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Notation

Ω volume conductor
σ conductivity tensor
j current density
jp primary current density
js secondary current density
u electric potential
u∞ singularity potential
ucorr correction potential
umono electric potential of a monopolar source
udip electric potential of a dipolar source
uquad electric potential of a quadrupolar source
ρ total electric charge density
ε0 permittivity of free space
µ0 permeability of free space
E electric field
B magnetic field
H1 Sobolev space
x0 source position
Mmono moment of monopolar source
Mdip moment of dipolar source
Mquad moment of quadrupolar source
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0 Introduction

The anatomy and functionality of the human brain is highly complex and has been
researched for centuries. Its importance has steadily risen and with modern technol-
ogy the medical possibilities in this field have improved tremendously. Today, we can
analyze a brain’s anatomy via imaging techniques like magnetic resonance imaging
(MRI) or X-ray computed tomography (CT). We can even monitor its activity with
electroencephalography (EEG) or magnetoencephalography (MEG). Combining these
methods allows us to localize specific activity in the brain, which is, for example, used
in epilepsy diagnosis.
This type of localization via EEG or MEG requires the solution of the corresponding
inverse problem, which determines a source’s location based on the sensors’ signal.
The inverse problem is solved numerically and the approaches to solve it build upon
the solution for the forward problem, which calculates the sensors’ signal for a given
source in the brain. Inaccuracies in the forward solution can lead to an inaccurate
localization, therefore it is crucial to find the best possible approach to the forward
problem.
There has been a lot of research comparing different approaches and this thesis aims
to contribute further possibilities. Of the many factors that play into an approach’s
accuracy, such as the structure of the head model, the amount of layers, the math-
ematical method and many more, we will specifically look at the possible models to
describe the source’s structure.
In Chapters 1 and 2 we will introduce the medical and mathematical basics behind
the EEG forward problem and the subtraction approach, as well as the possible source
models. In Chapter 3 we will describe how we construct patches of activity in the
brain and how we will use that to test and compare the source models. Chapter 4
will then present the results of those comparisons. Chapter 5 will introduce another
source model, the multipole model, which combines the previously used ones. Lastly
we will test this model and devise a conclusion on which model shows the highest
accuracy.
The theory in this thesis builds heavily on the work of Leandro Beltrachini[5] and
the main focus is to present his methods and our implementation of them into the
Duneuro[16, 9, 10] pipeline while also testing their effectiveness compared to the
standard model.
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1 Medical Basics

Most processing of sensory perceptions takes place in the brain, the center of our
nervous system. To better understand how we can measure the internal activities of
the brain, we will briefly introduce the basic structure and function of its elemental
components, the neurons.
A neuron in the brain consists of three main parts: The soma, the dendrites and the
axon. The soma is the body of the neuron and the other compartments extend from
it. The axon and dendrites build the connection to other cells. Figure 1.1 shows a
picture of cortical neurons, where this structure is clearly visible.

Figure 1.1: Pyramidal neurons in the prefrontal cortex (image from brainmaps.org,
free to use under creative commons license)

Electrochemical signals can be transmitted from the axon of one neuron to a den-
drite of another. With these connections neurons can form complex networks, which
in turn are the basis of our nervous system. While each neuron only has one axon, it
can build several dendrites, leading to neocortical neurons having 7000 connections
on average[7].
The signal transmission starts when a certain threshold for the electric potential in
the cell body is reached. Na+ ions flow into the cell and raise the membrane poten-
tial, whereafter the permeability for Na+ drops and the K+ permeability increases,
lowering the membrane potential back to its resting potential. This process creates
an electrical current flowing into the connected dendrites. The resulting increase in
potential in all connected neurons causes a dipolar electromagnetic field, which is
measurable by electric and magnetic sensors[23].
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2 The Mathematical Theory

In this chapter we will introduce the EEG forward problem[5, 18, 25], the subtraction
approach[18, 25, 8] and multipolar sources[5, 15].

2.1 The EEG Forward Problem

The search for the corresponding sensor signal to a given source in EEG and MEG
is called the forward problem. Likewise, the localization of a source corresponding
to a given signal is called the backward problem or inverse problem[26]. The EEG
forward problem[25] stems from the Maxwell equations[15], which are given by

∇ · E =
ρ

ε0
(2.1)

∇× E = −∂B
∂t

(2.2)

∇ ·B = 0 (2.3)

∇×B = µ0

(
j + ε0

∂E

∂t

)
, (2.4)

with the electric field E, the total electric charge density ρ, the permittivity of free
space ε0, the magnetic field B, the permeability of free space µ0 and the total electric
current density j.

The forward problem is considered quasi-static, so ∂E
∂t and ∂B

∂t are negligible. Fur-
thermore, the rotation of a vector field is zero if and only if it is conservative. This
implies that there is a function u for the electric potential that satisfies

E = −∇u.

Next we can separate j into the primary current density jp and the secondary current
density js = σE where σ describes the conductivity. Combining this with the previous
equation yields

j = jp + js

= jp + σE

= jp − σ∇u.

Taking the divergence results in

∇ · j = ∇ · jp −∇ · (σ∇u)

⇔ ∇ · jp = ∇ · j +∇ · (σ∇u). (2.5)
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To reach the final form of the forward problem we go back to the fourth Maxwell
equation and recall that our problem is quasi-static and that the divergence of a
rotation is always zero.

∇×B = µ0

(
j + ε0

∂E

∂t

)
= µ0j

⇔ ∇ · ∇×B = ∇ · (µ0j)

⇔ 0 = ∇ · (µ0j)

⇔ ∇ · j = 0 (2.6)

Inserting (2.6) into (2.5) leads to

∇ · (σ∇u) = ∇ · jp. (2.7)

Since the electric potential u is continuous, and the conductivity σ outside of the
head domain Ω is zero, we get the following Neumann boundary condition[25]:

〈σ∇u, n〉 = 0

Altogether we have the following Poisson equation as the EEG forward problem:

∇ · σ∇u = ∇ · jp in Ω

σ∇u · n = 0 on ∂Ω
(2.8)

Ω is considered open and connected.
In order for a classical solution to this problem to exist, σ needs to be in C1[25].
However, in realistic scenarios we have jumps in the conductivity between different
tissues, such as the brain and the CSF. Therefore, we search for weak solutions in the
Sobolev space H1(Ω).
To transform (2.8) into a weak formulation, we multiply both sides of the main
equation with a test function ψ in a yet to be defined function space V . Integrating
over Ω and applying partial integration then gives us

a(u, ψ) =

∫
Ω
σ∇u · ∇ψdx =

∫
Ω

(∇ · jp)ψdx = l(ψ). (2.9)

Our weak solution u has to solve this equation for all ψ ∈ V .
At this point it is difficult to solve this equation, because the term for the primary
current density jp always has a singularity at the source position x0. The exact
term depends on the source model and will be introduced later. There are multiple
approaches that deal with the singularity in different manners, however this thesis
will examine the subtraction approach[25, 8] in particular.
The main idea of this approach is to separate the conductivity σ into the singularity
conductivity σ∞ and the correction conductivity σcorr. We assume that a non-empty
subdomain Ω∞ ⊂ Ω with homogeneous constant conductivity σ∞ exists so that the
source position lies in Ω∞\∂Ω∞. Consequently, the electric potential is also considered
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as u = u∞ + ucorr. The singularity potential u∞ is the theoretical solution of (2.8) if
Ω was an unbounded homogeneous conductor, and it can be calculated analytically.
Assuming isotropic homogeneous conductivity σ∞ = σ̄∞I lets us rearrange (2.8) into

∆u∞ =
∇ · jp

σ̄∞
. (2.10)

This is a simple Poisson equation and thus the solution is well known:

u∞(x) = − 1

4πσ̄∞

∫
G

∇ · jp(x′)
‖x− x′‖

dx′ (2.11)

The area G ⊂ Ω needs to be chosen in such a way that it contains the source at x0

as an interior point.
The exact term for ∇ · jp depends on the source model.

