im|2

|ehm|
. (1.45)

Since σ∇uh · ν =
L∑

m=1

1
zm

(Uhm − uh)χeh
m
, we have

‖σ∇uh · ν‖2H1(Γe,h) ≤ ‖σ‖L∞(Ω)
1
Z
‖Uh−uh‖2H1(Γe,h) ≤ C

[
L∑

m=1
‖∇uh‖2L2(eh

m) + ‖Uh−uh‖2L2(Γe,h)

]

≤ C
[
‖uh‖2H1(Γ)/R+‖Uh−uh‖2L2(Γe,h)

]
≤ C

L∑
m=1

|Im|2

|ehm|
+C‖Uh−uh‖2L2(Γe,h),
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where we used (1.45) in the last step. We can bound the last summand using the trace theorem

‖Uh − uh‖2L2(Γe,h) ≤ 2(‖Uh − c‖2L2(Γe,h) + ‖uh − c‖2L2(Γe,h)) ≤ 2(‖Uh − c‖2L2(Γe,h) + ‖uh − c‖2L2(Γ))

≤ C(‖Uh − c‖2L2(Γe,h) + ‖uh − c‖2H1(Ω)),

for c ∈ R. Hence with (1.39) we get

‖Uh − uh‖2L2(Γe,h) ≤ ‖(uh, Uh)‖� ≤ C
L∑

m=1

|Im|2

|ehm|
.

Lemma 17. We can find h0 > 0 such that for every ε > 0 there exists C > 0 with

‖σ∇(uh − u) · ν‖H−(3+ε)(Γ) ≤ Ch
2|I|

for all 0 < h < h0 and I ∈ RL� .

Proof. We will abbreviate fh = σ∇uh · ν. Using (1.43) and the previous lemma 16 we get

‖fh‖2H1(Γe,h) ≤ C
L∑

m=1

|Im|2

|ehm|
≤ Ch−2|I|2. (1.46)

Let us fix ϕ ∈ D(Γ). Since u solves the PEM, we derive

|〈σ∇(uh − u) · ν, ϕ〉| = |
∫

Γ
fhϕdH2 −

L∑
m=1

Imϕ(xm)|.

Recall
∫
eh

m

fh dH2 = Im, hence

|〈σ∇(uh − u) · ν, ϕ〉| =
∣∣∣ L∑
m=1

∫
eh

m

fh(ϕ− ϕ(xm)) dH2
∣∣∣

≤
L∑

m=1

[∫
eh

m

∣∣∣(fh − Im
|ehm|

)
(ϕ− ϕ(xm))

∣∣∣ dH2 + |Im|
|ehm|

∣∣∣∫
eh

m

ϕ− ϕ(xm) dH2
∣∣∣] .

Now we can use the Cauchy-Schwarz inequality

|〈σ∇(uh−u)·ν, ϕ〉| ≤
L∑

m=1

∥∥∥fh− Im
|ehm|

∥∥∥
L2(eh

m)
‖ϕ−ϕ(xm)‖L2(eh

m)+
L∑

m=1

|Im|
|ehm|

∣∣∣ ∫
eh

m

ϕdH2−ϕ(xm)|ehm|
∣∣∣.

(1.47)
We will try to bound this expression. Fix m = 1, . . . , L and abbreviate ψ = fh − Im

|eh
m|
. Then∫

eh
m

ψ dH2 =
∫
eh

m

fh − Im
|ehm|

dH2 = 0.

Using change of variables we can derive

0 =
∫
eh

m

ψ dH2 =
∫
Qh

(ψ ◦Xh
m)σhm dx = h2

∫
Q
ψ ◦Xh

m(hx)σhm(hx) dx.

We can therefore apply the Poincaré inequality and obtain∫
Q
|ψ ◦Xh

m(hx)σhm(hx)|2 dx ≤ C
∫
Q
|∇x(ψ ◦Xh

m(hx)σhm(hx))|2 dx.

20
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The chain rule yields ∇x(ψ ◦ Xh
m(hx)σhm(hx)) = h∇(ψ ◦ Xh

m(hx)σhm(hx)) and with change of
variables it follows

h−2
∫
Qh
|(ψ ◦Xh

m)σhm|2 d =
∫
Q
|ψ ◦Xh

m(hx)σhm(hx)|2 dx ≤ C
∫
Q
|∇x(ψ ◦Xh

m(hx)σhm(hx))|2 dx

= h2C

∫
Q
|∇(ψ ◦Xh

m(hx)σhm(hx))|2 dx = C

∫
Qh
|∇((ψ ◦Xh

m)σhm)|2 dx.

This detour, using change of variables twice, has the benefit that C can be chosen independent
of h, as we used the Poincaré inequality only on the reference domain Q. We continue by∥∥∥fh − Im

|ehm|

∥∥∥2

L2(eh
m)

= ‖ψ‖2L2(eh
m) =

∫
eh

m

|ψ|2 dH2 =
∫
Qh
|ψ ◦Xh

m|2σhm dx ≤
1
c

∫
Qh
|(ψ ◦Xh

m)σhm|2 dx

≤ h2C

∫
Qh
|∇((ψ ◦Xh

m)σhm)|2 dx.

Recall that the norm of σhm in C1(Qh) is uniformly bounded w.r.t. h. Together with the estimate
(1.42) it follows∥∥∥fh − Im

|ehm|

∥∥∥2

L2(eh
m)
≤ Ch2

∫
Qh
|∇(ψ ◦Xh

m)|2 dx ≤ Ch2‖ψ‖2H1(eh
m) = Ch2

∥∥∥fh − Im
|ehm|

∥∥∥2

H1(eh
m)

≤ Ch2
(∥∥∥fh − Im

|ehm|

∥∥∥2

L2(eh
m)

+ ‖fh‖2H1(eh
m)

)
.

Since C > 0 is independent of h, we can choose h0 > 0 such that Ch2 < 1 for 0 < h < h0. Hence∥∥∥fh − Im
|ehm|

∥∥∥2

L2(eh
m)
≤ h2C‖fh‖2H1(eh

m),

which we can bound by (1.46), i.e.∥∥∥fh − Im
|ehm|

∥∥∥2

L2(eh
m)
≤ C|I|2. (1.48)

Next we want to bound ‖ϕ − ϕ(xm)‖2
L2(eh

m) in (1.47). For every x ∈ ehm there exists a smooth
curve γ ⊂ ehm connecting x and xm with |γ| ≤ Ch, e.g. take the line segment connecting 0 and
Xh
m
−1(x) and map it to ehm, then

|γ| ≤ C|Xh
m
−1(γ)| = C|Xh

m
−1(x)− 0| ≤ Ch.

Thus
|ϕ(x)− ϕ(xm)| ≤

∫
[0,1]
|(ϕ ◦ γ)′(x)| dx ≤ Ch‖ϕ‖C1(Γ)

and using the bounds on |ehm| (1.43) we get

‖ϕ− ϕ(xm)‖2L2(eh
m) ≤ Ch

2‖ϕ‖2C1(Γ)|e
h
m| ≤ C h4‖ϕ‖2C1(Γ). (1.49)

The last term in (1.47) to bound is
∣∣∣ ∫
eh

m

ϕdH2 − ϕ(xm)|ehm|
∣∣∣. Since Qh is convex, we can use

Taylor’s theorem (Königsberger, 2000, Sec. 2.4) in order to expand ϕ ◦Xh
m around 0

ϕ ◦Xh
m(x) = ϕ(xm) + x · ∇(ϕ ◦Xh

m)(0) + r(x)

with
|r(x)| ≤ C|x|2‖ϕ ◦Xh

m‖C2(Qh) ≤ C|x|
2‖ϕ‖C2(Γ).
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It follows with the assumption (1.44),∫
Qh

(ϕ ◦Xh
m)σhm dx = ϕ(xm)

∫
Qh
σhm dx+∇(ϕ ◦Xh

m)(0)
∫
Qh
xσhm(x) dx+

∫
Qh
rσhm dx

= ϕ(xm)|ehm|+
∫
Qh
rσhm dx.

Note that |Qh| = h2 and |x|2 ≤ Ch2 for x ∈ Qh. Therefore we get∣∣∣ ∫
eh

m

ϕdH2 − ϕ(xm)|ehm|
∣∣∣ =

∣∣∣ ∫
Qh
r(x)σhm(x) dx

∣∣∣ ≤ Ch4‖ϕ‖C2(Γ). (1.50)

Plugging (1.48), (1.49), (1.50), (1.43) into (1.47) yields

|〈σ∇(uh − u) · ν, ϕ〉| ≤ Ch2‖ϕ‖C2(Γ)|I|+
(

L∑
m=1

|Im|2

|ehm|2

) 1
2
(

L∑
m=1

∣∣∣ ∫
eh

m

ϕdH2 − ϕ(xm)|ehm|
∣∣∣2)

1
2

≤ Ch2‖ϕ‖C2(Γ)|I|+ Ch2‖ϕ‖C2(Γ)|I| ≤ Ch2‖ϕ‖C2(Γ)|I|.

According to Wloka (1987, Thm. 6.5) the Sobolev embedding H3+ε(Γ) ↪→ C2(Γ) is bounded
for ε > 0. Hence there exists C > 0, dependent on ε, with

|〈σ∇(uh − u) · ν, ϕ〉| ≤ Ch2‖ϕ‖C2(Γ)|I| ≤ Ch2|I|‖ϕ‖H3+ε(Γ).

Since D(Γ) is dense in H3+ε(Γ) (Lions and Magenes, 1972), we finally conclude

‖σ∇(uh − u) · ν‖H−(3+ε)(Γ) ≤ Ch
2|I|.

We can now prove the main result of this section.

Theorem 18. Let Ω0 ⊂ Ω be a domain with Ω0 ⊂ Ω. Then there exists h0 > 0 and C > 0 with

‖uh − u‖H1(Ω0)/R ≤ Ch2|I|

for 0 < h < h0 and I ∈ RL� .

Proof. We imposed the same assumptions as in 1.3.1, i.e. σ is smooth near the boundary and Γ
is smooth. Since uh − u solves div(σ∇(uh − u)) = 0 on Ω in the distributional sense we can use
the estimate from (1.25), which yields

‖uh − u‖
H−( 1

2 +ε)(Ω)/R
≤ C‖σ∇(uh − u) · ν‖H−(3+ε)(Γ).

Now it follows from the previous lemma

‖uh − u‖
H−( 1

2 +ε)(Ω)/R
≤ Ch2|I|. (1.51)

We assume that Ω0 is smooth with K ⊂ Ω0, otherwise we can enclose Ω0 by such a smooth set
and prove the theorem for this larger set. K was the compact set in Ω enclosing the non-smooth
part of σ. Now uh − u solves

div(σ∇(uh − u)) = 0 in Ω0, σ∇(uh − u) · ν = g on ∂Ω0 (1.52)

for g ∈ L2(∂Ω0) with
∫
∂Ω0

g dH2 = 0 and ‖g‖L2(∂Ω0) ≤ Ch2|I|. To see this, note that since
u ∈ H1

loc(Ω) we have σ∇(uh − u) ∈ H(div,Ω0) with div(σ∇(uh − u)) = 0 on Ω0. Hence we can
use (1.13)

0 =
∫

Ω0
div(σ∇(uh − u)) dx =

∫
∂Ω0

σ∇(uh − u) · ν dH2.
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Further let us choose two smooth auxiliary domains Ω0 b V b Ω and U b (Ω \ K) with
(V \ Ω0) b U. Then we get

‖σ∇(uh − u) · ν‖L2(∂Ω0) ≤ ‖σ∇(uh − u) · ν‖L2(∂(V \Ω0)) ≤ C‖uh − u‖H 3
2 (V \Ω0)/R

≤ C‖uh − u‖
H−( 1

2 +ε)(U)/R
≤ C‖uh − u‖

H−( 1
2 +ε)(Ω)/R

≤ Ch2|I|RL ,

where we used the trace theorem for the normal derivative, lemma 9 and (1.51).
Now since uh − u solves (1.52) we get

c‖uh − u‖2H1(Ω0)/R ≤
∫
Ω0
σ∇(uh − u) · ∇(uh − u) dx = 〈g, uh − u〉L2(∂)Ω0

≤ C‖g‖L2(∂Ω0)‖uh − u‖H1(Ω0)/R ≤ Ch2|I|‖uh − u‖H1(Ω0)/R.

1.4. Finite Element Method
As explicitly solving the previously introduced boundary value problems is far to complicated,
if not impossible, one has to try to solve them numerically by approximating the solutions. Let
the weak formulation of the problem be given by

Find u ∈ H with a(u, v) = l(v) ∀v ∈ H, (1.53)

where H is a Hilbert space, a bilinear, bounded, symmetric and coercive and l linear and
bounded. As we saw earlier the lemma of Lax-Milgram ensures existence and uniqueness of a
solution to this problem. Assume Vh ⊂ H is a finite dimensional subspace, then we can restrict
(1.53) to Vh

Find uh ∈ Vh with a(uh, vh) = l(vh) ∀vh ∈ Vh. (1.54)

Since Vh is a Hilbert space as well and the restrictions of a and l retain their properties, this
problem possesses a unique solution uh ∈ Vh, which will be our numerical approximation to the
initial solution. This method is known as the Ritz-Garlerkin method. Ceá’s lemma shows that
uh is the quasi-best approximation we can find in Vh,

‖u− uh‖ ≤
C

c
inf

vh∈Vh

‖u− vh‖,

since for vh ∈ Vh we get

c‖u− uh‖2 ≤ a(u− uh, u− uh) = a(u− uh, u− vh) ≤ C‖u− uh‖‖u− vh‖.

Notice that the Garlerkin orthogonality a(u− uh, vh) = 0 is the key property of this approach.
Since Vh is finite dimensional we can fix a basis {ϕ1, . . . ϕN} and write uh = ∑N

j=1 u
j
hϕj . From

(1.54) we derive
N∑
j=1

ujha(ϕj , ϕi) = l(ϕi) ∀i = 1 . . . N.

If we set Ai,j = a(ϕj , ϕi) and bi = l(ϕi), then we have to solve the equation system Ax = b. The
solution x consists of the coefficients for uh with respect to the previously chosen basis. Note
that since a is symmetric and coercive, the matrix A is symmetric and positive definite.
The new question arising is how to choose the subspace Vh. Therefore we will consider so called
finite elements. Following Brenner and Scott (2008); Ciarlet (2002) a finite element is a triple
(K,P,N) with
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1. K ⊂ Rn an open, non-empty, bounded, simply connected set with piecewise smooth-
boundary (element domain)

2. P a k-dimensional space of functions f : K → R (shape functions)

3. N = {N1, . . . Nk} a set of k linear independent linear functionals on P (nodal variables).

A basis {ψ1 . . . ψk} of P with Ni(ψj) = δij is called nodal basis for P. Notice that N determines
the elements of P, i.e. if ϕ1, ϕ2 ∈ P with N(ϕ1) = N(ϕ2) for all N ∈ N , then ϕ1 = ϕ2.
In order to discretize our problem, we’ll subdivide our domain Ω into smaller pieces. A subdi-
vision of Ω ⊂ Rn is a finite set {K1 . . .KM} of sets satisfying condition 1. from above as well
as

Ki ∩Kj = ∅ for i 6= j and
⋃
K̄i = Ω̄.

We obtain a finite number of finite elements with each consisting of a finite dimensional function
space, hence the resulting problem will be finite dimensional as well. We assume that Ω ⊂ R3

subdivides into tetrahedrons T = {Ti . . . TM} with the additional condition

T̄i ∩ T̄j = ∅ or T̄i ∩ T̄j is a common face of Ti and Tj .

We will call T a triangulation of Ω. We choose first order Lagrange elements, i.e P i are poly-
nomials of degree ≤ 1 restricted to Ti and N is given by point evaluations at the vertices of Ti.
We further impose that the functions of Vh are continuous, hence

Vh = {v ∈ C(Ω) : v|Ti ∈ P1(Ti) ∀i = 1 . . .M}.

Notice that the functions of Vh are determined by their values on the vertices of the triangulation.
If we number the vertices {x1, · · · , xN}, then the functions ϕi ∈ Vh with ϕi(xj) = δij form a
basis of Vh and we have

v =
N∑
j=1

v(xj)ϕj . (1.55)

With additional requirements on the regularity of the triangulation one can prove inequalities
of the form

‖u− Ihu‖H1(Ω) ≤ Ch|u|H2(Ω) and ‖u− Ihu‖L2(Ω) ≤ Ch2|u|H2(Ω)

for u ∈ H2(Ω), where Ih : H2(Ω) → Vh is the nodal interpolation operator basically given by
(1.55) (Brenner and Scott, 2008, Sec. 4.4). Unfortunately we won’t have so much regularity,
only u ∈ H1(Ω) (or even less in the case of the PEM, which will be a special case anyway).
Therefore u(xi) isn’t well defined. In this case one can use a different type of Interpolation
operator (Brenner and Scott, 2008, Sec. 4.8) to still get error estimates of the form

‖u− Ĩhu‖H1(Ω) ≤ C|u|H1(Ω) and ‖u− Ĩhu‖L2(Ω) ≤ Ch|u|H1(Ω). (1.56)

It is very likely that one has to drop the assumption that Ω subdivides into tetrahedrons, e.g.
when the boundary is curved. One can then try to use other finite elements that adapt better
to the shape of Ω or one commits a variational crime and instead solves

ah(uh, vh) = lh(vh),

where vh, uh are functions defined on Ωh, which is only an approximation of Ω, and with ah, lh
modified accordingly. Other variational crimes are e.g. the usage of quadrature instead of exact
integration, non-conformal finite elements or perturbations in the coefficients. One can try to
use Strang’s lemma, which generalize Ceá’s lemma, in order to obtain error estimates (cf. Bren-
ner and Scott, 2008). In our case we will ignore this and simply assume that σ is constant on

24



Finite Element Method Alexander Frank

each tetrahedron and that Ω subdivides into tetrahedrons.

