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Abstract

Transcranial electric stimulation (tES) is a non-invasive brain stimulation tool.
In multi-electrode tES, various optimization approaches are used to investigate
how much current should be delivered by each electrode for an optimal targeted
and directional modulation of the brain activity. The optimization requires the
computation of the tES forward problem, i.e. the simulation of the potential
for a bipolar electrode configuration in a volume conductor model. The forward
problem has to be solved numerically for a realistic head model, typically by
using finite element methods (FEM).
In this thesis, different FEM approaches to solve the forward problem of tES
are studied and the influence of these FEM methods on the tES optimization
is investigated. Therefore, the continuous Galerkin (CG) and discontinuous
Galerkin (DG) FEM are derived and evaluated. Further, an analytical solution
for sphere models is introduced. While the accuracy of the FEM solutions is
similar in common sphere models, numerical errors can be reduced in models
with skull leakages by using DG-FEM.
In the second part, the influence of the CG and DG solutions on various
optimization approaches is investigated. The usage of different FEM methods
changes significantly the applied current pattern for models with skull leakages.
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1. Introduction

Transcranial electric stimulation (tES) is a non-invasive brain stimulation tech-
nique to alter neural excitability by applying weak currents via two or more
electrodes placed on the scalp. The emerging portable and easy-to-perform
technique involves the delivery of low-intensity currents (∼ 1 − 2mA) by a
battery-driven stimulator. To alter brain excitability, tES uses either con-
stant, oscillating or randomly alternating currents [43]. tES is increasingly
investigated in neuroscientific research and medical therapy for the treatment
of neuropsychiatric disorders [11, 35, 43].
The current flow in the brain not only depends on the stimulation intensity
and electrode positioning, but is strongly influenced by the individual anatomy
of the head tissues [36, 42]. Therefore, the simulation of transcranial volume
conduction for anatomically realistic models is important.
The numerical evaluation of the resulting electric potential (or current density
field) throughout the head model caused by the injected currents at the elec-
trodes is also called the forward problem of tES. The finite element method
(FEM) is the common computational modeling technique for solving the tES
forward problem [36, 48, 53]. Thereby, anatomical realistic models of the hu-
man head based on magnetic resonance image (MRI) are normally used. In
electroencephalography (EEG) and magnetoencephalography (MEG), FEM
achieve high numerical accuracy [33, 51], but numerical errors of FEM ap-
proaches for tES modeling have not been sufficiently investigated.
In this thesis, the accuracy of the FEM approaches in tES is numerically eval-
uated. This comparison is performed in simplified approximations of the head
by multi-layer sphere models, where the problem can also be solved analyti-
cally via spherical series expansions. So far only the continuous Galerkin FEM
(CG-FEM) is investigated in tES modeling. In this work, the discontinuous
Galerkin FEM (DG-FEM) for tES simulations is also derived, which is pre-
sented for EEG in [17]. This approach archives similar accuracy for tES in
common sphere models, but DG-FEM is more accurate in models with skull
leakages.
The inverse problem of multi-electrode tES is to determine a current injection
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1. Introduction

pattern that optimally (in a certain sense) stimulates a given target or region
of interest. Therby always a trade-off between intensity and focality of the
stimulation has to be made [16]. Various optimization approaches are used to
generate an optimal solution of the inverse problem [12]. In this thesis, the
influence of the CG-FEM and DG-FEM approaches on three different opti-
mization approaches is investigated. We found significant differences between
the FEM approaches in the applied current pattern for models with skull leak-
ages.
The implementation of CG-FEM and DG-FEM for solving the tES forward
problem is done in duneuro [41], a toolbox for forward modeling in neuro-
science.
The thesis is structured as follows: The physiological and mathematical back-
ground of tES are presented and the forward problem of tES is derived in
Chapter 2. In Chapter 3, the FEM approaches to solve the tES forward prob-
lem are introduced, the commonly used continuous Galerkin (CG) method
and the more recent discontinuous Galerkin (DG) method. Chapter 4 is ded-
icated to solve the tES forward problem analytically in sphere models using
spherical harmonics and to evaluate the convergence of the analytical solution
numerically. The FEM approaches are validated in multi-layer sphere models
in Chapter 5. We investigate the accuracy of different mesh resolutions and
evaluate how skull leakages affect the FEM solutions. Finally, the optimiza-
tion problem of multi-electrode tES is introduced in Chapter 6. We present
different optimization approaches and evaluate them in a sphere model and a
realistic head model for both FEM approaches.
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2. Basics

In this chapter, we will give the neurological basics and mathematical deriva-
tions for the forward problem of transcranial electric stimulation. We start by
describing the physiology necessary to understand how electric fields are gen-
erated in the human head and how they are influenced by transcranial electric
stimulation. Subsequently, the tES forward problem is derived from the quasi-
static approximation of Maxwell’s equations. To conclude, we will show that
this partial differential equation has a unique solution.

2.1. Physiological Background

Figure 2.1.: Illustration of a hu-
man nerve cell.
Source : WikimediaCommons.