2.2 Source Models

Before we can determine the term for the primary current density in the different
models, we first have to examine the multipolar expansion[21]. For that, let Ω∞ ⊂ Ω
contain y and let x ∈ Ω \ Ω∞ be an arbitrary point. We now want to examine the
electric potential f(y, x) at the point x caused by a unitary current source at y and
expand it using the Taylor series with expansion point x0. We then get

f(y, x) = f(x0, x) + a · ∇0f(x0, x) +
1

2
aT∇0(∇0f(x0, x))a+ ...

with a = y − x0. It is proven that this series converges for ||a|| < ||x− x0||[21]. This
is given for all x ∈ Ω \Ω∞ if the expansion point x0 is closer to the source location y
than to ∂Ω∞.
Given this form, we can now calculate the potential in x due to the entire source
−∇ · jp[13]:

u(x) =−
∫

Ω∞
f(y, x)∇ · jp(y)dy

=−
∫

Ω∞
(∇ · jp(y))f(x0, x)

+ (∇ · jp(y))(y − x0) · ∇0f(x0, x)

+ (∇ · jp(y))
1

2
(y − x0)(y − x0)T : ∇0(∇0f(x0, x))

+ ...dy

=Mmonof(x0, x)

+Mdip · ∇0f(x0, x)

+
1

2
Mquad : ∇0∇0f(x0, x)

+ ...

(2.12)
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Here, Mmono, Mdip and Mquad refer to the monopolar, dipolar and quadrupolar mo-
ment respectively and : is the tensor contraction for the rank-2 tensor Mquad, which
satisfies (aaT ) : ∇0∇0f = aT (∇0∇0f)a.
If we employ ∇· jp(x) = −qmonoδ(x−x0) with qmono ∈ R, then it quickly follows that

Mmono = −
∫

Ω∞
∇ · jp(y)dy = qmono,

Mdip = −
∫

Ω∞
(∇ · jp(y))(y − x0)dy = 0 and

Mquad = −
∫

Ω∞
(∇ · jp(y))(y − x0)(y − x0)Tdy = 0.

In the same manner, ∇ · jp(x) = −qdip∇δ(x− x0) yields

Mmono = 0

Mdip = qdip

Mquad = 0

for qdip ∈ R3 and ∇ · jp(x) = −1
2qquad : ∇(∇(x− x0)) with qquad ∈ R3×3 results in

Mmono = 0

Mdip = 0

Mquad = qquad.

Given these results we now have the terms to insert into (2.11) for purely monopolar,
dipolar or quadrupolar sources. The possibility of a multipolar term will be discussed
later.

2.3 The CG-FEM Approach

With the previous findings we can now determine the analytical solution to (2.10) for
monopolar, dipolar and quadrupolar sources. These solutions are[5]:

u∞mono =
1

4πσ̄∞
Mmono

‖x− x0‖
(2.13)

u∞dip =
1

4πσ̄∞
Mdip · (x− x0)

‖x− x0‖3
(2.14)

u∞quad =
1

4πσ̄∞
Mquad

2
:
‖x− x0‖ I3 − 3(x− x0)(x− x0)T

‖x− x0‖5

=
Tr(Mquad) ‖x− x0‖ − 3Σ3

i=1Σ3
j=1Mquad i,j(x− x0)i(x− x0)j

8πσ̄∞ ‖x− x0‖5
(2.15)
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The respective gradients of u∞ will be needed to calculate the correction potential.
They are given by

∇u∞mono = − 1

4πσ̄∞
Mmono (x− x0)

‖x− x0‖3
(2.16)

∇u∞dip =
1

4πσ̄∞

(
Mdip

‖x− x0‖3
−
(
Mdip · (x− x)

)
(x− x0)

‖x− x0‖5

)
(2.17)

∇u∞quad =
1

8πσ̄∞ ‖x− x0‖5

(
−5(x− x0)

‖x− x0‖2
[
Tr(Mquad) ‖x− x0‖2

− 3Σ3
i=1Σ3

j=1Mquad i,j(x− x0)i(x− x0)j

]
+ 2Tr(Mquad)(x− x0)− 3(Mquad +MT

quad)(x− x0)

)
(2.18)

The next step is to calculate ucorr. For this we can transform (2.8) by inserting the
assumptions of the subtraction approach, which results in the following equations:

−∇ · (σ∇ucorr) = ∇ · (σcorr∇u∞) in Ω

σ∇ucorr · n = −σ∇u∞ · n on ∂Ω
(2.19)

This system can now be solved numerically by using the Finite Element Method.
Determining the weak formulation of (2.19) is done in the same way that we used
earlier to get (2.9). This leads to the equation

a(ucorr, ψ) =

∫
Ω
σ∇ucorr · ∇ψdx

=−
∫

Ω
σcorr∇u∞ · ∇ψdx−

∫
∂Ω
σ∞∇u∞ · nψds = l(ψ)

(2.20)

which needs to be fulfilled for every ψ in a chosen function space V . For the CG-FEM
[18, 24] approach, this function space consists of Lagrangian ansatz functions.
To further define V we first need a triangulation Th of Ω̄, where h ∈ R+ is the fineness
of the triangulation. Th should fulfill the following properties:

• each finite element E ∈ Th is a closed set and E̊ is non-empty

• Ω̄ =
⋃

E∈Th E

• E1, E2 ∈ Th, E1 6= E2 ⇒ E1 ∩ E2 = ∅

• for each E ∈ Th, ∂E is Lipschitz-continuous

Given this triangulation we can construct the function space as follows.

Vh = {vh ∈ C0(Ω) : vh|E ∈ P1∀E ∈ Th}
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In this case, P1 is the space of all 3-dimensional first degree polynomials. This implies
that every function v ∈ Vh is uniquely defined by its values at the nodes Ni of Th,
where i = 1, ..., nh and nh is the amount of nodes in the triangulation. The set
{ϕi : i = 1, ..., nh} is therefore a basis of Vh with the basis functions being defined by
ϕi(Nj) = δi,j ∀i, j = 1, .., nh.
We can now use this basis to describe ucorrh , which is the closest approximation of
ucorr in Vh since ucorr is not necessarily in this space: Let ucorri = ucorr(Ni) for all
i = 1, .., nh. Then it follows that ucorrh =

∑nh
i=1 u

corr
i ϕ.

