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1. Introduction

Electroencephalography(EEG) and transcranial direct current stimulation (tDCS) are non-
invasive tools in bioelectromagnetism that are used for a wide array of medical purposes.
EEG is a tool to measure electric signals caused by brain activity through scalp electrodes.
TDCS aims at modulating said activity via electric stimuli applied on the scalp. They both
pose a mathematical problem, in EEG one has to localize the origin and strength of an active
brain region and in tDCS one has to find adequate positions for the stimulation electrodes.
An important part in solving these problems is the so called forward problem, determining
the effect of a hypothetical source of brain activity on the EEG-measurement or the effect
that an electric stimulus applied at a certain position has on the targeted brain region. To
solve the forward problem, two requirements have to be met. A solver algorithm able to
simulate electric conduction throughout the head and an accurate depiction of said head
to ensure that the simulation corresponds to reality. While the latter is usually ensured
by taking MRI-pictures, the Finite Element Method(FEM) has become more and more
popular as a solver algorithm over recent years. The subject of this thesis lies in comparing
two FEM-approaches, one conventional, state of the art approach and a recently developed
CutFEM-approach, with regard to their performance in a scenario where the brain, that is
usually floating in a liquid, touches the inner surface of the skull. Scenarios like this are
common when the patient is lying down and the brain sinks to the bottom of the head.
After the introduction, Chapter two of this thesis gives an overview of the physiological
background of EEG and tDCS, leading up to the Maxwell-equations from which a partial
differential equation stating the forward problem is derived. Chapter three sets up a a
framework in which this equation can be solved numerically via the two FEM-approaches
introduced in the fourth part. The fifth chapter then examines the two methods with regard
to differences in their theoretical convergence rate. The evaluation of the touching geom-
etry scenario mentioned above is covered in chapter six. A simplified model is introduced
where analytical, quasi-exact, solutions to the forward problems exist as benchmarks for
the methods. Finally, the last chapter summarizes the results and gives an outlook.
The Appendix contains complementary information regarding details about a faster com-
putation technique for EEG as well as a description of the model that is used to simulate
the electric activity in the brain. Furthermore, brief summaries of the analytical solutions
that are used for comparison are stated in addition to an overview of the software that was
used for numerical implementations.
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2. Physiological Background and
Mathematical Basics

This chapter gives a short introduction into how neural activity relates to electric activ-
ity. Measuring this activity via electrodes placed on the head surface is called Electroen-
cephalography(EEG). As stated in the introduction, reconstructing the origin of a given
EEG measurement is a complex mathematical problem, consisting of multiple involved
steps. The first of those is the formulation of a partial differential equation that describes
the head as a volume conductor. Its derivation from Maxwell’s equations will be covered
in this chapter.
A related application which aims at modulating neural activity is Transcranial Direct Cur-
rent Stimulation (tDCS). A current is injected through scalp electrodes, resulting in an
increase or an inhibition of excitability of a target area in the brain. As will be seen, it has
a mathematical formulation which is quite similar to the EEG.
The advantage of both the EEG and tDCS is that they are noninvasive, safe and rather
easy to conduct. Clinical applications can be tested on healthy subjects first, without the
threat of causing permanent damage or considerable side-effects.

2.1. Neural activity in the brain

The human brain consists of about 100 billion neurons([HH09]). Each neuron consists of
the same basic parts(see Fig.1). Several Dendrites that connect to the cellbody, the Soma,
and an Axon. ([KK09]) The Axon can be imagined as a long tube relaying information
in the shape of a so called action potential. Near its end it splits into multiple strains
connecting to Dendrites of other neurons. These connections are called synapses. Passed
information is either inhibitory or excitatory, depending on the Dendrite. Through synapses
received information is relayed by the Dendrite to the Soma where it is summed up. Given
sufficiently strong positive signals from its Dendrites, a new action potential emerges at the
connection point of Soma and Axon and the signal is passed on.

2.1.1. Resting and Action Potential

A neuron in resting state has an electric potential along its membrane. This is due to the
presence of different cations in- and alongside the neuron, namely potassium( K+), sodium(
Na+), and negatively charged anions like chloride( Cl−). While potassium mainly resides
inside the neuron, the others are found in the exterior. The reason for is the selective
permeability of the membrane, mostly preventing potassium from leaving the neuron or the
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Fig. 2.1.: Structure of a Neuron. Dendrites
connect to the Soma and form
synapses with other Axons.
The Myelin sheath serves to insu-
late the Axon. ([Fou20])

Fig. 2.2.: Illustration of the typical phases of
an action potential. ([CS06])

other ions from entering. This concentration disparity is further enhanced by the activity
of a potassium-sodium-pump, carrying potassium inside and sodium outside. The resulting
resting potential levels off at around -70 mV.
An action potential emerges when the Axon is sufficiently depolarized, an effect that will
be explained later on. Within 1 ms this depolarization leads to the opening of channels
which allow positively charged sodium to enter the Axon, quickly increasing the membrane
potential to around +40 mV and carrying the depolarization further along the Axon. These
channels are only open for a short period of time, after which they close on their own.
At this point another set of more slowly reacting channels open from the depolarization,
allowing potassium to leave the Axon. This leads to a decrease in potential to about -
80 to -90 mV at which point all channels are closed again. Now the Axon is filled with
large quantities of sodium while potassium is mainly found outside, preventing another
depolarization from exciting another action potential. Only after the sodium-potassium-
pump has reinstated the resting potential, the Axon is excitable again. This whole process
only takes a few milliseconds, the positive spike of the potential only around one millisecond.
Unfortunately, this is too short for an EEG to capture. Furthermore, the Axons are usually
not lined up nicely leading them to cancel each others signals out, preventing an accurate
measurement.([HVG+07])
Thus a different kind of signal has to be investigated. Namely the activity leading up to
the action potential, which can be measured nicely.

2.1.2. Postsynaptic Potentials and Pyramidal Cells

An active (presynaptic-)Axon connected via synapse to a (postsynaptic-)Dendrite releases
neurotransmitters into the cleft between the two. The transmitters lead to an opening
of ion channels in the postsynaptic membrane, thus either depolarizing or hyperpolarizing
the Dendrite, depending on the ion charge. This postsynaptic change in electric potential
leads to a movement of charged particles towards the Soma, where a sufficiently strong
depolarization results in an action potential as mentioned in the previous section. This
primary current from synapse to Soma inside the Neuron is set off by an extracellular
current in the opposite direction. As the postsynaptic potential has a duration of 10-20
ms, it is long enough for an EEG to measure these current flows. Being actual currents,
they give rise to an electric field and a potential that can be measured via electrodes at the
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scalp.
However, the problem of orientation remains. A large number of identically oriented neurons
would be needed to create a sufficiently strong signal that penetrates the weakly conducting
skull. Fortunately, in most parts of the brain a certain group of neurons called Pyramidal
Cells can be found. These contain two kinds of Dendrites, basal and apical. While the
basal Dendrites emerge radially around the Soma, the apical Dendrite, bascially just a large
Dendrite, is oriented normally to the cortical surface. This consistent orientation combined
with the longer duration of postsynaptic potentials allows for the activity of sufficiently
large clusters of Pyramidal Cells to be measured by an EEG.
The electric potential that can be measured at the scalp is largely influenced by the con-
ductivity of the different head compartments, especially the insulating skull. Furthermore
the orientation of the measured neurons is normal to the cortical surface, thus an accurate
model of the different compartments is needed in order to achieve accurate results. This is
true for the EEG as well as tDCS. ([WAT+06],[WRA+13])

2.2. Foundations of Transcranial Brain Stimulaton

Transcranial electric Stimulation of the brain is an old technique. While in antiquity
the electric impulses emitted by torpedo fish held to ones head were used to alleviate
headaches([LB86]), more recent methods rely on the injection of electric current through
electrodes placed on the scalp. While being noninvasive, without strong averse effects and,
when compared to e.g. transcranial Magnetic Stimulation, easy to apply, it has shown to
have a measurable effect on neuroplasticity ([FRM+10]), motivating its use in numerous
applications from improved learning and memory functions ([GMH+20]) to the treatment
of Depression. ([NBFPL09])
At 1-2 mA, the injected currents are not strong enough to cause a sufficient depolarization
for the rise of an action potential([BIA+04]). However, they do affect the resting potential of
the membrane, increasing or decreasing the necessary depolarization needed for an action
potential. It thus modulates the excitability of the targeted cortical region([PBR+98]).
Furthermore, the constant electric field has an impact on the ion channels of the neurons,
giving rise to a change in the composition of ions present. These changes can remain even
after the stimulation ends. TDCS may even have an effect on the interconnectivity of
different cortical regions. ([BNB+12])
As tDCS relies on injecting current it gives, similar to the neural activity, rise to an elec-
tric eield and potential. Expressing these quantities mathematically requires usage of the
Maxwell equations.

2.3. Maxwell equations and the EEG-/tDCS-forward problem

Let E denote the electric field, B the magnetic field, ρ the charge density, J the current
density, ε0 and µ0 the electric permittivity and magnetic permeability. Then the Maxwell
equations in differential form in Gaussian Units are
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Definition 2.1 (Maxwell Equations)

∇E = ρ

ε0
(2.1)

∇B = 0 (2.2)

∇× E = ∂B

∂t
(2.3)

∇×B = 1
µ0

(J + ε0
∂E

∂t
) (2.4)

An EEG with 2 electrodes measures the difference in potential energy between two points
on the scalp. In Electrostatics, where the time derivatives are zero, this is just the integral
of E over an arbitrary path connecting the two. This path-independency allows to define
the plectric potential u as a scalar field and the electric field as its derivative.([FW20]) In
other words

−∇u = E. (2.5)

In this case, knowing the scalar quantity u translates to complete knowledge of the electric
field.
Fortunately, the fields created by the neural activity of the brain or electric stimulation
mostly do not exceed 100 Hz ([PH67]). At these lower frequencies, the time derivatives in
(2.3) and (2.4) can be neglected. Thus, the electric field is free of rotation and the above
mentioned integral path-independent, reducing the problem to finding the scalar potential
u.
The next step is to split the current density J into primary Jp and secondary currents Jv,
the former originating directly from our electric activity (neurons or stimulation electrodes),
the latter being return currents flowing through the head. For these return currents the
conductivity of the brain compartments is vital because through Ohm’s law for volume
conductors they can be described as

Jv = σE

and thus, using (2.5)
J = Jp + Jv = Jp − σ∇u. (2.6)

Here σ is either a constant for isotropic compartments or a positive definite 3 × 3 tensor
for anisotropic areas. Substituting (2.6) into the electrostatic version (2.4) and taking the
divergence on both sides yields

0 = ∇(∇×B) = ∇ε0(Jp − σ∇u),

where we used that the divergence of the rotation of a vector field is zero. Transforming
the above gives

∇Jp = ∇σ∇u (2.7)

over the domain of the head (denoted Ω from now on).



2. Physiological Background and Mathematical Basics 6

For the EEG, source and sink of the electric current are only separated by the neurons
membrane. Also we look at the neuron only from a distance (the scalp), allowing us to
approximate the source term Jp by a mathematical point dipole ([HHI+93]). A point dipole
can be understood as 2 charges of opposite strength, moved infinitesimaly close together.
Using a Vector M to describe the direction from negative to positive charge and a Dirac-
Delta Distribution

δ(x) =
{
∞ , x = 0
0 , else

and ∫ ∞
−∞

δ(x)dx = 1

the source term for a dipolar source at a given point x0 can be written as

Jp(x) = Mδ(x− x0), (2.8)

where M is the dipole moment or "Direction". Now, only the question of boundary condi-
tions has to be answered to fully state the EEG and tDCS forward problems.

Definition 2.2 (EEG forward problem) For the EEG case we can employ homogenous
Neumann boundary conditions, since the head can be considered as an electric insulator and
the air is not conductive. Thus the EEG forward problem is stated as

∇σ∇u = ∇Jp in Ω (2.9)

〈σ∇u, n〉 = 0 on ∂Ω, (2.10)

where n is the outer unit normal.

The final goal of EEG source analysis is to find the set of sources that best matches the signal
that is measured via electrodes at the scalp. It is thus necessary to calculate the solution to
the forward problem for a large set of sources spread throughout the brain, evaluate their
respective potential at the electrode positions and then find a matching source configuration.
Solving the last part is called the inverse problem of the EEG. Forward modeling thus aims
at providing an accurate Lead-Field, i.e. a matrix L ∈ Rs×3N (s electrodes, N source
locations) such that Li,j is the potential value at electrode i caused by a source in x−, y−
or z- direction (Superposition states that any source direction can be split into its x, y, z
components). L can then be multiplied with a source configuration x ∈ R3N to obtain a
vector containing the cumulative potential value for each electrode.

Definition 2.3 (tDCS forward problem) In tDCS, we can skip the source term Jp and
model the injection of current as two delta distributions, one of them with negative sign
for the sink electrode, acting on the boundary. Aside from these, the same homogeneous
Neumann boundary conditions as for the EEG can be applied. Thus, the TDCS-forward
problem is stated as

∇σ∇u = 0 in Ω (2.11)
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〈σ∇u, n〉 = I on ∂Ω, (2.12)

where I = δ(x− x0)− δ(x− x1) is the current pattern injected at position x0 and x1.

Similar to the EEG case, solving the tDCS forward problem is only the precursor to the
inverse problem of finding the electrode configuration that maximizes the electric current
in the brain are one wants to target. One is thus also interested in computing a matrix T ∈
Rs×3N , this time containing the current flow at specific locations in x−, y− and z−direction.
In this thesis the focus lies exclusively on accurate forward modeling.
This concludes the chapter. The following ones will focus on deriving a scheme to solve
these differential equations.
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3. Weak formulation, Existence and
Uniqueness

While the aforementioned forward problems can be solved in the classical sense they were
stated in before, the requirements for the existence of such a solution are rather high.
Especially a continuous conductivity tensor σ is required. Unreasonable, as σ varies strongly
across the different compartments of the head ([VCR+14]) and there are no large transition
areas. Thus, the conductivity jumps.
In order to deal with these jumps, the forward problems are transformed to a weak for-
mulation. From this state it is possible to derive statements about the existence of unique
solutions of the equations.

3.1. Weak Formulation

The idea is to multiply each side of the equation with some kind of later defined testfunction
v, followed by an integration over Ω. From here one can employ partial integration to shift
the differential operators over from our solution u to the testfunction. Solving the resulting
integral equation has the advantage that no requirements regarding the differentiability of
u are made, allowing for solutions that are not differentiable in the classical sense. As the
name of the formulation suggests, these are called weak solutions.
In the following, a derivation of the weak formulation of the tDCS forward problem and the
existence of a unique solution will be stated. The EEG case is identical in most and similar
in the other steps and will therefore only be stated at the end. The procedure roughly
follows ([WKM+07]) and ([WBW15]). Starting at equation (2.11) of the tDCS forward
problem, multiplication with a function v ∈ V and integrating over Ω yields∫

Ω
(∇σ∇u)vdx = 0.

Partial integration then results in

−
∫

Ω
σ∇u∇vdx+

∫
∂Ω
〈σ∇u, n〉vdS = 0.