In the following, the basics of brain activ-
ity are explained, to understand how elec-
tric fields influence the human brain. The
brain is processing and controlling almost all
of the human body functions. It communi-
cates through the nervous system via electro-
chemical signals. The basic elements of the
nervous system are nerve cells, called neurons.
The human brain contains about 100 billion
neurons, which are electrically excitable cells,
that process and transmit information [30].
A neuron can be divided into three parts:
the dendrites, the cell body called soma and
the axon (Figure 2.1). Neurons communi-
cate with each other via synaptic connec-
tions. Each neuron has up to 10, 000 of these
synapses to other neurons, so they form a
large communication network.
Signal transmission works in the following way: At the dendrites, a neuron
receives electrical signals from other nerve cells. These signals are transferred
to the soma and bundled here. Possibly a new signal will be generated, which
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2. Basics

propagates down the axon to other neurons or muscle cells.
Because of the unequal extracellular and intracellular distribution of positive
and negative ions, an inactive neuron has a resting potential of approximately
-70 mV [26].
The signal transmission is based on alterations in the resting potential of the
membranes of the presynaptic and postsynaptic neurons. If a signal reaches the
axon of the presynaptic neuron, neurotransmitter will be released here. The
neurotransmitter will diffuse through the synaptic cleft and be received from
the membrane at the dendrite of the postsynaptic neuron. In the dendrite, the
neurotransmitter will cause a potential change, called the postsynaptic poten-
tial. This can have an excitatory or an inhibitory effect on the postsynaptic
neuron.
All signals from the dendrites are summed up in the soma. When the depolar-
ization is bigger than a certain threshold in the postsynaptic cell, this neuron
fires, so a new action potential is generated and moves down the axon (also
see Figure 2.2).

2.2. Transcranial Electric Stimulation

Figure 2.2.: The shape of an action
potential.
Source : WikimediaCommons.

In this section, we shortly explain how
transcranial electric stimulation (tES)
affects the neuronal brain functions.
tES are non-invasive brain stimulation
techniques, where weak electrical cur-
rents are applied to the brain by sur-
face electrodes. The four main meth-
ods of low-intensity tES are transcra-
nial direct current stimulation (tDCS),
transcranial alternating current stimu-
lation (tACS), transcranial pulsed cur-
rent stimulation (tPCS) and transcra-
nial random noise stimulation (tRNS)
[43]. The electric field induced by tES
is in contrast to transcranial magnetic
stimulation (tMS) subthreshold, so it is

not strong enough to trigger an action potential in a nerve cell [5, 35]. The
best known and most used method is tDCS.
During tDCS, the electric field will change the resting membrane potential and
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2. Basics

therefore can influence the synaptic signal transmission between neurons and
change the firing rate of each nerve cell (Figure 2.2). Depending on the stimu-
lation paradigm, tDCS can increase or decrease neuronal excitability [37, 38].
However, it is more likely that the current has a higher effect normal to the
cortical surface than tangential [45]. tDCS can alter synaptic plasticity, the
ability of synapses to strengthen or weaken over time [32]. The duration of the
after-effect of tDCS depends on the stimulation polarity, time and intensity
[43].
In studies tDCS has been used to treat Parkinson’s disease [7], Alzheimer [21],
stroke [31] and depression [39].

2.3. Maxwell’s Equations
To model the electromagnetic effects in the human brain, the Maxwell’s equa-
tions are used [10, 27]. The Maxwell’s equations are a system of partial differ-
ential equations, which describe the interactions between electric and magnetic
fields. We note that the permeability of tissues in the head is that of free space,
i.e. µ=µ0.

Definition 2.1 (Maxwell’s equations of electromagnetism)
The Maxwell’s equations can be formulated as

∇ · E = ρ

ε0
(2.1)

∇ ·B = 0 (2.2)

∇× E = −∂B
∂t

(2.3)

∇×B = µ

(
J + ε0

∂E

∂t

)
, (2.4)

where E denotes the electric field, B the magnetic field, ρ the charge density,
J the current density, ε0 the electrical permittivity and µ the magnetic per-
meability.
In the considered low-frequency band (below 1000 Hz), the electric field E and
magnetic field B can be described by the quasi-static approximation of the
Maxwell’s equations and the time derivatives can be neglected [27, 44]. In the
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2. Basics

quasi-static approximation, we get from (2.3)

∇× E = 0 (2.5)

and hence, the electric field can be expressed by

E = −∇u (2.6)

for a scalar potential u.

2.4. The tES Forward Problem
We will now derive the forward problem of tES [34]. Note that the forward
problem of tES is the same as the forward problem in electrical impedance
tomography (EIT).
The current density J can be divided into source currents Js and conduction
currents J c. In the conductive medium, we can apply Ohm’s law J c = −σ∇u
and get

J = Js + J c = Js + σE = Js − σ∇u, (2.7)

where σ : Ω→ R3×3 denotes the conductivity tensor.
In tES, the source term Js is typically considered zero:

J = −σ∇u. (2.8)

Taking the divergence of equation (2.4) under the quasi-static assumption,
using the fact that ∇ · (∇×B) = 0 and applying (2.8) gives

∇ · (σ∇u) = 0 in Ω. (2.9)

Because current is applied at surface electrodes and the head is an electric
isolator, we get inhomogeneous Neumann boundary conditions on the head
surface ∂Ω

〈σ∇u, n〉 = I on ∂Ω, (2.10)

where n is the surface normal and I is the applied current pattern at the
electrodes.
Then the tES forward problem reads as follows:

6



2. Basics

Definition 2.2 (tES forward problem)
The tES forward problem consists in finding a solution u of the following
Poisson equation with inhomogeneous Neumann boundary conditions:

∇ · σ∇u = 0 in Ω (2.11)
〈σ∇u, n〉 = I on ∂Ω , (2.12)

which has to fulfill the necessary condition
∫
∂Ω I ds = 0, because∫

∂Ω
I ds =

∫
∂Ω
〈σ∇u, n〉 ds =

∫
Ω
∇ · σ∇u dx =

∫
Ω

0 dx = 0. (2.13)

The solution of the tES forward problem is the potential field u in the volume
conductor Ω, from which we can then also calculate the electric field or current
density field.
The tES forward problem only has a classical solution, i.e. u ∈ C2(Ω)∩C0(Ω̄),
for continuous conductivities σ ∈ C1(Ω) [25]. Usually, the conductivity is
discontinuous at tissue interfaces, i.e. σ ∈ L∞(Ω). Therefore, we will search
for a weak solution of the TES forward problem. Existence and uniqueness of
the weak solution will be shown in the next section.