Recall that we already derived weak formulations for the continuum model and the complete
electrode model. For the CM we get

Ai,j = a(ϕj , ϕi) =
∫

Ω
σ∇ϕj · ∇ϕi dx and bi = l(ϕi) = 〈f, ϕi〉.

and the corresponding equation system is Ax = b as mentioned earlier. For the CEM this is a
bit more complicated. We denote by em the mth standard unit vector in RL. Since this time
we are looking for solutions in the space H1(Ω)⊕ RL our discritized function space is Vh ⊕ Rl.
Therefore our basis is given by

(ϕi, 0) ∈ Vh ⊕ Rl with ϕi(xj) = δij , i = 1 . . . N,

and
(0, em) ∈ Vh ⊕ Rl, m = 1 . . . L.

Let us set

Ai,j = a((ϕj , 0), (ϕi, 0)) =
∫

Ω
σ∇ϕj · ∇ϕi dx+

L∑
m=1

1
zm

∫
em

ϕjϕi dH2

Bi,m = a((0, em), (ϕi, 0)) = − 1
zm

∫
em

ϕi dH2

Ck,m = a((0, em), (0, ek)) = |em|
zm

δm,k.

The resulting equation system is

M

(
x1
x2

)
=
(
A B
BT C

)(
x1
x2

)
=
(

0
I

)

where x1 ∈ RN consists of the coefficients for uh and x2 = U ∈ RL. This can be solved using
the Schur complement S = C −BTA−1B, i.e.

x2 = S−1I and x1 = −A−1Bx2 = −A−1BS−1I. (1.57)

Notice that even though in both cases A and in the CEM also M are symmetric, they are only
positive semi definite and not invertible. This is due to the fact, that the potential is only
unique up to an additive constant. Hence their null spaces are of the form R · (1, . . . , 1)T . We
can overcome this by removing one degree of freedom. Let us replace the ith row and column
of A by 0, Ai,i = 1 and furthermore the ith component of the right hand side by 0. In the case
of CEM, we also have to replace the ith row of B by 0. Then A and M are symmetric, positive
definite and we obtain the unique solution with u(xi) = 0. A more detailed explanation can be
found in Höltershinken (2021), which discusses the CM, but can be directly transferred to the
CEM. Note that if A and M are both positive definite, then the Schur complement is positive
definite as well (Boyd and Vandenberghe, 2004, A.5.5) and hence (1.57) is valid.
For the PEM we couldn’t derive a formulation like (1.53), we could only interpret the PDE in the
sense of distributions and the boundary condition in the trace sense. Let us denote the electrode
positions by x̃m, m = 1, . . . , L. By formally applying the divergence theorem we get

∫
Ω
σ∇u∇v d =

L∑
m=1

Imv(x̃m).
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This motivates our discretization

Find uh ∈ Vh with
∫

Ω
σ∇uh∇vh d =

L∑
m=1

Imvh(x̃m) ∀vh ∈ Vh. (1.58)

Notice that since vh is continuous, point evaluations are well defined. As already mentioned
earlier, since Vh is a finite dimensional subspace of H1(Ω), it is closed and hence a Hilbert space
as well. We already showed, that the bilinearform a is bounded and coercive on H1(Ω)/R, hence
the same is true for the restriction to Vh/R. Let us denote f = ∑L

m=1 Imδx̃m . For I ∈ RL� this
functional is well defined on Vh/R. Obviously f : Vh/R → R is linear and because Vh is finite
dimensional, it is continuous. We can apply the lemma of Lax-Milgram, which proves existence
and uniqueness of a solution for (1.58). The system matrix for the PEM is the same as for the
CM, as the bilinearforms are identical. If we choose the electrodes to be located on vertices,
then we get

bi =
{
Ii, if xi ∈ {x̃1 . . . x̃L}
0, else.

Details on assembly of the system matrices, especially for the CEM, can be found in Crabb
(2017). Typically one does not iterate over the indices i, j, but over the elements of the subdi-
vision. Notice that since the functions ϕi are only supported on the adjoining elements to the
corresponding vertex, the matrices defined above are sparse. For more information on how to
solve the resulting equation systems we refer to Höltershinken (2021).
Note that we always considered quotient spaces in order to get uniqueness results. We can bypass
this by restricting ourselves to the subspace of functions with zero mean, i.e. with 〈u, 1〉 = 0.
Each equivalence class has exactly one such representative and if we set uΩ = 1

|Ω|
∫

Ωu dx we
obtain

‖u− uΩ‖L2(Ω) ≤ C‖∇u‖L2(Ω) = C‖∇(u− c)‖L2(Ω) ≤ C‖u− c‖H1(Ω) ∀c ∈ R,

by Poincaré inequality. Hence

‖u− uΩ‖H1(Ω) ≤ C‖u‖H1(Ω)/R.

One can prove a similar result as the Poincaré inequality for Hs(Ω) with s ∈ (0, 1), we refer
to Drelichman and Durán (2018). Note that it even holds ‖u − uΩ‖H1(Ω) = ‖u‖H1(Ω)/R, as
in Hilbert spaces H/V is isometrically isomorphic to V ⊥ and in our case R⊥ are exactly the
functions with zero mean.
We already stated some general error estimates earlier (1.56). They can be applied to the CM
and moreover to the CEM, since

inf
vh∈Vh,
V h∈RL

‖(u, U)− (vh, V h)‖2H = inf
vh∈Vh,
V h∈RL

‖u− vh‖2H1(Ω) + |U − V h|2 ≤ inf
vh∈Vh

‖u− vh‖2H1(Ω).

For the CEMwe can strengthen the convergence results. Under the assumption of σ ∈ C∞(Ω̄,R3×3)
one can show u ∈ H

3
2 +s(Ω) and obtain

‖u− uh‖H1(Ω) ≤ Ch
1
2 +s and ‖u− uh‖L2(Ω) ≤ Ch1+2s

for s ∈ (0, 1
2) (Crabb, 2017; Dardé and Staboulis, 2016). The FEM approximation of the PEM

is not expected to converge to the real solution in the L2-norm. However according to (Crabb,
2017) due to elliptic regularity, one can expect convergence in the H1- and L2-norm in the
interior of Ω away from the boundary .
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1.5. Analytical Solutions for the Multilayer Sphere Model
In section 1.6 we want to verify our FEM solutions for the point electrode model and the com-
plete electrode model in the controlled environment of a multilayer sphere model with isotropic
conductivity. Therefore we want to derive analytical solutions in this section. The basic idea is
to find functions which solve the PDE and to combine them into a series, such that the boundary
conditions are satisfied as well. Since these solutions will be series expansions and we have to
truncate them in order to calculate them, the term semi-analytical actually suits better.
The multilayer sphere model consists ofN concentric spherical shells with radii given by 0 = r0 <
· · · < rN . We’ll denote the (interior of the) shells by Kn = {x ∈ R3 : rn−1 < ‖x‖ < rn}. Further
we assume that the conductivity is constant on each layer and σn = σ|Kn ∈ R>0. In cartesian
coordinates the Lapace operator on Rd is defined ∆ = ∑d

i=1
∂2

∂x2
i
. More general for Riemannian

manifolds one can define the Laplace-Beltrami operator in local coordinates by

∆u = 1√
|g|
∑
i,j

∂

∂xi

(
gji
√
|g| ∂u
∂xj

)
,

where |g| is the absolute value of the determinant of the metric tensor and gij are the components
of the inverse metric tensor. Using polar coordinates (r, ξ) ∈ R>0 × Sd−1, we can derive

∆u = 1
rd−1

∂

∂r

(
rd−1∂u

∂r

)
+ 1
r2 ∆Sd−1u,

where ∆Sd−1 is the Laplace-Beltrami operator on Sd−1. If we extend f : Sd−1 → R by f∗(x) =
f( x
‖x‖), then ∆f∗|Sd−1 = ∆Sd−1f (Shubin, 2001, Prop. 22.1).

The next results are taken from Atkinson and Han (2012). Even tough they deal with complex
polynomials and functions, the results also hold for the real case. Let us denote the set of all
homogeneous polynomials of degree n on Rd by Hd

n, i.e. all polynomials of the form∑
|α|=n

aαx
α.

The space of homogeneous harmonics of degree n in d dimensions, Yn(Rd), is the subspace of
all harmonic polynomials in Hd

n. We further define the spherical harmonic space of order n in d
dimensions by Ydn = Yn(Rd)|Sd−1 . By definition every spherical harmonic Yn ∈ Ydn is related to
a homogeneous harmonic Hn ∈ Yn(Rd) by

Hn(rξ) = rnYn(ξ) r ∈ R≥0, ξ ∈ Sd−1.

For m 6= n it holds Ydm ⊥ Ydn in L2(Sd−1). Furthermore one can prove the orthogonal decompo-
sition

L2(Sd−1) =
∞⊕
n=0

Ydn. (1.59)

Let Yn ∈ Ydn and set Yn(x) = Yn(rξ) = rnYn(ξ). Then Yn ∈ Yn(Rd) and hence

0 = ∆Yn(x) =
( 1
rd−1

∂

∂r

(
rd−1 ∂

∂r

)
+ 1
r2 ∆Sd−1

)
rnYn(ξ)

i.e.
∆Sd−1Yn(ξ) = −n(n+ d− 2)Yn(ξ).

Therefore we can define fractional powers of the Laplace-Beltrami operators straightforward.
This is possible on general compact Riemannian manifolds (Berard, 1986, p.53). Now we can
give a more intrinsic definition of the spaces Hs(Γ) as shown in Lions and Magenes (1972,
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Remark 7.6). Let (wj)j be an orthonormal basis of L2(Γ) consisting of eigenfunctions of −∆Γ
with corresponding eigenvalues λj , then

Hs(Γ) = {u ∈ D′(Γ) :
∞∑
j=1

λ2s
j |〈u,wj〉|2 <∞} (1.60)

with equivalent norm

‖u‖2Hs(Γ) =
∞∑
j=1

(1 + λ2
j )s|〈u,wj〉|2.

Hence we are interested in finding an orthonormal basis for each Ydn. We start with defining the
Legendre polynomials by

Pn,d(t) = n! Γ
(
d− 1

2

) bn/2c∑
k=0

(−1)k (1− t2)ktn−2k

4kk!(n− 2k)! Γ
(
k + d−1

2

) , t ∈ [−1, 1] .

Pn,3 are the standard Legendre polynomials. We can use Rodrigues representation formula for
d ≥ 2

Pn,d(t) = (−1)nRn,d(1− t2)
3−d

2

(
d

dt

)n
(1− t2)n+ d−3

2 with Rn,d =
Γ(d−1

2 )
2nΓ(n+ d−1

2 )
.

The Legendre polynomials solve the so called Legendre’s differential equation. One can show that
for fixed d they are orthogonal with respect to the L2 inner product weighted with (1− t2) d−3

2 .
Further they fulfill a number of recursions and identities that we will not further discuss. We
refer to Atkinson and Han (2012). For d = 3 we get

Pn,3(t) = 1
2nn!

(
d

dt

)n
(t2 − 1)n.

Next we introduce the associated Legendre functions, sometimes called associated Legendre
polynomials, even tough they aren’t polynomials in general. We define

Pn,d,j(t) = (n+ d− 3)!
(n+ j + d− 3)!(1− t

2)
j
2P

(j)
n,d(t),

where P (j)
n,d denotes the jth derivative of Pn,d. This isn’t the definition used in Atkinson and

Han (2012) but rather a theorem that holds. We see that these functions are polynomials in t
if and only if j is even. For the d = 3 we get

Pn,3,j(t) = n!
(n+ j)! (1− t

2)
j
2P

(j)
n,3(t). (1.61)

The definition from Atkinson and Han (2012) slightly differs in scaling from other common
definitions, e.g. Pn,3,j(t) is oft defined as (−1)j(1−t2)

j
2P

(j)
n,3(t). But since we will normalize these

functions anyway, this has no effect for us. Further note that we omit the Condon–Shortley phase
factor (−1)j , which is typically included in the quantum mechanics community. The associated
Legendre functions satisfy the general Legendre equation. Furthermore for fixed d and j they are
orthogonal with respect to the weighted L2 inner product defined above. We want to normalize
these functions with regards to the weighted inner product. For d = 3 ones can derive

P̃n,3,j(t) =
(

(n+ 1
2)(n− j)!

(n+ j)!

) 1
2

(1− t2)
j
2P

(j)
n,3(t).
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Notice that (1−t2)
j
2P

(j)
n,3(t) is the common defintion for associated Legendre functions mentioned

above. With these normalized asssociated Legendre functions it is possible to construct an
orthonormal basis for Ydn, based on a given orthonormal basis of Yd−1

n . If

{Ym,d−1,j : 1 ≤ j ≤ Nm,d−1}

is an orthonormal basis of Yd−1
n , 0 ≤ m ≤ n, then we can construct one for Ydn by

{P̃n,d,m(t)Ym,d−1,j(ξ(d−1)) : 1 ≤ j ≤ Nm,d−1, 0 ≤ m ≤ n},

where (t, ξ(d−1)) ∈ [−1, 1]×Sd−1 are coordinates for Sd, i.e (t, ξ(d−1)) 7→ ted +
√

1− t2ξ(d−1). For
S2 we use t = cos θ, 0 ≤ θ ≤ π, and ξ(2) = (cosϕ, sinϕ)T for 0 ≤ ϕ < 2π. Then a orthonormal
basis for Y2

m is given by

{Ym,2,1(ξ(2)) = 1√
π

cos(mϕ), Ym,2,2(ξ(2)) = 1√
π

sin(mϕ)},

if m ≥ 1 and for m = 0 by 1√
2π . Hence the desired basis for d = 3 is given by

Yl,3,m(θ, ϕ) =



(
(2l+1)(l−m)!

2π(l+m)!

) 1
2 (sin θ)mP (m)

l,3 (cos θ) cos(mϕ) for 1 ≤ m ≤ l(
(2l+1)

4π

) 1
2 Pl,3(cos θ) for m = 0(

(2l+1)(l−|m|)!
2π(l+|m|)!

) 1
2 (sin θ)|m|P (|m|)

l,3 (cos θ) sin(|m|ϕ) for − l ≤ m ≤ −1.

(1.62)

We will fix this basis and only write Yl,m. By definition rlYl,m is harmonic. The same is true for
r−(l+1)Yl,m. Recall, Yl,m is an eigenfunction of the Laplace-Beltrami operator with eigenvalue
−l(l + 1). Hence for r > 0

∆
(
r−(l+1)Yl,m

)
= ( 1

r2
∂

∂r
(r2 ∂

∂r
) + 1

r2 ∆∗2)r−(l+1)Yl(ξ) = (2
r

∂

∂r
+ ∂2

∂r2 + 1
r2 ∆∗2)r−(l+1)Yl,m

= (−2(l + 1) + (l + 1)(l + 2)− l(l + 1))r−(l+3)Yl,m = 0.

1.5.1. Complete Electrode Model
We want to derive a solution for the complete electrode model. Even though there are solution for
the CEM in three dimensions (Pidcock et al., 1995a,b), they omit the condition

∫
em
σ∇u·ν dH2 =

Im and only impose normal Robin boundary conditions. Somersalo et al. (1992) derived a
solution for the two dimensional case with equidistant electrodes and some specific current
patterns. We will come back to this later.

Theorem 19. If u ∈ H1(Ω) solves div(σ∇u) = 0 on the multilayer sphere model, then we can
find unique coefficients (A(n)

l,m)l,m, (B(n)
l,m)l,m ∈ `2 for 1 ≤ n ≤ N, m ∈ N0, l = −m, . . . ,m, such

that

u(x) =
∞∑
l=0

l∑
m=−l

[
A

(n)
l,mr

l +B
(n)
l,mr

−(l+1)
]
Yl,m(ξ) for rn−1 < |x| < rn, (1.63)

where the sum converges in H1(Ω).

From now on we will abbreviate
∑
l,m

=
∞∑
l=0

l∑
m=−l

.
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Proof. Denote the series by ũ. It suffices to show that we can find coefficients for each layer
Kn, such that ũ|Kn converges to u in H1(Kn) and that ũ|K̄n∩rnS2 = ũ|K̄n−1∩rnS2 . Then we can
deduce for ϕ ∈ D(Ω)

∫
Ω
ũDiϕdx =

N∑
n=1

∫
Kn

ũDiϕdx =
N∑
n=1

∫
∂Kn

ũϕni dH2 −
∫
Kn

Diũϕ dx = −
∫

Ω
Diũϕ dx,

i.e. ũ ∈ H1(Ω) and ũ = u in H1(Ω). Now if ũ converges in H1(Kn) and the restrictions of u
and ũ to ∂Kn agree, then u = ũ on Kn. To be more precise, both solve div(σ∇v) = 0, u by
assumption and ũ by construction and since the solution of this boundary value problem with
the Dirichlet boundary condition is unique, we derive u = ũ on Kn. We assume that n > 1.
Without loss of generality, we can assume Kn = {x ∈ R3 : R < ‖x‖ < 1} with R ∈ (0, 1). Since
u ∈ H1(Kn), the trace theorem yields u|RS2 ∈ H

1
2 (RS2) and u|S2 ∈ H

1
2 (S2). From (1.60) and

(1.59) we know there exist unique (αl,m)l,m, (βl,m)l,m ∈ `2 with∑
l,m

(1 + l2(l + 1)2)
1
2α2

l,m <∞ and
∑
l,m

(1 + l2(l + 1)2)
1
2β2

l,m <∞ (1.64)

and
u|RS2 =

∑
l,m

αl,mYl,m and u|S2 =
∑
l,m

βl,mYl,m.

We will drop the superscripts (n) for the following calculations. Since Yl,m are orthonormal we
deduce

αl,m = Al,mR
l +Bl,mR

−(l+1) and βl,m = Al,m +Bl,m.