The bilinear form a in the weak formulation (2.20) can therefore be rewritten as

a(ucorrh , ϕi) =

nh∑
j=1

ucorrj

∫
Ω
σ∇ϕj · ∇ϕidx (2.21)

The whole equation can now be considered as a system of linear equations by defining
the matrix A = (ai,j)i,j=1,..,nh

with

ai,j = a(ϕi, ϕj) =

∫
Ω
σ∇ϕi · ∇ϕjdx

and the vectors ucorr = (ucorri )i=1,...,nh
and l = (l(ϕi))i=1,...,nh

. The system is then
given by

Aucorr = l. (2.22)

Finding ucorr solves the EEG forward problem.

2.4 Analytical Solution

In a multi-layer spherical head model with layerwise constant conductivity, the equa-
tion (2.8) can be solved analytically[14]. In practice, the restriction on the head
model prevents this kind of solution from being used, because the caused inaccuracy
exceeds the possible numerical inaccuracy in a more realistic head model. However,
the analytical solution works great as a point of reference to evaluate the performance
of numerical approaches. This is what we use it for in this thesis.
Given such a spherical model with piecewise homogeneous and anisotropic conduc-
tivity, the analytical solution to the forward problem at position x ∈ R3 caused by a
dipole source at x0 ∈ R3 is

uana(x0, x) =
1

4π
Mdip ·

[
x0

‖x0‖
(S1 − cos(ω)S0) +

x

‖x‖
S0

]
(2.23)

with

S0 =
1

‖x0‖
Σ∞n=1(2n+ 1)Rn(x0, x)P ′n(cos(ω)) and

S1 = Σ∞n=1(2n+ 1)R′n(x0, x)Pn(cos(ω)),

where ω is the angle between x and x0, Pn is the n-th Legendre polynomial and Rn

is a function that depends on the sphere layers and their conductivities. The exact
formula can be found in [14], where this method is explained in detail.
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3 Method

In order to measure the accuracy and general performance of the models, we will
perform a set of experiments. In these experiments we will mainly compare the nu-
merical solution for point-source to the analytical solution for a dipole patch. Our
goal is to find the source model that is best suited to approximate a patch of activity.
The reason for our point of reference being a dipole patch is that it is a simple yet
realistic simulation of real cortical activity. In the brain, any process involves large
networks of neurons. The exact range of possible sizes of these networks is difficult
to determine, but in this thesis we will use areas from 25 to 625 mm2, as these values
are comparable to other studies[5, 13]. These areas will all be oriented either radially
or tangentially. The precise structure will be described below.
While a point-source is an approximation of realistic activity, it is fast in comparison
to the complete modeling of a patch and it is the basis of the mathematical methods
that were described in the last chapter.
In order to conduct the experiments we use the Duneuro pipeline[16, 9, 10] via
its python (https://www.python.org) interface. Duneuro is a C++ toolbox that
is built upon the Dune library (http://dune-project.org)[1, 2, 3, 4, 6] to al-
low the solving of the EEG forward problem. The Duneuro code is available on
GitLab (https://gitlab.dune-project.org/duneuro) and on the Duneuro home-
page (www.duneuro.org). We have added the option of monopolar and quadrupolar
sources by allowing Duneuro to transform a given dipole into different types of sources.
The exact process will be explained later. This method keeps the simplicity of the
system for the user while bringing in the possible benefits of new source models.
The analytical solutions that we use as a point of reference are calculated with the
software SimBio[20].
The patches and corresponding point-sources will be placed on a tetrahedral mesh
of a spherical head model with four compartments, namely the scalp, the skull, the
cerebro-spinal fluid (CSF) and the brain. The outside radii of the layers are 92mm,
86mm, 80mm and 78mm respectively. The mesh has 54771 nodes and the conduc-
tivities that were used are 0.00043, 0.00001, 0.00179 and 0.00033.

3.1 Patch structure

A simulated patch is constructed from a singular dipole by forming a grid of patch-
dipoles around it. This grid is spanned by a normalized vector V1 that is orthogonal
to the original dipole’s moment M , and the cross product V2 of this vector V1 with
M . If the original dipole is oriented radially, then all the smaller dipoles will also be
radial. This is achieved by creating radial moments from the distance vector between
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the sphere’s center and the dipole’s position, and scaling it accordingly. The same
goes for tangential orientation, however the patch-dipoles’ moments are just scaled
versions of the original moment vector, because they don’t need to be reoriented. In
the following two theorems we will proof the legitimacy of these structures.

Definition 3.1 (Construction of radial patches) Given a radial dipole p0 = (x0,m0)
with position x0 ∈ R3 and moment m0 ∈ R3, a grid width h ∈ R, the center
c ∈ R3 of the head model and the desired amount of patch-dipoles N ∈ N with
∃n ∈ N0 : N = (2n+ 1)2 we define a radial patch around p0 as follows:

Prad = {pi,j = (xi,j ,mi,j) ∈ R3 × R3|i, j ∈ [−n, n] ∩ Z,
xi,j = x0 + ihV1 + jhV2,

mi,j =
si,j
N

xi,j − c
‖xi,j − c‖

}

where V1 and V2 are the orthonormal vectors described earlier and si,j is a scaling
factor defined by

si,j = ‖m0‖
‖xi,j − c‖
‖x0 − c‖

Theorem 3.1 A radial patch Prad constructed from a radial dipole p0 fulfills:

1. x0 = 1
N Σn

i=−nΣn
j=−nxi,j,

2. m0 = Σn
i=−nΣn

j=−nmi,j and

3. mi,j is radial for all i, j ∈ [−n, n] ∩ Z.

Proof 3.1

1.

1

N
Σn
i=−nΣn

j=−nxi,j =
1

N
Σn
i=−nΣn

j=−nx0 + ihV1 + jhV2

=
1

N
Σn
i=−nΣn

j=−nx0

=
N

N
x0

= x0

11



2.

Σn
i=−nΣn

j=−nmi,j = Σn
i=−nΣn

j=−n
si,j
N

xi,j − c
‖xi,j − c‖

=Σn
i=−nΣn

j=−n
si,j
N

x0 + ihV1 + jhV2 − c
‖xi,j − c‖

=
‖m0‖
N

Σn
i=−nΣn

j=−n
x0 + ihV1 + jhV2 − c

‖x0 − c‖

=
‖m0‖
N

(
Σn
i=1Σn

j=1

(x0 + ihV1 + jhV2 − c) + (x0 − ihV1 − jhV2 − c)
‖x0 − c‖

+ Σn
i=1Σn

j=1

(x0 + ihV1 − jhV2 − c) + (x0 − ihV1 + jhV2 − c)
‖x0 − c‖

+ Σn
j=1

(x0 + jhV2 − c) + (x0 − jhV2 − c)
‖x0 − c‖

+ Σn
i=1

(x0 + ihV1 − c) + (x0 − ihV1 − c)
‖x0 − c‖

)
+

x0 − c
‖x0 − c‖

=
‖m0‖
N

(
Σn
i=1Σn

j=1

2(x0 − c)
‖x0 − c‖

+ Σn
i=1Σn

j=1

2(x0 − c)
‖x0 − c‖

+ Σn
j=1

2(x0 − c)
‖x0 − c‖

+ Σn
i=1

2(x0 − c)
‖x0 − c‖

+
x0 − c
‖x0 − c‖

)
= ‖m0‖

4n2 + 4n+ 1

N

x0 − c
‖x0 − c‖

= ‖m0‖
(2n+ 1)2

N

x0 − c
‖x0 − c‖

= ‖m0‖
x0 − c
‖x0 − c‖

=m0

3. This statement is trivial since mi,j is a scaled version of xi,j − c and therefore
radial.

�

Definition 3.2 (Construction of tangential patches) Given a tangential dipole
p0 = (x0,m0) with position x0 ∈ R3 and moment m0 ∈ R3, a grid width h ∈ R, the
center c ∈ R3 of the head model and the desired amount of patch-dipoles N ∈ N with
∃n ∈ N0 : N = (2n+ 1)2 we define a tangential patch around p0 as follows:

Ptan = {pi,j = (xi,j ,mi,j) ∈ R3 × R3|i, j ∈ [−n, n] ∩ Z,
xi,j = x0 + ihV1 + jhV2,

mi,j =
1

N
m0}
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where V1 and V2 are again the orthonormal vectors to m0.