2.5. Existence and Uniqueness
We will start with the tES forward problem in the strong formulation from
Definition 2.2. Then the weak formulation of the tES forward problem is de-
rived. Finally, we will show that there exists a solution of the weak formulation
and that it is unique.
In order to derive a weak formulation for the tES forward model, we multiply
(2.11) with a test function v ∈ C∞0 and apply integration by parts to obtain

0 =
∫

Ω
(∇ · σ∇u)v dx

= −
∫

Ω
〈σ∇u,∇v〉 dx+

∫
∂Ω
〈σ∇u, n〉v ds.

(2.14)

Using the inhomogeneous Neumann boundary conditions (2.12) yields∫
Ω
〈σ∇u,∇v〉 dx =

∫
∂Ω
Iv ds. (2.15)

The weak formulation is then as follows:
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2. Basics

Definition 2.3 (Weak Formulation)
Find u ∈ V such that

a(u, v) = l(v) (2.16)

holds for all test functions v ∈ V , with

a(u, v) =
∫

Ω
〈σ∇u,∇v〉 dx (2.17)

l(v) =
∫
∂Ω
Iv ds. (2.18)

To show existence and uniqueness of a solution to the weak formulation, we
want to use the Lemma of Lax-Milgram (Theorem A.1). Therefore, we have
to find a feasible function space V for the weak formulation. A natural choice
is the Sobolev space H1(Ω) because it is a set of L2 functions, whose weak
derivatives are again L2 functions (for mathematical details see Appendix A.1).
The solution with pure Neumann boundary conditions (2.12) is only unique
up to a constant. To ensure the uniqueness of the solution, there are several
approaches valid. We will use the condition, that the potential has zero mean:∫

Ω
u dx = 0. (2.19)

We will include this condition by restricting our Sobolev space to

H1
∗ (Ω) := {v ∈ H1(Ω) :

∫
Ω
v dx = 0}, (2.20)

the Sobolev space with zero mean. To ensure that l(·) is a continuous functional
in (H1(Ω))′ the applied current I has to be in the space

H−1/2
∗ (∂Ω) = {v ∈ H−1/2(∂Ω) |

∫
∂Ω
v ds = 0} (2.21)

with H−1/2(∂Ω) being the dual space of H1/2(∂Ω), which is the standard
Sobolev space for Neumann boundary values on ∂Ω, which fulfills the nec-
essary condition (2.13).
We will now show that there is a solution to the weak formulation of the tES
forward problem:
Find u ∈ V := H1(Ω) such that

a(u, v) := 〈σ∇u,∇v〉L2(Ω) = 〈I, v〉H−1/2(Ω)×H1/2(Ω) =: l(v). (2.22)
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2. Basics

Lemma 2.1 The bilinearform a(·, ·) is bounded on H1(Ω)×H1(Ω).

Proof. Let σmax be the largest eigenvalue of σ(x). Then holds

|a(u, v)| = |
∫

Ω
〈σ∇u,∇v〉 dx|

≤ σmax

∫
Ω
‖∇u‖‖∇v‖ dx

≤ σmax‖∇u‖L2(Ω)‖∇v‖L2(Ω)

≤ σmax‖u‖H1(Ω)‖v‖H1(Ω).

Lemma 2.2 The bilinearform a(·, ·) is H1
∗ (Ω)-elliptic.

Proof. [55]

Lemma 2.3 The functional l(·) is well-defined and bounded in H1(Ω).

Proof. For v ∈ H1(Ω), the Trace Theorem A.2 can be applied and therefore
can be concluded that

|l(v)| =
∫
∂Ω
|Iv| ds

≤ ‖I‖H−1/2(∂Ω)‖v‖H1/2(∂Ω)

≤ C‖I‖H−1/2(∂Ω)‖v‖H1(Ω).

Theorem 2.4 (Existence and Uniqueness)
Let Ω ⊂ R3 be an open bounded domain with a smooth boundary. Then the
weak formulation has a unique solution u ∈ H1

∗ (Ω).

Proof. The bilinearform a(·, ·) is bounded (Lemma 2.1) and H1
∗ (Ω)-elliptic

(Lemma 2.2), the functional l(·) is bounded (Lemma 2.3). Thus, the Lemma of
Lax-Milgram (Lemma A.1) can be applied, so there is exactly one u ∈ H1

∗ (Ω)
that solves the weak formulation.

9



3. FEM Approaches

In this chapter, we will deal with the numerical calculation of the weak solution.
We will use the finite element method (FEM), which is a commonly used
technique in tES [36, 48, 53]. We will introduce the continuous Galerkin (CG)
and the discontinuous Galerkin (DG) finite element methods.

