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Abstract

This thesis revolves around the application of the mixed finite element method (mixed-
FEM) on the EEG- and MEG forward problems. In Johannes Vorwerk Dissertation (2016)
many results for the projection approach for the EEG forward problem were derived and
compared to various different continuous galerkin(ContG) and discontinuous galerkin (DG)
source models. He was able to show the ability of the mixed-FEM approach to reduce
leakages effects near the skull tissue. The goal of this thesis will be to test the accuracy of
the direct source model for the problems stated above, which were not represented in his
dissertation. Additionally the solution process will be optimized by deriving the transfer
matrices for the direct approach source model and testing it on the MEG forward problem.
The numerical tests were based on a combination of up to 10000 dipoles within a three
dimensional spherical domain. It was found that the direct approach source model is only
an efficient source model for solving the EEG- and MEG forward problems for dipoles with
large eccentricity. While having a similar magnitude of accuracy and convergence rate,
the additional computational cost and the higher error-rates do not make it the desirable
approach compared to the DG-FEM approaches.
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CHAPTER 1

Introduction

Two of the most commonly used modern medical imaging processes are the electroen-
cephalography (EEG) and the magnetoencephalography (MEG). Both methods are used in
order to gain information on the neurological activity within the patients head, for example
to diagnose epilepsy, sleep disorders, brain damage etc. They are used in different cases
due to the EEG often being related to the extracellular ionic currents and the MEG to
the intracellular. Mathematically the MEG is based on the solution of the EEG-forward
problem. This relation is physically based on the Maxwell-equations.
This means that in order to advance, fitting numerical methods and procedures need to
be derived. The most commonly used numerical approaches are continuous finite element
methods (CG-FEM). Using those and different discretizations for the source within the
head the electric potential on the heads surface can be calculated. While this only affects
the forward problem, the inverse problem can then be solved using for an example a dipole
fit procedure. In his dissertation Johannes Vorwerk proofed that the mixed-FEM approach,
analogous to the DG-FEM approach, can guarantee the conservation of charge. Further
experiments proofed for example that using mixed-FEM the modeling leakage effects in the
skull-tissue could be avoided. The results Vorwerk presented were however mostly referring
to only one of the approaches he derived to discretice the source, namely the projected
approach. The goal of this thesis is therefore to gather more data on the direct approach
that was also derived, and to optimize the calculation for multiple dipoles using a transfer
matrix approach for the EEG forward problem.
Beforehand the partial differential equation (PDE) for the mixed-approach has to be de-
rived using the biological and physical conditions and requirements. Once the equation
is derived, the corresponding weak formulation will be calculated which then leads to a
numerically solvable matrix equation. While basic numerical solvers could be used to solve
this equation, its unusual saddle-point structure requires a different solving-approach to en-
able realistic computation costs. Finally, once the matrix-system and the solver structure
have been established, the test-enviroment can be explained and used to gather data on the
mixed-approach which will then be evaluated in the final steps.
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Figure 1.1: Visualization of model geometry (left column), current direction and strength for partial
integration approach and CG-FEM (middle column) and DG-FEM (right column) for
models seg 2 res 2 r82 (top row), seg 2 res 2 r83 (middle row), and seg 2 res 2 r84 (bottom
row). The left column shows the model geometry, interior to exterior from bottom left
to top right, brain in white, CSF, skull and skin in increasingly dark gray, and air in
white. Dark gray lines mark compartment boundaries. In the middle and right columns,
the large turquoise cone represents the dipole source. The small and normalized grey
cones show the directions of the current flow and, for elements belonging to skull and
skin compartments, the coloring indicates the current strength. For each model the color
scale is kept constant for both approaches. src: Johannes Vorwerk (2016)
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CHAPTER 2

The EEG- and MEG-forward Problem

To gain an overview this chapter is restricted to providing the fundamental information nec-
essary to understand the biological and physical background behind the electroencephalography-
(EEG) and magnetoencephalography (MEG) problems. These are based on the electromag-
netical reactions inside the human head, which can be measured on either the heads surface
- using multiple electrodes - or - by using multiple magnetic coils - measuring the emerging
magnetic flux surrounding the head. The correlation between these measurements can be
described using the Maxwell equations which therefore can be used to derive the partial
differential equations necessary to formalize these forward problems and therefore get the
mathematical requirements for solving them. Finally an equation for the analytical solu-
tion on domains consisting only of multilayered spheres will be given but not derived, in
order to be able to validate first solutions calculated without exceeding the extend of this
thesis. Most of the theory and structure of this work is based on the dissertation of Jo-
hannes Vorwerk (2016), therefore it should be reviewed if further information are required
or to check on the theory of the usual approaches beyond the mixed-approach. At this
point is it also necessary to explain why it is sufficient to derive the respective forward
solution, when the solution of their inverse problems is actually of medical and scientific
interest. Using the dipole fix procedure or the Landweber-Iteration these solutions can be
approximated by solving the forward problems in each step of the iteration. The idea for
the Landweber-Iteration is that instead of solving the inverse problem, x = A−1y for an
operator A, which is not well defined, meaning that it is discontinous for the input data
y, one stabilizes the solution by solving minx ∥Ax − y∥2

2. The algorithm then looks like
xk+1 = xk − ωA∗(Axk − y). By setting f(x) = ∥Ax − y∥2

2/2 one can rewrite the equation
above as xk+1 = xk − ω∇f(xk) which therefore is a special case of the gradient descend.
This has to be done because due to fact that small errors in the input data y can be heavily
amplified due to the discontinous nature of the inverse operator for the problem at hand.
With this setup one can proceed as mentioned above.

2.1 The physiological Background

In order to understand the emerging electromagnetical, neurological reactions, the basic
composition of the brain and its functionality will be depicted in the following. The brain
consists of around 1011 to 1012 neurons, which communicate using specific electrochemical
signals. The neuron consists of up to 7000 dendrites which are connected to the soma and
its respective, unique axon, a connection to the synapse which, itself once again, connects
to the dendrites of different neurons (Drachman, 2005).
The electric potential differences are caused by an ion flow within and between multiple
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neurons. Due to changes of the conductivity, positive and negative charged ions flow in
different manners causing higher or lower local electric potentials which then, as implied by
the Maxwell-equations, lead to differences in the magnetic field.
There are three different bio-chemical reactions causing the measurable potentials: The
pre-synaptic -, the post-synaptic- and the action potential.
As part of cell-to-cell communication a summation of all incoming potentials at the axon
hillock of a neuron is started. If the summated potential exceeds a certain threshold a sudden
change of the membrane potential, perceptible as a rapid rise followed by a fall, occurs, which
is called action potential. This action potential is then transported along the axon and when
it reaches the synaptic bouton, current-reliant calcium-channels are opened and ca2+-ions
diffuse into the synapse. As a consequence of that, vesicles filled with neurotransmitters fuse
with the pre-synaptic membrane and release the respective transmitters into the synaptic
gap. The neurotransmitters diffuse to the postsynaptic membrane and bind to specific
receptors of ligand-controlled ion channels. The influx of ions leads to a post-synaptic
potential which, depending on the type of synapse, can be excitatory or inhibitory. In case
of an excitatory post-synaptic potential the potential changes may add up again and could
cause an action potential on the axon hillock in the post-synaptic neuron, which means
that the signal is passed on. The frequency and strength of the action potential depends on
the concentration of neurotransmitters in the synaptic gap. A high frequency that arrives
at the membrane of the synaptic bouton also results in a high transmitter concentration in
the synaptic gap and a correspondingly higher frequency of action potentials on the post-
synaptic membrane. Due to the short duration of the action potential (0.5 − 2 ms) and the
fact that the signal is not synchronized and the signal is dominated by quadrupole terms,
the signal itself is not exploitable for the EEG measurements (Plonsey, 2005).
The post-synaptic potential that remains due to the diffused neuro-transmitters however
has a length of 15 − 20 ms along similar oriented neurons, corresponding to a few square
millimeters of the cortex surface, which then leads to a dipolar electromagnetic field, which
then again can be measured.