Theorem 3.2 A tangential patch Ptan constructed from a tangential dipole p0 fulfills:

1. x0 = 1
N Σn

i=−nΣn
j=−nxi,j,

2. m0 = Σn
i=−nΣn

j=−nmi,j and

3. mi,j is tangential for all i, j ∈ [−n, n] ∩ Z.

Proof 3.2

1. Identical to the proof of Theorem 3.1

2. Trivial, since Σn
i=−nΣn

j=−nmi,j = Σn
i=−nΣn

j=−n
1
Nm0 = m0

3.

〈mi,j , xi,j − c〉 = 〈 1

N
m0, x0 + ihV1 + jhV2 − c〉

=
1

N
(〈m0, x0 − c〉+ ih〈m0, V1〉+ jh〈m0, V2〉)

= 0

In the last step we use the facts that p0 is tangentially oriented and therefore
m0 ⊥ x0 − c and that V1 and V2 were defined to be orthogonal to m0.

�

3.2 Source construction from dipole patches

Now that we have a way of modeling patches we need to define the corresponding
monopolar, dipolar and quadrupolar sources. Our goal is to calculate a source’s mo-
ment from the patch-dipoles’ moments. The sources’ position is then set to the center
of the patch x0.
A single monopolar source is not suitable to approximate a patch of dipoles, because
it is impossible to simulate an actual flow of electricity. For the monopolar approxi-
mation we therefore use two monopolar sources with a variable distance and equal but
opposite strengths. This model resembles the physical dipole which makes the com-
parison to the mathematical dipole quite interesting. The closer the two monopoles
are, the stronger their moments have to be, which is why we will use the following
way of constructing them from a patch:

Definition 3.3 (Monopolar approximation) Given a patch P created from the
dipole p0 = (x0,m0) with N ∈ N dipoles (x1,m1), ..., (xN ,mN ) ∈ R3 × R3 we define
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the monopolar approximation of that patch with distance d ∈ R as a pair of monopoles
(xmono 1,mmono 1), (xmono 2,mmono 2) ∈ R3 × R with:

xmono 1,2 = x0 ±
d

2 ‖m0‖
m0,

mmono 1,2 = ±‖m0‖
d

.

If one wanted to approximate an arbitrary dipole patch that has not necessarily been
constructed in the previously defined ways, one could simply define x0 as the center
of the patch and m0 as the sum of all patch-dipoles’ moments and then apply these
formulas.
With this approach, the dipolar approximation for an arbitrary patch can be defined
as well.

Definition 3.4 (Dipolar approximation) Given a patch P consisting of N ∈ N
dipoles (x1,m1), ..., (xN ,mN ) ∈ R3 × R3, the dipolar approximation of that patch is
the dipole (xdip,mdip) ∈ R3 × R3 with

xdip =
1

N
ΣN
i=1xi,

mdip = ΣN
i=1mi.

Lastly we need a way to construct the parameters of a quadrupolar source from a
given dipole patch. There are two approaches to this: The construction can either
be based on the dipole approximation of the patch (which is identical to the original
dipole if the patch was built around it) or on the patch-dipoles themselves. We will
later compare both approaches.

Definition 3.5 (Quadrupolar approximation 1) Given a dipole (x0,m0) ∈ R3×
R3, two vectors V1, V2 ∈ R3 with m0 ⊥ V1 ⊥ V2 ⊥ m0 and ‖V1‖ = ‖V2‖ = ‖m0‖, the
quadrupole that best approximates the dipole is given by (xquad,mquad) ∈ R3 × R3×3

where

xquad = x0

mquad =
(
m0 V1 V2

)1 0 0
0 0 0
0 0 0

(m0 V1 V2

)−1

The idea behind this approach is to tune the eigenvalues and eigenvectors of the
moment matrix to match the given dipole’s orientation. This is of course a restrictive
use of the quadrupolar model, which is why we try to use more information in the
second approach.
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Definition 3.6 (Quadrupolar approximation 2) Given a patch P of N ∈ N dipoles
(x1,m1), ..., (xN ,mN ) ∈ R3×R3 we define the quadrupolar approximation of that patch
as the quadrupole (xquad,mquad) ∈ R3 × R3×3 with

xquad =
1

N
ΣN
i=1xi

mquad = ΣN
i=1((xi − xquad)Tmi +mT

i (xi − xquad))

If we would interpret a single dipole as a patch with N = 1, then the second quadrupo-
lar approximation would have a moment of 0. Therefore this approach is only useful
in non-trivial patches. This also makes the comparison between the two approaches
non-trivial, however our later experiments will provide the necessary insight in the
advantages and disadvantages of each method.

3.3 Experiments

Using everything we have defined so far we are now able to conduct the necessary
experiments to compare the possibilities of all approaches. We will use common error
measures in the field, namely the relative difference measure (RDM) and the ln of
the magnification factor (lnMAG), in addition to the absolute error.

Definition 3.7 (Error measures) Let u1, u2 be two solutions to the forward prob-
lem. To compare them we define the following error measures:

RDM(u1, u2) =

∥∥∥∥ u1

‖u1‖
− u2

‖u2‖

∥∥∥∥
lnMAG(u1, u2) = ln

(
‖u1‖
‖u2‖

)
abs(u1, u2) = ‖u1 − u2‖

These measures signify different aspects of the comparison: The lnMAG shows the
difference in magnitudes of the solutions, the RDM compares them if they were scaled
to the same magnitude and the absolute error combines the two. It is important to
keep in mind that the absolute error depends on the magnitude of both solutions,
which makes it good comparing abs(u1, u2) with abs(u1, u3), but unfit for comparing
abs(u1, u2) with abs(u3, u4), given four solutions u1, u2, u3, u4.