And finally, using the boundary condition from (2.12) we obtain∫
Ω
σ∇u∇vdx =

∫
∂Ω
IvdS. (3.1)

As the solution should not depend on which testfunction is used, (3.1) should be true for
as general a v as possible. Thus, a prudent definition of the vector space V is needed. It is
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also necessary to specify to which class of functions u is supposed to belong. This is needed
to make statements regarding the existence of a solution and for formulating the numerical
approximation that is computed later on.
The usual approach is to define V to be a Sobolev Space, in this case a subspace of H1(Ω).
For a short overview and motivation, see Appendix B, for a more detailed description, see
([Eva14]).
As equation (3.1) is only unique up to a constant, we also require that the Potential has
zero mean over the entire head or in other words∫

Ω
udx = 0.

Thus we choose
V = H1

∗ (Ω) := {v ∈ H1(Ω) :
∫

Ω
vdx = 0}.

As closed linear subspace of a Hilbert Space this is also a Hilbert Space. When treating the
equation numerically one usually fixes one value on the boundary and subtracts the mean
potential afterwards. Now it is possible to fully state the tDCS and EEG forward problem:

Definition 3.1 (weak tDCS forward problem) find u ∈ H1
∗ (Ω) such that∫

Ω
σ∇u∇vdx =

∫
∂Ω
IvdS ∀v ∈ H1

∗ (Ω). (3.2)

Definition 3.2 (weak EEG forward problem) find u ∈ H1
∗ (Ω) such that∫

Ω
σ∇u∇vdx = −

∫
Ω
∇JpvdS ∀v ∈ H1

∗ (Ω). (3.3)

3.1.1. Existence and Uniqueness of a solution

We proceed with the tDCS case and define

a : V × V → R, (u, v) 7→
∫

Ω
σ∇u∇vdx (3.4)

l : V → R, v 7→
∫
∂Ω
IvdS. (3.5)

In order to apply Lax-Milgram (see Theorem B.1.), we need a to be continuous and coercive
and l to be part of H1

∗ (Ω)′ .

Lemma 3.1 a is continuous and coercive.

Proof: As a is bilinear, it suffices to show boundedness in V. Let σmax be the largest
eigenvalue of σ. Then

|a(u, v)| = |
∫

Ω
σ∇u∇vdx| ≤ σmax

∫
Ω
||∇u||2||∇v||2
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≤ σmax||u||L2 ||∇v||L2 ≤ σmax||u||H1 ||v||H1 ,

where Hölder’s inequality was used. Therefore a is bounded and continuous if σ’s largest
eigenvalue is finite.
For coerciveness we first need a variant of Friedrich’s inequality([Bra07]): Let Ω ⊆ Rn be
contained in a cube with edge length s. Then for each u in H1(Ω)

||u||0 ≤ |ū|
√
µ(Ω) + 2s|u|1,

where ū =
∫
Ω udx/µ(Ω). With σmin being the smallest eigenvalue of σ one obtains for any

u ∈ H1
∗

a(u, u) ≥ σmin
∫

Ω
||∇u||22 = σmin

1 + 4s2 (|u|21 + 4s2|u|21)

ū=0= σmin
1 + 4s2 (|u|21 + (ū

√
µ(Ω) + |u|1)2)

≥ σmin
1 + 4s2 (|u|21 + ||u||20) = σmin

1 + 4s2 ||u||
2
1.

Thus a is coercive.
�

In order for l to be part of H1(Ω)′ the trace theorem (B.2) is employed.

Lemma 3.2 If I ∈ H−
1
2 (∂Ω) in the sense that I(v) =

∫
∂Ω IvdS, then l is well defined and

bounded in H1(Ω).

Proof: I ∈ H−
1
2 (∂Ω) implies that

l(v) = I(T (v̄)), for some v̄ ∈ H
1
2 (∂Ω).

Then by the trace theorem we have

|l(v)| ≤
∫
∂Ω
|IT (v)|dS =

∫
∂Ω
Iv̄dS

≤ ||I||
H−

1
2 (∂Ω)

||v||
H

1
2 (∂Ω)

≤ C||I||
H−

1
2 (∂Ω)

||v||H1(Ω).

�

As the dirac delta functions used to describe I are part of H−s for any s larger than n/2,
they are also part of H−

1
2 (∂Ω).

Therefore, we can apply Lax-Milgram to justify the existence of a unique solution to the
weak tDCS-forward problem.
The bilinearform a is identical for EEG and tDCS, thus the proof mostly extends to the
EEG-case. However, proving that l fullfills the necessary requirements is a little more
troublesome. This is due to the singularity in the primary current Jp. In ([WKM+07]) a
subtraction approach is presented, splitting the conductivity into a sum of two independent
ones. One anisotropic part that is zero at the location of the dipole and another one that
is constant over the entire domain to correct for the zero conductivity of the first.
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For the remainder of this thesis modeling the sources will follow the principle of St. Venant
(see A.2.). It has the advantage of being very accurate and already available for both
FEM-approaches that will be investigated in this thesis.
The weak formulation is the starting point for numerically solving the EEG and tDCS
forward problem. The FEM approaches used for this will be described in the following
chapter.
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4. The Finite Element Method

The finite element method (FEM) is a numerical procedure to treat partial differential equa-
tions. Its use is widely spread throughout the natural sciences with numerous applications
in fields like electromagnetism, heat transfer, fluid flow, etc..
While different variants of the method exists, the principles are mostly identical. The goal
is to solve a weakly formulated PDE on a given geometry by approximating the solution in
a finite-dimensional vector space. The first step is to simplify the geometry by replacing it
with a mesh, i.e. many disjunct elements of a simple structure, for example tetrahedrons or
hexahedrons in 3D. On each of these, a number of functions is defined. These are the finite
elements from which the method derives its name. Their linear combinations form a finite
dimensional vector space in which the solution to the PDE can be approximated. To do this,
both solution and testfunctions are projected into the vector space, i.e. they are replaced
by a linear combination of the finite elements (one can have different spaces for solution and
testfunctions, the functions approximating the solution are called Ansatzfunctions). The
PDE then reduces to finding the coefficients of said combination, meaning one has to solve
a linear equation system. The described process is generally called Galerkin-Method.
The remainder of this chapter is split into two parts, the first explaining a standard tetra-
hedral Continuous-Galerkin (CG-)FEM approach, the second being a Cut FEM, whose
performance when compared to the first is subject of this thesis. A short numerical analysis
of both versions will follow in the next chapter.

4.1. Conforming Tetrahedral Continuous Galerkin

For the purposes of EEG and tDCS one mostly uses either a realistic head model, segmented
from Magnetic Resonance Imaging, or a sphere model (see Figure 4.1.). The advantage
of the latter is the existence of analytical solutions([DM88], [FET00]). Thus, they are
well suited to test the accuracy of numerical algorithms before proceeding with the actual
realistic head. Using tetrahedrons as the basic element to form the mesh has the advantage
that curvatures can be more accurately modelled. A hexahedral mesh follows curves in a
staircase pattern, which is problematic when modelling the thinner parts of the skull (see Fig
4.2.). There are ways to deal with this, for example adaptive meshing or the discontinuous
Galerkin method. However, these methods are mostly not better than simply using a
tetrahedral mesh([EVLW17]) and will thus not be considered here. The head can be split
into several non-overlapping compartments or domains, e.g. the scalp, skull, cerebrospinal
fluid (CSF), white and grey matter. In other words

Ω = ∪
i

Ωi
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Fig. 4.1.: Example of a 4-layer sphere model
using a tetrahedral mesh. Different
mesh resolutions for the compart-
ments yield an exact representation
of the sphere while saving on com-
putation time.

Fig. 4.2.: Visualization of possible Skull leak-
age effect in a hexahedral mesh.
The thin skull compartment(blue)
allows current (cones) to leak
through the gaps of the staircase,
diminishing the insulating effect of
the skull.([EVLW17])
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with Ω being the entire head and Ωi the different domains. Then by T = {Ek}k∈K one can
denote a mesh consisting of a finite set of tetrahedrons such that

Ω ⊂ ∩
k∈K

Ek and µ(Ek ∩ Ej) = 0 for k 6= j.

Here µ is used as the 3D-Lebesgue measure.
Normally, one uses a tool like gmsh([GR09]) to create the mesh. It first meshes the surfaces
and from there the complete volume for every compartment. Thus, each compartment is
represented without overlap by the tetrahedrons belonging to it.
As functions to approximate the solution the Lagrange-Interpolation is used: For this pur-
pose let

Vh = {v ∈ H1
0 (Ω) : v|Ek is polynomial of degree 1 for all k ∈ K}.

This is the vector space from which both solution and testfunctions will be derived. For
proper usage of Vh a basis is needed:
Let N denote the number of nodes or vertices of the mesh. Then for each node xi a linear
Ansatzfunction φi is defined such that

φi(xj) = δij . (4.1)

Given the above property, any function u can be interpolated using its value at the N
positions (xi)i. As a linear approximation of u one can simply write

uapprox(x) =
N∑
i=1

u(xi)φ(x).

From (4.1) one obtains
u(xi) = uapprox(xi) ∀ i = 1, ..., N

and thus an approximation that is exact on the nodes.
Giving an exact formula for each Ansatzfunction would be a bit technical. Instead it has
proven practical not to define each φi explicitly but rather by associating them with the
tetrahedrons whose edges they represent. Each tetrahedron is then just a distorted version
of some basic, evenly shaped reference tetrahedron onto which the original one can be
mapped. More precisely:
Given a tetrahedron Ek, an invertible linear mapping

Mk : E 7→ R̂

to the reference element R̂ can be defined. On this R̂, that has the vertices0
0
0

 ,
1

0
0

 ,
0

1
0

 ,
0

0
1

 , (4.2)

functions can be defined according to
• ψ1(x, y, z) = 1− x− y − z
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Fig. 4.3.: Schematic portrayal of Ansatzfunctions ([Kra19])

• ψ2(x, y, z) = x

• ψ3(x, y, z) = y

• ψ4(x, y, z) = z.

These functions fulfill (4.1) and can therefore each be assigned to one vertex of R̂. The
value of an Ansatzfunction φi at a position inside the tetrahedron can then be computed as

φi(x) = M−1(ψj(Mk(x))).

The resulting φi’s then look like hat functions, a 1D-representation can be seen in (see Fig.
4.3.). Any piecewise polynomial function v ∈ Vh can now be seen as a linear combination
of the φi and thus

Vh = span({φi : i = 1, ..., N}).

Having defined the Ansatzfunctions, one can proceed solving the differential equation. Sub-
stituting an approximation

uh(x) =
N∑
i=1

ciφi(x), ci ∈ R

from (4.1) (the h represents how fine the mesh is, e.g. the diameter of the tetrahedrons)
into the bilinear form a from (3.4), one obtains

a(uh, v) =
∫

Ω
σ∇(

N∑
i=1

ciφi(x))∇vdx =
N∑
i=1

ci

∫
Ω
σ∇φi∇vdx.

Instead of solving the weak forward problem

a(uh, v) = l(v) (4.3)

for each v ∈ H1
0 (Ω), the equation is narrowed down to the piecewise polynomials defined

earlier, i.e. to each v ∈ Vh. l can be either from the tDCS or EEG version.
As each v is now a linear combination of the basis functions φi it suffices to show that (4.3)
holds for these basis functions. Thus, N equations

a(uh, φj) = l(φj) (4.4)

for j = 1, ..., N are obtained.
These equations can be written neatly using a stiffness matrix and 2 vectors:
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Let K ∈ RN×N have the indices

kij =
∫

Ω
σ∇φi∇φjdx

and u, b ∈ RN be defined by
ui = ci, i = 1, ..., N

bi =
∫
∂Ω
IφidS, i = 1, ..., N.

Then solving (4.4) is equivalent to solving the linear equation system

Ku = b. (4.5)

Note that the integral terms in the entries of(4.5) can easily be computed as each Ansatz-
function is non-zero only for the few elements bordering its node.

4.2. A Cut Finite Element Method

Standard fitted FEM approaches like the one previously presented create a mesh that
is specifically tailored to the geometry. In unfitted approaches like CutFEM one uses a
fundamental mesh that is independent of the geometry. This mesh is then cut by level-
set functions that characterize the surfaces of each compartment to be modeled. This cut
runs not along the boundaries of each mesh element but right through them. Thus some
elements are cut into multiple snippets or cut-cells with a geometry different from the
original element.
This new cut mesh can be divided into one submesh for every compartment and finite
element functions can be defined in a manner identical to the CG-FEM on each of them.
To ensure that these independent Ansatzfunctions yield a solution that does not contain
jumps one has to sort of glue them together. This is achieved by adding penalty terms for
jumps to the bilinearform into which the Ansatzfunctions are substituted.

4.2.1. Fundamental mesh and Level-Set Function

Similar to before, the head domain Ω consists of a set of disjunct subdomains Ωi. Next, a
larger domain Ω̂ containing Ω can be defined. For the sake of simplicity we choose Ω̂ to be
a cube. On this larger domain the fundamental mesh is defined. As it is not required to
accurately represent the head geometry, one can pick a simple shape that is uniform over
all elements, in this case hexahedrons.
Thus let T (Ω̂) = {Ek}k∈K be a set of non-overlapping, uniform hexahedrons such that

∪
k∈K

Ek = Ω̂.

To characterize the different domains, continuous level set functions Φi : Ω̂ 7→ R can be
defined such that

Φi(x)


< 0, if x ∈ Ωi

= 0, if x ∈ ∂Ωi

> 0, else.
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Fig. 4.4.: Left: two given domains and a fundamental background mesh. Middle, right: The re-
spective submeshes for domain 1 and 2. Grey elements indicate an overlap into the other
domain/the outside. ([Nüß18])

For each domain, the level-set {x ∈ Ω̂ : Φi(x) = 0} can now be laid over the fundamental
mesh. A submesh T i containing all elements that are either completely inside Ωi or cut by
the level set is then defined.

T i = {Ek ∈ T : Ek ∩ Ωi 6= ∅}

Note that these meshes overlap (see Fig. 4.4.). This makes defining Ansatzfunctions easier
than having to do so on the possibly misshapen snippets. While those functions are defined
over the area of a different domain, they will simply be ignored there.
As mentioned in the introduction, each submesh is then equipped with a corresponding
finite element space V i

h . The procedure for this is identical to the one presented in section
4.1, the only difference being the usage of hexahedrons rather than tetrahedrons. This leads
to different, but still linear Ansatzfunctions. For information about hexahedral Ansatzfunc-
tions, see ([Bra07]).
Given the FEM-spaces V i

h one can define

Vh =
∏
i

V i
h

as overarching FEM-space used for approximating the solution. We then slightly modify
the EEG and tDCS forward problems to account for this different vector space.
For any vh ∈ Vh let vih denote the restriction of vh to Ωi. (3.4.) was obtained by partial
integration in (3.1). As Ω is split into multiple domains, each having functions defined on
them, that same partial integration now yields additional terms on the interior boundaries
or skeleton, defined discretely as

Γ = {E ∩ (Ωi ∩ Ωj) : E ∈ T (Ω̂), i 6= j, µ2(E ∩ (Ωi ∩ Ωj)) > 0} (4.6)

with µ2 being the two-dimensional Lebesgue-measure.