Figure 2.1: Simplified structure of the neuron where x1, ..., xn denote the input signal and y1, ..., yn

the output signal
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2.2 Quasi-Static approximation of the Maxwell-equations

In order to proceed to the formulation of the partial differential equation for the EEG-
forward problem, a quasi-static approximation of the Maxwell-equations is needed. Those
equations describe the relations between magnetic - and electric fields. The reason why this
formulation will be used, will be explained in this chapter as well. When it is assumed that
the permeability µ of the heads tissues is equal to that of free space, denoted as (µ0), the
Maxwell-equations read as

∇ · E = ρ

ϵrϵ0
, (2.1)

∇ ·B = 0, (2.2)

∇ × E = −∂B

∂t
, (2.3)

∇ ×B = µ0j + µ0ϵrϵ0
∂E

∂t
, (2.4)

where E and B denote the electric- and magnetic-field, respectively, ρ the electric density
charge, j the current density, ϵr the relative permittivity and lastly ϵ0 the permittivity of
free space.
In the following, two things need to be taken into consideration. First, using Ohm‘s law,
the electric charge density can be written as the product of the underlying conductivity σ
and the electric field E, i.e. j = σE. Second, the assumption is made that a harmonic
time dependency for the electric field with an angular frequency ω exists, meaning that
E(t) = E0e

−iωt. Here no generality is lost due to the fact the Fourier decomposition could
be applied, without changing the results. Proceeding by applying the steps mentioned above
on equation (2.4) provides

∇ ×B = µ0(σ − ϵrϵ0iω)E0e
−iωt. (2.5)

The requirement for using the quasi-static approximation in (2.4) is that the time-dependent
term is small in relation to the non-dependent part, i.e. |ϵrϵ0/σ| ≪ 1. Using the magnitudes
σ = 0.3S/m, ϵr = 105 (Vorwerk, 2016) and a frequency f = ω/2π ≈ 100Hz (Hämäläinen
et al., 1993), we find that |ϵrϵ0/σ| ≈ 2 · 10−3 ≪ 1.
Additionally, applying (2.3) on (2.5) leads to

∇ × (∇ × E) (2.3)= − ∂

∂t
(∇ ×B) (2.6)

(2.5)= µ0(iσω + ϵrϵ0ω
2)E0e

−iωt. (2.7)

As stated in (Vorwerk, 2016) the solutions of this equation have a characteristic wavelength
of 65m and can therefore be neglected when looking at a much smaller scale like a human
head.
This results in the formulation

∇ × E = 0, (2.8)

∇ · E = ρ

ϵ0ϵr
(2.9)
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for the electric-field E and

∇ ×B = µ0j, (2.10)
∇ ·B = 0 (2.11)

for the magnetic-field B.

2.3 The EEG-forward problem

The derivation of the partial differential equation is based on the existence of an scalar,
electric potential u for which

E = −∇u. (2.12)

This equation holds due to the fact that E is a gradient field, as implied by (2.8). It is
necessary to understand the current j as a sum of the primary current jp, which relates to
the neural brain activity, and the volume or return current jv = σ(x)E(x) (Ohm‘s law),
that is

j(x) = jp(x) + jv(x), for x ∈ R3. (2.13)

Applying the equation (2.12) leads to

j(x) = jp(x) − σ(x)∇u(x). (2.14)

When using the divergence on (2.10) one additionally finds that

∇ · j = 0 (2.15)

Now combining (2.15), (2.14) and assuming homogeneous Neumann boundary conditions
one derives the partial differential equation for the EEG-forward problem as

j + σ∇u = jp, (2.16)
∇ · j = 0, (2.17)
⟨j, n⟩ = 0. (2.18)

At this point it should be noted that one could eliminate j. Doing this, the non-mixed
formulation of the EEG-forward problem, which is used in CG-, DG- and Cut-FEM ap-
proaches, emerges:

∇ · (σ∇u) = ∇ · jp, (2.19)
σ∇u · n = 0. (2.20)

In both equations, the source jp can be written as a composition of current dipoles, i.e.
jp(x) = Mδx0(x), where M denotes the dipole-moment and δx0 denotes a Dirac distribution
in x0 ∈ Rn. This n depends on the domain Ω, which is either part of R3 in case of a realistic-
or 3d-headmodel, or R2 in special test-cases.
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2.4 The MEG-forward problem

After solving the EEG-forward problems (2.16)-(2.18) or (2.19)-(2.20) for either (j, u) or u,
respectively, the solution can be used to solve the MEG-forward problem. The magnetic-flux
Φ can be calculated using the magnetic field B as

Φ =
∫

S
B · ds, (2.21)

where S denotes the sensor-surface.
The existence of a magnetic vector potential B̃, which satisfies the Coulomb gauge
(∇ · B̃ = 0), such that B = ∇ × B̃, is implied by (2.11) (Piastra, 2019), resulting in:

µ0j = ∇ ×B

= ∇ × (∇ × B̃)
= ∇(∇ · B̃) − ∇2B̃

= −∇2B̃, (2.22)

where (2.22) is a Poisson equation with solution

B̃(r) = µ0
4π

∫
Ω

j(r′)
|r − r′|

d3r′. (2.23)

Using this it can be concluded that

B(r) = ∇ ×
(
µ0
4π

∫
Ω

j(r′)
|r − r′|

d3r′
)

= µ0
4π

∫
Ω

∇ ×
(
j(r′)

|r − r′|

)
d3r′

= µ0
4π

∫
Ω
j(r′) × r − r′

|r − r′|3
d3r′. (2.24)

If the mixed-FEM approach is used, in which case the flux j was calculated when solving
the EEG-forward problem, (2.24) gives us the formula to calculate the magnetic field B. In
case of the other approaches a few additional steps have to be taken into account. Using
(2.13), the equation above can be written as

B(r) = µ0
4π

∫
Ω

(jp(r′) + jv(r′)) × r − r′

|r − r′|3
d3r′ (2.25)

= µ0
4π

∫
Ω

(Mδx0(r′) + (−σ∇u)(r′)) × r − r′

|r − r′|3
d3r′ (2.26)

= µ0
4πM × r − x0

|r − x0|3
− µ0

4π

∫
Ω
σ∇u(r′) × r − r′

|r − r′|3
d3r′. (2.27)

The first part of the equation is known as primary B-field Bp = µ0
4πM × r−x0

|r−x0|3 and can
be calculated analytically. Bs = −µ0

4π

∫
Ω σ∇u(r′) × r−r′

|r−r′|3d
3r denotes the secondary B-field

and has to be calculated numerically using the solution u of the EEG-forward problem.
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2.5 Formula for the analytical solutions

This chapter will only give a brief expression of the analytical solutions. These are taken
from Piastra (2019). More information on these are given by (Sarvas, 1987) and (Munck
and Peters, 1993).
Under the assumption of simple geometries, a (quasi)-analytical solution for the MEG-
problem can be stated. For a multi-layer, spherical, homogeneous model this solution is
given by

B(r) = µ0
4πF 2 (FM × r0 −M × r0 · r∇F ), (2.28)

where a = r− x0, α = ∥a∥, r̃ = ∥r∥, F = α(r̃α+ r̃2 − r · x0) and ∇F = (r̃−1α2 +α−1a · r+
2α+ 2r̃)r − (α+ 2r̃ + α−1a · r)x0 (Sarvas, 1987).

For the EEG-problem, the analytical solution can only be given for a model consisting
of N overlapping centered spheres with radii r0 < r1 < · · · < rN and constant radial and
tangential conductivities in each sphere. In the following, it is assumed that the dipole is
within a deeper sphere than the electrodes at position yi, for s different sensors, with radial
coordinate yr

i . When xr then denotes the radial coordinate of a vector x the potential u at
yi evoked by a source jp = Mδx is given by

u(x, p, yi) = 1
4π

(
p,
S0
γr

i

yi +
(
S1
xr

− cosωx,yi

S0
xr

)
x

)
(2.29)

where ωx,yi = arccos⟨ x
∥x∥2

, yi

∥yi∥2
⟩ denotes the radial distance between x and yi. Additionally,

S0 and S1 are given by

S0 = F0
xr

Λ
(1 − 2Λ cosωx,yi + Λ2)3/2 + 1

xr

∞∑
n=1

[(2n+ 1)Rn(xr, yr
i ) − F0Λn]P ′

n(cosωx,yi),

S1 = F1
Λ cosωx,yi − Λ2

(1 − 2Λ cosωx,yi + Λ2)3/2 +
∞∑

n=1
[(2n+ 1)R′

n(xr, yr
i ) − F1nΛn]Pn(cosωx,yi),

where Pn and P ′
n are the Legendre polynomial and its derivative and the Ri and R′

i are the
respective coefficients. The remaining constants can be found in the work of Munck and
Peters (1993). As the sum can not be completely computed, the calculation of the sum is
stopped once a certain condition is met. This condition will not be further evaluated here
but it was shown by (de Munck and Peters, 1993).
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CHAPTER 3

Mixed-Finite-Element Method

Under the most used methods for solving partial differential equations are finite element
methods (FEM), which are special cases of Galerkin approximations. Therefore, before
deriving the discretizations for the EEG- and MEG-problem, the fundamentals of the
Galerkin-approach and the general finite element method setup are briefly explained. The
notation and structure of this chapter are based on the script for the lecture of numerics
of partial differential equations by Professor Dr. Wirth (2015/2016). For showing the exis-
tence and uniqueness of the solution of the later derived equation, the work from Vorwerk
(2016) will be used, which took the proofs from Braess (2007).