Hence
Al,m = αl,mR

l+1 − βl,m
R2l+1 − 1 and Bl,m = βl,mR

2l+1 − αl,mRl+1

R2l+1 − 1 .

Since 0 < R < 1 is fixed, we get |R2l+1− 1| ≥ |R− 1| and hence there exists C > 0 independent
of l,m with

A2
l,m ≤ C(α2

l,m + β2
l,m) and B2

l,m ≤ C(α2
l,m + β2

l,m)R2l+2.

We can plug this in and obtain

∫
Kn

|ũ|2 dx =
∫ 1

R

∫
S2

∑
l,m

(Al,mrl +Bl,mr
−(l+1))Yl,m(ξ)

2

r2 dH2(ξ) dr

=
∫ 1

R

∑
l,m

(
Al,mr

l +Bl,mr
−(l+1)

)2
r2dr ≤ 2

∫ 1

R

∑
l,m

A2
l,mr

2l+2 +B2
l,mr

−2ldr

≤ 2C
∑
l,m

(1−R2l+3)
2l + 3 (α2

l,m + β2
l,m) + 1

|2l − 1|(R
2l+2 −R3)(α2

l,m + β2
l,m).

Thus the partial sums of ũ are a Cauchy sequence in L2(Kn) and hence ũ ∈ L2(Kn) converges.
Next we will consider ∇ũ. On a Riemannian manifold the gradient in local coordinates is given
by

∇u =
∑
i,j

gi,j
∂u

∂xi

∂

∂xj
.

Let ∇ denotes the gradient on Rd and ∇Sd−1 the gradient on Sd−1. For polar coordinates
(r, ξ) ∈ R>0 × Sd−1 one can derive

∇u = ∂u

∂r
ξ + 1

r
∇Sd−1u, (1.65)
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with ‖ξ‖ = 1 and ξ ⊥ ∇S2u. Notice that by the divergence theorem for compact Riemannian
manifolds (Lee, 2012, Thm 16.32 & 16.48)∫

S2
∇S2Yk,s · ∇S2Yl,m dH2 =

∫
S2
Yk,s(−∆S2)Yl,m dH2 =

∫
S2
Yk,sYl,ml(l + 1) dH2 = l(l + 1)δl,kδm,s.

(1.66)
We can use this together with ξ ⊥ ∇S2Yl,m in order to derive

∫
Kn

|∇ũ|2 dx =
∫ 1

R

∫
S2

∣∣∣∣∣∣∇
∑
l,m

(Al,mrl +Bl,mr
−(l+1))Yl,m(ξ)

∣∣∣∣∣∣
2

r2 dH2(ξ) dr

=
∫ 1

R

∫
S2

∣∣∣∣∣∣
∑
l,m

(Al,mlrl−Bl,m(l + 1)r−(l+1))Yl,m(ξ)ξ +
∑
l,m

(Al,mrl+Bl,mr−(l+1))∇S2Yl,m(ξ)

∣∣∣∣∣∣
2

dH2(ξ) dr

=
∫ 1

R

∫
S2

∑
l,m

(Al,mlrl−Bl,m(l + 1)r−(l+1))Yl,m(ξ)

2

+

∣∣∣∣∣∣
∑
l,m

(Al,mrl+Bl,mr−(l+1))∇S2Yl,m(ξ)

∣∣∣∣∣∣
2

dH2(ξ) dr

=
∫ 1

R

∑
l,m

(
Al,mlr

l−Bl,m(l + 1)r−(l+1)
)2

+
(
Al,mr

l+Bl,mr−(l+1)
)2
l(l + 1)dr

≤ 2
∫ 1

R

∑
l,m

A2
l,ml(2l + 1)r2l +B2

l,m(l + 1)(2l + 1)r−(2l+2))dr

= 2
∑
l,m

lA2
l,m(1−R2l+1) + (l + 1)B2

l,m(R−(2l+1) − 1).

Looking at one specific summand we get

lA2
l,m(1−R2l+1)+(l+1)B2

l,m(R−(2l+1)−1)≤Cl(1−R2l+1)(α2
l,m+β2

l,m)+(l+1)C(α2
l,m+β2

l,m)(R−R2l+2).

With (1.64) we therefore see, that the partial sums of ũ are a Cauchy sequence in H1(Kn). By
construction ũ and u agree on the boundary of Kn, thus we get the desired result. We assumed
n > 1 so far, notice that for n = 1 we necessarily have B(1)

l,m = 0. This simplifies the above
calculations, which we won’t carry out again.

It now arises the question how to calculate these coefficients. According to Gilbarg and Trudinger
(2001, Thm. 8.24) the solution u is continuous at the inner layer boundaries. Moreover it is
continuous away from the outer boundary of Ω. This is our first inner transition condition.
Furthermore the current density normal to the layer boundary, σ∇u · ν, is continuous as well.
To see this, denote an inner layer interface of two shells Ki and Kj by Λ and choose a point
x ∈ Λ. Let B be a small open ball centered at x, such that Bi = B ∩ Ki and Bj = B ∩ Kj

are connected. We denote the restrictions of u and σ to Bi resp. Bj by subscripts i, j. Let
ϕ ∈ D(B) be arbitrary. Then we get

0 =
∫

Ω
σ∇u · ∇ϕdx =

∫
Bi

σi∇ui · ∇ϕdx+
∫
Bj

σj∇uj · ∇ϕdx.

From Lemma 9 we know that ui and uj are smooth, and by choosing test functions supported
in Bi resp. Bj , we deduce that ui and uj are harmonic. With the divergence theorem we can
derive

0 = −
∫
Bj

σj∆ujϕd−
∫
Bi

σi∆uiϕd+
∫

Λ∩B
(σj∇uj−σi∇ui)·νϕ dH2 =

∫
Λ∩B

(σj∇uj−σi∇ui)·νϕ dH2.

Therefore σi∇ui · ν = σj∇uj · ν a.e. on Λ ∩ B and since both functions are continuous, we get
the equality everywhere on Λ ∩B. Notice this is also true if the layer interfaces aren’t spheres,
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but only smooth. For each pair (l,m) we need to determine 2N −1 coefficients. We have 2N −2
transition conditions and the outer boundary condition. As done in Somersalo et al. (1992);
Ferree et al. (2000) we will rescale the representation (1.63) in order to prevent numerical under
or overflow

u(x) =
∞∑
l=0

l∑
m=−l

[
A

(n)
l,m

(
r

rn

)l
+B

(n)
l,m

(
r

rn

)−(l+1)
]
Yl,m(ξ) for rn−1 < |x| < rn. (1.67)

As mentioned earlier Somersalo et al. (1992) derived the solution for the two dimensional case
with equidistant electrodes and some specific current patterns. They reformulate the weak for-
mulation into a minimization problem. The optimizer of the resulting problem then consists
of the desired coefficients for the series expansion. By truncating the problem, they reduce it
to a finite dimensional minimization problem, which can be solved by solving a linear equation
system. We will proceed slightly different and use a Garlerkin approach, where the finite di-
mensional subspace is now given by a finite set of summands from the series expansion. This
approach directly provides the proof that our semi-analytical solution converges towards the real
solution. In the end, both approaches yield the same approximation.
First notice that σ∇u·ν = σ ∂u∂r . We will focus on the layer interface at r = rn, 1 ≤ n < N and fix
a pair (l,m). The transition conditions yield for each pair (l,m) a system of two equations

A
(n+1)
l,m

(
rn
rn+1

)l
+B

(n+1)
l,m

(
rn
rn+1

)−(l+1)
= A

(n)
l,m +B

(n)
l,m

σ(n+1)A
(n+1)
l,m

(
rn
rn+1

)l−1 l

rn+1
− σ(n+1)B

(n+1)
l,m

(
rn
rn+1

)−(l+2)(l + 1)
rn+1

= σ(n)A
(n)
l,m

l

rn
− σ(n)B

(n)
l,m

(l + 1)
rn

.

We can solve this and derive

(2l + 1)A(n+1)
l,m =

(
l + 1 + l

σ(n)

σ(n+1)

)(
rn
rn+1

)−l
A

(n)
l,m + (l + 1)

(
1− σ(n)

σ(n+1)

)(
rn
rn+1

)−l
B

(n)
l,m

(2l + 1)B(n+1)
l,m = l

(
1− σ(n)

σ(n+1)

)(
rn
rn+1

)l+1
A

(n)
l,m +

(
l + (l + 1) σ(n)

σ(n+1)

)(
rn
rn+1

)l+1
B

(n)
l,m.

We can combine this in a matrix

F
(n)
l =


(
l + 1 + l σ(n)

σ(n+1)

) (
rn
rn+1

)−l
(l + 1)

(
1− σ(n)

σ(n+1)

) (
rn
rn+1

)−l
l
(
1− σ(n)

σ(n+1)

) (
rn
rn+1

)l+1 (
l + (l + 1) σ(n)

σ(n+1)

) (
rn
rn+1

)l+1

 1
2l + 1

i.e. (
A

(n+1)
l,m B

(n+1)
l,m

)T
= F

(n)
l

(
A

(n)
l,m B

(n)
l,m

)T
.

We recursively define(
α

(1)
l β

(1)
l

)T
=
(
1 0

)T
and

(
α

(n+1)
l β

(n+1)
l

)T
= F

(n)
l

(
α

(n)
l β

(n)
l

)T
.

By induction one can easily verify(
A

(n)
l,m B

(n)
l,m

)T
= A

(1)
l,m

(
α

(n)
l β

(n)
l

)T
. (1.68)

If we now set Cl,m = A
(N)
l,m +B

(N)
l,m = A

(1)
l,m(α(N)

l + β
(N)
l ) we can rearrange this equation for A(1)

l,m

and insert it in (1.68) to obtain(
A

(n)
l,m B

(n)
l,m

)T
= Cl,m

α
(N)
l + β

(N)
l

(
α

(n)
l β

(n)
l

)T
.
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Therefore finding the coefficients A(n)
l,m, B

(n)
l,m reduces to finding Cl,m, since we can easily calculate

the other variables. Hence we obtain

u(x) =
∞∑
l=0

l∑
m=−l

Cl,m

α
(N)
l + β

(N)
l

[
α

(n)
l

(
r

rn

)l
+ β

(n)
l

(
r

rn

)−(l+1)
]
Yl,m(ξ) for rn−1 < |x| < rn.

Next we define the functions vl,m : Ω→ R

vl,m(x) = 1
α

(N)
l + β

(N)
l

[
α

(n)
l

(
r

rn

)l
+ β

(n)
l

(
r

rn

)−(l+1)
]
Yl,m(ξ) for rn−1 < |x| < rn.

These functions will span the finite dimensional subspace of H1(Ω) we mentioned earlier. We
have

a((vl,m, 0), (vk,s, 0)) =

∫
Ω
σ∇vl,m · ∇vk,s dx+

L∑
j=1

1
zj

∫
ej

Yl,mYk,s dH2


a((vl,m, 0), (0, ej)) = − 1

zj

∫
ej

Yl,m dH2

a((0, ei), (vk,s, 0)) = a((vk,s, 0), (0, ei))

a((0, ei), (0, ej)) = 1
zj
|ej |δi,j .

Using (1.65) we can write∫
Ω
σ∇vl,m · ∇vk,s dx =

∫ rN

0
σ

∫
S2

∂vl,m
∂r

∂vk,s
∂r

+ 1
r2∇S2vl,m · ∇S2vk,s dH2r2dr.

For the sake of readability, we will drop the superscripts of α and β, but keep in mind, that
they depend on the layer. Recall, Yl,m are orthogonal with respect to L2(S2), hence∫ rN

0
σ

∫
S2

∂vl,m
∂r

∂vk,s
∂r

dH2r2dr

=
N∑
n=1

∫ rn

rn−1
σ(n)
∫
S2

[
lαl

(
r

rn

)l
−(l + 1)βl

(
r

rn

)−l−1
][
kαk

(
r

rn

)k
−(k + 1)βk

(
r

rn

)−k−1
]
Yl,mYk,s dH2dr

=
N∑
n=1

∫ rn

rn−1
σ(n)

[
lαl

(
r

rn

)l
− (l + 1)βl

(
r

rn

)−l−1
]2

dr δl,kδm,s

=
N∑
n=1

σ(n)
∫ rn

rn−1
l2α2

l

(
r

rn

)2l
+ (l + 1)2β2

l

(
r

rn

)−2l−2
− 2l(l + 1)αlβl

(
r

rn

)−1
dr δl,kδm,s

=
N∑
n=1

σ(n)rn

[
l2α2

l

2l + 1

[
1−
(
rn−1
rn

)2l+1
]
− (l+1)2β2

l

2l + 1

[
1−
(
rn−1
rn

)−2l−1
]
−2l(l+1)αlβl ln

rn
rn−1

]
δl,kδm,s.

With (1.66) we can calculate the remaining term∫ rN

0
σ

∫
S2

1
r2∇S2vl,m · ∇S2vk,s dH2r2dr

=
N∑
n=1

∫ rn

rn−1
σ(n)

∫
S2

[
αl

(
r

rn

)l
+βl

(
r

rn

)−l−1
][
αk

(
r

rn

)k
+βk

(
r

rn

)−k−1
]
∇S2Yl,m ·∇S2Yk,s dH2dr

=
N∑
n=1

∫ rn

rn−1
σ(n)D2

l,m

[
αl

(
r

rn

)l
+ βl

(
r

rn

)−l−1
]2

l(l + 1)dr δl,kδm,s
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=
N∑
n=1

σ(n)
∫ rn

rn−1
α2
l

(
r

rn

)2l
+ β2

l

(
r

rn

)−2l−2
+ 2αlβl

(
r

rn

)−1
dr l(l + 1) δl,kδm,s

=
N∑
n=1

σ(n)rn

[
l(l+1)α2

l

2l + 1

[
1−
(
rn−1
rn

)2l+1
]
− l(l+1)β2

l

2l + 1

[
1−
(
rn−1
rn

)−2l−1
]
+2l(l+1)αlβl ln

rn
rn−1

]
δl,kδm,s.

Putting this together we finally derive∫
Ω
σ∇vl,m·∇vk,s dx =

N∑
n=1

σ(n)rn

[
l
(
α

(n)
l

)2[
1−
(
rn−1
rn

)2l+1
]
−(l+1)

(
β

(n)
l

)2[
1−
(
rn−1
rn

)−2l−1
]]
δl,kδm,s.

The other integrals strongly depend on how we model the electrodes. For now, let us assume
that we already know how to model them and how to evaluate the integrals. Let us define the
operator Λ : D(Λ) ⊂ RN → H1(Ω)

(Cl,m)l,m 7→
∞∑
l=0

m∑
l=−m

Cl,mvl,m.

The functions (vl,m) are orthogonal in H1(Ω), therefore the domain of Λ is the w-weighted `2
space with wl,m = ‖vl,m‖2H1(Ω), which we’ll denote `2w. Since W = Image(Λ)⊕RL ⊂ H1(Ω)⊕RL

and (u, U) ∈ W, the solution (u, U) also solves the weak problem restricted to W . Note that
a : H1(Ω)×H1(Ω)→ R and l : H1(Ω)→ R from the weak formulation are symmetric and real-
valued, hence according to the characterization theorem (Braess, 2013, Thm. 2.2) the solution
can be characterized by

(u, U) ∈ arg min
(v,V )∈W

1
2a((v, V ), (v, V ))− l(v, V ). (1.69)

To be precise, we applied the characterization theorem to W/R which characterizes the unique
solution (u, U) + R as the unique minimizer in W/R. But since the objective function vanishes
on constant functions, every representative of (u, U) + R is a minimizer in W . Note that
`2w is a Hilbert space and Λ : `2w → H1(Ω) is isometric. As v0,0 = (4π)− 1

2 it follows that
Λ(R, 0, . . . ) = R ⊂ H1(Ω). Therefore we define

K = {x ∈ `2w : xl,m = 0 ∀l,m 6= 0} = Λ−1(R).

These elements correspond to the constant functions in Image(Λ). When we write (`2w⊕RL)/R,
we precisely mean (`2w⊕RL)/(K⊕R). Note that we can canonically define (Λ, id) : (`2w⊕RL)/R→
(H1(Ω)⊕RL)/R and that this mapping remains isometric. The above minimizing problem (1.69)
is equivalent to the minimizing problem, where one pulls back a and l by (Λ, id). Let us further
define

ηl,m =
N∑
n=1

σ(n)rn

[
l
(
α

(n)
l

)2
(

1−
(
rn−1
rn

)2l+1
)
− (l + 1)

(
β

(n)
l

)2
(

1−
(
rn−1
rn

)−2l−1
)]

γ
(j)
l,m,k,s =

∫
ej

Yl,mYk,s dH2 and βj,l,m =
∫
ej

Yl,m dH2.

The approach of Somersalo et al. (1992) applied on the three dimensional case would be as
follows: Since the series expansion of ũ converges in H1(Ω), we can write

a((u, U), (u, U)) = a((u, 0), (u, 0)) + 2a((u, 0), (0, U)) + a((0, U), (0, U))

=
∑
l,m

∑
k,s

Cl,mCk,sa((vl,m, 0), (vk,s, 0))+2
L∑
j=1

∑
l,m

Cl,mUja((vl,m, 0), (0, ej))+
L∑

i,j=1
UiUja((0, ei), (0, ej))

=
∑
l,m

C2
l,mηl,m +

L∑
j=1

1
zj

∑
l,m

∑
k,s

Cl,mCk,sγ
(j)
l,m,k,s − 2Uj

∑
l,m

Cl,mβj,l,m + U2
j |ej |

 .