4.2.2. Nitsche coupling

At this point the restrictions are uncoupled, meaning that there could be discontinuities
or jumps over the skeleton. The weak coupling used here is motivated by the Nitsche
Method([Nit71]). In its implementation it is analogue to the way Ansatzfunctions are glued
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together in the Discontinuous Galerkin Method ([ABCM02]), by penalizing jump terms in
the weak formulation of the PDE.
First, we need a suitable jump function that is defined over the skeleton Γ.

Definition 4.1 (Jump function) Given two disjunct open sets E,F ⊆ Ω, Ē ∩ F̄ 6= ∅, a
vector-valued function v or a scalar function u, the jump on the interface between E and F
is defined as

JvK := 〈v|E , nE〉+ 〈v|F , nF 〉 (4.7)

JuK := u|EnE + u|FnF . (4.8)

Using this, we can account for possible jumps by extending the tDCS forward problem from
(2.11.-12.).

Definition 4.2 (CutFEM tDCS forward problem) Let Ω be split into m disjunct ar-
eas Ωi. Then the strong forward problem can be stated as

∇σ∇u = 0, in ∪
i

Ωi (4.9)

〈σ∇u, n〉 = I, on ∂Ω (4.10)

JuK = 0, on Γ (4.11)

Jσ∇uK = 0, on Γ (4.12)

The third term ensures that the electric potential is continuous over internal boundaries (a
requirement from electrostatics ([Fli05])) and the last enforces local conservation of charge,
i.e. charge that leaves one domain over a boundary actually ends up in the adjacent domain.
Note that the CutFEM changes to the EEG problem are identical.

A similar procedure as in section 2 is used to attain a weak formulation. Multiplying with
a testfunction vh (split into restrictions), integrating over the subdomains and applying
partial integration yields∫

Ω
∇σ∇uhvhdx =

∑
i

(
∫

Ωi
σ∇uih∇vihdx−

∫
Γ
〈σ∇uih, n〉vihdS)−

∫
∂Ω
IvhdS

=
∑
i

(
∫

Ωi
σ∇uih∇vihdx)−

∫
Γ
Jσ∇uhvhKdS −

∫
∂Ω
IvhdS. (4.13)

The last step adds up the two integral terms that exist for each interior boundary, one per
adjacent domain.
To enforce the first jump condition, a helper function is introduced:
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Definition 4.3 (weighted and skew-weighted average) Given 2 disjunct open sets E,F ⊆
Ω, Ē ∩ F̄ 6= ∅, a scalar or vector-valued function u, the weighted average on the interface
between E and F is defined as

{u} = ωEu|E + ωFu|F (4.14)

with
ωE = δE

δE + δF

δE = ntEσEnE .

Here, nE , nF are the respective outer unit normals, σE the positive definite, symmetric
conductivity tensor on E.
ωF and δF are defined analogously and the skew weighted average is defined as

{u}∗ = ωFu|E + ωEu|F . (4.15)

Using this weighted average, the jump in (4.13) can be simplified using to the following
lemma.

Lemma 4.1 The jump J.K of the product of two functions u and v over an interface can be
split according to

JuvK = JuK{v}∗ + {u}JvK. (4.16)

Proof: [[Nüß18]] Note that ωE +ωF = 1 and nE + nF = 0. Then simply reordering terms
yields

JuK{v}∗ + {u}JvK = (u|EnE + u|FnF )(ωF vE + ωEvF ) + (ωEuE + ωFuF )(v|EnE + v|FnF )

= u|EnE(ωF v|E + v|EωE) + u|FnF (ωEv|F + v|FωF )
+u|EωEv|F (nE + nF ) + u|FωF v|E(nF + nE)

= u|EnEv|E + u|FnF v|F = JuvK

�

Thus, the integral over the skeleton in (4.13) can be rewritten as∫
Γ
Jσ∇uhvhKdS =

∫
Γ
Jσ∇uhK{vh}∗ + {σ∇uh}JvhKdS =

∫
Γ
{σ∇uh}JvhKdS,

where the third line of the CutFEM forward problem was used.
Adding or subtracting a symmetry term

Θ
∫

Γ
{σ∇vh}JuhK, Θ ∈ {−1, 1}

is done to ensure the (non-)symmetry of the final bilinearform. The two versions differ in
their respective approximation properties and the coercivity of the final bilinearform as will
be discussed later.
To stabilize the method and to enforce that the potential is jump-free, a penalty term Pγ
is added.

Pγ(u, v) = γνk

∫
Γ

σ̂

ĥ
JuhKJvhKdS (4.17)
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• νk = k(k+ d− 1) depends on the degree k of the polynomials used and the dimension
d of Ω.
• σ̂ = 2δEδF

δE+δF weighs the jump term with the conductivity difference (δE,F are defined
as in Definition 4.3).

• ĥ = min(µ(E),µ(F )
µ2(Ē∩F̄ ) weighs each term with the ratio of the smaller volume of the involved

elements E,F and the area of their interface.
• γ is a penalty constant and can be freely chosen but has to be of a certain size least

the whole method would not be stable.
The choice and motivation for these parameters are discussed in ([DPE12], [GHH07]).
In total, the Nitsche coupling terms with Symmetric Weighted Interior Penalty Galerkin
(SWIPG) are stated as

aNs (uh, vh) := −
∫

Γ
{σ∇uh}JvhK−

∫
Γ
{σ∇vh}JuhKdS + γνk

∫
Γ

σ̂

ĥ
JuhKJvhKdS, (4.18)

or in the Non-Symmetric (NWIPG) case as

aNn (uh, vh) := −
∫

Γ
{σ∇uh}JvhK +

∫
Γ
{σ∇vh}JuhKdS + γνk

∫
Γ

σ̂

ĥ
JuhKJvhKdS, (4.19)

the two only differing in one sign.
From (4.13), the bilinearform a is taken as

a(uh, vh) =
∑
i

∫
Ωi
σ∇uih∇vihdx (4.20)

while the right-hand-side term l remains identical to (3.5).
Considering only the restrictions of uh, vh to the respective domains resolves the submesh
overlap. Now however, depending on the way the level sets cut the fundamental mesh,
there might be sliver- or point-like cut-cells. Defining Ansatzfunctions that act only on
these tiny, misshapen cells can result in a deterioration of the conditioning and stability of
the method([Bur10]).
Alleviating this problem can be done by coupling the gradient of functions inside cut-cells
with the gradients of neighboring functions. In other words, the behavior on the inner,
uncut cells of the domain is extended to the cut-cells by penalizing the jump of the gradient
on the interfaces between cut-cells and inner cells.
The interfaces of all cut-cell with their neighboring cells is given by

Γ̂ = {Ēi ∩ Ēj : Ei, Ej ∈ T (Ω̂), i 6= j, µ2(Ēi ∩ Ēj) > 0, Ei and/or Ej is cut by a level set}.
(4.21)

Then the Ghost-penalty term can be stated as

aG(uh, vh) = γG

∫
Γ̂
ĥJσ∇uhKJ∇vhKdS. (4.22)

ĥ is the same as in (4.17) and γG can again be chosen relatively freely. As the penalty is
supposed to primarily act on small cut-cells, γG is usually much smaller than the penalty
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Fig. 4.5.: Overview of the applied penal-
ties. On the level-set (black line), the
regular Nitsche-penalty term is used.
The dashed colored lines indicate Ghost-
penalties. Red for the left domain,
green for the right and yellow for
penalty terms that affect both domains.
([Nüß18])

parameter γ from the Nitsche-penalty. Fig. 4.5. gives an overview of the different penalties
applied.
In total, the above considerations lead to the following definition.

Definition 4.4 (weak tDCS-/EEG CutFEM formulation) Find uh ∈ Vh such that

a(uh, vh) + aNn/s(uh, vh) + aG(uh, vh) = l(vh) ∀vh ∈ Vh (4.23)

with
• l(vh) =

∫
∂Ω IvhdS for tDCS and

• l(vh) = −
∑
i

∫
Ωi ∇J

pvihdx for EEG.

This equation leads to a linear equation system similar to (4.5).
One practical issue remains before proceeding to the numerical analysis of the method.
Computing the terms in (4.23) requires evaluating integrals over the boundary Γ and the
cut-cells. As the level-Set has no restrictions regarding its geometry, those might be of
arbitrary shape and thus their computation is not as straightforward as if they where e.g.
tetrahedrons.

4.2.3. Cut-cell Integration

As a means for computation, a topology preserving marching cubes (TPMC) algorithm([EN17])
is employed. The idea is to find a set of polygons to replace the cut-cell. The result is a
linearized cut-cell that both accurately represents the original one and allows for easy inte-
gration via quadrature points. The algorithm basically consists of two approximations, it
will be briefly sketched for one domain.
A domain Ω, contained in a larger auxiliary domain Ω̂, is characterized by a level-set function
Φ as stated in the beginning of the section. First, the auxiliary domain is tesselated by
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Fig. 4.6.: Ambiguous sign-based key. Both pictures have the same edge values, resulting in the same
key. The tube connecting v0 and v3 on the right is ignored. Thus further distinctions have
to be made ([Nüß18]).

a hexahedral mesh. In the following we always consider one hexahedron at a time. The
level-set function is replaced by a multilinear version Φh. Multilinear in the sense that the
restriction to the cube is supposed to be multilinear. This restriction is uniquely defined
by its values on the vertices. It will thus only be used implicitly.
The next step is finding a set of polygons to approximate the area inscribed by Φh. These
replacements are not computed individually for each cut-cell, instead the best fitting tem-
plate is chosen from a lookup table. To select that template, first a key is computed that is
based on the sign of φh on the vertices. As there are 8 vertices, there are 28, so 256 possible
combinations, each represented by one key. Some of those combinations are just rotations
or axial mirroring of other combinations and can thus be considered as the same.
However, while some of the keys can result from one kind of level set topology only, others
are not unique as can be seen in Fig. 4.6. To preserve the topology of the original level-set,
one has to account for possible tubes running through the hexahedron. The existence of
such a tube can be determined using the vertex values. For more information regarding the
exclusion of this case, see [EN17] and [Tch96].
Having accounted for these ambiguities in topology, one has a template set of polygons Eji
to replace the original cube Ei. An example of this can be seen in Fig. 4.7.. In summary,
the process of integrating over a domain Ω, characterized by a level-set function Φ looks
like this: ∫

Ω
fdx =

∫
Ω̂∩{Φ<0}

fdx =
∑
i

∫
Ei∩{Φ<0}

fdx

≈
∑
i

∫
Ei∩{Φih<0}

fdx ≈
∑
i

∑
j

∫
Eji

fdx.

First, Ω is embedded in the auxiliary domain Ω̂, then the integral is written as a sum of
integrals over the cubic mesh of Ω̂. On each cube a multilinear level-set approximation Φi

h

is defined and finally those integrals are approximated by integrals over the replacement
polygons Eji . The result can be refined by reapplying the algorithm to the new subtesse-
lation, yielding an a more precise approximation of the domain. Note that this refinement
does not affect the number of Ansatzfunctions, which only depends on the fundamental
mesh.
A mesh cut by multiple level-set functions can be treated iteratively, each iteration applying
the TPMC-Algorithm to the subtesselation created by the previous one.
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a) Reconstruction of one cut element([Nüß18]) b) Reconstruction of a multilayer sphere
model.

Fig. 4.7.: a) Reconstruction of a single square cut by a level-set. The grey area indicates the inside
of the domain, reconstructed into 5 cut-cells, 3 of which are inside the domain. The red
points indicate quadrature points for the domain, the green are for the outside area. b)
Reconstruction of a multilayer sphere model. Accurate depiction of the curvature of the
sphere is achieved while maintaining a low fundamental mesh resolution.

In total, CutFEM features several differences compared to standard CG-FEM.
• Using the level-set function directly allows for a very accurate representation of the

head geometry.
• No possibly complicated mesh generation as in the tetrahedral case is necessary. Mis-
shapen cut-cells are taken care of through Ghost-penalties.
• Ansatzfunctions are defined on the fundamental mesh. This can be chosen coarser
than a CG-mesh while maintaining a similar level of accuracy. Thus the number of
Degrees of Freedom (i.e. number of Ansatzfunctions) is smaller.
• Most mesh-generators cannot deal with holes in the compartments, which occur for
example in the CSF when brain and skull touch.
• A possible downside is the dependence on the penalty parameters γ, γG which can
strongly influence the result as will be seen in the evaluations.

Having set-up the framework for numerical calculations involving continuous Galerkin and
CutFEMmethods, we can now proceed comparing them regarding stability and convergence
properties.



24

5. Error Estimation

When giving a priori error estimates of the form

||u− uh|| ≤ Chs|u|H2

for some s > 0 it is usually required that the solution u is in H2(Ω) and that the injected
current I/primary potential Jp are in L2(∂Ω) orL2(Ω) respectively. These requirements are
usually not met due to the singularities in the respective terms. Still, the estimates give an
idea of how the methods behave under "nice" circumstances. When using the subtraction
approach([WKM+07]) to model the primary source term, it can be shown that the error
increases as the sources get closer to the next conductivity jump, an effect that has also been
shown in numerical studies of other source models for which no error estimate of the kind
exists ([PVW16]). As CG- and Cut-FEM differ regarding bilinearforms and FEM-spaces
employed, they will be treated individually. The starting point is the same however. Rather
than determining an u ∈ V such that

a(u, v) = l(v) ∀ v ∈ V (5.1)

an approximation uh ∈ Vh is searched such that

â(uh, vh) = l(vh) ∀ vh ∈ Vh (5.2)

for some FEM-space Vh and a bilinearform â that may differ from a. The first question
that arises is whether solving this auxiliary problem is even related to solving the original
one.

5.1. CG-FEM

In CG-FEM we have Vh ⊆ V (meaning its a conforming method) and â = a. We first note
that

a(u, vh) = l(vh) = a(uh, vh) ∀ vh ∈ Vh
since Vh is a subspace of V . Substracting right from left side and the bilinearity of a then
yield the Galerkin Orthogonality

a(u− uh, vh) = 0 ∀ vh ∈ Vh. (5.3)

Using this property we can continue estimating the difference between u and uh. Recalling
the coercivity of a one obtains

||u− uh||2 ≤
1
α
a(u− uh, u− uh)
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= 1
α
a(u− uh, u− vh + vh − uh) = 1

α
a(u− uh, u− vh) + 1

α
a(u− uh, vh − uh)

using an arbitrary vh from Vh and the bilinearity of a. Note that vh − uh ∈ Vh, thus the
second term is equal to zero. Now recall that a is continuous and thus

1
α
a(u− uh, u− vh) ≤ C

α
||u− uh||||u− vh||.

This is true for any vh ∈ Vh, thus the inequality also holds for the infimum over the vh.
Dividing both sides by ||u− uh|| we arrive at

||u− uh|| ≤ inf
vh∈Vh

C

α
||u− vh||. (5.4)

The coercivity and continuity constants α,C are the same as in Lemma 3.1. This result
is known as Céa’s Lemma ([Bra07]). It states that the error is proportional to the best
possible approximation of u that can be achieved using functions from Vh, it is therefore
quasi-optimal. The choice of the FEM-space is thus of tantamount importance. Hence, the
next steps will explore the quality of this best possible approximation.
The Bramble-Hilbert Lemma can be used to show that u can be interpolated in Vh on a
reference element, also giving an error estimate. Every mesh element is merely a transfor-
mation of the reference element, thus the error estimate can also be translated yielding a
result for the entire mesh.