3.1. The Continuous Galerkin Finite Element
Method

In this section, we will give the theory of the continuous finite element method
[8, 9] for solving the tES forward problem. To apply the CG approach, we
will use the Galerkin method for the discretization of the infinite space V .
The domain Ω is then divided into easier geometries, normally tetrahedrons
or hexahedrons. Finally, we will take a closer look at the Lagrangian finite
element space Vh.

Galerkin Method

The basic idea of the finite element method is to find discrete approximations
to the solution of the weak formulation

Find u ∈ V : a(u, v) = l(v) for all v ∈ V. (3.1)

In this thesis, we will for discretization use the Galerkin method. We replace
the infinite-dimensional space V by a finite-dimensional space Vh, where h

denotes a discretization parameter. We then get the discrete weak formulation

Find a(uh, vh) = l(vh) for all vh ∈ Vh (3.2)

10
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with

a(uh, vh) =
∫

Ω
〈σ∇uh,∇vh〉 dx (3.3)

l(vh) =
∫
∂Ω
Ivh ds. (3.4)

uh is called the discrete solution of the weak formulation (3.1). An error
estimate of the finite-element approximation is given by Céa’s Lemma.

Theorem 3.1 (Céa’s Lemma)
Let (V, 〈·, ·〉) be a Hilbert space, a(·, ·) a continuous, coercive bilinearform and
l ∈ V ′ a continuous, linear functional. If u ∈ V solves the weak formulation
(3.1), then the discrete solution uh ∈ Vh of the discrete weak formulation (3.2)
is obtained with

‖u− uh‖V ≤
C

c
inf
vh∈Vh

‖u− vh‖V (3.5)

where C is the continuity constant and c is the coercivity constant of a(·, ·).

Proof. [8]

Céa’s Lemma shows that the discretization error is proportional to the ap-
proximation error and that the accuracy of the numerical solution strongly
depends on the choice of the subspace Vh.
We will later deal with the concrete choice of the subspace Vh for the CG ap-
proach. For now we will assume it is given and want to consider the calculation
of the Galerkin approximation.
Let N := dim(Vh) and {ψ1, . . . , ψN} be the basis of the finite element space
Vh. We can then write our discrete solution uh ∈ Vh as:

uh =
N∑
j=1

ujψj, (3.6)

and insert it into the discrete weak formulation (3.2), to get

a(
N∑
j=1

ujψj, ψi) =
N∑
j=1

uja(ψj, ψi) = l(ψi). (3.7)

So overall this leads to the linear equation system

KKKuuu = bbb, (3.8)
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where the stiffness matrix KKK ∈ RN×N , the load vector bbb ∈ RN and the solution
vector uuu ∈ RN are defined by

KKK = (a(ψi, ψj))1≤i,j≤N (3.9)
bbb = l(ψi)1≤i≤N (3.10)
uuu = (uj)1≤j≤N . (3.11)

The discrete solution uh is then obtained by solving this linear equation system.
Therefore, a numerical solver like the algebraic multigrid conjugate gradient
(AMG-CG) method can be used.

The continuous finite element methods is a special Galerkin approximation for
a certain class of subspaces Vh ⊂ V :

• The domain is triangulated into Th, i.e. divided into non-overlapping
polyhedral elements T .

• The functions vh ∈ Vh are piecewise polynomials, i.e. the restriction of
vh ∈ Vh onto an element T ∈ Th is polynomial.

• The basis {φi} of Vh has local support, i.e. the basis functions φi are
only on a few elements non-zero.

We will now take a look at the triangulation of the domain Ω.

Triangulation

Definition 3.1 (Triangulation)
A triangulation of a domain Ω ⊂ Rd is a set Th = {T1, . . . , TM} of open sets
Ti ⊂ Ω such that:

M⋃
i=1

T̄i = Ω̄ (3.12)

Ti ∩ Tj = ∅ for i 6= j (3.13)

h := max{diam(T ) |T ∈ Th} (3.14)

Definition 3.2 (Admissible Triangulation)
A triangulation Th is called admissible if every non-empty intersection T̄i ∩ T̄j,
i 6= j is either a common vertex, a common edge or in three dimensions a
common face shared by Ti and Tj.
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Definition 3.3 (Shape-Regular Family of Triangulations)
A family of triangulations {Th} is called shape-regular if there is a number
κ > 0 such that every T in Th contains a circle of radius ρT with

ρT ≥ hT/κ, (3.15)

where hT denotes the diameter of T .

Definition 3.4 (Uniform Family of Triangulations)
A family of triangulations {Th} is called uniform if there is a number κ > 0
such that every T in Th contains a circle of radius ρT with

ρT ≥ h/κ. (3.16)

The finite element space Vh for the continuous Galerkin method is defined
based on the triangulation Th(Ω).

Finite Element Space

Definition 3.5 (Finite Element Space)
The finite element space Vh is defined as the space of continuous, piecewise
polynomial functions of order k

Vh := {vh ∈ C0(Ω) : vh|T ∈ P k(T ) for all T ∈ Th(Ω)}, (3.17)

where P k(T ) denotes the polynomial space on T .