34



Complete Electrode Model Alexander Frank

If we order the pairs (l,m), l ∈ N0, m = −l, . . . , l, lexicographically, then we can think of
C = (Cl,m)l,m as a vector and define a bilinear form MS : RL ⊕ `2w × RL ⊕ `2w → R by formally
multiplying in the style of xTSx with the following infinite-dimensional matrix

S =


diagL

(
Uj |ej |
zj

)
j=1...L

−
(

1
zj
βj,l,m

)
j=1...L
l,m

−
(

1
zj
βj,l,m

)T
j=1...L
l,m

diag∞ (ηl,m)l,m +∑L
j=1

1
zj

(
γ

(j)
l,m,k,s

)
k,s
l,m

 .
Further define a similar operator Mr : RL ⊕ `2w → R with

r =
(
I1 . . . IL 0 0 . . .

)T
by Mr((v, V )) = 〈r, (V, v)〉. Then (1.69) is equal to

min
v∈`2w,V ∈RL

1
2MS((V, v), (V, v))−Mr((V, v)).

Choosing the finite dimensional subspace `N = {(l,m) : 0 ≤ l ≤ N,−l ≤ m ≤ l}, we can
truncate S at the L+ (N + 1)2th row and column, and r at the L+ (N + 1)2th row, to obtain
SN and rN and solve the problem

min
vN∈`N ,V ∈RL

1
2(V, vN )TSN (V, vN )− (V, vN )T rN

as an approximation. Hence we have to solve the system SN (V, vN ) = rN , where SN is a finite
dimensional matrix.
The slightly different approach mentioned previously is as follows: We already know that u ∈
Image(Λ), hence there exists a unique element ũ ∈ `2w with u = Λũ. Since (u, U) is a solution of
the CEM we obtain

ã((ũ, U), (v, V )) = a((Λũ, U), (Λv, V )) = l(Λv, V ) = l̃(v, V ) ∀(v, V ) ∈ `2w ⊕ RL.

As ã is coercive on (`2w ⊕ RL)/R, it follows from the Lemma of Lax-Milgram, that (ũ, U) is the
unique solution of the problem in (`2w ⊕ RL)/R. We can now restrict this problem to the space
(`N ⊕ RL)/R. By the same arguments as before, it follows that there exists a unique solution.
If we take a closer look, we see that the formulation is equivalent to

(VN , vN )TSN (UN , ũN ) = (VN , vN )T rN ∀(vN , VN ) ∈ (`N ⊕ RL)/R.

Hence we obtain the identical equation system. Furthermore we have the Garlerkin orthogonal-
ity

ã((ũ− uN , U − UN ), (vN , VN )) = 0 ∀(vN , VN ) ∈ (`N ⊕ RL)/R

and hence

c‖(ũ− uN , U − UN )‖2(l2w⊕RL)/R ≤ ã((ũ− uN , U − UN ), (ũ− uN , U − UN ))
= ã((ũ− uN , U − UN ), (ũ− vN , U − VN )) ≤ C‖(ũ− uN , U − UN )‖‖(ũ− vN , U − VN )‖,

where the last two norms are taken in (l2w ⊕ RL)/R. Thus there exists C > 0 with

‖(ũ− uN , U − UN )‖(l2w⊕RL)/R ≤ C inf
(vN ,VN )∈`N⊕RL/R

‖(ũ− vN , U − VN )‖(l2w⊕RL)/R.

Now note that we can choose VN = U and project ũ onto `N , which we’ll denote ũN . Since the
series expansion of u converges in H1(Ω), it follows ‖ũ− ũN‖`2w → 0. We finally obtain

‖(u− ΛuN , U − UN )‖(H1(Ω)⊕RL)/R = ‖(ũ− uN , U − UN )‖(l2w⊕RL)/R ≤ C‖ũ− ũN‖`2w → 0.
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When trying to invert SN the same problem as in the FEM case arises. Unfortunately SN is
only positive semi-definite, the null space is given by R · (e1 + · · · + eL+1). We can enforce
uniqueness of the solution in `N ⊕Rl, if we add the condition Λ(uN )(0) = 0. We can incorporate
this condition similar to the FEM case. We can replace the L + 1th row and column of SN by
0 and insert a 1 on the diagonal and therefore enforcing (uN )0,0 = 0.

So far we assumed that we know how to model the electrodes and how to calculate the in-
tegrals. In the following we want to specify this. We will model the electrodes as spherical caps.
Let xj ∈ rNS2 be the center of the electrode, then

ej = {x ∈ rNS2 : x · xj
r2
N

> cosαj}

is a spherical cap with width 2αj . Now we could use special quadrature rules for spherical caps
as in Hesse and Womersley (2012) to approximate the integrals, but we will try to carry out some
more analytical calculations to speed up numerical calculations. Therefore we want to express
the electrodes in spherical coordinates. Hence consider (θ, ϕ) 7→ rN (sin θ cosϕ, sin θ sinϕ, cos θ)
with θ ∈ [0, π], ϕ ∈ [0, 2π), where we will identify coordinates that map to the same point,
namely to the north resp. south pole.
Let (θj , ϕj) be the spherical coordinates of xj . If xj = (0, 0,±rN ), then we easily see that
ej = [0, α) × [0, 2π) resp. ej = (π − α, π] × [0, 2π). Let us consider the case xj 6= (0, 0,±rN ).
Denote for x ∈ ej the spherical coordinates by (θ, ϕ) Let β = arccos x·xj

r2
N

be the central angle
between x and xj . We have 0 ≤ β ≤ α. The three points x

rN
,
xj

rN
and (0, 0, 1) span a spherical

triangle on S2 with side lengths β, θ, θj and a dihedral angle at (0, 0, 1) equal to |ϕ − ϕj |.The
cosine law for spherical triangles (Gellert et al., 1975, Ch. 12) reads

cosβ = cos θ cos θj + sin θ sin θj cos(ϕ− ϕj).

We can use this and derive

cos(ϕ− ϕj) = cosβ − cos θ cos θj
sin θ sin θj

. (1.70)

Hence we can express |ϕ − ϕj | as a function of θ and β. Unfortunately, when ϕ is close to ϕj
errors on the right hand side in (1.70) will lead to quite large numerical errors in |ϕ − ϕj | as
arccos is ill-conditioned near 1. Alternatively we can use the haversine formula (Korn and Korn,
1968, Sec. B.9), which can be rearranged to obtain

hav(ϕ− ϕj) = havβ − hav(θ − θj)
sin θ sin θj

= cos(θj − θ)− cosβ
2 sin θ sin θj

.

Note that havx= sin2 x
2 , hence we traded arccos in for arcsin, which is better conditioned near

0. The author’s numerical experiments showed no significant effect on the final results. We
define

gj(θ) = 2 arcsin

(cos(θj − θ)− cosα
2 sin θ sin θj

) 1
2
 θ ∈ (0, π).

It is plausible to restrict α ≤ π
2 . In order to simplify calculations, we won’t restrict ϕ to the

interval [0, 2π) but we will identify points via (θ1, ϕ1) ∼ (θ2, ϕ2) ⇔ θ1 = θ2 and ϕ1 ≡ ϕ2
(mod 2π). Let us first assume α ≤ θj and α ≤ π − θj . This means that the electrode does not
overlap one of the poles. Then the electrode is given by

ej = {(θ, ϕ) ∈ (θj − α, θj + α)× [ϕj − α,ϕj + α] : |ϕ− ϕj | < gj(θ)}/∼.
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For α > θj we get

ej = [0, α− θj)× [0, 2π] ∪ {(θ, ϕ) ∈ [α− θj , θj + α)× [ϕj − α,ϕj + α] : |ϕ− ϕj | < gj(θ)}/∼

and otherwise for π − θj < α

ej = (2π−θj−α, π]×[0, 2π]∪{(θ, ϕ) ∈ (θj−α, 2π−θj−α]×[ϕj−α,ϕj+α] : |ϕ−ϕj | < gj(θ)}/∼.

Recall the spherical harmonic basis functions from (1.62)

Yl,m(θ, ϕ) = Nl,mPl,3,|m|(cos θ) ·


cos(mϕ), for m > 0
1, for m = 0
sin(|m|ϕ), for m < 0,

where Nl,m are normalizing constants. Since we are only dealing with R3, we will omit the 3
from the subscripts of the associated Legendre functions. Denote the function after the bracket
by fm. Since we want to integrate the product of two spherical harmonics, we have to integrate
the product of all pairs consisting of sin, cos and 1, i.e fmfs. For all these combinations we can
quite easily find their antiderivative, which we will denote by Fm,s (see A.1). The antiderivative
of fm is given by Fm,0. We can now tackle the integrals∫

ej

Yl,mYk,s dH2 and
∫
ej

Yl,m dH2.

We first consider the case α ≤ θj and α ≤ π − θj . Then

∫
ej

Yl,mYk,s dH2 = r2
N

θj+α∫
θj−α

ϕj+gj(θ)∫
ϕj−gj(θ)

Nl,mNk,sPl,|m|(cos θ)Pk,|s|(cos θ) sin θfm(ϕ)fs(ϕ)dϕ dθ

= r2
N

θj+α∫
θj−α

Nl,mNk,sPl,|m|(cos θ)Pk,|s|(cos θ) sin θ(Fm,s(ϕj + gj(θ))− Fm,s(ϕj − gj(θ)))dθ

(1.71)

and similar∫
ej

Yl,m dH2 = r2
N

θj+α∫
θj−α

Nl,mPl,|m|(cos θ) sin θ(Fm,0(ϕj + gj(θ))− Fm,0(ϕj − gj(θ)))dθ.

Now assume α > θj , the case α > π − θj is similar. Then we get

∫
ej

Yl,mYk,s dH2 = r2
N

 α−θj∫
0

2π∫
0

Yl,mYk,sdϕ dθ +
θj+α∫
α−θj

ϕj+gj(θ)∫
ϕj−gj(θ)

Yl,mYk,sdϕ dθ

 . (1.72)

The second summand is similar to the integrals in (1.71), only the integration boundaries w.r.t
θ are different. Looking at the first summand yields
α−θj∫
0

2π∫
0

Yl,mYk,sdϕ dθ =
α−θj∫
0

Nl,mNk,sPl,|m|(cos θ)Pk,|s|(cos θ) sin θ dθ ·


0, for m 6= s
π, for m = s 6= 0
2π, for m = s = 0

.

The integral of
∫
ej
Yl,m dH2 can be split similar to (1.72), where we then only have two cases for

the first summand, namely
α−θj∫
0

2π∫
0

Yl,mdϕ dθ =
α−θj∫
0

Nl,mPl,|m|(cos θ) sin θ dθ ·
{

0, for m 6= 0
2π, for m = 0 .
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Hence we have to calculate integrals of the form∫ b

a
Pl,m(cos θ)Pk,s(cos θ) sin θ h(θ) dθ,

where [a, b] ⊆ [0, π] and h is an arbitrary function dependent on θ. We can transform the integral
by t = cos θ and derive ∫ cos a

cos b
Pl,m(t)Pk,s(t) h(arccos(t)) dt.

Note that

gj(arccos(t)) = arccos
(

cosα− t cos θj√
1− t2 sin θj

)
= 2 arcsin

(cos(θj − arccos(t))− cosα
2
√

1− t2 sin θj

) 1
2
 .

We will use a Gauss-Legendre quadrature from Trefethen (2008) in order to numerically approx-
imate the integrals. A Gauss-Legendre quadrature with n points is exact on polynomials up to
degree 2n− 1.

1.5.2. Point Electrode Model
For the point electrode model on the four layer sphere model formulas are derived in Ferree
et al. (2000) and the references therein. They deal with the case of 2 electrodes, but can easily
be modified to the multiple electrode case. As the mere presence of further electrodes doesn’t
effect the potential generated by the others, one can take advantage of azimuthal symmetries,
which yield simpler series expansions. Assume that the electrode set up is given by

g =
L∑
i=1

Iiδxi ,

where I ∈ RL� . Then the potential is given by

u(x) =
∞∑
l=1

[(
A

(n)
l

(
r

rn

)l
+B

(n)
l

(
r

rn

)−(l+1)
)

L∑
i=1

IiPl

(
arccos 〈x, xi〉

|x|r4

)]
for rn−1 < |x| < rn.

For the coefficients A(n)
l , B

(n)
l , n = 1 . . . 4, l ∈ N, we refer to Ferree et al. (2000) and the

correction Ferree et al. (2001). It is not expected that this series converges in H1(Ω), but
perhaps in H 1

2−ε(Ω) or in H1(Ω0) for Ω0 b Ω. Further investigations would be needed, but we
will ignore this and continue without.
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1.6. Numerical Evaluation
Before we continue with our further analysis involving the finite element solutions, we will try to
verify them on a four layer sphere model with isotropic conductivity, consisting of four concentric
layers representing skin, skull, cerebrospinal fluid (CSF) and brain. As a reference we will use the
semi-analytically expressions derived in the previous sections. Furthermore we want to compare
the semi-analytic solutions of the PEM and the CEM to illustrate the differences and investigate
whether the FEM solutions behave similarly. We are particularly interested in the behavior of
the FEM solutions when we reduce the electrode size. Note that we did not derive (semi-)
analytical expressions for the current density, hence we will only compare the numerical ones.

Outer ra-
dius (mm) Tissue Conduc-

tivity (S/m)
92 Skin 0.43
86 Skull 0.0064
80 CSF 1.79
78 Brain 0.33

Table 1.1.: Four layer sphere model

Figure 1.1.: Cross section of model

The radii and the conductivities of the model are shown
in table 1.1 (Dannhauer et al., 2011; Baumann et al.,
1997). Note that the conductivity of the skull compacta
is chosen for the whole skull layer. In order to compute
the FEM solutions, the open source MATLAB (2020)
toolbox Zeffiro Interface (2022) was used, a tool for fi-
nite element method assisted forward and inverse simu-
lations for electromagnetic brain imaging and investiga-
tions. Zeffiro requires surfaces meshes of the compart-
ments as an input. It generates a hexahedral volume
mesh and divides every hexahedron into tetrahedrons.
Then those are assigned to a compartment, based on
their position relative to the surface meshes. A set of
high quality surface meshes generated by Lunkenheimer
(2021) was used, consisting of 155734 nodes and 311452
triangles with an average edge length of 1.63 mm (min.
1.03 mm, max. 2.33 mm). The quality is measured by
the scaled ratio of inradius and circumradius, where 1 is
optimal and 0 the worst possible. The used meshes have
an average value of 0.9919 and a minimal value of 0.6457.
The volume mesh generated by Zeffiro with a mesh width
of 1 mm consisted of 3260879 nodes and 15908720 tetra-
hedrons. Further a smoothing was applied to remove the
staircase pattern. The effect of this smoothing can be
seen in figure 1.2. As a comparison the semi-analytical
solutions obtained in the previous section 1.5 were im-
plemented in MATLAB (2020) and evaluated at the nodes of the mesh. We will consider three
different electrode montages. The first two setups consist of two electrodes each, which are sep-

Figure 1.2.: Volume mesh non-smoothed (l.) and smoothed (r.)
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Figure 1.3.: Current pattern of (iii) front (l.) & back (r.)

arated at a 90 degree angle (i) and in the second case at a 180 degree angle (ii). A unit current
is injected in both cases. Since the PDE is linear, we can think of this as being in 1 and −1mA.
The last montage is placed at the corners of an icosahedron (iii) and a randomly generated
injection pattern with ‖I‖∞ ≤ 1 was used. The setup and amperages are shown in figure 1.3.
Since we don’t want to focus on the effect of different values for the contact impedance, we will
simply use the default value of Zeffiro, which is 2kΩ. Since the potentials aren’t unique, we
have to choose a reference. In the following all potentials are chosen such that u(0) = 0. The
location of the point electrode will always be the center of the spherical cap representing the
electrode from the CEM. Zeffiro determines the discretized electrode, which consists of surface
triangles, based on the euclidean distance between the centroid of the triangle and the center of
the spherical cap.
We introduce three different types of global measures in order to compare a potential u with a
reference potential uref. The relative error (RE) is defined by

RE(u, uref) = ‖u− uref‖L2

‖uref‖L2
.

As the name already implies, it puts the absolute difference in proportion to the norm of the
reference potential. The next measure is the Relative Difference Measure (RDM). It focuses on
the distribution of the potentials and tries to suppress errors resulting from different magnitudes.
It is defined as

RDM(u, uref) =
∥∥∥ u

‖u‖L2
− uref
‖uref‖L2

∥∥∥
L2
.

In contrast the Magnitude Error (MAG) ignores the distribution and measures differences in
the magnitude

MAG(u, uref) = ‖u‖L2

‖uref‖L2
− 1.

Further we want to introduce a local counterpart to the relative error, namely the local Relative
Error (local RE)

local RE(u, uref, x) = |u(x)− uref(x)|
|uref(x)| .

Note that the term error can be misleading, because not all differences we will measure are
automatically errors. The L2-norm was approximated by using a four point quadrature on each
tetrahedron with equal weights and evaluation points at the vertices, i.e.

∫
Ω
f(x)2 dx ≈

∑
T∈T

|T |
4

 ∑
v∈VT

f(v)2

 ,
where T denotes the set of tetrahedrons and VT the set of vertices of T ∈ T .
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1.6.1. Semi-analytical PEM solution
As stated in section 1.5.2, the solution of the point electrode model can be expressed as a
series, which in turn will be approximated by a finite sum. We want to find out what number
of summands is appropriate to truncate the series. We will denote the number of summands
used by n. Different approximations un, with n between 0 and 1000, were calculated on the
mesh and compared to the reference potential with n = 1000. The results are shown in figure
1.4. We see that the relative errors in skull, CSF and brain rapidly decrease. In the skin they
decrease only slowly due to the high irregularity at the electrodes. At least in the interior
of the sphere model the series seems to converge, but keep in mind that we aren’t using the
analytical solution of the PEM as a reference, but only u1000, which is much more regular.