Theorem 5.1 (Mesh Interpolation Error using Bramble-Hilbert) Let Th be a tri-
angulation of Ω with vertices x1, ...., xN , u ∈ H2(Ω), Ih : H2 → Vh a linear Interpolation
operator such that Ihu(xi) = u(xi) for i = 1, ..., N . Then there is a cT > 0 such that

||u− Ihu||H1(Ω) ≤ cT h|u|H2(Ω). (5.5)

Proof: see [Bra07] �

Note that the constant cT depends strongly on the shape and amount of distortion of the
mesh elements. Different measurements exist to determine what constitutes a "good" ele-
ment, be it minimum or maximum face angle conditions or the size of the largest sphere that
can be inscribed into the mesh. In [She02] it is suggested that very "stump" tetrahedrons
lead to large errors in the gradient of u− uh. A 2D intuition for this can be seen in Figure
5.1..
Since Ihu ∈ Vh we can use the result from theorem 5.1 to proceed with equation (5.4),
yielding

||u− uh||H1(Ω) ≤ inf
vh∈Vh

C

α
||u− vh|| ≤

C

α
||u− Ihu||H1(Ω) ≤

C

α
cT h|u|H2(Ω). (5.6)

As an extension of this, the Aubin-Nitsche Lemma can be used to give a stronger result for
the L2 error.

||u− uh||L2(Ω) ≤
C

α
cT h

2|u|H2(Ω) (5.7)

It will be covered more extensively in the CutFEM section.
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Fig. 5.1.: Effect of stump triangles on Interpolation Error. A function u with vertex values 35, 40, 65
is approximated by a linear interpolation Ihu. The interpolation is exact on the vertices,
linearity implies that the value on the middle of the line from bottom left to right vertex
is 50. If the top vertex moves close to this middle point, the vertical component of the
gradient of the Interpolation has to explode to maintain the value of 40 at the top vertex.
Thus, "stump" triangles may lead to a massive increase of ||∇(u− Ihu)|| ([She02]).

5.2. CutFEM

In this section we will determine under which conditions the optimal convergence rates
of (5.6) and (5.7) can be achieved using CutFEM. The following statements are based on
[BH12], [HH02] and [Sch17].
We first check if a solution u to the strong CutFEM formulation (4.9-12) also solves the
weak equation (4.23). Equations (4.11) and (4.12) yield that the (non-)symmetry term is
zero and the flux term jump-free, thus

a(u, vh) + aN (u, vh) + aG(u, vh) =
∑
i

∫
Ωi
σ∇u∇vhdx−

∫
Γ
σ∇uJvhKdS + aG(u, vh)

part.Int.= −
∑
i

∫
Ωi
∇σ∇uvhdx+

∫
Γ
σ∇uJvhKdS +

∫
∂Ω
σ∇uvhdS −

∫
Γ
σ∇uJvhKdS + aG(u, vh)

= l(vh) + aG(u, vh).

The CutFEM approach is thus consistent up to the Ghost-penalty parameter and a modified
Galerkin Orthogonality

a(u− uh, vh) + aN (u− uh, vh) = aG(uh, vh) (5.8)

holds for solutions u, uh to classical and weak formulation respectively.
Central to all following results is the coercivity of the bilinearforms. To prove it, mesh-
dependent norms

||v||2± 1
2 ,h,Γ

:=
∑
E∈Th

ĥ∓1||v||2L2(Γ) (5.9)

are introduced. By the Cauchy-Schwarz Inequality

〈u, v〉Γ =
∫

Γ
uvdS =

∑
E∈Th

∫
Γ∩E

ĥ
1
2uĥ−

1
2 vdS

≤
∑
E∈Th

||ĥ
1
2u||2L2(Γ∩E)||ĥ

− 1
2 v||2L2(Γ∩E) ≤ ||u||− 1

2 ,h,Γ
||v|| 1

2 ,h,Γ
(5.10)
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can be obtained. Next an energy-type norm in which coercivity can be shown is defined as

|||v|||2 :=
∑
i

||∇v||2L2(T i
h

) + ||JvK||21
2 ,h,Γ

. (5.11)

The Poincaré Inequality ensures that this is actually a norm. It includes the submesh
overlap of the T ih and thus includes the parts of the Ansatzfunctions that would otherwise
be cut-off. Not considering those parts could otherwise lead to a deterioration of the system
matrix conditioning ([Bur10]). However, the norm over the physical domain (∪iΩi) alone is
not enough to control the gradient of v over the cut-off parts. This can be alleviated using
the Ghost-penalty term as can be seen from the following Lemma.

Lemma 5.1 For all v ∈ Vh the inequality∑
i

||∇v||2L2(T i
h

) ≤ CG(||∇v||2L2(∪Ωi) + aG(v, v)) (5.12)

holds.

Proof: Let Gh denote the set of elements cut by the level-set and note that the Ansatz-
functions we are looking at are linear on each element, we therefore focus on the case that
v is as well. The gradient is thus constant on each element E ∈ Gh and can be expressed
via the gradient of neighboring hexahedrons Ei /∈ Gh combined with the jump of v on the
interface between them.

∇v|E =
∑
i

(∇v|Ei + JvKEEi)

Having completely uniform hexahedrons leads to

||∇v||2L2(E) ≤
∑
i

(||∇v||2L2(Ei) + ||JvK||2L2(E∩Ei)).

When summing over all cut-cells we obtain an estimate that includes duplicates of the Ei.
However each Ei is connected at most to 8 cut-cells, yielding

||∇v||2L2(Gh) ≤ 8(||∇v||2L2(∪Ωi) + ||JvK||2
L2(Γ̂)).

In total ∑
i

||∇v||2L2(T i
h

) ≤ ||∇v||
2
L2(Gh) + ||∇v||2L2(∪Ωi)

≤ 9(||∇v||2L2(∪Ωi) + ||JvK||2
L2(Γ̂)) ≤ 9Cσ(||∇v||2L2(∪Ωi) + aG(v, v)).

�

Coercivity for the symmetric and non-symmetric case can now be shown separately.

Lemma 5.2 (Coercivity)

a(v, v) + aNn/s(v, v) + aG(v, v) ≥ C|||v|||2

for both symmetric and non-symmetric aN .
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Proof: First the non-symmetric case:

a(v, v) + aNn (v, v) =
∑
i

∫
Ωi
σ∇v∇vdx−

∫
Γ
{σ∇v}JvKdS +

∫
Γ
{σ∇v}JvKdS + γνk

∫
Γ

σ̂

ĥ
JvK2dS

=
∑
i

∫
Ωi
σ∇v∇vdx+ γνk

∫
Γ

σ̂

ĥ
JvK2dS ≥ Cσ||∇v||2L2(∪Ωi) + γνkCσ||JvK||21

2 ,h,Γ

5.12
≥ CσC

−1
G (

∑
i

||∇v||2L2(T i
h

) − a
G(v, v)) + γνkCσ||JvK||21

2 ,h,Γ

≥ Cσ min{C−1
G , γνk}|||v|||2 − C−1

G aG(v, v),

where Cσ = minΩ{σ, σ̂}. The non-symmetric interior penalty Galerkin is thus coercive for
any γ > 0. This will change when looking at the symmetric case. Taking the same steps as
above yields

a(v, v) + aNs (v, v) =
∑
i

∫
Ωi
σ∇v∇vdx− 2

∫
Γ
{σ∇v}JvKdS + γνk

∫
Γ

σ̂

ĥ
JvK2dS

≥ CσC−1
G (

∑
i

||∇v||2L2(T i
h

) − a
G(v, v)) + γνkCσ||JvK||21

2 ,h,Γ
− 2

∫
Γ
{σ∇v}JvKdS. (5.13)

In order to treat the last term separately, a trace inequality

||{∇v}||2− 1
2 ,h,Γ

≤ CT
∑
i

||∇v||2L2(T i
h

) (5.14)

is needed. To prove it first note that

||{∇v}||2− 1
2 ,h,Γ

=
∑
E∈Th

ĥ||ωΩi∇v
i + ωΩj∇v

j ||L2(Γ∩E)

≤
∑
E∈Th

ĥ||ωΩi∇v
i||L2(Γ∩E) + ĥ||ωΩj∇v

j ||L2(Γ∩E).

Looking at each term individually and using the fact that vi is linear on Γ and E ∩Ωi (the
gradient is thus constant) we obtain

ĥωΩi ||∇v||L2(Γ∩E) = ĥωΩicvi |Γ ∩ E| = ĥωΩicvi
|Γ ∩ E|
|E ∩ Ωi|

|E ∩ Ωi|

= ωΩicvi
min{|E ∩ Ωi|, |E ∩ Ωj |}

|Γ ∩ E|
|Γ ∩ E|
|E ∩ Ωi|

|E ∩ Ωi| = ωΩicvi min{1, |E ∩ Ωj |
|E ∩ Ωi|

}|E ∩ Ωi|

≤ ωΩiCEi ||∇v||L2(E∩Ωi).

In the second step the definition of ĥ was used. Note that the constant CEi depends strongly
on how Γ cuts the mesh and thus varies for every element. Returing to the sum we get

||{∇v}||21
2 ,h,Γ

≤
∑
i

∑
E∈T i

h

max{ωΩiCEi , ωΩjCEj}||∇v|L2(E) ≤ CT
∑
i

||∇v||2L2(T i
h

)
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which concludes proving the inequality. We can now proceed with the last term from (5.9).
First the inequality from (5.7) is used:

−2
∫

Γ
{σ∇v}JvKdS ≥ −2Cσ||{∇v}||− 1

2 ,h,Γ
||JvK|| 1

2 ,h,Γ

2ab≤a
2
ε

+εb2

≥ −1
ε
C2
σ||{∇v}||2− 1

2 ,h,Γ
− ε||JvK||21

2 ,h,Γ

(5.10)
≥ −1

ε
C2
σCT

∑
i

||∇v||2L2(T i
h

) − ε||JvK||
2
1
2 ,h,Γ

.

This estimate holds for any ε > 0. Continuing with (5.9) yields

a(v, v) + aNs (v, v) ≥ CσC−1
G (

∑
i

||∇v||2L2(T i
h

) − a
G(v, v)) + γνkCσ||JvK||21

2 ,h,Γ

−1
ε
C2
σCT

∑
i

||∇v||2L2(T i
h

) − ε||JvK||
2
1
2 ,h,Γ

= (CσC−1
G −

C2
σCT
ε

)
∑
i

||∇v||2L2(T i
h

) + (γνkCσ − ε)||JvK||21
2 ,h,Γ

− 1
ε
CσC

−1
G aG(v, v)

≥ min{CσC−1
G −

C2
σCT
ε

, γνkCσ − ε}|||v|||2 − C−1
G aG(v, v). (5.15)

For coercivity the minimum needs to be larger larger than zero, thus we need ε > CσCTCG
and γ ≥ ε

Cσνk
. This shows that the symmetric penalty Galerkin approach is only coercive

if the penalty parameter γ is chosen large enough. As CT depends largely on the mesh
intersection of the level-set functions, so does the required size of γ. �

The continuity of a(u, v) + aNn/s(u, v) + aG(v, v) can be shown using the Cauchy-Schwarz
inequality combined with steps similar to the ones above.
Coercivity and continuity are necessary to give an a-priori error estimate. A solution u to
the classical problem (4.9-12.) however is only defined on the physical domain ∪iΩi, not
on the cut-off parts of the submeshes. To measure the error we thus need a norm that is
restricted to the pyhsical domain.

|||v|||2Ω := ||∇v||2L2(∪Ωi) + ||JvK||21
2 ,h,Γ

(5.16)

It immediately follows that
|||v|||Ω ≤ |||v||| (5.17)

for v ∈ Vh. Next, an interpolation operator similar to the one from equation (5.5) in
CG-FEM is needed.

Lemma 5.3 Let u ∈ H2(Ω) and denote by I∗ : H1(Ω) → Vh the Clément Interpolation
operator. Then

|||u− I∗u|||Ω + aG(I∗u, I∗u)
1
2 ≤ Ch|u|H2(Ω). (5.18)
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Proof: See [BH12] �

This estimate will be useful when proving optimal convergence rates of the kind

|||u− uh|||Ω ≤ Ch|u|H2(Ω)

for solutions u, uh to the classical and discrete problem respectively. Before proving an
estimate like that notice that

|||u− uh|||Ω = |||u− I∗u+ I∗u− uh|||Ω ≤ |||u− I∗u|||Ω + |||I∗u− uh|||. (5.19)

We thus first need to gauge the difference between discret solution and the interpolation of
the classical one.

Lemma 5.4 Let u be a solution to (4.9-12), uh a solution to (4.23) and I∗ the Clément
Interpolation operator. Then

|||I∗u− uh||| ≤ C(|||u− I∗u|||Ω + aG(I∗u, I∗u)
1
2 ). (5.20)

Proof: Let A(v, w) := a(v, w)+aNn/s(v, w) and eh = uh−I∗u (symmetric or non-symmetric
makes no difference as long as coercivity is given). Then by the coercivity from Lemma 5.2
we have

|||eh|||2 ≤ C(A(eh, eh) + aG(eh, eh)) = A(uh − u+ u− I∗u, eh) + aG(eh, eh)

= C(A(uh − u, eh) +A(u− I∗u, eh) + aG(eh, eh)).
As eh ∈ Vh the Galerkin orthogonality from (5.8) can be used to obtain

|||eh|||2 ≤ C(A(u− I∗u, eh)− aG(uh, eh) + aG(eh, eh) = A(u− I∗u, eh)− aG(I∗u, eh)).

As A and aG are continuous we get

A(u− I∗u, eh) ≤ C|||u− I∗u|||Ω|||eh|||

for A and from a Cauchy-Schwarz-type inequality

−aG(I∗u, uh − I∗u) ≤ aG(I∗u, I∗u)
1
2aG(eh, eh)

1
2 ≤ aG(I∗u, I∗u)

1
2 |||eh|||.

Combining the two yields

|||eh|||2 ≤ C(|||u− I∗u|||Ω|||eh|||+ aG(I∗u, I∗u)
1
2 |||eh|||)

= C|||eh|||(|||I∗u− u|||Ω + aG(I∗u, I∗u)
1
2 ).

�

Now the necessary preparations for the a-priori error estimate are made, leading to the
following theorem.