There are multiple factors that can play into the accuracy of a source model: The
difference between the numerical and the analytical solution for a given model, the
ability of the chosen model to simulate a realistic source, and factors that can play
into these differences, like the depth or orientation of the source. In the upcoming
part of the thesis we will look into those factors.
In order to quantify the source properties so that we can analyze their effects, we use
purely radial or purely tangential sources and group them by source eccentricity[5].
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Definition 3.8 (Source eccentricity) A source at position x0 ∈ R3 in a spherical
head model with center c ∈ R3 and radius of the inner-most layer rin is e ∈ R with

e =
‖x0 − c‖
rin

In our head model the radius rin is 78mm.
Before we conduct our own studies we will briefly look into related work by other
scholars in this field. One important step to evaluate the accuracy and legitimacy
of the different source models is to determine their numerical error, which describes
the difference between their numerical solutions and the analytical solutions with the
same source model. This has been analyzed by Leandro Beltrachini[5], who found
that more complex source models lead to greater numerical errors. This means that
the monopolar model has higher numerical accuracy than the dipolar model, while the
quadrupolar model is most prone to numerical errors. Using a mesh with a higher res-
olution also lowers the mismatch between analytical and numerical solutions, meaning
that a fine mesh might become a requirement for higher-complexity source models
to obtain a very high accuracy. Another factor that raises the error is higher source
eccentricity. The numerical approximation for deep sources is better. In order to find
results that are easily comparable, we will use only one mesh for our tests, which has
been described at the beginning of the chapter.

Our first experiment is the comparison of the two-monopoles approach with the dipole
model. The mathematical dipole is an approximation of the physical dipole, but the
two-monopoles model resembles the actual physical dipole more closely. The differ-
ence in the forward solutions of both models can be used to express how representative
the mathematical model of a dipole is of an actual dipolar source. If the difference is
considerable, then the usage of a two-monopoles model could improve existing meth-
ods of EEG analysis.

The second experiment builds upon the first one and compares the mismatch of
the two-monopoles model and an analytical dipole with that of the dipole model and
the analytical dipole. It can lead to further insight in the possible applications of
the two-monopoles model as factors like source eccentricity and source orientation
can affect the models in different ways. To be able to analyze these factors we group
the source positions by their eccentricity, and radial and tangential sources are kept
separate.

Lastly we will use the introduced formulas for the construction of patches and the
approximation via quadrupoles and compare this to the approximation with a single
dipole. The sets of sources that we use are comparable to those in the last experi-
ment, but the range of source eccentricities is limited, because the constructed patches
should not expand outside the correct layer of the head model or through the center
of the sphere. Each dipole in the dataset is used to construct multiple patches of
different sizes, from 25mm2 to 625mm2. Each patch is approximated as a dipole, a
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quadrupole with the method in Definition 3.5, and a quadrupole with the method in
Definition 3.6. The numerical solutions for those approximations are then compared
to the analytical solution for the patch.

The results of these tests can give us some insight in the effectiveness of the different
source models, as well as their performance relative to each other. The Dune and
Duneuro code that was used can be found in [10], in the branch ’multipole-subtraction’
(at the time of submission). The scripts and datasets for these experiments in partic-
ular are submitted with the thesis. All of them are modifications of the scripts and
datasets provided by [16]. A small section on how to use the code is included at the
end of the thesis.
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4 Results

In this chapter we discuss the outcome of the previously mentioned experiments and
compare our results to previous work on similar topics.

4.1 Experiment 1: Modeling error

For the comparison of the two-monopoles model with the dipole model we calculated
the forward solution for 500 radial and 500 tangential sources with varying eccentric-
ities. We used multiple variants of the two-monopoles model with different distances
between the monopolar sources. These were created as described in Definition 3.3
without the construction of a patch. We then plotted the three error measures for
those variants compared to the numerical solution of the dipole model. The results
can be seen in Figure 4.1.
The magnitude of the absolute error is 10−3 in the worst case, which shows how
close the two approaches are to each other. Of course a smaller distance between the
monopoles leads to a smaller error because the mathematical dipole can be seen as
the limit of the two-monopoles model when letting the distance go to 0.[15] However,
even with a distance as large as 1 cm the results are still comparable.
This shows that the mathematical dipole is a very good approximation of the physical
dipole.
With other methods than the subtraction approach, the results might differ. Schimpf
et al[19] examined the same question in a different approach with the result that
a greater monopole distance can lead to higher accuracy. This effect is caused by
the fact that a larger distance allows more elements of the mesh to be between the
monopoles. In the subtraction approach however, this seems to increase the error.
Therefore we can not tell from these results alone how well the dipole model approx-
imates a physical dipole in other approaches. This requires further research to be
conducted.

4.2 Experiment 2: Numerical error comparison

In the second experiment we compare the numerical solutions for the two-monopoles
model and the dipole model with the analytical solution of a single dipole. We use
a distance of 2 mm between the monopoles, which according to the results from the
first experiment is different enough from the mathematical dipole to make the results
meaningful, while still being small enough to fit in the cortex and therefore be a
realistic representation of dipolar activity in the brain. Figure 4.2 shows the results
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(a) absolute

(b) RDM

(c) lnMAG

Figure 4.1: Error measures for the difference between the two-monopoles and the
dipole model
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(a) absolute

(b) RDM

(c) lnMAG

Figure 4.2: Error measures for the two-monopoles model and the dipole model com-
pared to a radial analytical dipole
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(a) absolute

(b) RDM

(c) lnMAG

Figure 4.3: Error measures for the two-monopoles model and the dipole model com-
pared to a tangential analytical dipole
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for 500 radial sources depending on their eccentricity, and Figure 4.3 does the same
for 500 tangential sources.
The previously mentioned fact that the numerical error is higher for more eccentric
sources can be clearly observed. It is also apparent that tangential sources seem to
be better approximated, especially if they are superficial. As for the main focus of
this experiment, there seems to be no considerable difference between the two mod-
els. The different possible source positions and moments seem to affect both models
equally.
To look into this in more detail we repeat experiment 1 with the datasets we used
in experiment 2. The results are shown in Figure 4.4 for radial sources and Figure
4.5 for tangential ones. While the absolute error looks similar to the plot in the
previous experiment, keep in mind that we are comparing the solution to the numer-
ical dipole instead of the analytical one. This means that the mismatch between the
two-monopoles approach and the numerical dipole also increases with a higher source
eccentricity and a higher distance between the monopoles. The lnMAG indicates that
especially superficial sources tend to have their monopoles-solution be too large in
case of radial orientation and too small at tangential orientation. The scaling on the
plot also shows clearly that the sources with tangential orientation have a lower RDM
between the models than those with radial orientation.
Since the scaling in Figures 4.4 and 4.5 makes it very difficult to see the lnMAG
for lower eccentricities, we added these specifically in Figure 4.6. It appears that
the lnMAG for tangential sources, most prominently with larger distances between
the monopoles, starts above zero for deep sources and then quickly falls below zero
for higher eccentricities. An lnMAG of zero indicates that both solutions, in this
case the numerical two-monopoles solution and the analytical dipole, have the same
magnitude. The fact that the solution for monopoles with a high enough distance is
consistently too large for radial and deep tangential sources and too small for super-
ficial tangential sources is something that would benefit from further investigation.
However, this topic lies outside of the scope of this thesis and needs to be examined
at a later time.