Figure 1.4.: RE of PEM approximations un and uref = u1000

Figure 1.5.: Potential of setup (i) for n = 10, 50, 250, 1000 (left to right)
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Figure 1.6.: Local RE of u250

Figure 1.5 shows that the potential only becomes more singular
at the electrode positions with increasing n, but does not change
much further away. MAG errors rapidly converge to zero in all
cases and compartments and thus RDM errors behave similar to
the relative errors. Since we are mainly interested in the poten-
tial in the brain n = 250 will be by far sufficient for our further
analysis. Figure 1.6 shows that in this case the local relative
error is mostly far below one percent. High errors mainly arise
at the zero potential line, because of dividing by zero, and at the
injection electrodes, which is due to the previously mentioned
high irregularity of the boundary conditions. Therefore we will
fix n = 250 for further analysis regarding the point electrode
model. Note that the errors around the zero potential line will
occur in all future cases and hence we won’t further mention
them.

1.6.2. Semi-analytical CEM solution
We will repeat the previous analysis for the complete electrode model. Therefore we consider
the same electrode setups with a radius of 1cm. Due to higher computational costs it was only
possible to use n = 250 as a reference. The two most interesting compartments are the brain
and the skin. The brain obviously as the subject of neurological interest and the skin due to its
proximity to the electrodes. The results for these compartments are shown in figure 1.7. Note

Figure 1.7.: RE of CEM and PEM approximations un and uref = u250
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Figure 1.8.: Potential of setup (i) for n = 10, 50, 250 (l. to r.)

that the results for the PEM with reference n = 250 are also included in order to make the
results comparable. We can clearly see that the solution of the CEM converges faster in the
skin, whereas there is no significant difference in the brain. The solutions for n = 10, 50, 250
are shown in figure 1.8. On the surface they converge and the potential concentrates around
the two electrodes, but due to the spatial extent of the electrodes it does not become singular.

Figure 1.9.: Position of electrode (black)

In particular, figure 1.9 can be seen as a proof of
concept for section 1.5.1 as the topography of the
potential looks plausible and fits perfectly to the
electrode. As before we will use n = 250 for our
analysis.
One major difference of the CEM is that current
can shunt through the electrode, hence an inactive
electrode also influences the potential. To see these
effects an additional inactive electrode is placed be-
tween the already existing electrodes of setup (i)
(figure 1.10(a)). In order to investigate the differ-
ences caused, the resulting potential is compared with the potential of (i) only consisting of the
two active electrodes. In table 1.2 and figure 1.10(b)-(c) the new potential with the additional
electrode was used as reference potential. In (b) one can clearly see that the additional electrode
influences the potential, as you can already infer the position from the error. Further the effect
is mainly limited to the outer compartment. Moreover, they are extremely small resulting in
local relative errors below 2.5× 10−6. The global errors in table 1.2 are even smaller.

Figure 1.10.: (a) Position of inactive electrode (red), (b)&(c) Local RE to potential of setup (i)

Total Skin Skull CSF Brain
RE 1.05× 10−7 1.10× 10−7 9.74× 10−8 5.56× 10−8 5.05× 10−8

MAG 4.67× 10−8 4.68× 10−8 4.67× 10−8 4.39× 10−8 4.35× 10−8

RDM 9.42× 10−8 9.95× 10−8 8.55× 10−8 3.42× 10−8 2.58× 10−8

Table 1.2.: Differences of potentials with and without inactive electrode
43



Comparison of semi-analytical solutions for PEM and CEM Alexander Frank

1.6.3. Comparison of semi-analytical solutions for PEM and CEM
We want to compare the solution of the complete electrode model with the one obtained from
the point electrode model. Even though it would be interesting to compare the current densities,
as these are essential for electrical brain stimulation, we haven’t derived expressions therefore
and must restrict ourselves to the potentials. Alternatively we could use the potential and
differentiate numerically, but we will omit this comparison here and only carry it out for the
numerical solutions later.

Figure 1.11.: (a) Cross section of potential
(b) Potential near electrode

The differences between the potentials for
all three electrode setups are shown in ta-
ble 1.3, where the CEM was chosen as ref-
erence. As expected large differences oc-
cur in the skin and skull compartments.
Those are damped by the skull result-
ing in only small differences in the CSF
and brain layer. In all cases the (av-
erage) relative error in the brain is be-
low 0.6 percent and RDM and MAG er-
rors are even lower. The usage of twelve
electrodes increases the discrepancies be-
tween CEM and PEM only slightly com-
pared to the setup (ii) consisting of only
two electrodes. Interestingly differences
decrease when the electrodes move fur-
ther apart. Looking at the potentials in
figure 1.11(b) one can clearly see that
the point electrode causes a much higher
and singular magnitude at the electrode,
whereas the potential of the CEM is more
spread out, since the shape of the elec-
trode is considered as well. This is also evident from the ring pattern around the electrode in
figure 1.11(a). The cross section in figure 1.11(a) shows that the topographies don’t change
much. If one looks closely, one can see that the outer most isolines of the PEM are shifted
slightly inwards, meaning that the potential in the brain area directly underneath the electrode
has a slightly higher magnitude. This results in a local relative error of 1 to 2.3 percent, as
seen in figure 1.12(b). Hence it is reasonable to assume that there is a relevant effect on the
stimulation of superficial targets in the brain. We will analyze this more deeply in chapter 2.

Setup Measure Total Skin Skull CSF Brain
RE% 8.16 9.42 4.41 0.90 0.48

(i) MAG% 1.90 2.15 1.44 0.44 0.38
RDM% 7.86 9.07 4.14 0.79 0.29
RE% 7.19 8.39 3.87 0.70 0.37

(ii) MAG% 1.48 1.71 1.12 0.34 0.32
RDM% 6.98 8.14 3.68 0.60 0.20
RE% 8.50 9.65 5.03 1.20 0.58

(iii) MAG% 2.29 2.54 1.81 0.57 0.44
RDM% 8.10 9.20 4.65 1.05 0.39

Table 1.3.: Differences of PEM and CEM (reference) solutions
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Figure 1.12.: Cross section of local RE in head (a) and brain (b)

1.6.4. Comparison for PEM between semi-analytical and numerical solutions
A numerical solution for the PEM was calculated for every electrode setup, using the finite
element method and the toolbox Zeffiro Interface (2022), which was already mentioned earlier.
The code was slightly modified since Zeffiro does not output the potential by default, only the
current density. Looking at the local relative error between the numerical and semi-analytical
solutions in figure 1.13, the large errors in the CSF and skull compartments are immediately
noticeable. Table 1.4 shows that the relative errors in these layers are up to 30 percent for each
electrode setup. Note that MAG and RDM errors are both large, meaning that the distribution
of the potentials and their magnitude are both affected.

Figure 1.13.: Local RE of numerical and semi-analytical (reference) solutions

Setup Measure Total Skin Skull CSF Brain
RE% 10.01 4.75 17.28 30.22 1.86

(i) MAG% 5.56 1.57 15.16 17.29 1.82
RDM% 8.20 4.45 7.72 22.88 0.36
RE% 9.62 4.31 16.56 25.35 1.75

(ii) MAG% 5.35 1.44 14.63 14.13 1.73
RDM% 7.79 4.03 7.25 19.70 0.24
RE% 10.55 5.85 17.50 34.12 2.05

(iii) MAG% 5.60 1.66 15.30 20.12 1.96
RDM% 8.70 5.57 7.90 25.14 0.62

Table 1.4.: Errors between numerical and analytical (reference) solution for PEM
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There are three likely sources of error here: semi-analytical PEM implementation, mesh and
FEM solver. Therefore we first compare the Zeffiro solution with the DUNEuro solution, using
the mesh generated by Zeffiro. DUNEuro is a free open-source C++ software toolbox for the
numerical computation of forward solutions in bioelectromagnetism (Schrader et al., 2021). To
be precise the code from Erdbrügger (2021) was used. The differences for setup (i) are shown in
table 1.5. We see that the differences are marginal and therefore it is save to say that the FEM
solver is working properly.

Total Skin Skull CSF Brain
RE 6.18× 10−6 3.35× 10−6 4.53× 10−6 2.26× 10−5 2.89× 10−5

MAG −8.36× 10−7 −7.57× 10−7 −9.33× 10−7 −1.87× 10−6 −1.37× 10−6

RDM 6.12× 10−6 3.26× 10−6 4.43× 10−6 2.25× 10−5 2.88× 10−5

Table 1.5.: Errors between Zeffiro and DUNEuro (reference) solutions

Next a mesh from Lunkenheimer (2021) was used in order to compare the solution of the semi-
analytical PEM implementation and the DUNEuro solution. Note that we use DUNEuro instead
of Zeffiro, because it isn’t possible to use external volume meshes with Zeffiro. The new mesh
was coarser, namely consisting of 555289 nodes and 3194545 tetrahedrons with an average edge
length of 1.63mm, but was adapted to the geometry of the compartments. Therefore the surfaces
in figure 1.14 look much smoother. The resulting errors shown in table 1.6 are far smaller than
in table 1.4. The relative error in the skull decreased from 17.28 to 1.32 percent and in the
CSF even from 30.22 to 0.62. This can also be seen in figure 1.15(a) where the ring-shaped
error has disappeared. Notice the wavy pattern on the surface is due to the (truncated) series
expansion used for the potential. With the DUNEuro solution and the geometry adapting mesh
we obtain local relative errors of about 1 percent in the brain and in the brain areas underneath
the electrodes even close to zero (1.15(b)).

Figure 1.14.: Semi-analytical solution (l.), DUNEuro solution (r.).

Total Skin Skull CSF Brain
RE% 3.76 4.34 1.32 0.62 0.60
MAG% 0.17 0.16 0.18 0.50 0.53
RDM% 3.75 4.33 1.31 0.37 0.29

Table 1.6.: Differences between DUNEuro and semi-analytical (reference) solution
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Figure 1.15.: Local RE of DUNEuro and semi-analytical (ref.) solutions in head (a) & brain (b)

We can conclude that the source of error is probably the mesh. This is supported by figure 1.16.
The layers of the mesh are offset inward by up to 1 mm, which leads to these distortions. We
could compensate this phenomenon by slightly inflating the sphere model. Since in our further
analysis we will only use finite element solutions, which were all obtained from this shrunken
model, we will assume the mesh to be correct and ignore this variational crime.

Figure 1.16.: Mesh from Lunkenheimer (2021) (l.) and Zeffiro (r.) side by side in (a) and (b)

1.6.5. Comparison for CEM between semi-analytical and numerical solutions
Unfortunately, the previous problem also occurs in the case of CEM. The values for CSF
and skull layer in table 1.7 are nearly identical with table 1.4. The same is true for fig-
ures 1.17 and 1.13. This supports the hypothesis that the errors are due to the meshing.

Setup Measures Total Skin Skull CSF Brain
RE% 9.41 1.94 17.18 29.92 1.85

(i) MAG% 5.26 1.10 15.07 17.14 1.81
RDM% 7.61 1.59 7.69 22.65 0.35
RE% 9.06 1.86 16.47 25.14 1.74

(ii) MAG% 5.12 1.07 14.56 14.04 1.72
RDM% 7.29 1.52 7.21 19.52 0.23
RE% 9.48 2.05 17.39 33.74 1.96

(iii) MAG% 5.28 1.16 15.21 19.85 1.90
RDM% 7.67 1.68 7.86 24.92 0.49

Table 1.7.: Errors of numerical and semi-
analytical (ref.) CEM solutions

Figure 1.17.: Local RE for numerical &
semi-analytical (ref.) CEM solutions
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1.6.6. Comparison of numerical solutions for PEM and CEM
We want to investigate how the numerical solutions of the two models differ and in particular
the current densities. As mentioned earlier, we consider the numerical solutions and the mesh
separately from the initial problem. Hence we won’t longer use the radii from table 1.1, but rather
the mesh itself to delimit the tissues. Table 1.8 shows the differences between the potentials.
Surprisingly, the values for the brain compartment are very similar to the analytical case (cf.
table 1.3), even though there is this deviation in the domain and the conductivities. In the
other interior compartments the situation is unambiguous, while the errors are lower in the CSF
compartment, they’re higher in the skull layer. Looking at figure 1.18 we see a familiar picture.
The local relative error looks similar to the one of the analytic case 1.13. Again the solution for
the PEM, but this time the numerical one, has higher magnitudes in the brain areas underneath
the electrodes compared to the numerical CEM.

Setup Measure Total Skin Skull CSF Brain
RE% 10.28 11.81 4.58 0.61 0.50

(i) MAG% 2.19 2.50 1.50 0.43 0.39
RDM % 9.94 11.40 4.29 0.43 0.30
RE% 9.07 10.52 4.01 0.47 0.38

(ii) MAG% 1.71 1.99 1.16 0.34 0.32
RDM% 8.83 10.23 3.82 0.32 0.21
RE% 11.03 12.54 5.16 0.80 0.65

(iii) MAG% 2.60 2.91 1.87 0.55 0.49
RDM% 10.58 12.03 4.76 0.58 0.42

Table 1.8.: Differences between numerical solution of PEM and CEM (ref.)

Figure 1.18.: Local RE for numerical PEM and CEM (ref.) solutions in head (a) and brain (b)

So far we only considered the different potentials, next we want to focus on the current density
generated by the point and the complete electrode model. Figure 1.19 shows the current density
for setup (i) of both models in a cross section. We see that the majority of the current flows
through the skin and because of the low conductivity, only little passes through the skull. High
magnitudes arise in the CSF due to the high conductivity. Comparing PEM and CEM, the
significant differences only occur at the electrodes and the areas underneath. As one would
expect the inflowing normal current density at the CEM electrode is spread out, while it is
punctual for the point electrode (figure 1.20). Recall that we only derived the discretization for
the PEM by formally applying the divergence theorem, hence this shows that the approach is
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Figure 1.19.: Current density of PEM (l.) and CEM (r.)

Figure 1.20.: Current density near an electrode for PEM (l.) and CEM (r.)

plausible. The point electrode causes high magnitudes in the underlying skin area, with values
off the scale. These strongly decrease at the skull-skin interface. In the introduction of the
complete electrode model, it was mentioned that high currents arise at the boundary of the
electrodes. One can clearly see this phenomenon in figure 1.20, where magnitudes of 4A/m2

and above occur at the boundary and only of 2.5A/m2 in the center. This transfers to the
underlying skin areas, hence high magnitudes arise in the skin at the boundary of the electrode
and relative low ones under the center. This is a strong contrast to the PEM, where the highest
values occur directly underneath. In both models, the current density decreases as it enters the
skull. Nevertheless, the PEM still generates larger magnitudes as we see in figure 1.21. Looking
closely, this also applies to the brain areas underneath.

Figure 1.21.: Current density in the interior layers for PEM (l.) and CEM (r.)
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To specify this more precisely we can introduce similar error resp. difference measures to the
ones used before, by adapting them to vector valued functions. The corresponding values for
PEM and CEM are shown in table 1.9. The distribution of the values behaves similar to what we
saw for the potentials already. Note that we have omitted the skin layer in this table, because
the difference are very large as expected. What could previously only be seen when looking
closely, becomes clear in figure 1.22. The local relative error mainly arise at the brain areas
underneath the electrodes. From figure 1.21 it seems like the orientation for PEM and CEM is
very similar, which suggests that the current density of the PEM has a higher magnitude. That
would mean with the PEM one could achieve higher intensities during stimulation.

Setup Measure Skull CSF Brain
RE% 7.83 2.06 1.07

(i) MAG% 2.30 0.89 0.59
RDM% 7.40 1.85 0.88
RE% 7.19 1.76 0.87

(ii) MAG% 1.93 0.67 0.44
RDM% 6.86 1.62 0.74
RE% 8.47 2.40 1.34

(iii) MAG% 2.74 1.16 0.78
RDM% 7.91 2.09 1.08

Table 1.9.: Difference of current density for
PEM and CEM (ref.)

Figure 1.22.: Local RE for current density
of PEM and CEM (ref.) in the brain

1.6.7. Convergence of CEM towards PEM for small electrodes
Until now we only considered electrodes with a radius of 1cm. In section 1.3.3 we showed that
under certain assumptions the potential of the CEM converges towards the potential of the PEM
on relative compact subsets, when the electrodes decrease in size. Looking at figure 1.23 this
clearly seems to be the case for the discretizations as well. The graphs show the relative error
in the brain between the potential resp. the current density of the point electrode model and
the complete electrode model corresponding to a certain electrode size. Only the setups (i) and
(ii) were calculated and the PEM was chosen as a reference. When shrinking the electrodes, the
potentials seem to converge in the H1-norm. Note that the L2-norm of the current density is
equivalent to ‖∇u‖L2 , as the conductivity is piecewise constant and strictly positive. Moreover
one can recognize the convergence rate h2 from the graphs.

Figure 1.23.: RE between potential and current density of the PEM and the CEM for different
electrode sizes
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Figure 1.24.: Current density in the interior compartments for CEM with electrode size 10, 5, 1
mm and for the PEM (l. to r.)

From figure 1.24 we see that smaller electrodes (with the same current injection) produce a
current density in the skull which is more concentrated and with higher magnitudes resulting in
a higher current density in the underlying brain area.