3.1 Galerkin-Approximations and the finite element method

Assume that V denotes a finite-dimensional subspace of the solutions function space F ,
the function space of functions u : Ω → R, with basis ϕ1, ..., ϕk. While usually, when
solving a partial differential equation, one minimizes the respective energy-functional E for
all functions found in F , one now minimizes the functional only for the above mentioned
subspace V . This means instead of calculating u = arg minv∈F E(v), one now solves ũ =∑k

i=1 uiϕi = argminv∈V E(v). In this case ũ is called a Galerkin-approximation of u. If
the ϕi only have local support, i.e. ϕi(x) = 0 for x /∈ supp(ϕi), the special case of finite
elements emerge. For these, different possible subspaces can be used depending on the
discretization used. In order to be able to describe necessary basis-functions one therefore
needs a definition describing how the domain is discretized.

Definition 1 Let Ω be a subset of Rn. We call T a admissible decomposition of Ω when:

1) Ω =
⋃

Ti∈T

Ti, (3.1)

2) Ti ̸= ∅, ∀i (3.2)
3) for i ̸= j, Ti ∩ Tj = ∂Ti ∩ ∂Tj , and codim(Ti ∩ Tj ,Ω) > 0 (3.3)

We generally assume, that the decompositions we are using are shape-regular. Especially,
for the sake of simplicity, decompositions using hexaedric elements Ti will be used in the
following work. It should be mentioned that the entire theory works analogous for tetraedric
decompositions.

9
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3.2 Variational formulation of the EEG-Problem

Before the weak forms of the EEG- and MEG-problem are derived, the necessary sub-
spaces of the potential- and flux-spaces are needed. For this, two spaces need to be defined
beforehand:

W k,p(T ) : = {v ∈ L2(Ω) : v|T i ∈ W k,p(Ti) | ∀ Ti ∈ T} (3.4)
Hk(T ) : = W k,2(T ), (3.5)

which are, unlike their local variants, potentially not differentiable between different ele-
ments of the decomposition, for k > 0.
Now that the necessary spaces for weak solutions were presented, the EEG-problem (2.16-
18) should be restated:

j + σ∇u = jp, (3.6)
∇ · j = 0, (3.7)
⟨j, n⟩ = 0. (3.8)

First, it should be noted that the first equation has to be multiplied with the inverse
tensor σ−1, to ensure that the resulting system will be symmetric. Then, using the general
approach for deriving the weak formulation, the system (3.6) is integrated and multiplied
with a vector-valued test function. ∫

Ω
⟨σ−1j + ∇u, ϕ⟩dx =

∫
Ω
σ−1jp · ϕdx (3.9)

⇔
∫

Ω
< σ−1j, ϕ > + < ∇u, ϕ > dx =

∫
Ω
σ−1jp · ϕdx (3.10)

⇔
∫

Ω
< σ−1j, ϕ > + < u,∇ · ϕ > dx =

∫
Ω
σ−1jp · ϕdx (3.11)

⇔
∫

Ω
< σ−1j, ϕ > dx+

∫
Ω
< u,∇ · ϕ > dx =

∫
Ω
σ−1jp · ϕdx (3.12)

This leads to the bilinear forms

a(w, v) = ⟨σ−1w, v⟩L2(Ω)3 (3.13)
b(w, k) = ⟨∇ · w, k⟩L2(Ω) (3.14)

l(v) = ⟨σ−1jp, v⟩L2(Ω)3 (3.15)

where w and v are vector-valued H∗(div,Ω) functions and k is an L2(Ω)-function. The
system (2.15-16) defines the weak-problem that needs to be solved for (j, u) ∈ H∗(div,Ω) ×
L2(Ω), where H∗(div,Ω) = {q ∈ L2(Ω)3 : ∇·q ∈ L2(Ω) ∧ ⟨q|∂Ω, n⟩ = 0} to find the solution
to the EEG-forward problem:

a(w, v) + b(w, k) = l(w) (3.16)
b(w, l) = 0. (3.17)



11

3.3 Existence and uniqueness of a weak solution

This section will complete the first tasks at hand: proving the existence and uniqueness for
the solution of the equations (2.16-17).

Theorem 1 For every l ∈ H1(Ω)′, the problem (2.16-17) admits a unique solution (j, u) ∈
H∗(div,Ω) × L2(Ω) = V ×Q.
Proof: This proof follows the steps analogous to (Johannes Vorwerk, 2016, S.141 ff.)
According to Braess (2007) it is sufficient to proof that a from (2.13) is V0-elliptic and that
b from (2.14) fulfills the following inf-sup condition

it exists β > 0 such that (3.18)

inf
q∈Q/{0}

sup
v∈V/{0}

b(v, q)
∥v∥V ∥q∥Q

≥ β. (3.19)

First:
We recall that with V0 := {v ∈ V : (∇ · v, q) = 0, ∀q ∈ Q} it can be shown that the
form a is bounded and therefore continuous.
For v ∈ V0 ⊂ H(div,Ω) it holds that ∇ · v ∈ Q = L2(Ω) and therefore ∥∇ · v∥L2(Ω) = 0
leading to

a(v, v) ≥ min
x∈Ω

σ−1(x)∥v∥2
L2(Ω)3 = α∥v∥L2(Ω)3 (3.20)

= α(∥v∥2
L2(Ω)3 + ∥∇ · v∥2

L2(Ω)) = α∥v∥2
H(div,Ω). (3.21)

Therefore a is V0-elliptic.
Second:

For 0 ̸= q ∈ L2(Ω). Using that C∞
0 (Ω) is dense in L2(Ω), there exists q̃ ∈ C∞

0 (Ω) such
that

∥q − q̃∥2
L2(Ω) ≤ 1

2∥q∥2
L2(Ω). (3.22)

Defining a v ∈ L2(Ω)3 by setting its first component as

v1(x) = v1(x1, x2, x3) :=
∫ x1

−∞
q̃(t, x2, x3)dt (3.23)

and v2 = v3 = 0, one finds that

∇ · v = ∂v1
∂x1

= q̃. (3.24)

Now using the Young- and the parallelogram inequality, as well as (5.13), one finds that

b(v, q) ≥ 1
2∥q̃∥L2(Ω)∥q∥L2(Ω) (3.25)

Additionally one can use Friedrich’s inequality

∥v∥L2(Ω)3 ≤ c∥∇ · v∥L2(Ω), (3.26)
∥v∥2

H(div,Ω) ≤ (1 + c2)∥q̃∥2
L2(Ω) (3.27)
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Here it should be mentioned, that more detailed equations can be found in
Johannes Vorwerk (2016, p. 142).
Now defining c′ := (1 + c2)−1/2 > 0, it finally follows that

b(v, q)
∥v∥H(div,Ω)∥q∥L2(Ω)

≥ 1
2

∥q̃∥L2(Ω)∥q∥L2(Ω)
∥v∥H(div,Ω)∥q∥L2Ω

(3.28)

≥ c′

2
∥q̃∥L2(Ω)∥q∥L2(Ω)
∥q̃∥L2(Ω)∥q∥L2(Ω)

≥ c′

2 (3.29)

where both requirements are fulfilled and we can find a unique solution (j, u) ∈ H(div,Ω) ×
L2(Ω). It remains to prove that u ∈ H1(Ω). Since C∞