The choice of the polynomial space P k depends on the choice of triangulation
elements. For tetrahedrons, we will use the space

Pk(T ) := span
{

d∏
i=1

xαi
i : x ∈ T, α ∈ Nd,

d∑
i=1

αi ≤ k

}
. (3.18)

For hexahedrons, we will choose

Qk(T ) := span
{

d∏
i=1

xαi
i : x ∈ T, α ∈ Nd, max

i
αi ≤ k

}
. (3.19)

Definition 3.6 (Lagrangian Basis Function)
Let x1, . . . , xN be the vertices of the triangulation Th(Ω) and the basis consists
of linear basis functions φi, i = 1, . . . , N . Then the basis functions are called
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3. FEM Approaches

Lagrangian basis functions or hat functions if

φi(xj) =

1 for i = j

0 for i 6= j
(3.20)

holds.

So in the case of a Lagrangian basis, every function φi has only support on
the adjacent elements to the vertex xi. That implies that the stiffness matrix
KKK is sparse.

3.2. The Discontinuous Galerkin Finite Element
Method

In this section, we introduce the discontinuous Galerkin (DG) method for the
numerical solution of the tES forward problem. Other than in CG-FEM, in
DG-FEM the potential is only locally continuous over each element, but not
globally, because the finite element space is non-conforming Vh 6⊂ V .
This section mainly follows [1, 15, 17].
Like in the CG-FEM (Section 3.1), let Th(Ω) be a conforming triangulation of
the domain. In the DG-FEM, we also need to define the internal and external
skeleton of the triangulation.

Definition 3.7 (Skeleton) For a triangulation Th(Ω) the internal skeleton is
denoted by

Γint := {γe,f = ∂Te ∩ ∂Tf |Te, Tf ∈ Th(Ω), Te 6= Tf , |γe,f | > 0} (3.21)

and the external skeleton by

Γext := {γe = ∂Te ∩ ∂Ω|Te ∈ Th(Ω), |γe| > 0}. (3.22)

Then, the corresponding skeleton is defined by

Γ = Γint ∪ Γext. (3.23)

As discontinuous finite element space, we chose the broken polynomial space.

14



3. FEM Approaches

Definition 3.8 (Broken Polynomial Spaces) On a triangulation Th the broken
polynomial spaces of degree k are defined as

Vh := {v ∈ L2(Ω)|v|T ∈ Pk for all T ∈ Th(Ω)} (3.24)

with Pk being the space of local polynomials of degree k.

These functions do not have any continuity constraint between elements, but
are elementwise polynomials. The choice of the polynomial space P k depends
on the choice of triangulation elements. For tetrahedrons, the space Pk(T ) and
for hexahedrons Qk(T ) will be used as in Section 3.1. Because functions in Vh
may be discontinuous across element interfaces, the jump and the average of
a function u over an interface are define.

Definition 3.9 (Jump) The jump of a piecewise continuous function u be-
tween two adjoint elements Te, Tf ∈ Th(Ω) is defined as

JuKe,f := u|Te · nTe + u|Tf
· nTf

(3.25)

Definition 3.10 (Average) The average of a piecewise continuous function u

on the interface γe,f between two adjoint elements Te, Tf ∈ Th(Ω) is defined as

{u}e,f := weu|Te + wfu|Tf
(3.26)

with weights we and wf , which are defined by [18]:

we := σf
σf + σe

and wf := σe
σf + σe

. (3.27)

Then the following property holds [15]:

JuvKe,f = JuKe,f{v}e,f + {u}e,fJvKe,f . (3.28)

Galerkin Method

Also in the discontinuous FEM, we look at the weak formulation in Definition
2.3 of the tES forward problem

Find u ∈ V : a(u, v) = l(v) for all v ∈ V. (3.29)

We again use the Galerkin method to obtain a solution uh ∈ Vh of the forward
problem, but this time our finite element space is non-conforming, i.e. Vh 6⊂ V .
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3. FEM Approaches

Because of that, we do not get the discrete weak formulation directly from the
weak formulation. Instead, the discontinuities across the element boundaries
will cause additional consistency terms on the internal skeleton Γint. Therefore,
we multiply with a test function vh ∈ Vh and integrate over the domain Ω∫

Ω
(∇ · σ∇uh)vh dx = 0. (3.30)

We use the triangulation Th(Ω) to decompose the integral∫
Ω

(∇ · σ∇uh)vh dx =
∑
Te∈Th

∫
Te

(∇ · σ∇uh)vh dx. (3.31)

Because vh ∈ Vh is not globally continuous, we apply integration by parts on
each element Te ∈ Th(Ω):

= −
∑
Te∈Th

∫
Te

〈σ∇uh,∇vh〉 dx+
∑
Te∈Th

∫
∂Te

〈σ∇uh, n〉vh ds (3.32)

The second term can be divided into external and internal skeleton

= −
∫

Ω
〈σ∇uh,∇vh〉 dx+

∫
∂Ω
〈σ∇uh, n〉︸ ︷︷ ︸

=I

vh ds

+
∫

Γint

J(σ∇uh)vhK ds
. (3.33)

Using the property (3.28) and hence

= −
∫

Ω
〈σ∇uh,∇vh〉 dx+

∫
∂Ω
Ivh ds

+
∫

Γint

Jσ∇uhK︸ ︷︷ ︸
=0

{vh}+ {σ∇uh}JvhK ds. (3.34)

At each interface the normal component of the current density (σ∇uh · nγ) is
continuous, so for the jump we get Jσ∇uhKe,f = 0.
Then the discrete weak formulation becomes:

Find uh ∈ Vh : a(uh, vh) = l(vh) for all vh ∈ Vh (3.35)

16



3. FEM Approaches

with

a(uh, vh) =
∫

Ω
〈σ∇uh,∇vh〉 dx−

∫
Γint

{σ∇uh}JvhK ds (3.36)

l(vh) =
∫
∂Ω
Ivh ds. (3.37)