Theorem 5.2 (A-priori Error Estimates in Energy and L2 norm) Let u be a solu-
tion to (4.9-12), uh a solution to (4.23). Then the following estimate holds for both sym-
metric and non-symmetric interior penalty Galerkin method

|||u− uh|||Ω ≤ Ch|u|H2 . (5.21)

Furthermore, for the symmetric version it holds that

||u− uh||L2(Ω) ≤ Ch2|u|H2 . (5.22)
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Proof: For the first inequality we start by applying Lemma 5.4 to equation (5.19) and
using the Interpolation estimate from Lemma 5.3 yields

|||u− uh|||Ω ≤ |||u− I∗u|||Ω + C(|||u− I∗u|||Ω + aG(I∗u, I∗u)
1
2 )

≤ Ĉh|u|H2(Ω),

thus proving the first estimate. To show the stronger L2 result from (5.7) for CutFEM,
Nitsche’s duality trick is applied. Let z be the solution of the adjoint problem

∇σ∇z = u− uh, in ∪
i

Ωi (5.23)

〈σ∇z, n〉 = 0, on ∂Ω (5.24)

JzK = 0, on Γ (5.25)

Jσ∇zK = 0, on Γ (5.26)

with u, uh as before. It is assumed that z ∈ H2(∪Ωi)∪H1
0 (Ω). Then by the same arguments

as leading to the Galerkin Orthogonality in (5.9) and using the symmetric penalty term we
have

a(z, vh) + aNs (z, vh) =
∫
∪Ωi

(u− uh)vhdx ∀ vh ∈ Vh. (5.27)

Using the symmetry on left hand side and the testfunction u− uh one obtains

a(u− uh, z) + aNs (u− uh, z) =
∫
∪Ωi

(u− uh)2dx = ||u− uh||L2(∪Ωi). (5.28)

This adjoint consistency of the symmetric approach now allows for a stronger error estimate.
The non-symmetric version, while maintaining the Galerkin type orthogonality, fails here
as for a testfunction v

a(v, z) + aNn (v, z) =
∫
∪Ωi

(u− uh)vdx+ 2
∫

Γ
{σ∇z}JvKdS.

This version is thus adjoint-inconsistent.
Proceeding with the left side of (5.27) and using again the abbreviation A(u, v) = a(u, v) +
aNs (u, v) we again employ the Galerkin orthogonality

A(u− uh, z) = A(u− uh, z + I∗z − I∗z) 5.9= A(u− uh, z − I∗z)− aG(uh, I∗z). (5.29)

Both terms will now be treated separately. For the first, the continuity of A yields

A(u− uh, z − I∗z) ≤ |||u− uh|||Ω|||z − I∗z|||Ω ≤ Ch2|u|H2(Ω)|z|H2(Ω). (5.30)

In the second step, the inequalities from (5.18) and the a-priori result from Theorem 5.2 were
used. The second term can be approached by reusing the Cauchy-Schwarz type inequality
from Lemma 5.4 to obtain

−aG(uh, I∗z) ≤ aG(uh, uh)
1
2aG(I∗z, I∗z)

1
2 . (5.31)
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Galerkin Orthogonality and the continuity of A result in

aG(uh, uh) = (A(u− uh, uh)) = (A(u− uh, uh − I∗u) +A(u− uh, I∗u)

≤ |||u− uh|||Ω|||uh − I∗u|||Ω + aG(I∗u, I∗u)
5.19
≤ |||uh − I∗u|||2Ω + aG(I∗u, I∗u)).

After considering both terms separately, proceeding with (5.28) now yields

A(u− uh, z) ≤ Ch2|u|H2 |z|H2 + aG(I∗z, I∗z)
1
2 (|||uh − I∗u|||Ω + aG(I∗u, I∗u)

1
2 )

5.20
≤ Ch2|u|H2 |z|H2 + aG(I∗z, I∗z)

1
2 (|||u− I∗u|||Ω + 2aG(I∗u, I∗u)

1
2 )

5.18
≤ Ch2|u|H2 |z|H2 + Ĉh2|z|H2 |u|H2 .

To complete the proof note that solution z to the PDE (5.22-25) depends continuously on
the input data u− uh ([CZ98]), i.e.

|z|H2 ≤ C||u− uh||L2(Ω). (5.32)

Thus, in summary we have

||u− uh||L2(Ω) = A(u− uh, z) ≤ Ch2|u|H2 ||u− uh||L2(Ω)

which proves the theorem. �

In this chapter the differences and similarities of CG- and CutFEM with regard to con-
vergence behavior and stability were examined. Similar convergence rates for CG- and
symmetric CutFEM were found. The upper bound for the non-symmetric CutFEM’s con-
vergence rate is worse due to its lack of adjoint consistency. However it has the advantage of
being robust with regard to the choice of penalty parameters while the symmetric approach
depends on a sufficiently large γ. In summary one could thus expect the non-symmetric
version to yield more reliable results while requiring higher mesh resolutions due to the
possibly slower convergence.Furthermore the motivation for the choice of the Ghost-penalty
term was given. It is a means to control the entirety of the overlapping submeshes rather
than only the physical domain itself.
Finally, a reasoning for an error source in the potential’s gradient due to deformed mesh
tetrahedrons in the CG-FEM was given. Looking forward to numerical experiments one
may expect this to be more relevant for tDCS than for EEG as the latter is only interested
in the potential value, not in the electric field or current density.
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6. Numerical studies

As mentioned in chapter one, the goal of forward modeling in bioelectromagnetism lies in
creating a reliable Lead-Field or tDCS matrix to be used for the inverse problem. Doing
so requires the usage of an accurate depiction of the head’s geometry, i.e. a realistic head-
model created from MRI-imaging ([CVWK15]). In the absence of analytical solutions one
has to rely on a numerical algorithm for this case. The two methods presented in the
previous section are similar with regard to theoretical convergence rate but the CG-FEM
might be inferior at modeling scenarios as the one described in the following section.

6.1. Geometries with touching surfaces

When taking MRI-images of the head, the patient usually lies in a supine position inside
the machine. This causes the brain that normally floats in the CSF to "sink" to the bottom,
touching the skull at the back of the head. The boundary of the CSF thus has a hole at the
touching points, a situation that most mesh generators circumvent by adding an artificial
layer of CSF in between skull and brain. Furthermore, to represent these very thin parts
of CSF, more distorted tetrahedrons may be used, leading to the possible increase in error
discussed in the previous section. CutFEM, having barely any restrictions with regard to
shape of the compartments, may have an advantage in such a scenario. The goal of this
chapter is the creation of a model that approximates such a situation while also featuring
analytical solutions for comparison.

6.1.1. Model Setup

The idea is to use a 4 layered spheres, representing scalp, skull, CSF and brain. The three
outer ones are concentric while the inner one is shifted to one side by the CSF’s thickness
(see Figure 6.1.). It thus touches the skull sphere in exactly one point. We then set the same
conductivity for CSF and brain implying that this model is identical to a 3-layer concentric
sphere model (without CSF) in terms of electrical conduction. Numerical solutions to the
3- and 4-layer models should thus converge to the same solution, which can be computed
analytically. For CutFEM, one could then argue that a difference in measured errors would
be due to the more intricate way in which the level-set functions cut the mesh, while for
CG-FEM it might be due to the less accurate meshing process with artificial CSF and
misshapen tetrahedrons.
In [Nüß18] the CutFEM approach was compared to tetrahedral CG-FEM in a concentric
sphere scenario for EEG. In this study, 2 mm CutFEM and CG-FEM were compared,
CutFEM outperforming the other in 3 out of 4 categories. It is however significantly more
time-consuming. Thus, if not stated differently, a tetrahedral model with a resolution of
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Fig. 6.1.: Depiction of the 4-layer-sphere model
used. The layers from red to blue are scalp, skull,
CSF and brain. The brain is shifted to the right,
thus shares exactly one point with the skull.

around 1 mm will be compared to a CutFEM model with 90 by 90 by 90 fundamental mesh
cells or about 2.15 mm resolution, ensuring comparability with regard to computational
cost. For the touching sphere model mentioned above, this yields a difference in number of
degrees of freedom of a factor of 4.97, CutFEM being on the lower end.
The radii, conductivities and centers of the spheres can be seen in Table 6.2.

Radius Center σ
mm S/m

Scalp 92 (127 127 127) 0.33
Skull 86 (127 127 127) 0.01
CSF 80 (127 127 127) 0.33
Brain 78 (129 127 127) 0.33

Table 6.2.: Radii, center and conductivity values
for the shifted sphere model. The point where
brain and skull touch is at (207 127 127).

As EEG source model, the St. Venant approach (see A.2. for a brief description and the
parameters used) will be employed. It outperformed the partial Integration approach in
the aforementioned CutFEM study and in a CG study in [BPV+15]. In the latter it also
yielded reliable results when compared to other existing models like the H(div)- approach.
200 uniformly distributed electrode sensors are placed on the surface of the scalp sphere.
To calculate the Lead-Field matrix for such a large number of sources, a Transfer-Matrix
approach (see A.1.) is used. Note that at the time this thesis was written, the approach is
only implemented for numerical schemes that feature symmetric stiffness matrices or adjoint
consistency. The impact this has on the NWIPG version of CutFEM will be discussed later
in the chapter.
Unless stated differently, the source electrode for tDCS is located directly above the point
of contact and the sink electrode is placed at the sources antipodal position.
The numerical solutions are computed using the duneuro-Toolbox (see [NPS+19] and the
implementation chapter). Analytical solutions to the EEG are evaluated using fieldtrip
([OFMS11]) and for tDCS via a python script that was also used in ([Vog19]).
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6.1.2. Error Measures

EEG

As the EEG is measured as potential at the scalp electrodes, we are only interested in the
errors at those positions. Two different error measures will be employed, the relative differ-
ence measure (RDM) and the magnitude error (MAG). By uana, unum ∈ Rs the potential
values taken at the electrodes of analytical and numerical solution are denoted. Here s
again denotes the number of electrodes.

Definition 6.1 (Relative Difference Measure) The RDM measures the difference in
potential distribution. It is stated in percent and is equal to zero if for any sensor both
analytical and numerical solution take up the same proportion of their solution’s respective
total potential. It is however blind to differences in magnitude.

RDM(uana, unum) = 50 ∗ || uana

||uana||2
− unum

||unum||2
||2 (6.1)

It ranges from 0 to 100, the optimal value being 0.

Definition 6.2 (Magnitude Error) The MAG is complementary to the RDM in the
sense that it solely measures differences in magnitude while ignoring any distributional
differences.

MAG(uana, unum) = 100 ∗ ( ||u
num||2
||uana||2

− 1) (6.2)

Measured in percent, its optimal value is 0. It is unbounded from above and bound by −100
from below.

In the following studies these errors will be measured individually for various source loca-
tions. As mentioned in chapter 4, the numerical errors increase when the distance between
examined source and the closest conductivity jump decreases. In studies where sources s of
various depths are examined, they will thus be grouped by their eccentricity

ecc(s) := ||xs − cbrain||2
rbrain

. (6.3)

Here xs denotes the source location, cCSF , rCSF the center and radius of the CSF sphere
respectively. The CSF values are used as the first conductivity jump is at the transition
from CSF to skull. In scenarios, where only very eccentric sources near the point of contact
of skull and brain are used, this distinction is omitted. The results will also be grouped
regarding the orientation of the dipole, it either being radial or tangential with respect to
the sphere surface.

tDCS

In tDCS, the electric potential is of secondary interest as the inverse problem maximizes
the current density vector J at a target region. Similarly to the EEG, both orientation and
magnitude of the vector are examined. The angle between the vectors is stated as

A(Jana(x), Jnum(x)) = acos〈 Jana(x)
||Jana(x)||2

− Jnum(x)
||Jnum(x)||2

〉, (6.4)
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where Jana(x) := −σ(x)∇uana(x) and Jnum analogue. The angle is stated in degrees,
bounded by 0 and 180. For the magnitude

MAG(Jana(x), Jnum(x)) = 100 ∗ (J
num(x)
Jana(x) − 1) (6.5)

is used. The magnitudal error is again stated in percent with an optimal value of zero. To
calculate the gradient of the analytical potential, a five-point-stencil method

∂uana

∂xi
(x) ≈ −u

ana(x+ 2hei)) + 8uana(x+ hei)− 8uana(x− hei) + uana(x− 2hei)
12h

with h = 1e− 5 is used. The errors may again be grouped by categories, either eccentricity
for points inside the brain or the compartment they belong to. The evaluation points will
usually be the centerpoints of the tetrahedral or fundamental mesh elements.
Now that the preliminaries have been stated we can proceed with the actual measurements.
To properly compare Cut- and CG-FEM first reliable penalty parameters for CutFEM need
to be determined.

6.2. Study 1: NWIPG/SWIPG Penalty Parameter Comparison

In the mentioned CutFEM studies in [Nüß18], a Nitsche-penalty γ = 16 and a ghost-penalty
γG = 0.005 were used. These are taken as a starting point to vary the parameters individ-
ually. 6 different Nitsche-penalties γ, 10,16,20,40,70,100 and 4 different ghost penalties γG,
0.005, 0.05, 0.5, 5 are compared for both symmetric (SWIPG) and non-symmetric (NWIPG)
CutFEM in both an EEG and a tDCS environment.

EEG

For the EEG, mostly eccentric sources are examined, therefore 5816 radial and 5749 tan-
gential sources were placed uniformly in an area between 32 and 0.3 mm off the point of
contact. Their eccentricities range from 0.91 to 0.99.
The results for varying Nitsche-parameters can be found in Figure 6.3. As mentioned in
the previous chapter, SWIPG’s coercivity depends on the size of γ. It is thus unsurprising
to see that throughout both error measures and both source directions an increase in γ
results in a clear reduction in errors. The interquartile range of the RDM for tangential
sources decreases from 0.75 at γ = 10 to 0.10 at γ = 100, the median from 0.95 to 0.15.
The decrement is largest for the lower penalty parameters, after γ = 40 the gains are only
marginal. While the overall errors are fairly low, most sources not exceeding two to three
percent, outlier values not visible in the box plots need to be mentioned. The largest ranges
from 45.95 for γ = 16 to 2.06 for γ = 0. There were 62 outliers with an RDM larger than
15. Their average distance to the point of contact is 6 mm while the average distance over
all sources is 17 mm. The outliers thus mainly occur close to the touching point. Similar
results are obtained for MAG and for radial sources. The SWIPG method is thus highly
responsive to a variation in γ.



6. Numerical studies 37

Fig. 6.3.: Overview of different EEG-errors for different Nitsche-penalty parameters. Top: Errors
for tangential source directions. Bottom: Errors for radial source directions. Errors are in
percent, the green line marks optimal error values. Depicted by the circle is the average
error value of each category.

As it is unconditionally coercive, the lower responsiveness of the NWIPG does not come as
a surprise. For tangential sources the RDM’s interquartile range (IQR) decreases from 0.18
to 0.09 , the highest outlier from 3.28 to 1.66 at γ = 40. Unexpected however is the fact
that the method performs as good or slightly better than SWIPG in almost all categories
even at high γ values. Only the MAG error for radial sources for γ ≥ 40 is slightly better
for SWIPG. Unexpected, because in the previous chapter a higher convergence rate for the
SWIPG for the potential has been shown. Furthermore, as mentioned in the Model Setup
section, a Transfer Matrix approach for methods with symmetric stiffness matrices is used.
For NWIPG the Transfer Matrix solution is tantamount to the solution of the problem:
Find uh ∈ Vh such that

â(vh, uh) = l(vh) ∀ vh ∈ Vh.

Duneuro also offers a method to directly solve the forward problem for single sources, a
comparison of Transfer Matrix and direct computation can be seen in Figure 6.4. As can
be seen, the error introduced by NWIPG’s ajdoint inconsistency declines rapidly with an
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increase in resolution. At 2 mm there is barely any difference between the two. These
marginal differences indicate that the NWIPG method is, up to a small error, adjoint
consistent regarding the EEG forward problem. As adjoint consistency is the prerequisite for
the higher convergence rate of SWIPG, this explains the similar errors of the two methods.
For more details on the different convergence behavior, see section 4.2.

mm 2 4 8 16
MAG 0.0013 0.0011 -0.0122 -0.47
RDM 0.0146 0.066 0.3796 1.25

Table 6.4.: Difference between numerical solutions
calculated with and without the Transfer-Matrix
approach using the NWIPG approach. The direct
computation is considered the "analytical" solu-
tion in this case. Measures were averaged over 5
random source locations and directions.