0 (Ω) ⊂ H(div,Ω) we find that for any
ϕ ∈ C∞

0 (Ω)3 and solution u, it holds

⟨∇ · ϕ, u⟩L2()Ω = b(ϕ, u) (3.30)
= −a(j, ϕ) + l(ϕ) (3.31)
= −⟨σ−1j, ϕ⟩L2(Ω)3 + ⟨σ−1jp, ϕ⟩L2(Ω)3x (3.32)
= ⟨σ−1(jp − j), ϕ⟩L2(Ω)3 , for all ϕ ∈ C∞

0 (Ω)3, (3.33)

where we can use ϕi = eiϕ̃, for i = 1, 2, 3, leading to

⟨∂ϕ̃/∂xi, u⟩L2(Ω) = ⟨σ−1(jp − j), ϕ̃⟩L2Ω. (3.34)

Since this equation holds true for all ϕ ∈ C∞
0 and i = 1, 2, 3, we find that

∂u/∂xi = (σ−1(jp − j))i, which then again leads to u ∈ H1(Ω) with ∇u = σ−1(jp − j). □

3.4 Discretization of the potential - and flux spaces

Now the two respective subspaces for H(div,Ω) and L2(Ω) need to be chosen and validated.
For this, the following theorem from Johannes Vorwerk (2016, p. 141) as well as Brezzi and
Fortin (1991) is required:

Theorem 2 (Fortin’s criterion (1991)) Let the bilinearform b : V × Q → R fulfill the
inf-sup condition from (2.19). Further, assume that for the subspaces Vh and Qh there exists
a bounded, linear projection Πh : V → Vh, such that

b(v − Πh(v), qh) = 0 for all qh ∈ Qh. (3.35)

If ∥Πh∥ < C for some constant C independent of h, also Vh and Qh fulfill the inf-sup con-
dition (2.19).
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Proof:
For qh ∈ Qh, we have

β∥qh∥Q ≤ sup
v∈V/{0}

b(v, qh)
∥v∥V

(3.36)

= sup
v∈V/{0}

b(Πhv, qh)
∥v∥V

(3.37)

= c sup
v∈V/{0}

b(Πhv, qh)
∥Πhv∥V

(3.38)

= c sup
vh∈Vh/{0}

b(vh, qh)
∥vh∥V

(3.39)

□

The space that will be used to discretize H(div,Ω) is the space of the lowest order Raviart-
Thomas elements (RT0) and for the L2(Ω) the space of piecewise constant functions will be
used (P0). These are defined using

RT0(Ti) := {a+ bx : a ∈ R3, b ∈ R, x ∈ Ti} ⊂ H(div,Ω) (3.40)
Pk(Ti) := span{Πd

i=1x
αi
i : x ∈ Ti, α ∈ Nd,

∑
αi ≤ k}. (3.41)

where Ti is a hexahedral or tetrahedral element taken from a valid decomposition T , i.e.
Ti ∈ T . The entire space can then be defined using

RT0(T ) := {q ∈ L2(Ω)3 : q|Ti ∈ RT0(Ti), for all Ti ∈ T} (3.42)
P0(T ) := {v ∈ L2(Ω) : v|Ti ∈ P0(Ti), for all Ti ∈ T}. (3.43)

For a visualization of the merging finite element check figure (3.1).
While the use of RT0 as a choice for the flux is intuitive, the choice of P0 for the potential
space is not trivial, but one can validate that choice using the following theorem from
Vorwerk (2016, p.143).

Theorem 3 For any tetrahedral/ hexahedral element Ti we have for q ∈ RTk(Ti) that

∇ · q ∈ Pk(Ti)/Qk(Ti),
⟨q, n∂Ti

⟩ ∈ Rk(∂Ti),

with Rk(∂Ti) := {p ∈ L2(∂Ti) : p|fj
∈ Pk/Qk(fj), for all fj ∈ F (T )}.

Proof. q ∈ RTk(Ti) can be written as q0 + xpk using q0 ∈ (Pk/Qk)d, pk ∈ Pk/Qk, which
makes it clear that also ∇ · q ∈ Pk/Qk.
Multiplying q with the face normal vector n∂Ti

, ⟨q, n∂Ti
⟩ = ⟨q0, n∂Ti

⟩ + ⟨x, n∂Ti
⟩pk. Since

⟨x, n∂Ti
⟩ is constant on a face fi, ⟨q, n∂Ti

⟩ ∈ Pk/Qk.
□
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Figure 3.1: RT0 × P0 hexahedral elements for 2D (left) and 3d (right)
The red point shows the degree of freedom for the P0-Space and the blue vectors show
the degree of freedom for the RT0-Space

That these spaces fulfill Fortin’s criterion can be shown due to the ellipticity following
from RT0(T (Ω)) ⊂ H(div,Ω) and deriving the projection Πh using (3.16-17) (Braess, 2007,
p.143f.).
By using the sets of P0 and RT0 basisfunction SP0

h and SRT0
h respectively, the system (3.16-

17) can be written as a system of matrices. For this the discrete solutions uh =
∑

i uivi

and jh =
∑

k jkwk are used instead of their analytical counterparts. Here vi ∈ SP0
h and

wk ∈ SRT0
h were used. Using all this (3.16-17) can be written as:

(
M DT

D 0

)(
j
u

)
=
(
b
0

)
(3.44)

where

Mij =
∫

Ω
⟨σ−1wk, wj⟩dx (3.45)

Dkj =
∫

Ω
vk(∇ · wj)dx (3.46)

for wi, wj ∈ SRT0
h and vk ∈ SP 0

h . What remains is to derive a formula for the source
discretization. Here an advantage of the mixed-approach is obvious. Due to RT0 being
used and the source still originating in the flux-space one finds an intuitive formulation
using that the right-hand side can be understood as a sum of multiple point dipoles of
the form jp = Mδx0 . Here M ∈ R3 denotes the moment of the point dipole and δx0 the
Dirac distribution in x0 ∈ Ω. It should be stated that this approach works analogous to
the Whitney-approach but emerges naturally. The source is a singularity which is usually
difficult to discretize. (compare Johannes Vorwerk, 2016, chapter 2.10).
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This finally leads to

bi =
∫

Ω
⟨σ−1(x)Mδx0(x), wi(x)⟩dx (3.47)

which could be evaluated by approximating the integral as point evaluation. This would
lead to

bi = ⟨σ−1(x0)M,wi(x0)⟩ (3.48)

which could be understood as blurring the singular primary current jp. The approach for
calculating the right-hand side will be called direct approach. While there is an alternative
approach, called the projection approach, the main focus of this thesis will lay on the direct
approach. The alternative will still be derived in the following, to ensure a better under-
standing of the general source modeling, which - in various other cases - is not as intuitive
as in the case of the mixed-FEM.

3.5 Projection Approach

The idea of the projection approach is, as the name suggests, based on the concept of
projecting the vector-valued current source on to the potential space P0 using a projection
matrix D. Our Matrix D is sufficient by construction as the divergence is in fact a projection
onto the potential space. Taking the current source b we can therefore define hproj := Db.

Figure 3.2: Support of hproj = Dbdirect (left) and hdirect = DM−1bdirect (right), which has support
along the entire domain. src: Vorwerk (2016).

Inserting this definition into (3.44) we then find the problem for the projection approach
that has to be solved. (

M DT

D 0

)(
j
u

)
=
(

0
hproj

)
(3.49)
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While the theoretical analysis for the projection approach will be done with in this thesis,
no implemention and therefore no numerical testing will be done.

3.6 Source-Model for DG and ContG-FEM

Analogous to above the source-models for DG- and ContG-FEM need to be stated and
briefly explained. This chapter will not go into detail about the actual construction and
will not derive the actual models mathematically. It is merely supposed to give a rough idea
on the different models to ensure comparability for later use. The short derivations will
be done for the ContG-FEM. More detailed information and the mathematical derivation
can be found in Johannes Vorwerk Dissertation (2016), which serves as the basis of this
summary.
Once again we find different source-models for the dipole. For the ContG-FEM the partial
integration- (PI), the Venant- and the subtraction source models will be used, while for the
DG-FEM approach only PI and subtraction-approaches will be used.

3.6.1 Partial Integration

The partial integration source model is based on the intuitive way to solve the singularity
problem at hand. Assuming we are using a piecewise-linear testfunction hi we can write

bi =
∫

Ω
(∇ · jp)hidx. (3.50)

Now, similar to Gauss’ theorem - and using the distributional derivative of δx0 - one can
move the derivative to said testfunction to bypass the singularity of jp, i.e.