We add a symmetry term to guarantee adjoint consistency

asymm(uh, vh) = −
∫

Γint

{σ∇vh}JuhK ds. (3.38)

Then we extend the left-hand side by a penalty term to ensure coercivity

J(uh, vh) = η
∫

Γint

σ̂γ
hγ

JuhKJvhK ds (3.39)

with the penalty parameter η and σ̂γ being the harmonic averages of the con-
ductivities of the adjacent elements [14]

σ̂γe,f
:= 2σeσf

σe + σf
(3.40)

and hγ being a local mesh width parameter [22]

hγe,f
:= min(|Te|, |Tf |)

|γe,f |
. (3.41)

This yields the symmetric weighted interior penalty discontinuous Galerkin
method (SWIPG):
Find uh ∈ Vh such that

a(uh, vh) + J(uh, vh) = l(vh) for all vh ∈ Vh, (3.42)

where

a(uh, vh) =
∫

Ω
〈σ∇uh,∇vh〉 dx

−
∫

Γint

{σ∇uh}JvhK + {σ∇vh}JuhK ds
(3.43)

J(uh, vh) = η
∫

Γint

σ̂γ
hγ

JuhKJvhK ds (3.44)

l(vh) =
∫
∂Ω
Ivh ds. (3.45)
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3. FEM Approaches

The basis of the finite element space Vh is given by ψ1, . . . , ψN , with N being
the number of unknowns. We can rewrite our discrete solution uh ∈ Vh as

uh =
N∑
i=1

uiψi, (3.46)

which leads, like in the CG-FEM, to the linear equation system

KKKuuu = bbb (3.47)

with the stiffness matrix KKK ∈ RN×N , the load vector bbb ∈ RN and the solution
vector uuu ∈ RN of the DG-FEM are defined by

KKK = (a(ψi, ψj) + J(ψi, ψj))1≤i,j≤N (3.48)
bbb = (l(ψi))1≤i≤N (3.49)
uuu = (uj)1≤j≤N . (3.50)

We then obtain the discrete solution uh by solving this linear equation system
with the numerical solver of choice.
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4. Analytical Solution

In this chapter, we will introduce an analytical approach to solve the tES
forward problem. Therefore a series expansion for the potential distribution
is derived, caused by two surface electrodes in a multi-layered sphere with
piecewise constant conductivities. Then we will investigate the convergence of
this expansion.

4.1. Multi-layer Sphere Model
The main advantage of taking a multi-layer sphere model is that the tES for-
ward problem in Definition 2.2 can be solved analytically. Thus, we can take
the analytical solution as a reference for numerical methods.
As a validation platform, we will use a four-layer isotropic sphere model rep-
resenting the compartments brain, cerebrospinal fluid (CSF), skull and skin of
the human head. For the conductivities chosen we refer to [2, 13, 46]. The
radii and conductivity values of the four compartments are given in Table 4.1.

Layer Compartment Radius in mm Conductivities in S/m
1 Brain 78 0.33
2 CSF 80 1.79
3 Skull 86 0.01
4 Skin 92 0.43

Table 4.1.: Parametrization of the isotropic four-layer sphere model

4.2. Derivation of the Analytical Solution
For a multi-layer sphere model, the tES forward problem can be solved ana-
lytically. This was done for the case of isotropic conductivities in a three-layer
sphere model in [47] and for a four-layer sphere model in [20]. In both cases,
two point electrodes on the surface (one anode and one cathode) were used.
If we consider homogeneous and isotropic layers, the forward problem can be
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4. Analytical Solution

writen as

∇ · (σ∇u) = σ(∇2u) = σ(∆u). (4.1)

To derive the analytical solution, we start with the Laplace equation

∆u = 0. (4.2)

In spherical coordinates (r, θ, φ) the Laplace equation reads [28]:

∆u = 1
r2

∂

∂r

(
r2∂u

∂r

)
+ 1
r2 sin θ

∂

∂θ

(
sin θ∂u

∂θ

)
+ 1
r2 sin2 θ

(
∂2u

∂φ2

)
, (4.3)

where r, θ and φ denote the range, the polar angle and the azimuthal angle.
In the case of two scalp electrodes, we have azimuthal symmetry [47], which
means that the potential u is independent of φ. This yields

∆u = 1
r2

∂

∂r

(
r2∂u

∂r

)
+ 1
r2 sin θ

∂

∂θ

(
sin θ∂u

∂θ

)
= 0. (4.4)

We use the method of separation of variables u(r, θ) = R(r)Θ(θ). We substitute
this in equation (4.4) and multiply by r2/RΘ:

1
R

∂

∂r

(
r2∂R

∂r

)
︸ ︷︷ ︸

function of r

= − 1
Θ sin θ

∂

∂θ

(
sin θ∂Θ

∂θ

)
︸ ︷︷ ︸

function of θ

. (4.5)

Because equation (4.5) has two terms of different variables, we can separate
it into two ordinary differential equations. Each side is constant and the sum
of those constants is zero. We choose the constant C = l(l + 1) and get the
ordinary differential equation system:

1
R

∂

∂r

(
r2∂R

∂r

)
=l(l + 1) (4.6)

1
Θ sin θ

∂

∂θ

(
sin θ∂Θ

∂θ

)
=− l(l + 1). (4.7)

Solutions of the radial equation (4.6) are powers of r: By substituting R(r) =
rs, it follows that