4.3 Experiment 3: Quadrupolar approximation

In the last experiment for this chapter we use the methods defined in the previous
chapter in order to approximate dipole-patches with quadrupoles. We take one set
of 50 radial dipoles and one set of 50 tangential dipoles and construct patches of the
sizes 25mm2 to 625mm2 around each source. These patches are then approximated
by a point-dipole and by the two types of quadrupoles that were described in the
Definitions 3.5 and 3.6. In the plots, the term ’quadrupole’ refers to method 1 and
’quadrupole patch’ describes method 2. The numerical solutions for all three approx-
imations are then compared to the analytical solution for the patch, which is the sum
of all patch-dipoles’ analytical solutions. The resulting plots can be seen in Figures
4.7 to 4.10.
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(a) absolute

(b) RDM

(c) lnMAG

Figure 4.4: Error measures for the difference between the two-monopoles and the
dipole model in radial sources
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(a) absolute

(b) RDM

(c) lnMAG

Figure 4.5: Error measures for the difference between the two-monopoles and the
dipole model in tangential sources
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(a) radial

(b) tangential

Figure 4.6: lnMAG for sources with low eccentricity between the two-monopoles and
the numerical dipole model
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(a) absolute

(b) RDM

(c) lnMAG

Figure 4.7: Error of the quadrupolar approximation of a radial patch based on patch
size
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(a) absolute

(b) RDM

(c) lnMAG

Figure 4.8: Error of the quadrupolar approximation of a tangential patch based on
patch size
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(a) absolute

(b) RDM

(c) lnMAG

Figure 4.9: Error of the quadrupolar approximation of a radial patch based on
eccentricity
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(a) absolute

(b) RDM

(c) lnMAG

Figure 4.10: Error of the quadrupolar approximation of a tangential patch based on
eccentricity
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Looking at the absolute error, it is easy to see that the quadrupolar approximation
does not compare well to the dipolar approximation here. The lnMAG clearly shows
that the solution for both quadrupolar models is multiple magnitudes smaller than
that for the dipole model. In the case of tangential sources, we reveal another prob-
lem in our approach through the lnMAG: Using the regular patch structure defined
in Definition 3.2 and the approximation in Definition 3.6, the resulting quadrupo-
lar moment is 0, barring computational inaccuracy. In order to get a meaningful
quadrupole, we need a less regular patch structure.
The reason for the other quadrupolar approximations also being too small can be
seen in the formula for the quadrupole singularity potential in (2.15), as it is one
magnitude of x − x0 smaller than the dipole solution. The monopole solution on
the other hand is one magnitude larger, but when we used the two-monopoles ap-
proach, this problem was solved. Similarly, if we constructed a physical quadrupole
from monopoles, we could approximate it very accurately with our model, but the
patch-model that we used seems to resemble a dipole more than a quadrupole. This
problem can not be solved by simply scaling the quadrupole solution to the correct
magnitude, as the RDM is also worse in comparison to the dipole. A less regular
patch structure might lead to different results.
To test this hypothesis, we repeat the experiment with a different way to construct
patches: The patch now consists of 625 dipoles that are placed at random in a square
with a side-length of 5 mm to 25 mm. This corresponds to the side-lengths of the
patches in the previous iteration of this experiment. The dipole moments are also set
at random, but they always have unit length. This means that the patches in this
form are no longer radial or tangential, they are an area of irregular activity. While
the construction of the area depends on the two spanning vectors, we conducted the
experiment in multiple variants and found, that there is no considerable effect of the
orientation of those vectors. Therefore we present the results for different possible
positions and orientations of these areas together.
The multiple approximations for the activity are calculated as described in Defini-
tions 3.4, 3.5 and 3.6. The dipole that is used as a basis in the quadrupole method
1 is the dipolar approximation of the patch. The resulting comparison is shown in
Figures 4.11 and 4.12. While the results seem to be closer to to the desired outcome,
the quadrupole still falls behind the dipole approximation in terms of accuracy.
The ”quadrupole patch” approach, meaning the approximation with a quadrupole
like in method 2, seems to be unaffected by the sources eccentricity. The size of the
patch on the other hand is an important factor in the accuracy of the approach, as
the lnMAG is closer to zero for larger patches. The absolute error doesn’t show this
effect, because it is dominated by the patches’ solution, while the approximation is
far too small in comparison.
Overall, a patch consisting of dipolar sources seems to be best approximated as a
dipolar source itself. Since the measurable signal during brain activity may con-
tain a strong dipolar component[17], realistic studies would not benefit from using
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a quadrupolar source model over a dipolar one. However, in the next chapter we
will test a different application for the quadrupolar model, to see if it can bring an
improvement to the existing methods.
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(a) absolute

(b) RDM

(c) lnMAG

Figure 4.11: Error measures for randomized patch approximation by eccentricity
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(a) absolute

(b) RDM

(c) lnMAG

Figure 4.12: Error measures for randomized patch approximation by patch area
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5 The Multipolar Model

Approximating a dipolar source, either a point-source or a patch, as a quadrupole
does not work well. However, it is possible that the dipole model can be improved
with additional information. A source model is not limited to one summand in the
multipole expansion of a source. So as a last model, we introduce the multipolar
source model.
This model combines the previous source models in order to increase the overall
performance. As with the quadrupole approximation, there are multiple possible
approaches which we will compare. In general, the multipole singularity potential
will be calculated as a linear combination of the potentials of the individual source
models. Other works on this topic often define the multipolar potential as the direct
sum of dipolar and quadrupolar potential[5, 13], but here we want to see if a certain
weighting can lead to higher accuracy. It is also possible that including the monopolar
model can be beneficial. However, it is reasonable to assume that the two-monopoles
approach will not help to increase the accuracy of a multipole, as we showed in the
previous chapter that it closely resembles the mathematical dipole.

Definition 5.1 (Multipolar potential) Let Ω ⊂ R3 be the head domain, wmono,
wdip, wquad ∈ R the weights for the linear combination and u∞mono,u∞dip, u∞quad : Ω→ R
the monopolar, dipolar and quadrupolar singularity potential respectively. A mul-
tipole is given as (xmult,Mmult) where xmult ∈ R3 is the position and Mmult =
(Mmono,Mdip,Mquad) ∈ R × R3 × R3×3 is the moment. The multipolar singularity
potential u∞mult : Ω→ R is then defined as

u∞mult = wmonou
∞
mono + wdipu

∞
dip + wquadu

∞
quad

where the individual functions use the source position xmult and the moment contained
in Mmult.

If one wanted to exclude the monopolar aspect from the multipole, one can define
wmono to be zero. Otherwise, the weights still need to be specified.
The quadrupolar moment matrix that is used for the multipole can be determined by
either of the two methods we defined in Chapter 3. The results of both models will
be compared in the next experiments.
The main point of focus for this source model is the potential increase in accuracy
through effective weighting of its components. In order to assess its full potential, we
determine the optimal weights by defining the absolute error of the multipole as an
error function depending on a vector of weights (ω1, ω2, ω3), and employing a mini-
mization algorithm. The resulting optimal parameters are then used to determine all
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error measures.
We will conduct multiple experiments with this approach to determine in which situa-
tions the model is advantageous. The minimization algorithm that we use is provided
by the scipy.optimize package[22]. However, the results should be reproducible with
all suitable minimization methods.

5.1 Experiment 4: Optimal Weights

First we need to test if a multipole model can bring an advantage over the dipole
model at all. To do that, we use the dataset of radial sources from experiment 3
and determine optimal weights for each patch size separately. We continue using the
regular patch structure, because the irregular patches showed better approximations,
therefore the following results will set a lower limit to the usefulness of the multipole
approach. The quadrupole moment is determined with method 2, since it proved to
be more accurate. The results can be found in Table 5.1.