∫
Ω

(∇ · jp)hidx =
∫

Ω
(jp,∇hi)dx =

{
⟨p,∇hi(xo)⟩, ifxo ∈ supphi,

0, else
. (3.51)

Due to the piecewise-linearity of hi the function is almost everywhere differentiable. It
should be noted at this point, that due to the testfunction only having support on one mesh-
element, this discretization could be understood as replacing the dipole by a distribution
of monopoles.

3.6.2 Saint Venant

Replacing the dipole by a distribution of monopoles proofs to be a common theme for
various different source models. One other of these source models is named after the Saint
Venant (see Vorwerk, et al. 2019). The idea used for this approach is, that under certain
restrictions, complicated stress distributions can be locally simplified, due to the lack of
influence of further distanced contributors. In the case of the EEG- and MEG-problems
this means that the point dipole is replaced by a distribution of local monopoles with
localized extent ρ(x), as long as the moments of the original dipoles are conserved.
The source distribution moments are defined as kT =

∫
Ω(x−x0)kρ(x)dx. As it is known from

physics, this definition does not correspond to the coefficients of the multipole expansion,
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which are derived from a multi-dimensional Taylor expansion of u (Jackson et al., 2006).
In Cartesian coordinates with r = ∥x∥2 and xi as the entries of x, q as the sum of charges
(which means q = 0 in our case) is reads:

u(x) = 1
4πϵ0

(q
r

+ ⟨p, x⟩
r3 + 1

2
∑
ij

Qij
xixj

r5 + . . . .) (3.52)

Qij and p are the quadrupole and dipole moments respectively, i.e.

p =
∫
x′ρ(x)dx′ (3.53)

Qij =
∫

(3x′
ix

′
j − r′2δij)ρ(x′)dx′ (3.54)

While it is obvious that, after a transformation to a common origin, 1T matches the dipole
moment, this is not the case for 2T and the quadrupole moments. It can be shown that
the diffences are negligible (Hanrath et al.). Due to the historical creation of the Venant
approach the choice remains as it is given. In order to simplify the calculation of the
moments kT once again point-like monopole sources are assumed, i.e. ρ =

∑n
i=1 qiδxi . The

moments can then be rewritten as

kT =
n∑

i=1
(xi − x0)kqi =

n∑
i=1

∆xk
i qi (3.55)

where ∇xi denotes the distance between a vertex xi and x0 and ∇xi := ∇xi/a
ref a rescaled

version to improve the stability. (3.55) can then rewritten as a matrixsystem as follows,
using the same rescalling convention:

Xj =

(∆x1)0
j (∆x2)0

j ... (∆xn)0
j

... ... ... ...
(∆x1)k

j (∆x2)k
j ... (∆xn)k

j

 (3.56)

q =

q1
...
qn

 (3.57)

tj =

(0T )j

...
(nT )j

 (3.58)

To calculate the load vector q the matrix (W j)m,s := (∆xm)rδm,s for r = 0 or r = 1 is
introduced, allowing us to understand q as the minimization of the functional

FΛ(q) = ∥tj −Xjq∥ + λ∥W jq∥2
2, (3.59)

where the first term penalizes differences between the original source and its approximation,
while the second ensures the uniqueness of the solution by additionally penalizing to many
large values |qi|. Differentiating after qi then results in the solution

(XT
j Xj + λW

T
j W j)q = X

T
j tj . (3.60)



18

This then leads to

q = [
3∑

j=1
(XT

j Xj + λW
T
j W j)]−1 ·

3∑
j=1

X
T
j tj , (3.61)

which - considering the reference function Z - ends in the Venant RHS:

bi =
{
qZ(i), if i ∈ Z−1(0, . . . , n),
0, else.

(3.62)

Simplified this means that this source model blurs the formerly point-like source current.

3.6.3 Subtraction

Reviewing the source models used until now, one could find that all approaches try to
substitute the dipole using a distribution of monopoles. The subtraction source-model
approaches this in a different manner: Instead of substituting the dipole, the assumption for
the existence of a non-empty, open neighborhood Ω∞ with constant, isotropic conductivity
σ∞ is made, which allows us to remodel the source singularity with an analytical solution
into an equation for a correction potential uc akin to (3.6).
It can therefore be said that the electric potential u is split into the correction - and the
constant, isotropic term:

u = uc + u∞, (3.63)
σ = σc + σ∞. (3.64)

Using the properties for σ∞ on Ω∞, u∞ can be calculated analytically using

σ∞u∞ = −(∇ · jp) ∗G. (3.65)

Now abusing that

σ∞∆u∞ = −∆((∇ · jp) ∗G) = ∇ · jp (3.66)

and recalling that ∇ · jp = ⟨p, δx0⟩ a new PDE for uc can be stated:

∇ · (σ∇uc) = f in Ω f := −∇ · (σc∇u∞), (3.67)
σ∂nu

c = g on Γ g := −σ∂nu
∞. (3.68)

The weak formulation can then be given by: Find uc ∈ H1
∗ (Ω), such that:∫

Ω
⟨σ∇uc,∇v⟩dx = −

∫
Ω

∇ · (σc∇u∞)vdx−
∫

∂Ω
(σ∂nu

∞)vdx (3.69)

for all v ∈ H1
∗ (Ω). Finally the RHS for the subtraction source-model can be defined.

lc(v) := −
∫

Ω
∇ · (σc∇u∞)vdx−

∫
∂Ω

(σ∂nu
∞)vdx (3.70)

Regardless of the source model used, a system of equations has to be solved for the cal-
culated matrix system. Due to the large size of the system numerical solvers need to be
used. Therefore the following chapter will introduce the conjugate-gradient (CG) solver
and various different preconditioners to optimize its use for the problem at hand.
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CHAPTER 4

Solvers

4.1 Introduction

In general it is inefficient to directly invert the system matrix A. While A itself is a sparse
matrix, the inverse matrix A−1 would end up being a dense matrix. Aside of the memory-
problems for very short mesh-width h the time requirement for inverting the matrix A is
insufficient. Due to these problems, systems Ax = b are solved using different methods. This
chapter will deal with only one approach: the conjugate gradient method (CG-Method).
Using only the unpreconditioned CG-solver will not be able to solve our system efficiently,
due to the structure of our matrix. Not only is the condition of our system far from optimal,
also the problem we are trying to solve is a saddle-point problem, for which Krylow-subspace
solvers own a slow convergence-rate.
Even using common preconditioners directly on our system often fail due to the structure
of our equation. This problem can be avoided by calculating the schur-complement of our
original system. After explaining the fundamentals necessary, the schur-complement solver
will be explained which will be the implemented solver used for calculating the solution of
our problem.

1 # include <iostream >
2
3 int main ()
4 {
5 vector x;
6 x = 0;
7 vector Ax0 = A. matmul (x);
8 vector r = b - Ax;
9 double res = norm(r);

10 vector d = r;
11 for (int k = 0, k< maxiter || tol >res , ++k)
12 {
13 // save product once
14 vector z = Ad;
15 int rTr = r. transpose () * r;
16
17 int alpha = rTr / (d. transpose ()*z)
18 x += alpha *d;
19 r -= alpha *z;
20
21 int beta = r. transpose ()*r / rTr;
22 d = r + beta*d;
23 res = norm(r);
24 }
25 }

Algorithm for the unpreconditioned CG-Method

19
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4.2 Conjugate Gradient

The conjugate gradient method (CG-Method) is an iterative method for solving large linear
equations Ax = b which are symmetric and positive definite. As known, a solution of Ax = b
is at the same time a unique minimizer of the quadratic function E(x) = 1

2⟨Ax, x⟩ − ⟨b, x⟩.
The gradient of this functional is given by ∇E|x = Ax− b = −r, i.e. the negative residual.
This gradient can therefore be calculated quickly for sparse matrices. In contrast to other
gradient-descend methods however, the CG-method reduces not in the direction of the
residuum but in the directions of A-conjugate vectors dk. This means ⟨Adi, dj⟩ = 0 for
i ̸= j. For a starting vector x0 one can then construct the Krylow-space between A and r0
as

Kk := x0 + span{r0, Ar0, ..., A
k−1r0}. (4.1)

The necessary space can therefore be calculated automatically in the algorithm. Finally
it can be shown that, since Kk0 is the span of A-conjugate vectors, that dim(Kk) = k.
This also leads to the fact, that for a matrix A ∈ Rn×n, the CG-method converges after n
iterations (assuming exact calculations for each iteration). However for big matrices it is
usually unrealistic to run n iterations, therefor the actual convergence rate is interesting.