We can conclude that there are small but noticeable differences between the potentials gener-
ated by PEM and CEM in both the analytical and numerical cases. For the numerical case, we
have also seen that similar differences occur with the current density. These differences were
mainly located underneath the electrode and mainly effected the corresponding superficial ar-
eas of the brain. Therefore, this could be important for stimulation of superficial targets. It
appears that the point electrode model may cause higher intensities in deeper regions because
the current density is more concentrated. By using smaller electrodes in CEM, the resulting
(discretized) potentials and current densities approach the (discretized) solutions of the point
electrode model, which means that smaller electrodes can also cause higher intensities in the
brain regions mentioned above.
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2. The Optimization Problem

The conventional way to apply electric currents on the scalp (mostly ≤ 2mA) is by using a
pair of two large patch-like sponge electrodes. For somato-motor applications one electrode is
placed over the primary motor or somatosensory cortex and the other one over the supraorbital
area. Anodal stimulation right over the target enhances cortical excitability, whereas cathodal
stimulation inhibits it (Nitsche and Paulus, 2000). This simple approach neglects some impor-
tant aspects of the stimulation. The neurobiological effects of tDCS depend on the magnitude
of the electric field and it’s direction with respect of the stimulated neuronal structure in the
target area. Hence not taking into account individual anatomies can lead to suboptimal results.
Besides focusing on the location of the target, it is further important to consider it’s orientation
(Creutzfeldt et al., 1962). Additionally, the individual anatomical features of head tissues lead
to variations of the created electric field. Therefore an accurate volume head model is essential
in improving individual tDCS efficacy. Dmochowski et al. (2011) used a multi-channel array con-
sisting of 64 fixed electrode locations to calculate optimized stimulation montages for presumed
target regions. Compared with conventional electrode, montages their optimization approach
achieved electric fields, which exhibit simultaneously greater focality and target intensity at
cortical targets using the same total current. In short, optimal targeting should not only try to
maximize the injected current in the target region in the brain (intensity) and minimize it in
other areas (focality), but also generate it as parallel (excitation) or anti-parallel (inhibition) to
the target direction (directionality) as possible. Hence we obtain an optimal control problem,
which in its most general form can probably be stated as follows

min
(u,y)∈U×Y

J(u, y) subject to e(u, y) = 0, c(u, y) ∈ K, (u, y) ∈ C,

where J : U × Y → R̄ = R∪∞ is the objective function, e : U × Y → Z and c : U × Y → R are
operators, U, Y, Z,R real Banachspaces, K ⊂ R a closed convex cone and C ⊆ U × Y a closed
convex set. Herein e(u, y) describes the boundary value problem, i.e. the relation between the
state of the system u and the boundary control y. Using the CM as an example we derive
U = H1(Ω), Y = H−

1
2 (Γ), Z = U × Y with e(u, y) = (div σ∇u, σ∇u · ν − y). Recall that all

three boundary value problems, we discussed in chapter 1, were linear and well-posed. Hence
for every control y there exists a unique state u with e(u, y) = 0 and y 7→ u = y(u) is linear and
continuous. Therefore the problem is only dependent on the control variable y. We can rewrite

min
y∈Y

J(y) subject to c(y) ∈ K, (u(y), y) ∈ C (2.1)

for modified J and c. The condition c(u, y) ∈ K can be interpreted as an abstract inequality
constraint and could model safety conditions. The set C will model Kirchhoff’s law 〈y, 1〉 = 0
and could further model safety constraints as well. We will be able to formulate our constraints
in the form of (u, y) ∈ C and hence we will omit the other condition involving the convex cone.
The objective function strongly depends on the treatment goal and could range from maximum
intensity to maximal focality. Notice that we can easily translate a maximization problem into
a minimization problem by considering −J instead.

Definition 20. We call y ∈ Y a feasible control if y satisfies all conditions of (2.1). Further y
is an optimal control of (2.1) if it is feasible and J(y) ≤ J(ỹ) for all other feasible ỹ ∈ Y .
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When using the point electrode model or the complete electrode model it is plausible to assume
that the electrode positions are fixed e.g. due to given positions in the electrode cap. Therefore
the problem reduces to a finite dimensional optimization problem. We will impose two safety
constraints during this chapter. We limit the total current injected, i.e. ‖I‖1 ≤ C1 and the
maximal current injected per electrode, i.e. ‖I‖∞ ≤ C2, where I ∈ RL. To satisfy Kirchhoff’s
law we further impose ∑L

m=1 Im = 0, i.e. I ∈ RL� . In our cases the objective function is linear
or convex and we obtain a convex optimization problem. Therefore we will give a brief recap of
convex optimization.

2.1. Mathematical Basics
A function f : Rn → R̄ is convex if for all λ ∈ (0, 1), x, y ∈ Rn

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

and strictly convex if the inequality is strict. A subset C ⊆ Rn is convex, if

λx+ (1− λ)y ∈ C ∀λ ∈ (0, 1) x, y ∈ C.

We call z ∈ C extreme point of C if z does not lie between points of C, i.e.

z = λx+ (1− λ)y for λ ∈ (0, 1), x, y ∈ C ⇒ x = y = z.

We denote the convex hull of a set S ⊆ Rn by convS. It is defined as the unique minimal
convex set containing S. The theorem of Minkowski states that a non-empty compact convex
set K ⊂ Rn is the convex hull of its extreme points, i.e. conv(extK) = K (Brøndsted, 2012,
Thm 5.10). Notice that this is also true in general Hausdorff locally convex topological vector
spaces, if we replace the convex hull by its closure (Rudin, 1991, Thm. 3.23).
The epigraph of a convex function is given by

epi f = {(x, t) ∈ Rn × R : f(x) ≤ t}.

Note that f is convex if and only if epif is convex as well and that f is lower semi continuous
if and only if epif is closed. The domain of a function f : Rn → R̄ is the set

domf = {x ∈ Rn : f(x) <∞}.

The standard form of a (finite dimensional) convex optimization problem is

min
x∈Rn

f0(x) subject to cE(x) = 0, cI(x) ≤ 0

cI = (f1, . . . , fm)T : Rn → R̄m

cE = (h1, . . . , hp)T : Rn → R̄p,

(2.2)

where f0, f1, . . . , fm are convex and h1, . . . hp are affine. cI(x) ≤ 0 has to be understood
component wise. The domain of the problem is

D =
m⋂
i=0

dom fi ∩
p⋂
i=1

dom hi.

A problem, which is equivalent to a convex problem, can also be considered as a convex op-
timization problem. A point x ∈ D is called feasible if it satisfies all constraints and strictly
feasible when cI(x) < 0. We denote the set of feasible points by C. Moreover the problem is
called feasible if there exists a feasible point and otherwise infeasible. The optimal value of the
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problem is p∗ = inf{f0(x) : x ∈ C}. For an infeasible problem we have p∗ = ∞. If p∗ = −∞
we say that the problem is unbounded (from below). As a special case of the above definition
x ∈ C is called optimal when f0(x) ≤ f0(x̃) for all x̃ ∈ C, i.e. f(x) = p∗. Furthermore x ∈ C
is called locally optimal, if it is optimal in a small neighborhood. Assuming f0 is convex, then
locally optimal points are globally optimal. Moreover, if f0 is strictly convex, then optimal
points are unique. To see this first notice that the feasible domain is convex. Now assume that
J is convex and x is locally optimal but not globally, i.e. it exists y ∈ C with J(y) < J(x). But
zλ = λx + (1 − λ)y ∈ C for λ ∈ (0, 1) and f(zy) ≤ λf(x) + (1 − λ)f(y) < f(x). Then we see
that x can’t be locally optimal by choosing λ small enough. For the other claim assume f0 is
strictly convex and x 6= y are optimal. Then f0(1

2x+ 1
2y) < 1

2f0(x) + 1
2f0(y), which contradicts

the optimality and hence x = y.
The Lagrange function to the above minimization problem L : Rn × Rm × Rp → R̄ is defined

L(x, µ, λ) = f0(x) + µT cI(x) + λT cE(x), dom L = D × Rm × Rp.

The variables µ, λ are called dual variables and

g : Rm × Rp → R, g(µ, λ) = inf
x∈D
L(x, µ, λ)

is the (Lagrange-) dual function. It is concave, so. −g is convex. To see this, first note that
L is linear resp. convex in the dual variables and −g = supx∈D L(x, ·, ·). With the help of the
epigraph one can show that the pointwise supremum of convex functions is again convex. The
dual functions yields a lower bound for the optimal value p∗. Let µ ≥ 0, λ ∈ Rp and x ∈ C.
Then we have

g(µ, λ) ≤ L(x, µ, λ) = f0(x) + µT cI(x) + λT cE(x) ≤ f0(x).

Thus we obtian g(µ, λ) ≤ infx∈C f0(x) = p∗. Therefore the dual problem is defined as

max
µ∈Rm,λ∈Rp

µ≥0

g(µ, λ),

where in this case dom g = {(µ, λ) ∈ Rm × Rp : g(µ, λ) > −∞}. The pair (µ, λ) is called
dual feasible if (µ, λ) ∈ dom g and µ ≥ 0 and dual-optimal when it solves the dual problem.
Notice that the dual problem is a convex problem. This is even true, if the initial problem isn’t
convex.We denote the optimal value of the dual problem by d∗, then we get d∗ ≤ p∗. This
property is called weak duality. In the case of d∗ = p∗ one speaks of strong duality.
Let f : W × Z ⊆ Rn × Rm → R. A point (w̄, z̄) ∈ W × Z is called saddle point for f,W and Z
if f(w̄, z) ≤ f(w̄, z̄) ≤ f(w, z̄) for all (w, z) ∈W × Z, i.e.

f(w̄, z̄) = inf
w∈W

f(w, z̄) = sup
z∈Z

f(w̄, z).

In general the max-min inequality holds

sup
z∈Z

inf
w∈W

f(w, z) ≤ inf
w∈W

sup
z∈Z

f(w, z).

We say that f,W,Z have the strong max-min or saddle point property, if equality holds in the
above inequality. When a saddle point exists, then the saddle point property holds. Notice that
strong duality is equivalent to L having the saddle point property on D×Rm≥0×Rp. Furthermore
if µ∗, λ∗ are dual optimal and x∗ (primal) optimal and strong duality holds, then they form a
saddle point for the Lagrangian. Conversely, when (x, µ, λ) ∈ D×Rm≥0 ×Rp is a saddle point of
the Lagrangian, then they are primal resp. dual optimal.
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We define the affine hull of a set C ⊆ Rn to be the smallest affine set in Rn that contains C and
denote it aff C. The affine dimension of a set is defined as the dimension of its affine hull. We
can define the relative interior of set C by

relint C = {x ∈ C : B(x, r) ∩ aff C ⊆ C for some r > 0},

with B(x, r) being the ball with radius r centered at x.
Slater’s condition is a sufficient condition for strong duality to hold for a convex optimization
problem (2.2). Assume that f0, . . . , fk are convex and fk+1, · · · , fm affine. If the problem is
bounded from below and there exists a feasible point x ∈ relint D, which is strictly feasible
for f0, . . . , fk, then strong duality holds and furthermore there exists dual optimal variables
µ∗, λ∗ (Rockafellar, 1970, Thm. 28.2). We refer to Boyd and Vandenberghe (2004) for more
information on convex optimization.

2.2. Optimization Approaches
We want to focus on different maximum intensity approaches (cf. Dmochowski et al., 2011;
Fernández-Corazza et al., 2020; Khan et al., 2022). The primary goal is to generate the strongest
possible current density in a target area along a specific direction. This is achieved by the
objective function ∫

Ω
〈AI, e〉 dx,

where e ∈ L2(Ω,R3), specifies the target direction and A : I 7→ σ∇u is the forward model
obtained from CEM or PEM, respectively. For each of the electrode models we assume that the
conditions of the section (1.3.2) resp. (1.3.1) hold. In order to be well defined in the PEM case,
we assume that e is zero near the boundary, i.e. there exists Ω0 b Ω with supp e ⊂ Ω0. Note
that since we are only interested in ∇u, it does not matter which representative of u is chosen.
For the CEM it follows from theorem 14

‖∇u‖L2(Ω) ≤ C‖I‖2.

Similar to the end of the proof of theorem 18, we can derive for the PEM the existence of C > 0
with

‖u‖H1(Ω0)/R ≤ C‖I‖2
and thus ‖∇u‖L2(Ω0) ≤ C‖I‖2. In both cases we obtain∣∣∣ ∫

Ω
〈AI, e〉 dx

∣∣∣ ≤ ‖AI‖L2(Ω0)‖e‖L2(Ω0) ≤ C‖σ‖L∞(Ω)‖∇u‖L2(Ω0)‖e‖L2(Ω0) ≤ C‖I‖2.

For I 6∈ RL� we define the objective function to be ∞. The basic maximum intensity approach
(MI) reads as follows

max
I∈RL

∫
Ω
〈AI, e〉 dx subject to ‖I‖1 ≤ C1,

L∑
m=1

Im = 0.

Since the feasible domain is compact and the objective function is continuous, this problem
admits a solution. The next corollary follows directly from Minkowski’s theorem.

Corollary 21. Let f : K → R be convex and K ⊂ Rm convex and compact. Then

max
K

f = max
ext K

f.
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Proof. The inequality ≥ is obvious. For the converse assume z 6∈ extK to be optimal. According
to the theorems mentioned above, we can find λ ∈ (0, 1) and x 6= y 6= z with z = λx+ (1− λ)y.
Thus

f(z) ≤ λf(x) + (1− λ)f(y) ≤ max
extK

f.

Since the objective function of the MI is linear, the previous corollary tells us that the set of
maximizers will be a face of the convex polytope formed by the side constraints. Note that we’ll
always find an optimal x at one of the vertices. This fact is exploited by algorithms for linear
problems.

Figure 2.1.: Feasible domain of MI for 2 (l.) and 3 (r.) electrodes with C1 = 2imax is given by
the convex hull of the points vi (Fernández-Corazza et al., 2020)

In the case of ‖I‖1 ≤ C1 and∑L
m=1 Im = 0 the vertices are of the formC1

2 (ej−ei) for i 6= j, where
ei, ej denote the standard unit vectors in RL (Fernández-Corazza et al., 2020, B.1). Since it is
likely that the face of optimizers will only be a vertex or that the algorithm will pick the vertex,
the currents will be injected only through two electrodes, which can cause discomfort and pain
at the skin due to the relatively high amperage. In order to prevent this, one can further impose
an injection limit per electrode, i.e. ‖I‖∞ ≤ C2. This approach is called Constraint Maximum
Intensity (CMI). Since the feasible domain remains compact, a solution to the problem exists
and moreover the set of optimal points will be a face again. As shown by Fernández-Corazza
et al. (2020), if the restriction by the new constraint isn’t strong enough the solution will remain
sparse. To gain more control one could introduce weights ‖wI‖∞ ≤ C2, which is equivalent
to limiting each electrode individually. This would mean extra effort and require additional
information for the user. Furthermore uniqueness of the optimizer isn’t guaranteed.
A more user friendly approach is the Distributed Constraint Maximum Intensity approach
(DCMI). It is stated as

max
I∈Rn

∫
Ω
〈AI, e〉 dx− λ‖I‖22 subject to ‖I‖1 ≤ C1, ‖I‖∞ ≤ C2,

L∑
m=1

Im = 0

for λ > 0. We will reformulate the problem into an equivalent minimization problem

min
I∈Rn

∫
Ω
〈AI,−e〉 dx+ λ‖I‖22 subject to ‖I‖1 ≤ C1, ‖I‖∞ ≤ C2,

L∑
m=1

Im = 0.

Using the same reasoning as before, this approach obviously has an optimizer. This time it is
unique, because adding λ‖ · ‖2 to the objective function makes it strictly convex. Note that
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I = 0 can’t be optimal, unless A = 0, e = 0, C1 = 0 or C2 = 0. We will exclude all of these
trivial cases. To see how the additional penalty term works and why this approach deserves its
name, we need the following lemma from Kloft et al. (2011).

Lemma 22. Let f, g : C → R be convex and C ⊂ Rn a convex set. We can consider the two
convex optimization problems

min
x∈C

f(x) + σg(x) (2.3)

and
min
x∈C

f(x) subject to g(x) ≤ τ. (2.4)

If x∗ ∈ C is optimal for the first problem with σ ≥ 0, then we can find τ ∈ R, such that x∗ is
optimal for the second problem, e.g. τ = g(x∗). Conversly if Slater’s conditions holds for (2.4)
and x∗ ∈ C is optimal, then we can find σ ≥ 0 such that x∗ is optimal for the first problem.
Furthermore we have σ > 0, if the condition g(x∗) ≤ τ is binding in the sense that

min
x∈C

f(x) < min
x∈C,g(x)≤τ

f(x).

Proof. Fix σ ≥ 0 and let x∗ ∈ C be optimal for the first problem. We set τ = g(x∗) and assume
that x∗ isn’t optimal for the resulting second problem. Hence we can find x̃ ∈ C with g(x̃) ≤ τ
and f(x̃) < f(x∗). Therefore

f(x̃) + σg(x̃) < f(x∗) + σg(x∗),

which is a contradiction. Thus x∗ is optimal for (2.4). Now let τ ∈ R be given and x∗ optimal
for the second problem. The Lagrangian reads

L(x, σ) = f(x) + σ(g(x)− τ), x ∈ C, σ ≥ 0.

Since Slater’s conditions is satisfied, strong duality holds and there exists a dual optimal variable
σ∗ ≥ 0. We know that (x∗, σ∗) is a saddle point of L. Therefore L(x∗, σ∗) = minx∈C L(x, σ∗) or

f(x∗) + σ∗(g(x∗)− τ) = min
x∈C

f(x) + σ∗(g(x)− τ). (2.5)

Removing the constant term σ∗τ yields f(x∗) + σ∗g(x∗) = minx∈C f(x) + σ∗g(x). Now assume
that the condition is binding. Then x∗ does not minimize f over C. Looking at (2.5), we see
that therefore σ∗ > 0, otherwise we would obtain a contradiction.

We can apply this to the DCMI approach with

C = {x ∈ RL : ‖x‖1 ≤ C1, ‖x‖∞ ≤ C2,
L∑

m=1
Im = 0}

f(x) =
∫

Ω
〈AI, e〉 dx and g(x) = ‖x‖22.

Obviously (2.3) is our DCMI formulation. Since I = 0 can’t be a minimizer, we get τ > 0.
Therefore 0 ∈ relint C is strictly feasible and (2.4) satisfies Slater’s condition. By the above
lemma, we know that there exists C3 > 0 such that we can equivalently formulate the DCMI
approach as

min
I∈Rn

∫
Ω
〈AI,−e〉 dx subject to ‖I‖1 ≤ C1, ‖I‖∞ ≤ C2,

L∑
m=1

Im = 0, ‖I‖2 ≤ C3.