∂

∂r

(
r2∂r

s

∂r

)
= ∂

∂r
(r2srs−1) = s(s+ 1)rs = l(l + 1)rs. (4.8)
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Then R(r) has two solutions

R(r) = rl and R(r) = 1
rl+1 . (4.9)

Therefore a general solution of the radial equation (4.6) is

R(r) = Arl +Br−(l+1). (4.10)

The angular equation (4.7) is the Legendre equation. The solutions of the
Legendre equation are Legendre polynomials Pl(cos θ) [29].
So, the general solution of the Laplace equation in spherical coordinates with
azimuthal symmetry is

u(r, θ) =
∞∑
k=0

(
Akr

k +Bkr
−(k+1)

)
Pk(cos θ), (4.11)

where Pk is the Legendre polynomial of order k. To generate the solution for
two surface electrodes, coordinate rotation and linear superposition are used.
In a four-layer sphere model, we get the solution

u(α)(r, θ) =
∞∑
k=0

(
A

(α)
k rk +B

(α)
k r−(k+1)

)
[Pk(cos θA)− Pk(cos θB)] , (4.12)

where A and B denote the anode and cathode position. The expansion coef-
ficients A(α)

n and B(α)
n can be determined by the boundary conditions for each

tissue α. We used the expansion constants A(α)
n and B(α)

n given in [20].

4.3. Convergence of the Analytical Solution
In this section, we will investigate the convergence of the analytical solution
by solving the forward problem in a multi-layer sphere model. The parameters
chosen for the sphere model are given in Table 4.1.
When numerically computing the series expansion of the analytical solution,
the infinite sum in (4.12) must be approximated by a finite sum with n terms.
In Figure 4.2 we visualized the potential on the surface of the sphere and the
potential for a cross-section through the sphere with (a) n = 10, (b) n = 20,
(c) n = 50 and (d) n = 500 expansion terms for 90° difference between the
two electrodes (anode and cathode).
For the convergence analysis, we investigate how the potential converges when
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we continue adding terms to the sum. In Figure 4.1 the relative error

RE%(un, u1000) = 100‖un − u1000‖2

‖u1000‖2
(4.13)

was then plotted as a function of the number of series expansion terms n for 90°
difference between the surface electrodes, where un, u1000 denote the analytical
solution vector, solved on a 1mm grid. Also the convergence of the analytical
potential solution for randomly distributed electrode positions on the surface
was investigated. The convergence rates were similar as the one presented in
Figure 4.1.
In further analysis, the number of iterations used in the series expansion is
fixed to n = 200 for the analytical solution of tES.

Figure 4.1.: The relative error of the analytical solution is plotted against the
number of iterations used in the series expansion.
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(a) Analytical solution for n = 10

(b) Analytical solution for n = 20

(c) Analytical solution for n = 50

(d) Analytical solution for n = 200

Figure 4.2.: Different number of expansion terms for the approximation of the
potential distribution on the surface of the sphere (left column) and in a cross-
section through the sphere (right column).
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In this chapter, we will compare the finite element methods (CG-FEM and
DG-FEM) from Chapter 3 for transcranial electric stimulation. The finite
element methods are implemented in duneuro. For the computation of the
forward solutions duneuro-python is used. We use a spherical representation
of the head in our studies to evaluate the accuracy of the finite element meth-
ods since in sphere models an analytical solution exists (Section 4.2). For the
evaluation, we first use tetrahedral and than hexahedral meshes.
In the first study (Section 5.2), we will investigate tetrahedral meshes gener-
ated using a constrained Delauney triangulation (CDT) [49]. The advantage
of triangular meshes is, that they fit better to the rather smooth surfaces of
human tissue than the staircase-like representation in hexahedral meshes. The
construction of tetrahedral meshes with CDT needs non-intersecting surfaces
with a certain distance between each other, to fulfill the quality and volume
constraints. Hence, the generation tetrahedral meshes requires a higher effort.
In the second study (Section 5.3), we will investigate hexahedral models. Hex-
ahedral models have the advantage that they can be easily obtained from the
voxel-based magnetic resonance imaging (MRI), where the voxels are used as
elements of the mesh. Therefore less preliminary work has to be done.
The drawback of hexahedral meshes is that due to the staircase-like represen-
tation of the boundaries, in parts where the skull compartment is very thin
in reality separated compartments (skin and CSF or brain) touch and cause
current leakages [50]. Because of the isolating property of the low-conductive
skull compartment, this then leads to an unrealistic modeling of the potential.
In Study 3 (Section 5.4) we will therefore investigate hexahedral models with
current leakages.
Section 5.5 shows the current density differences for the numerical approaches
in the hexahedral models with skull leakages.
For all models, we use the same electrode positions. We fix them over the leak-
ages of the hexahedral models and use this configuration in all sphere studies.
The chapter ends in Section 5.6 with a conclusion.
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5.1. Error Measures
To validate EEG and MEG forward approaches in sphere models the relative
difference measure (RDM) and the logarithmic magnitude error (lnMAG) at
the sensors are commonly used. This is no option for tES because the current
is injected at the electrodes. We are interested in local changes, so the solutions
are evaluated in the whole volume conductor. Therefore, the global relative
error (RE%) and the local relative error in each element are used as validation
criteria to compare the analytical and the numerical solution of tES in sphere
models. The global relative error (RE%) is defined by

RE%(unum, uana) = 100 ‖unum − uana‖2

‖uana‖2
, (5.1)

where unum is the numerical and uana is the analytical solution vector. Because
we want to evaluate local changes of the potential, we take as the main error
measure the local relative error

Err%(unum(c), uana(c)) = 100 |unum(c)− uana(c)|
|uana(c)|

(5.2)

for each element centroid c and visualize this error in each corresponding ele-
ment. Also the local absolute error

AErr%(unum(c), uana(c)) = |unum(c)− uana(c)| (5.3)

for each element is evaluated.