Theorem 4 The convergence rate for the CG-method in step k with solution xk îs emerging
and the exact solution x is given by

∥xk − x∥A = 2
(√

κ(A) − 1√
κ(A) + 1

)k

∥x0 − x∥A (4.2)

Proof
Hackbusch, W. (1994)

Therefore the iterations necessary are directly correlated to the condition of the matrix.
Improving the condition is therefore the most efficient way in reducing the time needed to
solve the system to a satisfying degree.

4.3 Preconditioners

Preconditioners are a fundamental necessity for solving bad-conditioned problems in a real-
istic setup. While the CG-method itself converges as long as the matrix is either symmetric
and positive definite or by solving the problem AtAx = Atb instead, the time required to
do so will not be sustainable in any realistic scenario. As shown above, in order to improve
the rate of convergence, one needs to improve the condition of the original system Ax = b.
This can be done by finding an alternative system Ãx = b̃ which approximates our original
problem. The right approximation depends on the original problem at hand. In this case
three different preconditioners will be presented: An incomplete lower-upper (ILU0) -, an
algebraic multi-grid (AMG) - and a Mass-Lumping preconditioning, which will all be used
for our problem.
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4.3.1 AMG-Preconditioner

The algebraic-multi-grid (AMG) preconditioner is an alternative approach to usual multi-
grid(MG) preconditioner, which is based on the idea to smooth the residuum by applying
few iterations of a solver which eliminates the portion of the error, corresponding to high
frequencies, leaving only the error on the lower frequencies, which can be approximated, by
prolonging the error of a lower resolution grid. This means that afterwards the system is
restricted to a grid with larger stepwitdh h, which allows the approximation of a smoothed
residuum, which can then be prolonged to the original grid (see Wolters, et al. 2002 and
Lew, et al. 2009). This can be done by multiple stages, creating a hierarchy of grids, result-
ing in low computational costs at the lowest level. Due the initial smoothing the remaining
residuum on the highest level is itself smooth and can therefore be easily corrected with the
prolonged residuum of the lower level. The remaining residuum is therefore free of low and
high frequency errors. The advantage of this approach is, that a much higher convergence
rate can be reached for systems with low portions of higher frequency errors.
Due to the difficulty of this approach being to create the grid hierarchy for complex ge-
ometries of the domain Ω and due to difficulties tuning the high-frequency smoothers and
optimizing the restriction-operator for multigrid-CG , the goal of the AMG-preconditioner
is to avoid said problems. Instead of creating a hierachy of grids, which approximate the
original geometry the system, a subset of the unknowns is chosen and the matrix is re-
stricted using a algebraic chosen restriction, which is only based on the information taken
from the matrix.
However the choice of the restriction (which is itself the transpose of the prolongation) is
not trivial.

1 # include <iostream >
2
3 int main ()
4 {
5 vector x;
6 x = 0;
7 vector Ax0 = A. matmul (x);
8 vector r = b - Ax;
9 vector h = Ch;

10 double res = norm(r);
11 vector d = r;
12 for (int k = 0, k< maxiter || tol >res , ++k)
13 {
14 // save product once
15 vector z = Ad;
16 int rTh = r. transpose () * h;
17
18 int alpha = rTh / (d. transpose ()*z)
19 x += alpha *d;
20 r -= alpha *z;
21 h = Cr;
22
23 int beta = r. transpose ()*h / rTh;
24 d = h + beta*d;
25 res = norm(r);
26 }
27 }

Algorithm for the preconditioned CG-Method
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4.3.2 SSOR-Preconditioner

One of the two preconditioners used for solving the given problems is the symmetric succes-
sive over-relaxation (SSOR) which is special case of the successive over-relaxation (SOR),
which is in itself a variant of the Gauss-Seidel Method
The SOR-method itself can be described using the algorithm stated below. However, since
the preconditioner is created using a symmetric matrix – which one needs for the CG-method
– the symmetric version emerges that can be described using

P =
(
D

ω
+ L

)
ω

2 − ω
D−1

(
D

ω
+ U

)
, (4.3)

where A = (L + D + U), L, D and R denote the lower, diagonal and upper submatrix
respectively. This then leads to the iterative

xk+1 = xk − γkP−1(Axk − b), for k ≥ 0. (4.4)

This is however not the usual application of the matrix, since inverting P would not be
efficient once again. Applying the preconditioner to both sides of the equation or onto the
residuum ensures the raise of the original solution when applying the CG-method onto the
altered system.

4.4 Schur-complement Solver

In general the schur-complement is calculated for a matrix(
A B
C D

)(
x
y

)
=
(
f
g

)
.

If A or C are invertible we can multiply the row A−1 or C−1 respectively and subtract it
from the remaining row in order to gain the Schur-complement S. In the case of this thesis,
we can understand equation (3.44) as two equations

Mj +DTu = h1 (4.5)
Dj = h2 (4.6)

where (h1, h2) equals either hproj or hdirect. If we now eliminate D in (4.6) by multiplying
DM−1 with the first the equation on to it, we gain

Su := −DM−1DTu = h2 −DM−1h1 (4.7)

where S = −DM−1DT denotes the Schur-complement. Once the electric potential u was
calculated using the equation above, the current j can be calculated by solving

Mj = h1 −DTu. (4.8)

In order to solve (4.7) one will once again use the CG-Solver. Therefore one needs to assure,
that S is a symmetric, positive definite matrix. This however was done by Braess (2007).



23

Theorem 5 S is positive definite. If M is symmetric, also S is symmetric.
Proof.
Braess (2007, p. 216)

For solving system (4.7) it is necessary to solve M−1DTu = y, which can be multiplied with
M leading to My = DTu, which can be solved using the CG-Method as described above.
In total, we therefore need to solve three different systems:

My = h1 (4.9)
Su = h2 −Dy (4.10)
Mj = h1 −Du. (4.11)

At this point what is left it to state which preconditioner will be used at which place. While
M is a sparse matrix, which makes it easy to use the SOR method, heavily improving the
convergence rate, S does not have to be sparse. Therefore for this matrix the AMG-method
will be used. Due to the fact that the structure only needs to be calculated once for multiple
dipoles, which will always be used in realistic or relevant setups, the computational cost is
acceptable.
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CHAPTER 5

Implementation

To transfer the mathematical idea into actual code structures to realize said ideas, pre-
existing structures are necessary. In order to recreate the results of this thesis the setup
has therefore to be transparent. For the recreation four major topics are relevant:
Which software setup is used as basis for the Mixed-FEM code, how are the matrices and
the right-hand side assembled in said setup, which additional optimizations are used and
which tests are used to create the different results.

5.1 Software

The implementations which are done for this thesis are based on the preexisting duneuro-
toolbox (http://duneuro.org/), which itself is based on the dune-toolbox
(https://www.dune-project.org/).
Duneuro can be used to calculate solutions for the EEG- and MEG-forward problems using
continuous and discontinuous finite element methods (CG and DG) for various different
source models, like the subtraction, Venant or Whitney approaches. Those approaches
will be used later in this work as reference points for comparing the results of the mixed-
approach. The preexisting basis functions for the reference element, required for assembling
the system matrix, originate in the Dune-PDELab module.