To conclude, both SWIPG and NWIPG yield similar results for sufficiently large γ−values.
The NWIPG method however has shown higher consistency throughout the different param-
eter settings, indicating a higher reliability for scenarios where no large set of parameters
can be tested.
The results for the ghost-penalty variation can be found in figure 6.5. Except for the
starting point at γG = 0.005 the results for SWIPG and NWIPG are similar. The SWIPG’s
interquartile range for the tangential source RDM first decreases from 0.59 to 0.23 at γG =
0.05, then increases up to 1.63. Too high a ghost-penalty thus leads to an overall decrease in
accuracy. Noticeable is the effect γG has on outliers. Starting again at 45.95 their maximum
first declines to 5.48 at γG = 0.05 before increasing to 9.47 for the largest ghost-penalty.
Thus, even when chosen so large that it noticeably distorts the overall results, it still controls
the area surrounding the point of contact. As there are no high outliers in the NWIPG,
increasing the ghost-penalty here only lead to the same overall increase in errors measured.
It thus appears to be a parameter more relevant to the SWIPG method.
An optimized test with a Nitsche-penalty of 40 and a Ghost-penalty of 0.05 on the right
of figure 6.5. emphasizes the relevance of the correct Nitsche-parameter over the optimal
Ghost-penalty for SWIPG. The effects on NWIPG are negligible.
Regarding computation cost, the time required to setup the linear equation system (A.2) and
to apply the transfer matrices to the source vectors is largely independent of the parameters
chosen. The primary difference lies in the number of iterations that the ISTL-solver requires
to solve the linear equation system. An overview of the number of iterations needed can
be found in Table 6.6. For the SWIPG both choosing too small and too high a Nitsche- or
Ghost-penalty results in a significant increase in computation time. The NWIPG method
is slightly slower the higher the Nitsche-penalty is chosen while also profiting from choosing
a mid-range γG. Overall, the computation time of the NWIPG method shows a lower
sensitivity to the parameters than SWIPG.
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Fig. 6.5.: Overview of different EEG-errors for different Ghost-penalty parameters. Top: Errors for
tangential source directions. Bottom: Errors for radial source directions. Errors are in
percent, the green line marks optimal error values. Separated by the red line: Errors for
NWIPG and SWIPG with the optimal Nitsche-penalty value 40 and ghost penalty 0.05.

γ 10 16 20 40 70 100 γG 0.005 0.05 0.5 5
NWIPG 93 112 129 183 238 271 112 97 75 108
SWIPG 480 242 199 221 248 270 242 138 84 104

Table 6.6.: Number of solver iterations needed to compute one column of the Transfer Matrix. On
the left: Iterations for the different values of the Nitsche-penalty. Right: Iterations
for different Ghost-penalties. One solver iterations corresponds to roughly 1.1 seconds
computation time on an i7-6700 CPU with 32GB RAM. For 200 electrodes used, a
difference of 100 iterations thus results in a difference of about 6 hours total computation
time.
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tDCS

For tDCS, the same parameters as for EEG are used again for both NWIPG and SWIPG.
Examined are 4888 brain- or CSF-points with an eccentricity greater than 80 and a distance
to the point of contact of less than 30 mm. All points are at the center of a fundamental
mesh cell. Figure 6.7. shows the findings for a variation of γ. As is immediately apparent,
the results for the most part mirror the EEG-findings. For SWIPG, the MAG-IQR decreases
from 0.45 to 0.09 with an increase in γ, with only marginal decreases after γ = 40, from
where on NWIPG and SWIPG yield mostly identical results. The same can be said for the
vector angle. IQR’s for NWIPG remain mostly unchanged, however, it is noteworthy that γ
seems to have a strong influence on outliers. The maximal angle difference is 122.23 degrees
at γ = 10 and decreases slowly towards 12.68 degrees at γ = 100. Similar differences are
observed for SWIPG.

Fig. 6.7.: Overview of tDCS-errors for different Nitsche- and Ghost-penalty parameters. Top: Dif-
ferences for Nitsche-penalty variation. Bottom: Differences for Ghost-penalties. Separated
by the red line: Results for γ = 100, γG = 0.05. Left: Angles between Vectors in degrees.
Right: Vector magnitude differences in percent. The green line marks optimal error values.
Depicted by the circle is the average error value of each category.
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The findings for Ghost-penalty variations can also be seen in figure 6.7. The results are
again similar to the ones in the EEG-section. SWIPG profits from a mid-range γG, while
NWIPG does not profit at all from an increase in γG. Both methods slightly deteriorate
when too high a Ghost-penalty is chosen. Choosing a combination of a high γ-value of 100
and a mid-range γG of 0.05 resulted in negligible differences to variant with γG = 0.005
from the Nitsche-variation section. In all of the scenarios, eccentricity was more important
for error size than proximity to the touching point.
In this study it was found that the SWIPG method strongly relies on choosing the proper
penalty parameters, the optimal values being around γ = 40 and γG = 0.05 for EEG and
a Nitsche parameter of 100 for tDCS. Given these, both SWIPG and NWIPG featured
very comparable results in the EEG Lead-field computation or current density estimation.
NWIPG’s slower theoretical convergence rate had no impact on the 2 mm models used
and the inaccuracy from using the Transfer-Matrix approach in EEG was also shown to be
insignificant. Its high convergence rate and robustness thus make NWIPG the preferable
method for the scenario. The more stable computation times only emphasize this.
Having found a CutFEM contestant for a comparison with CG-FEM, the next section is
concerned with choosing the proper mesh for the latter.
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6.3. Study 2: Element Distortion Effects on CG-FEM

In this study, 2 tetrahedral meshes with about 1 mm resolution are examined with respect
to a shape-error correlation. The meshes were created using Gmsh([GR09]) and the Zeffiro
user interface for Matlab ([HRP19]). Gmsh uses a Delaunay Triangulation, making sure
that for every tetrahedron the circumcircle, the circle through its 4 vertices, does not contain
vertices of other elements. It should thus inherently prevent sliver elements. However, brain
and skull are separated by a tiny amount of CSF, in the test-case 0.1 mm at what should
be the point of contact. This replicates the thin layer of CSF that would otherwise be
added in during mesh generation of a realistic head-model. Gmsh also allows for local mesh
refinement. To ensure that the compartments are optimally represented, scalp, skull and
especially CSF use smaller tetrahedrons than the brain. An overview of the tetrahedrons
used in each compartment can be found in table 6.8. A total of 2 611 902 vertices are used,
corresponding to the same number of Degrees of Freedom.

Zeffiro on the other hand has no such restrictions. It first takes in a surface triangulation
of each compartment. Then it creates a regular hexahedral mesh that is independent of the
surface triangulations, much like the fundamental mesh in CutFEM. The third step is to
decide for each hexahedron which compartment it belongs to. This is based on the position
of the element with regard to the surfaces. Thus, unlike to CutFEM, each hexahedron
belongs to one compartment only. The elements are then split into 6 tetrahedrons each.
As a last step, laplacian smoothing is used to smooth out the staircase pattern of the
hexahedrons. No local mesh refinement is employed, the resolution is a constant 1 mm
throughout the mesh, yielding 3 260 808 DoF’s. Figure 6.9. shows the area around the
point of contact as meshed by Gmsh and Zeffiro in addition to its TPMC reconstruction
for CutFEM. Where for Gmsh the 0.1 mm thin layer of CSF is barely visible, but meshed
in its entirety, Zeffiro simply ignores the CSF layer. Also the slightly smoothed staircase
pattern in Zeffiro is visible. The CSF in the TPMC-version is only visible in fragments.

EEG

Again the focus lies on eccentric sources near the skull/brain touching point. Randomly
selecting source points is unfeasible in this situation as Zeffiro inaccurately depicts the
sphere surface. Tetrahedrons belonging to the skull compartment were found to reach more
than 1 mm into the brain compartment. Randomly choosing a source inside one of those

#Elements % total El. % Vol
Scalp 1,597,282 9.73 18.32
Skull 8,638,424 52.64 15.93
CSF 2,075,210 12.65 4.81
Brain 4,099,386 24.98 60.94

Table 6.8.: Overview of Gmsh’s tetrahedron usage
in each compartment. From left to right: Total
number of elements per compartment, each com-
partments share of the overall number of elements
in the mesh and each compartments share of the
models total volume. CSF and skull contain a dis-
proportionate amount of tetrahedrons.
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a) Gmsh b) Zeffiro c) TPMC-reconstruction

Fig. 6.9.: Comparison of Gmsh, Zeffiro and the TPMC-algorithm with regard to the reconstruction
of the area around the point of contact. Blue portrays the brain, teal (barely visible) the
CSF, beige the skull and red the scalp. The black grid indicates the respective mesh.

elements massively distorts the numerical result due to the different conductivity inside.
Instead, the centers of 5288 tetrahedrons belonging to the brain compartment were chosen
as source points. Their distance to the point of contact was less than 8 mm, eccentricities
ranged from 0.903 to 0.989. The resulting radial and tangential errors can be seen in figure
6.10. As is immediately apparent, the mesh created by Gmsh offers significantly better
performance in all 4 categories. The interquartile range for tangential sources is lower by a
factor of 7.1 and 3.24 for MAG and RDM respectively. Both methods showed no extreme
outlier values, the highest (absolut) MAG value is 1.98 for Gmsh and 8.9 for Zeffiro, the
highest RDM values are 5.4 and 2.38, yielding similar differences as the IQR.
The lack of outlier values indicates that there might not be a strong correlation between
element shape and error magnitude. As a shape measure for the source elements E, the
ratio

s(E) := rcirc(E)
rinsc(E)

of the radius of the circumscribing circle through all 4 element vertices to the radius of
the largest circle that can be fit inside the element is used. A Graph relating s(E) to
RDM/MAG for the mesh generated by Gmsh can be found in figure 6.11. As can be
seen, while the ratio varies significantly, the error measures do not follow suit. The same
can be said for Zeffiro. In particular, all tetrahedrons E that both belong to the brain
compartment and less than 8 mm distant from the point of contact had an almost identical
shape parameter s(E) between 3.4 and 3.6. The smoothing applied thus did not affect
the brain compartment. To better measure the influence of tetrahedron shape on meshes
generated by Zeffiro, one would probably have to study meshes with non-spherical brain
compartments, i.e. meshes where the deformation is located in the brain and not in the
CSF.
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Fig. 6.10.: EEG-comparison of meshes created by Zeffiro and Gmsh. Left: Magnitudal Errors. Right:
Relative Difference Measure. Both measures are subdivided by tangential and radial
source directions. The circles again depict the averages.

Fig. 6.11.: Shape-Error Correlation for Gmsh. The graph shows the RDM (blue) and MAG (yellow)
values against the shape measure of the containing tetrahedrons. The regression curves
are a linear fit to the respective data points.
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Fig. 6.12.: TDCS-comparison of Gmsh and Zeffiro. Left: Vector angles in degrees. Right: Vector
Magnitude differences in percent. The green lines indicate optimal values, the circle
depicts the average error per category.

tDCS

For tDCS, the current density inside the Brain/CSF and skull compartment are analyzed.
1512 sample points each were taken, the brain coordinates have an eccentricity greater than
0.975 and a distance to the point of contact of less than 20 mm. The skull points also meet
the latter requirement. The results can be seen in figure 6.12. As was already seen in
the EEG-comparison, the Zeffiro results massively deteriorate at high eccentricities, with
IQR’s of 17.99 for the vector angle in the brain/CSF compartment and over 60 for the
skull domain. Outliers may range up to 90 and 70 degrees respectively. Gmsh produces
much more reliable results with IQR’s of 0.93 and 0.46 for brain/CSF and skull angles, and
maximal angles of slightly over 9 degrees. Notably the results for the skull compartment
are slightly better than for the interior domain, this is in all likelihood due to the more
refined meshing in the skull and the fact, that the skull points are located throughout its
entire thickness.
The correlation between tetrahedron shape and error size can be seen in figure 6.13. Just
like in the EEG-case, misshapen elements did not coincide with large errors. The results
for Zeffiro are similar.
In this study the meshes by two different mesh generators were compared. It was found that
the mesh generated by Gmsh produced better results for eccentric sources. Both meshes
showed no susceptibility to more deformed elements when computing the electric potential
or its derivative. For the EEG they both showed overall stable results with regard to outliers.
The Zeffiro Interface usually avoids its overall higher EEG-errors at high eccentricities by
simply limiting the minimal distance between skull and feasible source space.
Overall, for a Lead-Field or tDCS-Matrix generation, a more involved meshing procedure
like the one Gmsh uses appears to be neccessary to obtain reliable results. The arguably
more basic Zeffiro algorithm, a tool that focuses on solving the inverse problem rather than
Lead-field generation, is insufficient at high eccentricities.
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Fig. 6.13.: TDCS-shape-error Correlation for Gmsh. The graph shows the RDM (blue) and MAG
(yellow) values against the shape measure of the containing tetrahedrons. The regression
curves are a linear fit to the respective data points.

6.4. Study 3: Comparison of Cut- and CG-FEM

Now that both a suitable model for Continuous-Galerkin and Cut finite element method
have been selected, we can proceed by comparing the two. Where the previous studies fo-
cused primarily on the effects close to the point of contact, this study will look at the model
as a whole. A NWIPG approach with Nitsche-penalty 40 and Ghost-penalty 0.05 for Cut-
FEM and the same Gmsh created mesh as from the previous study was used for CG-FEM.
This includes source and examination locations throughout the entire brain compartment
as well as the skull for tDCS. As a further means of comparison, 3-layer concentric sphere
models not including CSF were created for both Cut- and CG-FEM. Differences between
the shifted 4-layer and the 3-layer models will be a further indicator for the respective
method’s susceptibility to touching surfaces.

EEG

For the EEG-Comparison, 10 different eccentricities with were selected and radial and
tangential orientations computed. The positions are spread evenly throughout the brain
compartment, an overview of the eccentricities used and the distribution of sources can be
found below.

Ecc. 0.3 0.6 0.7 0.85 0.9 0.93 0.96 0.97 0.98 0.99
# Sources 978 1015 1004 1012 1011 986 994 1053 899 960

A source belonging to an ecc. group indicates it has an eccentricity higher than its group
value but lower than the next groups. As the eccentricity is related to distance to the
skull, not the CSF, sources with an ecc. larger than 0.97 are all located in the hemisphere
containing the point of contact.
The results for 3- and 4-layer Cut- and CG-FEM models can be found in figure 6.14.
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Fig. 6.14.: Overview of different EEG-errors for 3- and 4-layer CG- and CutFEM. Top: Errors for
tangential source directions. Bottom: Errors for radial source directions. Errors are in
percent and grouped by eccentricities. The green line marks optimal error values, the
circle represents the average error.