We further know that C3 = ‖I∗λ‖2 is a suitable choice, where I∗λ is the minimizer of the initial
problem. Without knowledge of this minimizer, the constant C3 > 0 is unknown as well, but
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the mere existence of such a constant is sufficient. For the MI and CMI approach, the optimal
point can and probably will be found at a vertex of the feasible domain, which is some sort
of polytope. The additional condition ‖I‖2 ≤ C3 intersects the feasible domain with a ball of
radius C3. The boundary of the ball is exactly the set of it’s extreme points. Heuristically, by
adding this condition, one tries to restrict the feasible range in a way that increases the number
of extreme points and the probability that the optimal point is no longer sparse. So far it might
be possible that C3 is too large, so it doesn’t restrict the feasible domain. But by increasing λ
we can enforce this, as the next two lemmas show.

Lemma 23. Let f, g : C → R be convex and C ⊂ Rn a convex set. Now let σ∗ < σ̃ and denote
the corresponding optimal solutions of problem (2.4) by x∗ and x̃. Then g(x̃) ≤ g(x∗).

Proof. Assume otherwise g(x∗) < g(x̃). Obviously we can derive

f(x∗) + σ∗g(x∗) ≤ f(x̃) + σ∗g(x̃) and f(x̃) + σ̃g(x̃) ≤ f(x∗) + σ̃g(x∗).

Combining these two yields

f(x̃) + σ̃g(x̃) ≤ f(x̃) + σ∗g(x̃)− σ∗g(x∗) + σ̃g(x∗)

and therefore

0 ≤ (σ∗ − σ̃)g(x̃) + (σ̃ − σ∗)g(x∗) < (σ∗ − σ̃)g(x̃) + (σ̃ − σ∗)g(x̃) = 0.

Lemma 24. Let f, g : C → R be convex and C ⊂ Rn a convex set. Further assume f to be
bounded from below. Let σk ≥ 0 and σk → ∞. Denote the corresponding optimal point for
(2.4) by xk ∈ C. Then it follows g(xk)→ infx∈C g(x).

Proof. The previous lemma shows that g(xk) is monoton decreasing. Therefore we get

inf
k∈N

g(xk) = lim
k→∞

g(xk). (2.6)

Now assume that infk∈N g(xk) > infx∈C g(x). We can choose ε > 0 and x∗ ∈ C with
infk∈N g(xk) > g(x∗) + ε. From the definition we know

f(xk) + σkg(xk) ≤ f(x) + σkg(x) ∀x ∈ C, k ∈ N.

We can write

f(xk) + σkg(xk) = f(x∗) + σkg(x∗) + f(xk)− f(x∗) + σk(g(xk)− g(x∗)). (2.7)

Note that g(xk)− g(x∗) > ε, hence

f(xk) + σkg(xk) > f(x∗) + σkg(x∗) + f(xk)− f(x∗) + σkε.

Since f is bounded from below, there exists C > 0 with f(xk)−f(x∗) > −C for all k ∈ N. Thus
we get

f(xk) + σkg(xk) > f(x∗) + σkg(x∗)− C + σkε.

Notice that ε > 0 and x∗ are independent of k, hence for large k ∈ N we get −C + σkε > 0 and
therefore

f(xk) + σkg(xk) > f(x∗) + σkg(x∗).

But this is a contradiction to (2.6).
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Coming back to the DCMI approach, this means that if we increase λ, then C3 will decrease and
converge to 0. Hence at some point the additional constraint will be binding and the optimum
will be an extreme point of BC3(0). Note that there are a few cases in which the minimizer
will stay sparse and an increase in λ will only reduce it’s norm, but this is also the case in the
CMI approach. Obviously there are weights, such that the optimizer of the DCMI is also an
optimizer of the weighted CMI, namely wi = C2

|I∗i |
if I∗i 6= 0 and wi =∞ otherwise, but in general

the optimizer remains ambiguous. In practical application the DCMI approach further has the
benefit, that there is only one parameter to control, instead of a weight for each electrode.

2.3. Convergence of CEM towards PEM optimizers for small
electrodes

In section 1.3.3 we proved that (under mainly geometrical assumptions) the potential of the
CEM converges towards the potential of the PEM in the H1/R on relative compact subsets,
when the electrodes shrink. To be more precise we showed that for Ω0 b Ω there exists C > 0
independent of h with

‖u− uh‖H1(Ω0)/R ≤ Ch2‖I‖2

for I ∈ RL� and small h. We can use this result and prove that the optimizers for the CEM (or
at least a subsequence) converge towards the optimizer of the PEM as well. Therefore impose
the same assumptions as in section 1.3.3. Recall that e from our optimization approach vanishes
near the boundary, i.e. supp e ⊂ Ω0 b Ω. Using the Cauchy-Schwarz inequality we get∣∣∣ ∫

Ω
〈σ∇u, e〉 dx−

∫
Ω
〈σ∇uh, e〉 dx

∣∣∣ =
∫

Ω0
〈σ∇(uh−u), e〉 dx ≤ ‖σ‖L∞(Ω)‖∇(uh−u)‖L2(Ω0)‖e‖L2(Ω)

thus ∣∣∣ ∫
Ω
〈σ∇u, e〉 dx−

∫
Ω
〈σ∇uh, e〉 dx

∣∣∣ ≤ Ch2‖e‖L2(Ω)‖I‖2. (2.8)

Hence if the feasible domain is bounded, then the objective function of the CEM converges
uniformly to the objective function belonging to the PEM.

Definition 25. LetX be a first countable topological space. We say that a sequence of functions
fj : X → R̄ Γ-converges in X to f : X → R̄, if for all x ∈ X we have

1. ∀(xj)j ⊂ X with xj → x : f(x) ≤ lim inf
j→∞

fj(xj)

2. ∃(xj)j ⊂ X with xj → x : f(x) ≥ lim sup
j→∞

fj(xj).

The functions (fj)j are called equicoercive if there exists a sequentially compact set C ⊆ X with
arg min fj ⊆ C for all j ∈ N.

Corollary 26. If (fj)j Γ-converges to f and (fj)j are equicoercive, then any sequence of mini-
mizers xj ∈ arg min fj contains a subsequence converging towards a minimizer of f .

Proof. Since (fj)j are equicoercive, there exists a subsequence of (xj)j , denoted by (xj)j as well,
which converges to x∗ ∈ C. Let x ∈ X be arbitray. Because (fj)j Γ-converges to f , there exists
a sequence (x̃j)j ∈ X with x̃j → x and

f(x) ≥ lim sup
j→∞

fj(x̃j) ≥ lim sup
j→∞

fj(xj) ≥ lim inf
j→∞

fj(xj) ≥ f(x∗).
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We have already shown that the objective functions of MI, CMI and DCMI for CEM uniformly
converge to the respective objective function of the PEM on the corresponding feasible domain
C ⊂ RL. Therefore we have Γ-convergence on C (with respect to the 2-norm). To see this denote
the objective functions by fh and f , respectively . For x ∈ C we can choose the constant sequence
given by xh = x to satisfy the second condition and if (xh)h is a sequence in C converging to x,
then we can write

lim inf
h→0

fh(xh) ≥ lim
h→0

(fh(xh)− f(xh)) + lim inf
h→0

f(xh) ≥ f(x).

Notice that lower semi continuity of f is enough. Since C is compact in all of the approaches we
derive one of the main result:

Corollary 27. For h → 0 every sequence of optimizers (Ih)h of the MI, CMI resp. DCMI
approach, obtained with the CEM and electrodes size h, has a subsequence that converges to
a minimizer of the respective approach used together with the PEM. In the case of DCMI the
sequence itself converges.

For the DCMI we can further strengthen this and obtain convergence rates:

Theorem 28. Let Ih ∈ RL be the optimizer for the CEM-DCMI approach with electrodes of
size h. Further let I be the optimizer of the PEM-DCMI approach. Then there exists h0 > 0
and C > 0 such that for all h ∈ (0, h0) it holds

‖Ih − I‖2 ≤ Ch2.

Proof. We denote the forward operator for the CEM by Ah and for the PEM by A0. We will
use the subscript 0 for all vectors and functions corresponding to the PEM. We first define the
operator P : RL → RL� by

(x1, . . . , xL) 7→
(
x1, . . . , xL−1,−

L−1∑
i=1

xi
)
.

Obviously P is the identity on RL� . Further note C ⊂ RL� . Let ei be the ith standard unit vector
of RL. We define vh ∈ RL by

vih =
∫

Ω
〈AhPei, e〉 dx.

From (2.8) we see that ‖vh − v0‖2 ≤ Ch2 holds when h is small enough. The minimizers Ih
satisfies

0 ≤ (vh + 2λIh)T (y − Ih) ∀y ∈ C.

To see this, first note

0 ≤ fh(Ih + α(y − Ih))− fh(Ih)
α

, ∀0 < α ≤ 1,

where we abbreviated the objective function by fh. The right hand side is equal to

1
α

(
vTh (Ih + α(y − Ih)) + λ‖Ih + α(y − Ih)‖22 − vTh Ih − λ‖Ih‖22

)
= vTh (y − Ih) + λ

α

(
‖Ih + α(y − Ih)‖22 − ‖Ih‖22

)
.

Taking α↘ 0 yields 0 ≤ vTh (y − Ih) + 2λITh (y − Ih). Therefore we can obtain two inequalities

0 ≤ (v0 + 2λI0)(Ih − I0) and 0 ≤ (vh + 2λIh)(I0 − Ih).
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Adding those together yields

0 ≤ 2λ(I0 − Ih)T (Ih − I0) + (I0 − Ih)T (vh − v0)

or equivalent
2λ‖I0 − Ih‖22 ≤ (I0 − Ih)T (vh − v0).

By the Cauchy-Schwarz inequality we see (I0 − Ih)T (vh − v0) ≤ ‖I0 − Ih‖2‖vh − v0‖2. Hence we
conclude that it exists h0 > 0 and C > 0 such that

‖I0 − Ih‖2 ≤
C

λ
h2 ∀ 0 < h < h0.
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2.4. Numerical Evaluations
In this section we will investigate the effects of forward modeling on the optimal tDCS montages.
For this purpose, we will use the already known multilayer sphere model and a realistic head
model. We focus on the MI, CMI and further on the DCMI with two different penalty parameters
λ = 10 and 20. For the CEM we will uses electrodes with a radius of 10mm. As done in Khan
et al. (2022), we set C1 = 2 · 2mA = 4mA and C2 = 1.5mA. The Matlab toolbox CVX (Grant
and Boyd, 2014, 2008), a package for specifying and solving convex programs, was used to solve
the optimization problems numerically. Therein the solver SDPT3 was selected (Tütüncü et al.,
2003). We use four different measures in order to specify the goodness of an approach and the
corresponding optimizers (Wagner et al., 2016). The desired properties are intensity, focality
and directionality. Hence we define the (average) current intensity in the target area (IT) as

1
|Ωt|

∫
Ωt

|AI| dx,

where Ωt denotes the target area. To measure the focality we analogously define the (average)
current intensity in the non-target area (INT) with the non-target area being the brain without
target area. The last criteria, directionality (DIR), can be measured by

1
|Ωt|

∫
Ωt

〈AI, e〉 dx.

It is plausible to assume Ωt = supp e. We want to further define a fourth measure, which
provides information on how efficient an approach is (PAR) by the proportion of DIR to IT. It
measures how parallel the current density is to the desired orientation. The first three measures
IT, INT and DIR are measured in mA/m2 and PAR in percent.
If I is an optimizer for the MI, CMI or DCMI approach, then −I is optimal for the opposite
target direction, namely −e. Hence for our tests it is not important whether the targets point
inward or outward, for example.

2.4.1. Multilayer Sphere Model
First we want to analyze the case of the multilayer sphere model already introduced in section
1.6. This time we use a setup of 70 more or less evenly distributed electrodes. For the CEM
electrodes we again assume a radiues of 1cm. Further we consider three fixed targets, two
superficial ones with an radial and tangential orientation and a deeper one (figure 2.2).

Figure 2.2.: Radial (a), tangential (b) and deep (c) target
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PEM CEM
Approach IT INT DIR PAR IT INT DIR PAR
MI 141.26 66.85 130.67 92.50 137.64 66.52 128.38 93.28
CMI 127.24 66.01 122.76 96.48 124.79 65.70 120.90 96.89
DCMI λ = 10 126.48 60.84 122.11 96.55 124.03 60.56 120.26 96.96
DCMI λ = 20 126.03 58.67 121.75 96.60 123.58 58.40 119.89 97.01

Table 2.1.: Radial target: Measures for different approaches

Radial Target

We start with the radial target. In figure 2.3 the optimal current pattern and the resulting
current density on the brain surface is shown for each approach used with the CEM. As already
predicted, the MI setup only consists of two electrodes, one directly over the target and the
other one located on the opposite side of the head. As we can see in table 2.1 this combination
generates the highest intensity in the target area (137.64mA/m2) compared to the other ap-
proaches (with CEM), but is also the least focal one. The generated current density shows the
highest magnitudes of all approaches, directly situated under the stimulating electrodes. Con-
tinuing with the CMI, we see some slight changes. The optimal montage now consists of four
electrodes, two anodal and two cathodal ones. The two main stimulation electrodes are the same
as in the MI, but for each electrode, a portion of the current was redistributed to an adjacent
electrode. Therefore the magnitudes on the brain surface decrease. However, this results in a
loss of intensity (124.79mA/m2). For the DCMI, the cathodal side remains unchanged, whereas
the anodal currents are spread across several electrodes, for λ = 20 more than for λ = 10. We
clearly see the magnitudes of the current density on the anodal side further decrease. The loss
in intensity is small (less than 1.5mA/m2 compared to the CMI), but the intensity in the non
target can be decreased by roughly 10 percent. While the MI approach achieves a directionality
of 128.38mA/m2, we can only observe values of approximately 120 − 121mA/m2 in the other
cases. Surprisingly these approaches show a higher efficiency regarding PAR.
Using the point electrode model instead of the complete electrode model, we can observe a very
similar behavior among the different approaches. As the corresponding values of table 2.1 show,
the MI can achieves the highest intensity and directionalty but the lowest focality and parallelity.
The other three approaches obtain a similar intensity and directionality, with the DCMI λ = 20
being the most focal one.
Comparing the measures of the CEM with the ones obtained for the PEM, we see that the
intensity is stronger for PEM. This was expected as we already saw in the numerical tests of
section 1.6, that the current density of the PEM penetrates the head deeper. Interestingly, not
all INT values are higher than for CEM. Note that not only the intensity increases, but also the
directionality. However, the proportion nearly stays identical. Looking at figure 2.4 we don’t
see much changes to 2.3, except that the magnitudes on the brain surface are slightly increased.
In particular the optimal montages seem to be very similar for both models.
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Figure 2.3.: Radial target, CEM: MI (a), CMI (b), DCMI λ = 10 (c), DCMI λ = 20 (d), left:
montage and target, middle and right: montage and current density on brain surface with view
from anodal side (m.) and cathodal side (r.)

64



Multilayer Sphere Model Alexander Frank

Figure 2.4.: Radial target, PEM: MI (a), CMI (b), DCMI λ = 10 (c), DCMI λ = 20 (d), left:
montage and target, middle and right: montage and current density on brain surface with view
from anodal side (m.) and cathodal side (r.)
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Figure 2.5.: Radial target: Distance between optimizer for PEM and CEM for different electrode
sizes

We proved convergence of the optimizers (up to choosing a subsequence) for all approaches in
section 2.3. To measure the distance between two montages we define in the style of the relative
error

‖I − Iref‖2
‖Iref‖2

.

When we investigate the behavior of the solutions while decreasing the electrode size, we will
always choose the PEM as a reference. Looking at figure 2.5 we can clearly observe the aforemen-
tioned convergence. The impression is given that the distance between the optimizers stagnates
below a certain size. Note, however, that these values are already very small and accordingly a
small scale (0 to 2.5× 10−3) was used for the representation, whereas we will use a much larger
one (0 to 0.35) for the still following targets. Note the small distance for 10mm, therefore we
could not identify any differences between the montages in figures 2.3 and 2.4.

Tangential Target

We want to continue with the tangential target. The corresponding measures are shown in table
2.2. Again, the MI produces the highest intensities, but the difference to CMI and DCMI λ = 10
is smaller than in the radial case. It is remarkable that an increase in λ has a much stronger
decreasing effect on the intensity and directionality (roughly −9mA/m2) as in the case before.
This time the intensity in the non-target area increases when λ· increases, even if only slightly.
Hence the parameter choice must be well considered. All approaches show high parallelity of
nearly 99 to 100 percent. These observations hold for the PEM and CEM equally. The optimizer
of the CMI approach stands out. For both electrode models, the intensity of the CMI is similar
to DCMI with λ = 10 and the intensity difference to the MI stays nearly equal. However, for
PEM, CMI is the appraoch with the lowest intensity in the non-target area, while for CEM it is
the one with the highest. Looking at figure 2.7(b) we can clearly see a difference in the setups.
In the PEM, the anodal electrodes are located further above the target, while in the CEM they
are located slightly further away.
In the radial case only one or two electrodes active electrodes are positioned directly above
the target and the other active ones are located on the opposite side, where their number is
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PEM CEM
Approach IT INT DIR PAR IT INT DIR PAR
MI 119.43 36.90 118.44 99.17 118.00 36.65 117.00 99.16
CMI 113.50 35.09 112.46 99.08 111.15 40.00 110.56 99.47
DCMI λ = 10 112.17 36.16 111.41 99.33 110.11 37.91 110.08 99.98
DCMI λ = 20 104.53 37.37 103.03 98.56 101.58 38.23 100.80 99.23

Table 2.2.: Tangential target: Measures for different approaches

depending on how much regularization is imposed. For tangential targets this changes. Figure
2.7 shows that the anodal electrodes are positioned diagonally above and behind the target,
while the cathodal electrodes are located diagonally above and in front. The position and
amperage of the two electrodes for the MI are identical for both electrode models. As before,
the CMI additionally activates one further electrode in the neighborhood of the MI electrodes,
distributing the current. The setup for PEM and CEM differ, as mentioned before. Looking that
the DCMI, there are no obvious differences between the montages for PEM and CEM noticeable.
An increase in the parameter λ leads to a further distribution of the current to more electrodes
on the anodal and on the cathodal side, in contrast to the radial target. As in every simulation
so far, the PEM generates higher magnitudes on the brain surface than the CEM does.
When decreasing the size of the electrodes, the optimizers for all approaches seem to converge.
The jump for the CMI approach from 7.5 to 10mm strikes out (figure 2.6). At this point the
optimal current pattern changes from the one seen in figure 2.7(b) for the CEM to the current
pattern shown for the PEM. Between these sizes, the levelsets of the objective functions change
enough, such that the optimizer jumps from one vertex to another. This happens so abrupt,
because the set of extreme points for the feasible domain of the CMI is always discrete.