Patch size ω1 ω2 ω3 Improvement

25 mm2 -1.943e-5 9.988e-1 -1.472e0 0.423%
81 mm2 -1.097e-5 9.980e-1 -6.039e-1 0.686%
169 mm2 2.309e-6 9.968e-1 -4.124e-1 1.236%
289 mm2 2.053e-5 9.952e-1 -3.436e-1 2.197%
441 mm2 4.398e-5 9.932e-1 -3.140e-1 3.618%
625 mm2 7.301e-5 9.906e-1 -3.010e-1 5.407%

Table 5.1: Optimized weights by patch size, method 2

The improvement that is denoted in the table is the decrease in the absolute error,
which is also the measure that was optimized over. The comparison of all three
measures can be seen in Figure 5.1 and Figure 5.2.
The values in Table 5.1 show a number of interesting relations. While ω1 always has
a low magnitude, which could stem from the fact that the monopole solution is larger
than the dipole one, ω3 does not have a large magnitude to balance out the comparably
small quadrupole solution. A larger patch size also leads to a smaller contribution
of the dipole and the quadrupole and a larger contribution of the monopole, but
since the weights for the quadrupole are negative, the decrease of their norm actually
increases the quadrupolar component of the multipole. The improvement increases
with larger patch size, as the quadrupolar component is more suitable to represent
the extent of the area. All these changes are relatively small, but notable.
In comparison, the Table 5.2 shows the same data when using quadrupoles constructed
with method 1.
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(a) absolute

(b) RDM

(c) lnMAG

Figure 5.1: Improvement through multipole with method 2 by eccentricity
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(a) absolute

(b) RDM

(c) lnMAG

Figure 5.2: Improvement through multipole with method 2 by patch size
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Patch size ω1 ω2 ω3 Improvement

25 mm2 -1.347e-5 9.982e-1 5.643e-2 0.224%
81 mm2 -2.861e-6 9.972e-1 7.182e-2 0.327%
169 mm2 1.393e-5 9.957e-1 9.379e-2 0.545%
289 mm2 3.718e-5 9.936e-1 1.193e-1 0.928%
441 mm2 6.738e-5 9.909e-1 1.447e-1 1.501%
625 mm2 1.050e-4 9.875e-1 1.674e-1 2.228%

Table 5.2: Optimized weights by patch size, method 1

We see very similar effects to the previous test, with the main difference being that
the quadrupolar weights are all positive and therefore have increasing norm for larger
patches. The improvement is roughly half of the improvement in the previous method.
On the other hand, the computational cost for this approach is a lot lower, causing
the time required for the quadrupolar component to be roughly 6 times shorter for
the smallest patches and over 90 times shorter for the largest ones when compared to
the previous approach.
Figures 5.3 and 5.4 show the results for this experiment. It is clearly visible that the
improvement in the absolute error stems from a better lnMAG, while the RDM is
roughly the same as the one for the dipole approximation. There is a slight improve-
ment in the RDM for large patch sizes, but compared to the previous results, the
main focus seems to be on the lnMAG.

Determining the optimal composition of weights requires a reference solution, which
we do not have in realistic head models. Therefore it is important to determine gen-
eral weights that can be applied every time.
If the patch size is known in advance, then the best approach would be to deter-
mine optimal weights in a controlled model, like the spherical head model, and then
transfer the results to the realistic application. However, if the patch size needs to be
variable, it would work best to optimize weights with an error function that includes
a range of possible patch sizes. In our case, this range spans over the patch sizes
used in the previous experiments. The results that we got for the optimization are
depicted in Table 5.3.

Method ω1 ω2 ω3 Improvement

Method 1 3.166e-5 9.941e-1 1.047e-1 0.798%
Method 2 1.783e-5 9.955e-1 -3.307e-1 2.235%

Table 5.3: Optimal weights in our test data for both methods
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(a) absolute

(b) RDM

(c) lnMAG

Figure 5.3: Improvement through multipole with method 1 by eccentricity
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(a) absolute

(b) RDM

(c) lnMAG

Figure 5.4: Improvement through multipole with method 1 by patch size
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The improvement value here is the overall improvement for all patch sizes. Since
it is very relevant how this general optimization effects sources of specific sizes, we
include these values in Table 5.4.

Method Patch size Improvement

Method 1 25 mm2 -0.079%
81 mm2 0.152%
169 mm2 0.500%
289 mm2 0.924%
441 mm2 1.350%
625 mm2 1.696%

Method 2 25 mm2 0.154%
81 mm2 0.524%
169 mm2 1.184%
289 mm2 2.194%
441 mm2 3.542%
625 mm2 5.110%

Table 5.4: Effects of general optimization by patch size

With this data we can see that the general optimization in method 1 leads to a
decrease in accuracy for the smallest patches, and even method 2 only has a very
small improvement for that size. The fact that the improvement for large patches
with method 2 is still above 5% is very fascinating, because the comparison of the
general weights in Table 5.3 and the patch size specific weights in Table 5.1 shows
very different values for the monopolar component. This could implicate that the
monopole can be left out of the multipole without a big loss of accuracy.

5.2 The Two-Model Multipole

The previous results showed that it might be possible to achieve a decent improvement
over the dipole model without including the monopole. This would slightly reduce
the computational effort and might be worth the consideration in specific situations.
To determine the difference in accuracy, we repeat the previous experiments with the
restriction, that ω1 is always zero. The exact optimal weights are not the focus of this
section, therefore we will not present them again. Instead, we present the improve-
ment with the patch size specific optimization in Table 5.5 and the improvement with
the general optimization in Table 5.6. We also show the difference in improvement
compared to the previous results, given in percentage points.
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Method Patch size Improvement Difference

Method 1 25 mm2 0.216% -0.008
81 mm2 0.327% 0.000
169 mm2 0.537% -0.008
289 mm2 0.875% -0.053
441 mm2 1.343% -0.158
625 mm2 1.899% -0.329

Method 2 25 mm2 0.406% -0.017
81 mm2 0.680% -0.006
169 mm2 1.235% -0.001
289 mm2 2.180% -0.017
441 mm2 3.550% -0.068
625 mm2 5.249% -0.158

Table 5.5: Effects of patch size specific optimization

Method Patch size Improvement Difference

Method 1 25 mm2 0.001% +0.080
81 mm2 0.203% +0.051
169 mm2 0.505% +0.005
289 mm2 0.871% -0.053
441 mm2 1.237% -0.113
625 mm2 1.530% -0.166

overall 0.760% -0.038

Method 2 25 mm2 0.192% +0.038
81 mm2 0.551% +0.027
169 mm2 1.192% +0.008
289 mm2 2.177% -0.017
441 mm2 3.498% -0.044
625 mm2 5.040% -0.070

overall 2.223% -0.012

Table 5.6: Effects of general optimization

The difference to the previous results shows that the exclusion of the monopolar
component leads to a slight overall loss in accuracy, which is more notable in larger
patches. The effect of the monopole seems to be stronger when using method 1. This
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is confirmed when we take a look back at the optimal weights in the previous sec-
tion, as the monopolar weights where consistently larger for method 2. On the other
hand, we can see an increase in accuracy when using generally optimized weights and
applying them to small patches.