Notice first that of all tested methods over all eccentricities only one upper quartile narrowly
exceeded 2 percent and the highest overall error for a 4-layer model was 5.8 percent. All
methods thus yielded very reliable results. For CutFEM it is noticeable that up to an
eccentricity of 0.96, a distance to the skull of less than 1.2 mm, the 3- and 4- CutFEM
models yielded virtually indistinguishable results across the different categories. Shifting
the inner sphere thus had no effects at all on sources that were more than 1.2 mm away
from the skull. It can also be noted that these very low errors indicate that the employed
St. Venant source model can yield an excellent approximation of a dipolar source term.
At higher eccentricities, for tangential RDM’s the IQR increases from 0.06 to 0.41 for the
4-layer model and from 0.06 to 0.32 for its 3-layered counterpart. The largest differences
were observed for radial MAG errors at an eccentricity of 0.97. Here the IQR difference
was 0.35, a factor of 2.45. The highest overall error are similar at 4.8 and 4.9 respectively.
The most notable difference is an increase in average MAG error in the 4-layer model, up
to 1.6 percent for radial sources at eccentricity 0.99.
For CG-FEM, the MAG errors for 3- and 4-layer model are mostly identical, the RDM
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errors feature similar IQR’s but the average error is around 0.1 percent higher for the
4-layer model. This difference is mostly constant throughout all eccentricities and both
source directions, indicating that for CG-FEM, in contrast to CutFEM, the shift has a
slight impact on sources throughout the brain compartment.
There are three main differences in the results for CG- and CutFEM. The first is that
CutFEM shows barely any errors at low eccentricites, with IQR’s being lower by a factor of
3 to 18 than for CG-FEM. Over all eccentricities, CutFEM has similar or lower IQR’s and
maximal errors over all categories. The second difference is that CG-FEM has an average
RDM-error that is 0.6 percent higher than CutFEM’s. This difference changes little over
eccentricities and source directions. Lastly, the MAG error for radial source directions at
eccentricities over 0.98 shows similar IQR’s and maximal errors for Cut- and CG-FEM but
the average and median error are a little over 1 percent higher for CutFEM. This is the
only category in which CutFEM is slightly outperformed by its tetrahedral counterpart and
also the largest overall difference between the two methods.

tDCS

For tDCS, the setup is again very similar. The same points at the same eccentricities as in
the EEG-subsection are examined in addition to a set of 899 skull points. The latter have
a distance of less than 1 mm to the brain and less than 20 mm to the point of contact.
The results can be seen in figure 6.15. Again similarities to the EEG-case are immediately
apparent. CutFEM shows barely any deviations at eccentricities below 0.97. The differences
for CG are in the tenth of percents/degrees, though steadily increasing with eccentricity.
That is, up to an ecc. of 0.98, where the proximity to the densely meshed CSF-compartment
probably benefits the 4-layer compartment. Vector angle distribution is almost identical for
Cut- and CG-FEM, with the latter being higher by about 0.05 to 0.1 degrees. Errors only
increase notably at eccentricities larger than 0.99, the methods remaining almost identical
with regard to angles. The average MAG error for CutFEM here is higher by about 0.53
percent while the IQR is half that of CG. Notably, these differences are significantly lower
than the deviations in the directly adjacent skull compartment. In this group, 4-layer
CutFEM shows its lowest overall errors with an angle IQR of 0.14 and a maximum of 0.85.
CG-FEM on the other hand still has errors in the range and above of the 0.99 eccentricity
group, with angle IQR and maximum being around 4.5 times higher. The 4-layer CG-FEM
outperforming the 3-layer version in the skull domain. This however is probably due to the
absence of the finely meshed CSF and a slight difference in resolution used for the respective
skull compartments.
Overall, for randomly selected evaluation points, CutFEM slightly outperforms CG-FEM,
but especially at lower eccentricities, the lead is not as strong as it is for EEG. A reason
for this might be the the location of each each evaluation point within its containing fun-
damental mesh cell. To investigate this further, 1000 randomly chosen interior (non-scalp)
cells are selected. Within each of those, 28 evaluation points are placed at regular intervals.
Analytical and numerical current densities are computed and compared with regard to each
points distance from the cell center. The results can be found in 6.16. Clearly, points that
lie more eccentric within their cells feature higher errors, suggesting that one should restrict
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Fig. 6.15.: Overview of different tDCS-errors for 3- and 4-layer CG- and CutFEM. Right: Vector
Magnitude differences in percent. The green lines indicate optimal values, the circle
depicts the average error per category.

the feasible evaluation space to the cell centers. A reason why this effect was not observed
for the EEG may lie in the usage of a distributed source model that is not restricted to
one point alone, but rather the entire cell. Also, in tDCS the gradients of the potential
are evaluated, not the potential itself. A similar gain in performance can be achieved for
CG-FEM.

Fig. 6.16.: Dependence of CutFEM ap-
proximation on positioning inside fun-
damental mesh cell. Left: Angles for
different distances from the cell center.
Right: Magnitude errors. red crosses in-
dicate outlier values.

Using the cell centers, we can get a more volumetric impression of the error distribution for
4-layer CG- and CutFEM. Figure 6.17. shows a cross-section of the area near the point of
contact, portraying analytical and numerical current density vectors. Evaluation points are
fundamental mesh centers. As can be seen, for both methods the vectors point in nearly
the exact same direction throughout brain and skull compartment. The only noticeable
differences are near the electrode on the scalp. Here, both methods vary distinctly from the
analytical solution.
As the vectors in the graphic are not scaled by magnitude, the distribution of MAG er-
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a) CutFEM b) CG-FEM

Fig. 6.17.: Depiction of analytical and numerical current density vectors. White arrows indicate the
analytical solution, yellow the numerical. Arrows are superimposed. In places where only
one arrow colour is visible, the two solutions point in the same direction. Vectors are not
scaled by magnitude. The black dot indicates the sink electrode, the blue compartment is
the skull layer. The black grid in the background represents the fundamental/tetrahedral
mesh.

a) CutFEM b) CG-FEM

Fig. 6.18.: Comparison of absolute MAG errors for Cut- and CGFEM. Left: CutFEM. Right: CG-
FEM. Fundamental mesh cells are colorised by MAG at the center. For a clearer compari-
son, the CG-errors stem from the nearest tetrahedral center, the MAG error at that point
was then used to colorize the fundamental cell. Brightest color is reached at 3 percent.
Scalp cells are ignored to improve clarity. Instead, the entire scalp area is depicted as
single color sphere. Black dots indicate stimulation electrodes.
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Fig. 6.19.: Overview of different tDCS-errors for 3- and 4-layer CG- and CutFEM taken at element
centers. Right: Vector Magnitude differences in percent. The green lines indicate optimal
values, the circle depicts the average error per category.

rors throughout the cross-section is visualized in figure 6.18. Current densities are again
computed for the center point of each fundamental mesh cell and each cell was colorized
with respect to the size of the MAG error at the center. For each fundamental mesh center
point, the nearest tetrahedral center was located for the CG-method. Scalp cells were left
out to improve clarity. Strikingly, CutFEM shows significantly better results this time.
The highest absolute MAG error in the brain is 2.6 percent for CutFEM and 6.6 for CG-
FEM. Additionally, high errors in the brain compartment are limited to cells that are cut
by level-sets, whether there is a conductivity jump or not, indicating further potential for
penalty parameter optimization. Overall, the high errors near the electrodes do not pervade
through the skull into the brain. The same cannot be said for CG-FEM. Here, the elec-
trodes have a much more pronounced influence on the proximate part of the brain region.
Tissue boundaries are of secondary importance.
While both methods gained from using element centers, the difference in performance is
now much more pronounced than in the box plot study before. This can be seen in figure
6.19. The different sample size of about 10 000 to 260 000 may also have a slight impact on
the different results. While there was barely any impact on the skull compartment errors,
CutFEM now outperforms CG-FEM throughout the entire brain, with the highest relative
difference at low eccentricities, where maximal errors and IQR for CutFEM are on average
a tenth/third respectively of the CG-values. While errors increase with eccentricity, the
methods do not deteriorate in the same way as the did for EEG.
Regarding computation time, computing Current densities for one pair of stimulation elec-
trodes took about ten times (on average 127 minutes to 25) as long for CutFEM. This is due
to the longer time required to set up the system matrix with its additional terms. As this
has to be done only once, the relative difference reduces for a higher number of stimulation
electrodes.
When looking at memory consumption, CutFEM required approximately 3.6 GB of RAM
compared t0 19.3 for CG-FEM. This difference depends largely on the size of the system
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Fig. 6.20.: Comparison of CutFEM performance for different electrode positionings. Left: Vector
angles in degrees. Right: Vector Magnitude differences in percent. The green lines
indicate optimal values, the circle depicts the average error per category.

matrix and thus the number of degrees of freedom and was thus mostly constant throughout
all examinations, whether for tDCS or EEG. Finally, the effects of electrode positioning on
CutFEM forward results are examined. 8 source electrodes were placed at 2, 4, 8, 16,
32, 64, 128 degrees of elevation are placed on the scalp. Elevation is to be understood as
angle between the vectors pointing from the scalp center to the point of contact and to the
respective electrode. Corresponding sink electrodes are in the opposite way such that the
point of contact is equidistant to the stimulation electrodes.
As the results in figure 6.20. show, a low distance between the stimulation electrodes leads
to a slight overstating of the current density magnitude in the brain, especially at low
eccentricities. Angles at low eccentricities are mostly unaffected, at eccentricities above 0.9,
the results worsen by about 0.05 degrees on average. In contrast, the skull seems to be
slightly better represented when the electrodes are closely together. All differences are very
subtle, the highest difference lies in the skull area, where the proximate electrodes are about
0.25 percent better on average than the distant ones. Electrode positioning thus does not
significantly impact on the performance of CutFEM.
To summarize the study, in both EEG and tDCS it was found that CutFEM outperforms
CG-FEM in most categories examined. Both methods are highly accurate overall, with
differences in low single-digit areas. The highest relative differences were found in the inner
parts of the brain, with CutFEM having the highest advantage in EEG-RDM and both
tDCS categories.
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7. Summary and Outlook

The goal of this thesis was to test the Cut finite Element Method in a neuroscience sce-
nario where skull and brain touch. As benchmark, a standard continuous Galerkin method
with tetrahedrons was used. Introductions into the workings of both methods as well as
the physiological background of both transcranial direct current stimulation and Electroen-
cephalography were given in the early chapters. For CutFEM, two variants, using sym-
metrically and non-symmetrically weighted penalty terms were stated. This was followed
by a short numerical analysis, were it was found that, when using the symmetric CutFEM
variant, both FEM approaches can reach identical convergence rates. Additionally, the
dependence of CutFEMs stability on two penalty parameters, Nitsche- and Ghost-penalty,
was explained. These theoretical findings were examined in the following numerical studies.
Initially, a model was created that simulates the contact of brain and skull compartment
while also featuring the availability of analytical solutions as benchmarks. The first two
studies were then concerned with finding optimal contestants for a Cut- CG-FEM compar-
ison. Mesh resolutions used were 2 mm for CutFEM and 1 mm for CG-FEM. First, the
two CutFEM-variants with various penalty parameters were examined, which resulted in
choosing the non-symmetric variant with corresponding penalty parameters. The reason for
this was NWIPGs higher stability with regard to different penalty parameters alongside the
fact, that its adjoint inconsistency, the reason for its slower theoretical convergence rate,
can be neglected in the scenario at hand.
The second study compared two different tetrahedral meshing approaches, one used by the
Zeffiro Interface and one delaunay-based from Gmsh. It was found that the more involved
meshing algorithm of the latter was highly superior to Zeffiro. Furthermore, a possible
correlation between the shape of a tetrahedron and numerical errors inside could not be
proven.
After these preliminary studies, the third was concerned with the comparison of the two
FEM-approaches. While both methods yielded very accurate results, CutFEM slightly
outperfomed CG-FEM in most categories for both EEG and tDCS. The differences were
most profound for the deeper parts of the brain. CutFEM also showed significantly less
deviation from its 3-layer counterpart without touching skull and brain boundaries. With
increasing eccentricity and decreasing distance to the point of contact, CutFEM was, for
the most part, still slightly superior, but overall the methods’ results became increasingly
similar. For tDCS, it was found that the position and distance of the stimulation electrodes
do not lead to significant changes in CutFEM’s performance.
Computation times of CutFEM were similar in the EEG case but significantly higher for
tDCS. CG-FEM had a memory consumption about 6 times higher than CutFEM, mostly
due to its higher number of degrees of freedom.
Overall, CutFEM has shown promising results in this thesis, outperforming a standard
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CG-FEM even at twice the resolution.

Outlook

In [Nüß18], it was found that the unfitted discontinuous Galerkin Method (UDG), a method
that differs from CutFEM in the same way that CG-FEM differs from DG-FEM by allowing
jumps not only over domain boundaries, but also mesh element boundaries, showed very
similar results to CutFEM in a concentric sphere study. One might investigate whether
UDG shows better performance than CutFEM in the categories where CutFEM differed
the most from the 3-layer control model. Regarding other comparisons with different FEM-
approaches, the tetrahedral CG-model that was used here is already among the most ac-
curate fitted approaches that were tested in the literature, leaving little room for further
investigation of the scenario presented in this thesis.
In the tDCS studies it was found that CutFEM has its largest errors in cells that are cut
by level-sets, even if there was no conductivity jump. This suggests that there is room for
further optimization of the penalty terms applied, either by modifying the parameters or
by applying a different Ghost-penalty scheme.
Regarding the application in a realistic head model, this thesis has shown that slight geo-
metric deformations like the one in the shifted sphere model have much less of an impact
on distant regions of the model when using the CutFEM approach. This might indicate a
better performance in models with many such deformations. Furthermore, segmentations
from MRI-images rarely exceed 1 mm resolutions. It is at this point unclear whether this
upper bound of resolution would have a stronger effect on the tetrahedral model from the
CG-method or on the level-set approach from CutFEM.
To investigate this further, a possible modification of the model could use realistic CSF
and brain tissue, still with identical conductivities, embedded in spherical skull and scalp
compartments. This would maintain the existence of analytical solutions while providing
the opportunity to investigate geometric deformations in brain areas that are not close to
a large conductivity jump such as the one from skull to brain.
For modern tDCS-methods using multiple stimulation electrodes, CutFEM might show its
largest advantage. Numerical errors were found to be largest near the stimulation electrodes.
While errors throughout the model were lower for CutFEM, they most importantly did not
pervade from the electrode position through the skull into brain. CG-FEM showed much
higher errors here. While the CG-FEM errors are still very reasonable, these higher errors
in the brain might accumulate and thus lead to significantly different inverse results. Such
a deviation might be a topic of interest for further investigation.
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A. Appendix

A.1. Transfer-Matrix Approach

Calculating the Lead-Field is the most time consuming part of solving the EEG-Forward-
Problem, especially if one requires many different source configurations (i.e. sets of sources
in the brain). The goal of the Transfer Matrix Approach ([DMWC12], [WGH04]) is to set
up a functional allowing the computation of different Lead-Fields by applying an easy to
calculate source-term to it.
Let b ∈ RNl be a source term, L ∈ RNe the corresponding Lead-Field and u ∈ RNl the
solution of the linear system Au = b. We are then looking for a matrix T s.t.