Figure 2.6.: Tangential target: Distance between optimizer for PEM and CEM for different
electrode sizes
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Figure 2.7.: Tangential target, CEM (1.-2. column) & PEM (3.-4. col.): MI (a), CMI (b), DCMI
λ = 10 (c), DCMI λ = 20 (d), 1.&3. col.: montage and target, 2.&4. col.: montage and current
density on brain surface
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Deep Target

We just want to briefly discuss the situation of a deep target. The position of the anodal and
cathodal electrodes corresponds to those of the radial case. But if additional constraints of the
CMI and DCMI are imposed resp. strengthened, then on both sides the current is distributed
across multiple electrodes, similar to the case of a tangential target. This can be seen in figure
2.8. Note that the current patterns for PEM and CEM are nearly identical, therefore only the
PEM case is shown. Table 2.3 shows that stronger constraints lower the achieved intensity in the
target area, but also the intensity in the non-target area. It is remarkable, that in all cases very
high PAR values close to 100 percent are achieved. Even though the PEM can generate higher
intensities, the differences for the deep target are smaller than in the superficial cases. This fits
to the result from the previous chapter, that the differences in the potential and current density
don’t reach deep. When decreasing the size of the electrodes, the optimizers of all approaches
converge. Similar to before, there occurs a jump in the case of CMI.

PEM CEM
Approach IT INT DIR PAR IT INT DIR PAR
MI 70.06 64.65 69.76 99.56 69.73 64.33 69.42 99.57
CMI 68.92 61.59 68.86 99.91 68.57 61.29 68.51 99.91
DCMI λ = 10 65.04 59.20 65.03 99.99 64.70 58.96 64.70 99.99
DCMI λ = 20 60.80 56.06 60.79 99.97 60.46 55.81 60.44 99.97

Table 2.3.: Deep target: Measures for different approaches

Figure 2.8.: Deep target, PEM montages: MI (a), CMI (b), DCMI λ = 10 (c), DCMI λ = 20 (d)
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Figure 2.9.: Deep target: Distance between optimizer for PEM and CEM for different electrode
sizes

PEM-optimal current pattern used with CEM

So far we used the point electrode model as if it would be applicable in practice, but this clearly
isn’t the case. Our finite element formulation for the PEM is easier to solve than for the CEM.
Therefore, it is conceivable to use the PEM only to simplify the calculations, even though one
uses electrodes of 1cm radius. We want to investigate, how much the current density obtained
by a PEM-optimal current pattern together with the CEM forward model, deviates from the
CEM-optimal current density. We will use electrodes with 1cm radius again. The resulting
measures are shown in table 2.4. Since in the case of the radial target the optimizers for PEM
and CEM were very similar, the current densities are (almost) identical and hence the measures
are equal as well. For the tangential target, there was clearly a difference for the CMI. Using
the PEM optimizer with the CEM forward model, we achieve a nearly identical intensity in
the target area, namely 111.40 instead of 111.15mA/m2 and a nearly identical directionality,
110.42 instead of 110.56mA/m2, but the intensity in the non-target area decreses from 40 to
34.87mA/m2. This is possible, because focality has no influence on the maximum intensity
formulations presented here. For the deep target the optimal currents don’t differ much, hence
the corresponding values in table 2.4 are equal to the CEM optimal ones.

Approach IT INT DIR PAR
MI 137.64 66.52 128.38 93.28
CMI 124.79 65.70 120.90 96.89
DCMI λ = 10 124.03 60.55 120.25 96.96
DCMI λ = 20 123.58 58.39 119.89 97.01
MI 118.00 36.65 117.00 99.16
CMI 111.40 34.87 110.42 99.12
DCMI λ = 10 110.14 35.94 109.45 99.37
DCMI λ = 20 102.64 37.16 101.23 98.62
MI 69.73 64.33 69.42 99.57
CMI 68.57 61.29 68.51 99.91
DCMI λ = 10 64.71 58.93 64.71 99.99
DCMI λ = 20 60.50 55.80 60.48 99.97

Table 2.4.: PEM optimized current patterns used with CEM forward model for radial, tangential,
deep targets (top to bottom)
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Effect of λ in DCMI Approach

Until now we fixed the parameter λ in the DCMI approach to 10 and 20. We briefly want to
discuss and visualize how different choices effect the stimulation results. Figure 2.10 illustrates
these effects. The diagram in the lower right corner shows the number of active electrodes. As
expected, the number increases with higher λ. We already analyzed, how the current patterns
of CMI and DCMI with λ = 10, 20 differ. The other three diagrams show how these setups
continuously merge into each other with increasing λ. Each line represents the injection current
of at least one electrode, meaning that several lines could overlap. In the case of the radial
target we can clearly see the asymmetry. The two cathodal electrodes are too important for a
high intensity, thus λ will only effect these for very high values. Otherwise it will only spread the
current on the anodal side as much as possible. In strong contrast, the figure for the tangential
target is much more symmetric, meaning that currents on anodal and cathodal side will be
spread equally. Starting with the CMI, we can see that the two electrodes, which are already
active in the MI, maintain their amperage for quite a long time, whereas the amperage of the
other two electrodes decreases for much lower values of λ. In the case of the deep target, it
seems as there are no electrodes of such special importance, because the individual amperages
rapidly decrease at the beginning.

Figure 2.10.: Individual amperage of electrodes for radial (upper left), tangential (upper right)
and deep (lower left) targets and number of active electrodes (lower right)
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We already saw that an increase in λ has an unambiguous effect on the intensity in the non-
target area. This becomes obvious in figure 2.11. For the radial and deep target an increase
mainly reduced the INT. The same is true for the tangential target and small values of λ, but
at some point the INT increases and becomes worse than for the CMI. It seems like an increase
in λ reduces the intensity in the target area and the directionality for all targets. How fast they
decrease clearly depends on the target and it’s orientation.

Figure 2.11.: Measures depending on λ: IT (upper left), INT (upper right), DIR (lower left),
PAR (lower right)
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2.4.2. Realistic Head Model

Tissue Conduc-
tivity (S/m)

Skin 0.43
Skull compacta 0.0064
Skull spongiosa 0.02865
CSF 1.79
Gray Matter 0.33
White Matter 0.14

Table 2.5.: Six compartment
head model

In this final section, we will consider the problem in the sce-
nario of a more realistic six compartment head model. The
levelsets from Piastra et al. (2020) were used to a create sur-
face mesh for each compartment in MATLAB (2020). Based
on these meshes a volume mesh with 1mm width was gen-
erated using Zeffiro Interface (2022). The resulting volume
mesh consisted of 4641993 nodes and 22647545 tetrahedrons.
This time no smoothing was applied. The different compart-
ments are shown in figure 2.12 and the conductivities can
be seen in table 2.5 (Wagner et al., 2013; Dannhauer et al.,
2011). A set of 74 electrodes belonging to the head model
were taken from Schrader et al. (2021) and are shown in fig-
ure 2.13. In this section we will only investigate one target.
It is located in the gray matter and can be seen in figure 2.14.
As before we will use the MI, CMI and DCMI (λ = 10, 20) approaches, together with the point
electrode model and the complete electrode model.

Figure 2.12.: Compartments of head model: Skin, skull compacta & spongiosa, CSF, gray &
white matter (left to right)

Figure 2.13.: Electrode positions
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Figure 2.14.: Target location and orientation
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PEM CEM
Approach IT INT DIR PAR IT INT DIR PAR
MI 83.23 27.00 78.45 94.26 110.54 38.00 72.65 65.72
CMI 80.83 31.81 76.98 95.24 92.73 36.72 72.35 78.02
DCMI λ = 10 79.55 33.01 74.36 93.48 80.16 34.53 69.55 86.76
DCMI λ = 20 79.63 37.21 69.35 87.09 79.45 38.37 64.87 81.64

Table 2.6.: Measures for realistic head model

In figure 2.15 the optimal current patterns are shown. For the realistic head model, the differ-
ences between PEM and CEM are more obvious than for the multilayer sphere model. Looking
at the MI approach, we see that the anodal electrodes are arranged differently. This is in con-
trast to the multilayer sphere model, where the optimizers of the MI were always identical. In
the optimal setup of the PEM, the anodal electrode is located closer over the target. Similar
to the sphere model, the CMI emerges from the MI and redistributes part of the current to
a neighboring electrode. Interestingly, the anodal electrodes are interchanged in the optimal
current pattern of PEM and CEM. Using point electrodes, the stronger one is located closer to
the target, whereas for the CEM it is the opposite. The differences between PEM and CEM are
smaller for the DCMI approaches, but still noticeable. For both values of λ the anodal electrodes
are more concentrated over the target in the case of PEM. Table 2.6 shows the measures for
all approaches. Surprisingly, the PEM produces much lower intensities than the CEM in the
MI and CMI approaches. Nevertheless, it achieves a higher directionality. Looking at the pro-
portions, we see that the current density in the target area is much more parallel to the target
orientation in the PEM than in the CEM. This can also be seen from the figures in appendix
A.2. They show the current density near the target in two different cross sections. Considering
the DCMI, the intensities in the target areas are identical for CEM and PEM. But for the later
model the directionality is larger. Overall the PEM is able to archive higher directionality with
less or equal intensity in the target area and furthermore with less intensity in the non-target
area.
Table 2.7 shows the measures obtained by using the PEM-optimal current pattern with the CEM
forward model. Surprisingly, the achieved directionality for MI and CMI are nearly identical
to the optimal values (of the CEM), but with far lower intensity in the target area, non-target
area and higher parallelity. In the case of DCMI the diractionality of this hybrid approach is
even higher than for the CEM. However, since the values obtained exclusively with CEM are
optimal, the 2-norm of the PEM optimizers must be lower to compensate for this.

Approach IT INT DIR PAR
MI 76.87 26.74 72.61 94.46
CMI 76.33 31.46 72.33 94.76
DCMI λ = 10 76.11 32.67 70.44 92.55
DCMI λ = 20 77.33 36.92 66.46 85.95

Table 2.7.: PEM optimized current patterns used with CEM forward model
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Figure 2.15.: Optimal current pattern for MI (a), CMI (b), DCMI λ = 10 (c), DCMI λ = 20
with CEM (l.) and PEM (r.)
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As a last result of this section, we want to consider the behavior of the optimal current patterns
when we shrink the electrode size. Looking at figure 2.16, we see that all approaches seem to
convergence. This time both MI and CMI show a sudden jump. From 10 to 7.5mm the optimal
current pattern change to the ones of the PEM. Hence for the CMI the currents of the two
anodal electrodes switch and with the MI approach the active anodal electrode moves from its
location in 2.15(a) to the position of the anodal electrode in the PEM-optimal current pattern.

Figure 2.16.: Realistic head model: Distance between optimizer for PEM and CEM for different
electrode sizes

So far we assumed fixed positions for the electrodes, e.g. due to the usage of electrode caps. In
practice one might not have as many stimulation electrodes as there are positions in the cap,
e.g K positions but only L < K electrodes. A heuristic approach could be to first optimize
with all positions as degrees of freedom, then select the most important ones (probably based
on their current strength) and perform the optimization with only these positions. And indeed,
consider the PEM and assume that x1, . . . , xK are electrode positions. We denote the initial
problem by (P ). If I ∈ RK� is an optimizer with Il = 0, then we can remove the electrode xl
from the PEM boundary value problem and the solution won’t change. Denote the resulting
current pattern by Ĩ ∈ RK−1

� . Considering the objective functions used in this thesis, we see
that Ĩ achieves the same optimal value as I for (P ). Consequently, I remains optimal if we add
the condition #{Ij 6= 0} ≤ K−1 to the initial problem (P ) . Hence, if a solution I for the PEM
and MI, CMI or DCMI approach only has L non-zero components, then this current pattern is
also optimal for (P ) with the additional constraint #{Ij 6= 0} ≤ L. Further one does not even
have to reoptimize with these positions, as the optimizer will be the same.
For the complete electrode model this isn’t the case, as inactive electrodes also influence the
potential. But we saw in the numerical evaluations of chapter 1 that the influence is very small,
especially in the brain. Hence, this is also an plausible heuristic approach for the CEM.

77



Conclusion

We introduced the point and the complete electrode model and further showed that for both
resulting boundary conditions solutions exist. These solutions are only unique up to a constant
which represents the fact that the electric potential can only be measured with respect to a ref-
erence point. Under assumptions on the regularity of the conductivity and on the deformation
of electrodes, we could rigorously prove that for decreasing electrode size, the solutions of the
CEM converge towards the PEM solution in the H1 sense on relative compact subsets. Further
it was possible to obtain convergence rates of order two. We focused on a simple multilayer
sphere model and tried to derive analytical solutions, so we could compare them to FEM ap-
proximations. Therefore we proved that the CEM can be expressed as a series, converging in
the H1 sense. With a sort of Garlerkin method we could approximate this expression. The
difference between the semi-analytical solutions for PEM and CEM are mainly located near the
electrodes and in the areas underneath. The potential of the PEM achieves higher magnitudes
in the underlying brain areas. When comparing these semi-analytical solutions with the FEM
solutions, we noticed that the used mesh deviates quite strongly from the actual domain, lead-
ing to large errors. Therefore, we could unfortunately not make a detailed comparison of the
numerical and semi-analytical solutions. Since the finite element solutions of both models are
obtained from the identical mesh, they are still comparable. Nevertheless, the difference in the
brain compartment between PEM and CEM behaves similar to the analytical case. For the
numerical solutions, the current density was analyzed in addition. Again the point electrode
model generates higher magnitudes in the brain areas underneath the electrodes.
In the second part of the thesis we introduced three different optimization approaches which pri-
marily focus on the directional intensity in the target area. These are the MI, CMI and DCMI
approach. We proved existence of optimizers for all of them and further gave an alternative
formulation of the DCMI. With the help of the convergence results from the first chapter, it was
possible to show that every sequence of optimizers for the CEM with decreasing electrode sizes,
has a subsequence converging to an optimizer of the PEM. Since optimizers of the DCMI are
unique, the sequence itself converges and moreover we could derive convergence rates of order
two. This result was also evident in the numerical evaluations with the multilayer sphere model
and the realistic head model. We used three targets (radial, tangetial, deep) for the sphere
model and one for the head model in order to illustrate the effects of PEM and CEM. In case of
the sphere model, the effects were rather small. Differences in the current density mainly arise
directly from the fact that the PEM generates higher magnitudes underneath the electrode, but
not from strongly differing optimal current patterns. This becomes especially clear when using
the PEM optimal montage with the CEM forward model, only in one case there is noticeable
difference but this only affects the intensity in the non-target area. For the complex head model,
the results changed. The PEM and CEM montages differ much more significant. In the case of
the PEM, the anodal electrodes are placed closer to the target. Since the PEM current density
can better penetrate the head, it can achieve high directionality. In contrast, the electrodes
in the CEM are placed slightly further away in order to still reach the target. Therfore the
directionality worsens. Interestingly, when using the PEM-optimized current pattern with the
CEM, one can achieve a directionality close to the optimal value, but with lower intensity in the
target and non-target area.
In summary, for small electrodes, no significant effect of the electrode modeling on the optimal
montages could be seen. This suggests that the simpler point electrode model is a reasonable
alternative for the application. For larger ones, this does not hold in general.
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A. Appendix

A.1. Supplementary Material for the Analytic Solution of the CEM
The antiderivatives are given by:
m < 0, s < 0∫

sin(|m|ϕ) sin(|s|ϕ) = 1
2

{ 1
|m|−|s| sin((|m| − |s|)ϕ)− 1

|m|+|s| sin((|m|+ |s|)ϕ), if m 6= s

ϕ− 1
2|m| sin(2|m|ϕ), if m = s

m = 0, s < 0 ∫
sin(|s|ϕ) = − 1

|s|
cos(|s|ϕ)

m > 0, s < 0 :∫
cos(mϕ) sin(|s|ϕ) = 1

2

{ 1
m−|s| cos((m− |s|)ϕ)− 1

m+|s| cos((m+ |s|)ϕ), if m 6= s

− 1
2m cos(2mϕ), if m = s

m = 0, s = 0 : ∫
1 = ϕ

m > 0, s = 0 : ∫
cos(mϕ) = 1

m
sin(mϕ)

m > 0, s > 0 :∫
cos(mϕ) cos(sϕ) = 1

2

{
1

m−s sin((m− s)ϕ) + 1
m+s sin((m+ s)ϕ), if m 6= s

ϕ+ 1
2m sin(2mϕ), if m = s

For the other cases one can interchange s and m.

79



Supplementary Figures for the Realistic Head Model Alexander Frank

A.2. Supplementary Figures for the Realistic Head Model

Figure A.1.: Realistic head model: Current density near target (side view): MI (a), CMI (b),
DCMI λ = 10 (c), DCMI λ = 20 (d), left: CEM , middle: PEM, right: PEM-optimal pattern in
CEM
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Figure A.2.: Realistic head model: Current density near target (top view): MI (a), CMI (b),
DCMI λ = 10 (c), DCMI λ = 20 (d), left: CEM , middle: PEM, right: PEM-optimal pattern in
CEM
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