We have proven that the multipole model can outperform the classical point-dipole in
the approximation of patches. While small patches only offer small possible improve-
ments, the benefits of the multipole model increase with larger patch sizes. Using
a higher complexity version by including the monopolar component and determin-
ing the exact quadrupolar moment leads to better results overall. However, even a
low-complexity version of the multipole model can bring notable advantages.
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6 Conclusion

In this thesis, we analyzed the effects of different source models in the CG-FEM sub-
traction approach on the solution of the EEG forward problem. To do that, we in-
troduced the necessary medical and mathematical basics and the physical meaning of
the different source models. Afterwards, we conducted multiple experiments to com-
pare the performance of different models using the Duneuro software pipeline[9, 10].
The results showed, that out of the simple source models, the dipole model is best
suited to approximate a dipolar patch of sources, which is a realistic representation
of cortical activity[17]. The combination of multiple models into a multipole model
manages to increase the accuracy slightly at the cost of computation time. Here, a
precise calculation of the quadrupole moment works better than the simpler alterna-
tive, leading to a possible improvement of up to 5% for the cost of a much longer
computation.
The optimal usage of the multipole model depends a lot on the requirements in terms
of time and accuracy. The simple model can provide a middle way, raising the accu-
racy up to 3% for roughly triple the computational effort. Excluding the monopolar
component makes the model less dependent on prior knowledge about the area of
activity, at the cost of accuracy when that knowledge exists.
The question which source model is optimal can not be answered generally. Every
model brings advantages and disadvantages that need to be considered. However, the
multipole model is the most adaptable model and can always be fitted to a given prob-
lem. It is a viable alternative to the classical dipole model and should be considered
in possible future studies.
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7 Discussion

The results in the first experiments of this thesis are a very good validation of the
dipolar source model in the subtraction approach. It is very close to the physical
dipole and did not lead to major errors in any of our experiments. If additional ac-
curacy is needed and computational costs is not an important issue, the multipolar
source model can provide a powerful alternative. These results have been in line with
similar research[5, 13], but it is not necessarily clear if they can be extrapolated to
other approaches as well. This would require further investigation.
It is also possible that different source properties, such as eccentricity and orienta-
tion, require different weights to be approximated optimally. This question would
also benefit from tests with different patch models, and leaves a lot of room to be
explored.
In our experiments in Chapter 4, we found an interesting behavior of the physical
dipole, simulated as two opposing monopoles with a set distance between them, com-
pared to the mathematical dipole. The difference seems to be smaller in tangential
sources, where the solution for the physical dipole is slightly too large in deep sources
and gets comparably smaller with higher eccentricity. In radial sources, the solution
for the physical dipole exhibits the opposite effect, but the difference in lower eccen-
tricities is not as prominent as in the tangential sources. This relation could reveal an
interesting behavior of the mathematical dipole model and requires further research
as well.
With the ever increasing computational power that is available and the development
of more efficient numerical methods, the disadvantage of longer calculations for the
multipole model will disappear gradually. Prior optimization of weights in a controlled
model could also become a non-factor eventually. At that point, further research on
this topic could be one of the major ways to improve existing methods. Hopefully,
this thesis can be a small step towards those improvements.
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8 Appendix: Using the Code

The different source models that were compared throughout this thesis have all been
made available in Duneuro[9, 10]. In this chapter, we will briefly explain how to use
them and how to work with the included scripts and datasets.

8.1 Using the Source Models in Duneuro

How to start using the Duneuro pipeline is best described in the paper about it by
Andreas Nüßing, Maria Carla Piastra, Sophie Schrader, Tuuli Miinalainen, Sampsa
Pursiainen, Heinrich Brinck, Carsten H. Wolters and Christian Engwer[16]. Here, we
will not go into the general application of the pipeline.
The different source models, namely the single monopole, the two-monopoles model,
the dipole, the quadrupole constructed from method 1, the quadrupole constructed
from method 2 and the multipole, are only available in the subtraction approach.
There is an additional quadrupole option that allows the user to directly enter a
moment matrix that is then used for all dipoles. To use these options, the source
model configuration, given as a Python dictionary or a Matlab struct array, needs to
contain an element called ’expansion’, which defines which option to use. Depending
on the desired source model, additional options can be given. The list of expansions
and additional options is given in Table 8.1.

Some important notes: The ’patch size’ option refers to the n in our patch definitions,
meaning that the patch will have (2’patch size’+1)2 dipoles on a grid with ’patch shift’
distance between them. The value ’single’ for ’quadrupole mode’ refers to method 1.
If nothing is set for ’expansion’, the forward problem will be solved for a dipolar
source.

8.2 Scripts and Datasets

There will be 5 different scripts and multiple datasets submitted together with this
thesis. We will briefly explain where they were used exactly.
In all experiments, we used the mesh in the file sphere tet mesh 4c.msh with the con-
ductivities in sphere 4c.cond and the electrode positions in sphere electrodes.txt. This
data has been provided by [16], together with example scripts and dipoles, that have
been modified for our experiments.
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Source model Expansion Additional options (type) Default values

single monopole ’monopole’ / /
two-monopoles ’monopoles’ ’distance’ (double) 2.0
dipole ’dipole’ / /
quadrupole method 1 ’quadrupole’ / /
quadrupole method 2 ’quadrupole patch’ ’mode’ (’radial’/’tangential’) ’radial’

’patch size’ (int) 1
’patch shift’ (double) 1.0

quadrupole ’quadrupole 2’ ’M11’ (double) 0
’M12’ (double) 0
’M13’ (double) 0
’M21’ (double) 0
’M22’ (double) 0
’M23’ (double) 0
’M31’ (double) 0
’M32’ (double) 0
’M33’ (double) 0

multipole ’multipole’ ’weight monopole’ (double) 0
’weight dipole’ (double) 1
’weight quadrupole’ (double) 0
’quadrupole mode’ (’single’/ ’single’

’radial’/’tangential’)
’patch size’ (int) 1
’patch shift’ (double) 1.0

Table 8.1: Optional parameters in the source model configuration
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The first experiment, where we compared the numerical solutions for the two-monopoles
model with that of the dipole model, was executed with the script 1.py script. The
set of sources is provided in dipoles 1.txt.
The second experiment, the comparison of numerical monopoles and a numerical
dipole with an analytical dipole, used script 2.py with the sources being dipoles 2 r.txt
for radial and dipoles 2 t.txt for tangential orientation. We then repeated experiment
1 with those sources as well. In the code’s comments, this is referred to as ’experiment
1-2’. The restriction on low-eccentricity sources was achieved by applying the first
script to the datasets in dipoles 1-3 r.txt and dipoles 1-3 t.txt, for radial and tangen-
tial sources respectively.
Experiment 3 is given by script 3.py with sources dipoles 3 r.txt and dipoles 3 t.txt,
while the randomized patches are constructed and analyzed with script 3-2.py and
the corresponding dataset dipoles 3-2.txt.
Lastly, experiment 4, where we found optimal weights for the multipole, uses script 4.py
with the data from dipoles 3 r.txt. All experiments in Chapter 5 were conducted with
this script, and the different versions can be included or excluded from the code using
comments.

All these scripts use the python packages Numpy[11] and Matplotlib[12] and require
Python 3.6 or above.
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