5.2 Assembling the system matrix

Various problems can emerge when trying to assemble the system matrix. The first problem
at hand is finding the basis-functions for the RT0-space. While the functions for the P0-
space emerge trivially, the basis for the former would have to be calculated using an equation
system. This however can be avoided by switching to local basis functions defined on the
reference element Ei. To do this, two major steps are necessary: the application of the Piola
transformation to transform the basisfunctions to their reference element counterpart and
transforming the integral itself. The transformation onto the reference element is shown in
figure (5.1) using the functional Fi, corresponding to an finite element Ti. The functional
Fi which project a tetraedric element Ti with corners x1, x2 and x3 for example could be
calculated using

F△
i (ψ) := x1 +

(
x2 − x1|x3 − x1

)
(ψ) (5.1)

For greater dimensions or different finite element types different equations emerge, which
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Figure 5.1: Illustration of functions for transferring the respective refence-elements onto specific
elements taken from the grid.

however can be automated by deriving the necessary equation, which only depends on the
finite element type.
If we now assume a transformation onto the reference Element Eref ,Fi for each element
Ti ∈ T , where T denotes the valid decomposition of Ω into finite Elements Ti, we can, using
the structure of M from (2.45), transform said integral:

Mkj =
∫

Ω
⟨σ−1wk, wj⟩dx (5.2)

= Σn
i=1

∫
Ti

⟨σ−1wk, wj⟩dx (5.3)

= Σn
i=1

∫
Ti

⟨ 1
|Ji|

σ−1Jiwk,
1

|Ji|
Jiwj⟩dx (5.4)

= Σn
i=1

1
|Ji||Ji|

∫
Ti

⟨σ−1Jiwk, Jiwj⟩dx (5.5)

= Σn
i=1

1
|Ji||Ji|

∫
Eref

⟨σ−1wk, Gtwj⟩|Ji|dx (5.6)

= Σn
i=1

1
|Ji|

∫
Eref

⟨σ−1wk, Gtwj⟩dx (5.7)

with

J△
i := det(

(
x2 − x1|x3 − x1

)
) (5.8)

where Gt = ((ti ·tj)) is the covariant metric tensor with ∥Gt∥ = 1. ti denote the vector-basis
for constructing the normal vectors. Here w denotes the basis functions on the reference
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element. We can then continue for the discrete divergence:

Dkj =
∫

Ω
vk(∇ · wj)dx (5.9)

= Σn
i=1

∫
Ti

vk(∇ · wj)dx (5.10)

= Σn
i=1

∫
Ti

vk( 1
|Ji|

∇ · wj)dx (5.11)

=
∫

Tk

1
|Jk|

(∇ · wj)dx (5.12)

=
∫

Eref

1
|Jk|

(∇ · wj)|Jk|dx (5.13)

=
∫

Eref

(∇ · wj)dx (5.14)

Now that the left-hand sides can be assembled using only the local basis functions, the
right-hand side is the only part missing. For this we need to transform not only the basis
function but also the Dirac distribution δx0 , resulting in an additional 1/|Ji|.

bj =
∫

Ω
⟨σ−1mδx0 , wj⟩dx (5.15)

= Σn
i=1

∫
Ti

⟨σ−1mδx0 , wj⟩dx (5.16)

= Σn
i=1

∫
Ti

1
|Ji|

⟨σ−1mδx0 , Jwj⟩dx (5.17)

= Σn
i=1

∫
Eref

1
|Ji|2

⟨σ−1mδx̃0 , Jwj |Ji|⟩dx (5.18)

= Σn
i=1

∫
Eref

1
|Ji|

⟨σ−1mδx̃0 , Jwj⟩dx (5.19)

To calculate the various integrals fitting quadrature formulas are necessary. The integral
for b do not have to be calculated, since it will be approximated using a point-evaluation.
As the term we interpolate for M is a composition of two linear functions the required
integration order is two. Since one can restrict the domain over which is integrated to the
specific element Ti when calculating Dij the P0-basis function gets obsolete, which enables
a integration of order one, since only the divergence of a linear function remains.
While the matrices can now be directly assembled, the overall performance of the code still
can be optimized, by calculating so called transfer matrices for the respective problems.

5.3 Transfer matrices

Computational efficiency is a driving factor when applying mathematical methods to realis-
tic scenarios. In order to reach this efficiency we want to apply the transfer matrix approach
which revolves around the idea, that - regardless of the actually numerical approach - the
structure of the problem one needs to solve to calculate the electric potential u always looks
like Au = b. For a hexaedric grid with a mesh-size of 1mm the dimension of A usually
ranges at around 3 million unknowns for a realistic head model.
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For the most common inverse approaches a source space has to be chosen. This discrete set
of dipole positions and directions is used to approximate the sources of the neural activity.
A leadfield matrix L is therefore computed which consists of the forward solution for a
pair of a source space position pi and direction mi as respective column. The number of
columns is therefore given by the number of positions multiplied by the number of directions
(m∗p). Due to the great dimension of the systemmatrix A and up to thousands of possible
dipole positions the computational cost necessary to calculate all solutions for assembling
the leadfield matrix is very expensive.
The number of sensors S usually ranges within the hundreds and is therefore a lot lower
then the number of possible dipole positions. This fact motivated the transfer matrix ap-
proach. As we are only interested in the unknown values of u at the sensor positions one can
precalculate a restriction matrix R which can either be based on a point evaluation leading
to a reduced identity matrix, or be based on an approximation of the surface area of the
respective sensor. Using all this one can then proceed for the EEG and MEG problems as
follows to calculate the complete transfer matrix, which enables us to evaluate the electic
potential u very efficiently.

5.3.1 EEG

Let I denote the set of indices for an enumeration of the sensors. For each i ∈ I we want
to evaluate our electrical potential u using a functional Ei.

qi = Eiu

⇔ Q = Eu

Instead of doing this calculation using the electric potential we want to multiply with
the original right-hand side h. For the different discretizations hproj and hdirect different
solutions emerge. Using that hproj = Db is the product of the discrete divergence and
our source, that hdirect = DM−1b and that S = DM−1DT denotes our Schur-complement
system we can rewrite the equation as:

Q = ES−1h =: Th. (5.20)

Solving for T :

T = ES−1

⇔ T T = S−TET

⇔ STT T = ET .

Proceeding further leads to the formulations:

Tprojb : = TDb (5.21)
Tdirectb : = TDM−1. (5.22)
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While the application of Tproj can the done directly using T , for the application of Tdirect

a system has to be solved each time.

Tdirect = TDM−1

⇔ TdirectM = TD

⇔ MTTdirect = DTT T

⇔ MTdirect = DTT T

The problem can be avoided by substituting M−1 with C−1 which was used for the CG-
solver of the outer iteration and had to be calculated anyway. The advantage is that DC−1b
is closer to hdirect and therefore supports the grid structure better.

5.3.2 MEG

We remember that the solution of the Poisson equation (2.23)

A(r) = µ0
4π

∫
Ω

j(r′)
|r − r′|

d3r′ (5.23)

is leading to

B(r) = µ0
4π

∫
Ω
j(r′) × r − r′

|r − r′|3
d3r′. (5.24)

We therefore use an evaluation of the functional Σi using the current j. Due to the primary
magnetic flux ΦP being calculated analytically, it is sufficient to calculate the secondary
magnetic flux ΦS . For this calculation we can use either jdirect or jproj , depending on our
h used in the introduction or our source model.

jdirect = M−1(b−DTu) (5.25)
jproj = −M−1DTu. (5.26)

Starting for jproj we can then proceed as above in order to calculate the transfer matrix
Tmeg

proj as follows:

Φs = Σjproj

= −ΣM−1DTu

= −ΣM−1DTS−1hproj

= −ΣM−1DTS−1Db

= Tmeg
proj b.

As we want to calculate Tmeg
proj we therefore proceed similar to the case of the EEG-transfer

matrix. In the following the MEG-Transfer matrix will be noted without the meg notation
to keep it simple and will be based on applying hproj instead of b which will be the actual
application.

T = −ΣM−1DTS−1

⇔T T = −S−TDM−T ΣT

⇔T T = −S−1DM−1ΣT

⇔ST T = −DM−1ΣT
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At this point we first have to calculate the right-hand side for which we require to solve
Y = M−1ΣT , which we can write as MY = ΣT . Once we calculated Y and therefore were
able to calculate T one can directly deduct our actual transfer matrix Tmeg

proj .

Φs = Thproj

= TDb (5.27)
= Tmeg

proj b

Let us now take a closer look at the case of jdirect.

Φs = Σjdirect

= ΣM−1(b−DTu)
= ΣM−1(b−DTS−1hdirect)
= ΣM−1(b−DTS−1DM−1b)
= ΣM−1(Id−DTS−1DM−1)b

We need to therefore introduce two support matrices T1 and T2.

T1 := ΣM−1

T2 := −ΣM−1DTS−1DM1−1

While T1 can be calculated by solving the system MT T
1 = Σ, T2 needs some further expla-

nation.

T2 = −ΣM−1DTS−1DM1−1
T2 = TprojM

−1

T2 = M−1T T
proj

⇔ MT T
2 = T T

proj

Using the result from above we can conclude that we can solve for T T
2 using T T

proj . Finally
it can be seen that Tproj = T1 + T2.