Tb = L = Eu, (A.1)

where E ∈ RNexNl serves to evaluate the solution u at the position of the respective electrode
(one column per electrode).
Since

u = A−1b

we have
Tb = EA−1b

and thus
T = EA−1 ⇔ AT t = Et, (A.2)

where the symmetry of A was used.
The last equation can be solved column-wise, resulting in one column of the Transfer Matrix
per electrode.
Note that this transfer matrix depends only on the positions of the electrodes on the scalp.
It is set up independently of the sources placed inside the brain. Evaluating the Lead-Field
of any source configuration reduces to computing the source vectors and a Matrix-Vector
multiplication, allowing for thousands of sources to be used in solving the Inverse Problem.
Now however, setting up the Transfer Matrix is the most time consuming step in the forward
problem.



A. Appendix 61

A.2. St. Venant Source Model

The (monopolar) St. Venant approach([MLS+15]) approximates a dipolar source term by
placing monopoles in an area around the source location. More precisely, the goal is to find
N ∈ N charges qi at positions xi ∈ R3 that maintain a variance of the multipole expansion
of an electric potential resulting from a dipolar term M∇δxdip .
The n-th central moment of the expansion can be written as

Sn(f) =
∫
Ω

(x− xdip)nf(x)dx. (A.3)

Note that starting from the third term this is not the Taylor expansion of an electric poten-
tial known from physics([Jac07]). Usage of the given formula is due to the historic formu-
lation of the St. Venant Approach from 1855 which was used in elasticity theory([SV+55]).
For an approach that uses a more accurate series expansion, see ([VHWG19]).
Inserting the formula for the dipolar source into the expansion yields

Sn(M∇δxdip) =
∫
Ω

(x− xdip)nM∇δxdipdx

= −
∫
Ω

n∇(x− xdip)n−1Mδxdipdx = −Mn(x− xdip)n−1|x=xdip

Thus,

Sn(M∇δxdip) =
{
−M, n = 1
0, else. (A.4)

On the other hand, our set of monopoles ρ =
∑N
i=1 qiδxi results in

Sn(ρ) =
∫
Ω

(x− xdip)n
N∑
i=1

qiδxidx =
N∑
i=1

∫
Ω

qi(x− xdip)nδxidx

=
N∑
i=1

qi(x− xdip)n.

The locations for the monopoles depend on the discretization scheme, usually the surround-
ing vertices for a fitted FEM-approach. For CutFEM one might use the nodes of the fun-
damental mesh, however this might lead to the monopoles being in different compartments
as the fundamental mesh contains no information about the head geometry.
Instead the nodes are placed inside the elements, allowing only elements that contain cut-
cells of the source compartment. The exact locations are chosen based on a Gauss-Legendre
quadrature of a freely choosable order.
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Thus, after selecting monopole locations, it remains to calculate the charges qi in a way
such that

Sn(M∇δxdip) = Sn(ρ) (A.5)
for all n up to a certain order. Duneuro also allows for n to be a multiindex by enabling
mixed moments, achieving more accurate results. ([Nüß18])
Writing (A.5) in matrix shape using xij = Sn(ρ) yields

e2 −Xρ = 0,

where e2 contains a 1 as second entry and zeros everywhere else.
As there are usually more monopoles to be set than expansion terms, the problem is ill-
posed. To alleviate this, Tikhonov-Regularization is employed, yielding a minimization
problem of the Form

argmin
ρ
||e2 −Xρ||22 + λ||Wρ||22, (A.6)

where Wi,i = ||xdip−xiC ||s, with s ∈ (0, 1) and some constant C. This weighs the strength
of a monopole with its distance to the dipole, resulting in a larger penalty for stronger
monopoles further away from the dipole. A large s increases this effect, a smaller one
dampens it. (A.6) can be written as

(Xρ− e2)T (Xρ− e2) + λ(W TWρ+ (Wρ)TW ).

Differentiation with regard to ρ yields

XT e2 + eT2 X −XTXρ− (Xρ)TX + λ(W TWρ+ (Wρ)TW )

= 2XT e2 − 2XTXρ+ 2λW TWρ
!= 0.

Thus the problem reduces to solving the equation system

XT e2 = (λW TW +XTX)ρ. (A.7)

The St. Venant approach is the primary source model that is employed throughout this
thesis. The parameters used throughout this thesis can be found below.

’type’ : ’patch_based_venant’;
’initialization’ : ’closest_vertex’,
’intorderadd’ : ’2’,
’intorderadd_lb’ : ’2’,
’numberOfMoments’ : ’3’,
’referenceLength’ : ’20’,
’relaxationFactor’ : ’1e-6’,
’restrict’ = ’true’,
’weightingExponent’ : ’1’,
’mixedMoments’ : ’true’,
’quadratureRuleOrder’ : ’2’,
’compartment’ : ’3’,
’scalePointsToBBox’ : ’true’
’subtract_mean’ : ’true’,
’reduction’ : ’1e-15’
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A.3. Analytical solutions

We now shortly discuss analytical solutions for tDCS and EEG.

tDCS

Assuming a compartment-wide constant conductivity tensor, we obtain
0 = ∇σ∇u = σ∆u

for the electric potential u, ignoring boundary conditions for the moment. Introducing
spherical coordinates yields

∆u = 1
r2

∂

∂r
(r2∂u

∂r
) + 1

r2sinθ

∂

∂θ
sinθ

∂u

∂θ
+ 1
r2sin2θ

∂2

∂φ2 .

As we are only interested in two scalp electrodes, the potential there is independent of φ.
The last term is therefore equal to zero. Next, separation by variables yields u(r, θ) =
R(r)Θ(θ), with

1
R

∂

∂r
(r2∂R

∂r
= − 1

Θsinθ
∂

∂θ
sinθ

∂Θ
∂θ

Both sides are independent of the others’ variable, allowing us to search for solutions inde-
pendently by setting the right/left side respectively to a constant. This constant cannot be
chosen freely, as the right side is periodical and regularity over the boundary require it to
be l(l + 1) for some l ∈ N. The equations then read

1
R

∂

∂r
(r2∂R

∂r
= l(l + 1), (A.8)

and
1

Θ sin θ
∂

∂θ
sin θ∂Θ

∂θ
= −l(l + 1). (A.9)

The first equation can be solved by rl and 1
rl+1 , yielding a general solution

Rl(r) = Alr
l +Bl

1
rl+1

The solution to the second equation is the l-th Legendre-polynomial Pl. Using these, the
general solution can then be found as a linear combination of these equations, yielding

u(r, φ) =
∞∑
n=0

Alr
l +Blr

−l+1)Pl cos θ. (A.10)

Coordinate rotations and linear superposition can be used to derive the solution in a 4-layer
sphere model for two electrodes at r1, r2 in compartment i. with radius ri

ui(r, φ) =
∞∑
n=0

Ail
ri
r

l
+Bi

l

ri
r

−l+1
)(Pl(θ1)− Pl(θ2), (A.11)

where θj is the angular distance of r and rj . To derive the coefficients, boundary conditions
on the tissue surfaces are imposed. These include continuity of both the potential and the
outer normal of the current density. On the outermost boundary, the regular Neumann
conditions are imposed. The boundary conditions thus yield an equation system whose size
corresponds to the number of unknowns in A.11, allowing analytical expressions for each.
They can be found in [FET00].
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EEG

The following is a brief summary of the derivation of the analytical EEG solution for
concentric spheres done in [DM88]. Recall the first line of the EEG forward problem

∇σ∇u = δ(x0 − x) (A.12)

for a dipolar source at x0. A dipole can be considered as the limit of two monopoles, one
positively and the other negatively charged, whose distance goes to zero. Where they in the
same place, they would cancel and not produce a potential field. Considering the negative
monopole’s position as the dipole location, the potential field then describes the field that
arises by the displacement of the positive monopole. It can thus be described as the gradient
of the monopole potential with respect to the dipole location or in other words

u(x) = M∇0umon(x),

where M is the dipole moment, pointing from negative to positive monopole. We consider
layered, symmetric sphere. In spherical coordinates, this means that the conductivity thus
only depends on the radial coordinate r and can be split into radial conductivity ε(r) and
tangential cond. ν(r)). The potential at an electrode e on the scalp then depends on the
sphere origin, the source location’s spherical coord. r0 and the angular distance w0,e from
source point to electrode. Similar to the tDCS-case, it can be expressed using Legendre-
Polynomials Pn as

4πumon =
∞∑
n=0

(2n+ 1)Rn(r0, r)Pn(cosw0,e), (A.13)

with Rn being the solution of

∂

∂r
(r2ε(r) ∂

∂r
Rn(r0, r))− n(n+ 1)ν(r)Rn(r0, r) = δ(r0 − r). (A.14)

The solutions to this equation can be computed analytically, yielding a quasi-analytic so-
lution to the spherical problem. While the series converges rather slowly, especially for
superficial sources, the process can be sped up by means of asymptotic approximation
formulas. For more information, see [DMP+93].
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B. Mathematical Background

B.0.1. Sobolev Spaces and Lax-Milgram

In contexts like (2.1), where the differential operators only appear inside an integral, it has
proven useful to employ a generalized version of the classical term of a derivative. This
generalization defines differentiability of an entire function rather than being a pointwise
statement.

Definition B.1 (Weak Derivative) Let Ω ∈ Rn open non-empty, f, g ∈ L1
loc(Ω), α =

(α1, ..., αn) a multiindex. Then g is called weak derivative of f , if∫
Ω
g(x)φ(x)dx =

∫
Ω
f(x)Dαφ(x)dx ∀ φ ∈ C∞c . (B.1)

Basically, this states that g is the derivative of f if using partial integration to shift the
derivatives from φ to f results in g (Boundary terms can be omitted as φ has compact
support). It can be shown that this weak derivative is identical to the classical one, if it
exists.([Eva14])

Grouping all functions for which a weak derivative exists together results in Sobolev spaces

Definition B.2 (Sobolev Space) Let Ω ∈ Rn open, non-empty, 1 ≤ p ≤ ∞, k ∈ N.
Then

W k,p(Ω) = {u ∈ Lp(Ω) : ∀α ∈ Nn with |α| ≤ k the weak derivative Dαu ∈ Lp(Ω) exists}.

Defining

||u||Wk,p(Ω) =


∑
|α|≤k

||Dαu||Lp(Ω) , p <∞

max
|α|≤k

||Dαu||L∞(Ω) , p =∞

as the norm over a Sobolev Space turns it into a Banach Space. Each of the summands is
itself a semi-norm, denoted by

|u|Wk,p(Ω) =
∑
|α|=k

||Dαu||Lp(Ω)

For the special case p = 2, Hk(Ω) := W k,2(Ω) is also a Hilbert Space.

The latter result is useful when using Sobolev Spaces in the context of the Lax-Milgram
theorem that proves existence and uniqueness of solutions to weakly formulated PDE’s.

Theorem B.1 (Lax-Milgram) Let H be a Hilbert space, a : H × H → R a continuous
bilinear form that is coercive, i.e. a(v, v) > α||v||2H for each v ∈ H and some α > 0. Then
for every l ∈ H ′(Ω) there is a uniqe solution u ∈ H such that

a(u, v) = l(v) ∀v ∈ H. (B.2)
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Proof: see [Bra07]. �

In the context of PDE’s, l from the above theorem is often an integral over the boundary
of Ω. In order to justify that it is part of H1(Ω)′ the trace operator is helpful.

Theorem B.2 (Trace Theorem) Let Ω ⊆ Rn have a Lipischitz boundary ∂Ω. Then there
exists a continuous linear map

T : H1(Ω)→ H
1
2 (Ω) := {u ∈ L2(∂Ω) : ∃u ∈ H1(Ω) : Tu = v}

with
Tu = u|∂Ω

and
||Tu||

H
1
2 (∂Ω)

≤ C||u||H1(Ω)

Proof: ([Bra07]) �
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C. Implementation

Setting up and solving the linear equation systems is a resource-intense process. The
distributed and unified numerics environment([BBE+11]) is a C++ -based open source
software toolbox providing a fast and efficient solver environment for partial differential
equations using the Finite Element Method. Based on DUNE, the institutes for bioelectro-
magnetism and applied mathematics in Münster collaborate on the development of duneuro,
a toolbox to solve the forward problems for MEG, EEG and tDCS. Duneuro offers Matlab
and python-bindings, allowing convenient access and evaluation via scripts even for users
without experience with C++. Various FEM-approaches are currently implemented, the
ones mentioned already in this thesis in addition to discontinuous Galerkin methods both
for fitted and unfitted meshes. Duneuro
A part of the wwork leading up to this thesis lay in adapting duneuros CutFEM-approach
to also be able to solve the tDCS forward problem. The following is a short overview of
how to solve the tDCS forward problem in a single layer sphere model using CutFEM. For
a detailed description on solving the EEG forward problem, see [NPS+19]. First, a driver
needs to be created. It constitutes the base from which all following steps are executed. For
CutFEM, the driver requires information about the fundamental mesh, level-sets and the
used penalty scheme including penalty parameter choice. Additionally, one has to provide
some information for the DUNE-solver.

config = {
’type’ : ’unfitted’,
’solver_type’ : ’cut’,
’compartments’: 1,
’volume_conductor’ : {
’grid’ : {
’cells’ : (30, 30, 30),
’upper_right’ : (220, 220, 220),
’lower_left’ : (30, 30, 30),
’refinements’ : 2
}
},
’domain’ : {
’domains’ : [’brain’],
’level_sets’ : [’outer_brain’],
’brain.positions’ : [’i’],
’csf_brain.radius’ : 78,

},
’solver’ : {
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’conductivities’ : [0.00033],
’edge_norm_type’ : ’face’,
’penalty’ : 16,
’ghost-penalty’ : 5e-3,
’intorderadd’ : 0,
’reduction’ : 1e-10,
’scheme’ : ’sipg’,
’weights’ : ’tensorOnly’,
’smoother’ : ’default’
}
}
for k in config[’domain’][’level_sets’]:
config[’domain’][k] = {
’type’ : ’sphere’,
’center’ : (127, 127, 127)
}
driver = dp.tDCSPointDriver3d(config)

This creates a fundamental mesh with 30 by 30 by 30 cubes, a spherical level set for the brain
with center, radius and conductivity as stated, as well as a corresponding subtriangulation
by applying the TPMC-algorithm twice. Once the driver has been created one proceeds by
setting the electrode positions, embedding each one in a cut-cell.

electrodes = np.genfromtxt(filename_electrodes,delimiter=None)
electrodes = [dp.FieldVector3D(t) for t in electrodes.tolist()]
driver.setElectrodes(electrodes, {})

Computing the tDCS-Matrix now consists of two steps. First an Evaluation Matrix con-
taining the coefficients of the finite element approximation is calculated via

solver_config = {
’solver.reduction’ : 1e-12,
’solver.compartments’ : 4
}
EvalMatrix = driver.computeEvaluationMatrix(solver_config)

The driver now sets up the system matrix and solves it using DUNE’s ISTL-solver, applying
algebraic multigrid preconditioning on the way. Finally, at the point of writing, one has
the choice of returning the electric potential or its gradient at the fundamental mesh center
points. Future versions will include current density vectors and arbitrary locations.

solution = driver.applyEvaluationMatrix(EvalMatrix,
{’evaluation_return_type’ : ’potential’})
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