5.4 Experiments

What remains to do is to test how the two different mixed-FEM approaches perform,
compared to CG-FEM and DG-FEM, in their relative errors, their magnitude errors and
their relative difference measure (RDM).
For this the solutions of ContG- and DG-FEM for different source model discretizations will
be compared to those of the mixed-approach using the direct source model. The ones used
for ContG- and DG-FEM will be the common variants, namely the venant-, the subtraction-
and the partial-integration source models, where the venant- source model will only be used
for the ContG-FEM approach. Using a spherical domain, consisting of 4 compartments, en-
ables the comparison with the analytical solutions stated in (2.28) and (2.29). The domain
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Figure 5.2: Illustration of the test case for a simple grid. Red stands for lower conductivities and
dark blue for higher. The brighter blue dot shows a possible location for a dipole.

can be further described using the center of the domain, given at the point (127, 127, 127),
the outer radii 78 (brain), 80 (CSF), 86 (skull), 92 (skin )and its conductivites 0.33 S/m,
1, 79 S/m, 0.01 S/m, 0.43 S/m.
Following the structure used throughout this thesis the finite elements used to discretize
this domain will be hexaedric, without node-shift. Two meshes of different refinement of
1mm or 2mm will be used, where the former approximates the geometry of the grid better.
For the calculation the source will consist of 500 to 10000 different dipoles with varying
eccentricity. The electric data for the EEG calculation will be based on measurements on
up to 70 electrodes, regularly distributed over the whole sphere. The MEG calculations will
use a similar amount of coils for the measurement data. The setup therefore looks similar
to the following visualizations.
The calculations for the EEG forward problem will be done using the formerly derived and
implemented transfer matrix approach, while the MEG problem will be solved calculating
the solution for the forward problem for each dipole respectively.
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CHAPTER 6

Evaluation and Conclusion

What lastly remains to be done is that the tests just described are resolved and that the
results are evaluated graphically and literally. Finally it will be concluded whether or
whether not, the direct source model approach is comparable to the accuracy of the usual
approaches. The hardware used for the computations will be briefly described to enable
comparability for replications of the test-cases on different devices. Lastly, a quick outlook
will be given on which questions and problems arose within the theory of this thesis and its
implementations.

6.1 Hardware

As stated in the short chapter introduction the hardware used will be quickly described.
All the calculations were done on the same computer-system consisting of an Intel Core i7
105100U CPU octacore 2.3 GHz processor, with 16G RAM. The software was installed and
developed on Ubuntu 18.04 64x bit operating system.

6.2 Evaluation

As stated in chapter 5, different source-models were tested. First the relative errors (RE)
for different source-models should be compared to give a rough understanding on the actual
accuracy of the numerical approaches. When looking at Table 6.1

Table 6.1: Average relative error for different source models for the EEG forward problem, using
10000 dipoles, for greater eccentricities and a mesh size of 2mm.

Source model Ecc 0.8 Ecc 0.9 Ecc 0.95 Ecc 0.99
ContG PI 0.0973403118 0.103002964 0.1057619916 0.237377436
ContG Subtraction 0.0968255298 0.1026606788 0.1062498244 0.5191629296
ContG Venant 0.0967298584 0.1026234504 0.1065494 0.1864244312
DG PI 0.1005805936 0.1062139472 0.1098324308 0.2461023388
DG Subtraction 0.100078984 0.1059095796 0.1100331418 0.5428161502
Mixed Direct 0.102959608 0.1207144254 0.133478122 0.3682835944

33
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one quickly finds that the accuracy for the ContG- and DG-FEM approaches may be similar
for all ranges of eccentricty (aside of the subtraction source models, which obviously are
incorrect) but the accuracy of the direct approach for the mixed-FEM approach is only
comparable at very high eccentricities, where the error is extremely high anyway and there
this fact is negligible.
For lower eccentricities similar results can be found. When looking at table 6.2 one finds that
the accuracy of the direct approach is, once again, half as accurate as the other approaches.

Table 6.2: Average relative error for different source models for the EEG forward problem, using
10000 dipoles, for smaller eccentricities and a mesh size of 2mm.

Source model Ecc 0.5 Ecc 0.6
ContG PI 0.0849444032 0.0880041648
ContG Subtraction 0.084877648 0.0879272642
ContG Venant 0.0848537188 0.0879173436
DG PI 0.0880963846 0.0913670358
DG Subtraction 0.088025344 0.091296976
Mixed Direct 0.092764188 0.0949681714

The convergence-rate of the model is mathematically equal to that of the ContG- and DG-
FEM source models. Due to testing issues with the subtraction source model for both
cases, the data will only be compared between the ContG PI and Venant source models.
The results (6.3) however match the expected convergence rate. The magnitude is therefore
equal to that of the other approaches.

Table 6.3: Comparison of the scenario above with mesh size 1mm.
Source model Ecc 0.8 2mm Ecc 0.9 2mm Ecc 0.8 1mm Ecc 0.9 1mm
ContG PI 0.0973403118 0.103002964 0.0477950686 0.05076350776
ContG Venant 0.0967298584 0.102623450 0.0478205012 0.0507333596
Mixed Direct 0.102959608 0.1207144254 0.06007078627 0.06427468982

Finally for the EEG-problem the actual lnMAG- and RDM-errors for different eccentricities
(namely 0.6, 0.8, 0.9 and 0.95) should be analyzed. Here the red, blue and green box plots
correspond to the mixed-direct-, ContG-PI and the ContG-Venant source models, in case
of a 2mm mesh with 10000 dipoles.
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Once again it is found that, while the magnitude of the errors of the direct approach is equal
that of the other approaches, the actual accuracy is still inferior to the classic approaches.
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What remains to be seen is the result of the data for MEG-problem. Since the data of the
MEG-problem relies on the solution of the EEG forward problem, similar results would be
expected. Due to the failed calculations for the subtraction approach, once again the data
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will only be compared to the ContG-FEM approaches.

Table 6.4: Average relative error, using a mesh-size of 2mm and 10000 dipoles.
Source model Ecc 0.8 Ecc 0.9
ContG PI 0.00984436994 0.01311309488
Mixed Direct 0.0254471461 0.03537295776

Table 6.5: lnMAG error, using a mesh-size of 2mm and 10000 dipoles.
Source model Ecc 0.8 Ecc 0.9
ContG PI 0,0000794131048 0.000251250934
Mixed Direct 0.00077969542888 0.0002037855774

Table 6.6: RDM error, using a mesh-size of 2mm and 10000 dipoles.
Source model Ecc 0.8 Ecc 0.9
ContG PI 0.00839845362 0.01111331828
Mixed Direct 0.0232491973 0.03153935264

Once again one finds that, even though the differences are almost neglible in size, the
common approach of the ContG-PI outperforms the direct approach in all of the classic
error-measures.

6.3 Conclusion

Looking at the results found for the EEG- and MEG-problems the actual performance
of the mixed-FEM approach with the direct source model proves to be lacking compared
to commonly used approaches. Neither the computational time, nor the actual accuracy
legitimate the use of the approach over the common practice. While Johannes Vorwerk
showed in this thesis, that the direct approach is capable or reducing potential-leakages
when calculating near the skill tissue, the DG-FEM still proves to be more the efficient and
accurate approach.
While the computational cost for the EEG-Problem was greatly reduced due to the help
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of the transfer matrix approach, the interesting case where the performance-advantages
for the approach would come into place, would have been the MEG-problem using the
same approach. Calculating the current j together with the electric potential u greatly
reduces the additional cost when solving the MEG forward problem. Due to the additional
calculations however, the approach needs more storage-space while still taking longer to
converge.
In case of the MEG-Problem the direct source model approach was able to stay relative to
the use of ContG- or DG-FEM source models, while still not being able to surpass their
accuracy. Further testing on the stability of the solution should however be done, due to
the different used methods.

6.4 Outlook

What remains to be done is to briefly explain further topics, which could be reviewed and
studied. The main problem of this thesis was to recreate the projection approach results
from Johannes Vorwerk Dissertation. This was caused due to him originally using the wrong
scaling factor for the right-hand side. Additionally the tensors were not correctly used and
implemented, leading to additional errors during the calculation. The first thing that could
be done in succession to this thesis is to derive the correct mathematical scaling factor for
the projection approach and produce new results to compare with the direct approach given
above.
Another possible approach is to implement the MEG-transfer matrix approach, which was
already theoretically derived. Further testing could be used to evaluate the actual efficiency
of this method.
Two, more theoretical, approaches are for example further stability analysis on non-structured
grids or the application of different, potentially non-symmetric, solvers.
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