5.2. Study 1: Tetrahedral Models
In this study, we will evaluate the continuous Galerkin method for solving the
tES forward problem presented in Section 3.1. Therefore, we investigate the
potential for two fixed electrodes on the surface. We compare the results in two
four-layer tetrahedral meshes depicted in Table 5.1 and visualized in Figure
5.1. To create these sphere models, a constrained Delaunay-triangulation [49] is
used. The two used tetrahedral sphere models mainly differ in mesh resolution.
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(a) tet-4layer-60k (b) tet-4layer-434k

Figure 5.1.: Visualization of the tetrahedral sphere models (a) tet-4layer-60k and
(b) tet-4layer-434k.

model # nodes # elements
tet-4layer-60k 60,407 345,262
tet-4layer-434k 434,521 2,555,564

Table 5.1.: Parameter of the tetrahedral sphere models.

The models are analyzed via the global relative error RE% (5.1), the local
relative error Err% (5.2) and the absolute error AErr% (5.3) in each element.
These results of numerical accuracies are visualized in cross-sections through
the sphere.
To demonstrate the accuracy of the numerical finite element solutions in con-
forming tetrahedral models, the visualizations in Figures 5.2 and 5.3 are gen-
erated.
Figure 5.2 shows cross-sections of the tet-4layer-60k model cut through the
plane where the electrodes are located. In (a) the simulated potential distri-
bution for the CG-FEM is shown. (b) shows the potential restricted to the
brain compartment. In (c) and (d) the local relative and the local absolute
error in the brain compartment are visualized.
Figure 5.3 shows an identically structured plot for the tet-4layer-434k model.
In Table 5.2, the global relative error is listed for both tetrahedral models in
the whole volume conductor, restricted to the brain and restricted to the CSF
compartment.

model RE% RE% (brain) RE% (CSF)
tet-4layer-60k 2.4260 % 0.5949 % 0.5145 %
tet-4layer-434k 1.2874 % 0.1441 % 0.1248 %

Table 5.2.: The global relative error for tetrahedral models.

First of all, the high relative error in (c) in the middle of both volume con-
ductors is due to the fact that the local relative error is used. Because the
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(a) Potential (b) Potential in the brain

(c) Relative error (d) Absolute error in the brain

Figure 5.2.: The numerical solution in the tet-4layer-60k sphere model for tES
forward problem (a) in the whole volume conductor and (b) just the brain com-
partment. Visualization of the (c) relative error and (d) the absolute error between
numerical and analytical solution in the brain compartment.

analytical solution is zero in the middle of the volume conductor, the rela-
tive error explodes here. For clarifying the aforementioned statement, also
the absolute error (d) is visualized, where is seen that the difference between
numerical and analytical solution is very small in this area.
Apart from that, it is observed that in the two models the highest absolute
errors in the brain are under the electrodes, because here the analytical and
numerical solutions of the potential are highest.
If the CG-FEM is used in the coarser mesh tet-4layer-60k, high relative errors
mainly occur in the skin. Under the electrodes is the relative error also high in
the skull, while in the CSF the error gets smaller. This corresponds to the re-
sults in Table 5.2, where can be seen that the global error is much higher in the
whole volume conductor (RE% : 2.43%) compared to the brain (RE% : 0.59%)
and CSF (RE% : 0.51%) compartments. This can be explained by the relative
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(a) Potential (b) Potential in the brain

(c) Relative error (d) Absolute error in the brain

Figure 5.3.: The numerical solution in the tet-4layer-434k sphere model for tES
forward problem (a) in the whole volume conductor and (b) just the brain com-
partment. Visualization of the (c) relative error and (d) the absolute error between
numerical and analytical solution in the brain compartment.

coarse representation of the skin and skull compartments in this model.
For the finer mesh tet-4layer-434k, highest errors are observed in the skin com-
partment near the electrodes, but these are much smaller than those in the
coarser mesh. This is also shown in the results of Table 5.2, where the global
error is also much higher in the whole volume conductor (RE% : 1.29%) com-
pared to the brain (RE% : 0.14%) and CSF (RE% : 0.12%) compartments. A
possible reduction of these errors might be gained by local refinement close to
the electrodes or of the whole skin compartment.
If the two models are compared, in Table 5.2 can be seen that the finer mesh
is almost twice as accurate in the whole volume conductor, but it is more than
four times more accurate than the coarser mesh for the global relative error
concerning the brain and CSF compartments.
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5.3. Study 2: Hexahedral Models
In this study, we will compare and evaluate the CG-FEM method (Section
3.1) and the DG-FEM (Section 3.2) in four-layer hexahedral volume conductor
models with the parameters from Table 4.1. Therefore we will again make use
of the analytical solution as reference (Section 4.2).
We will here use two hexahedral sphere models. Because of the staircase-like
representation of the originally smooth tissues of the sphere model, we have
to distinguish between numerical and geometrical errors. Therefore we use
two different models with 1mm and 2mm mesh resolution from Vorwerk [52].
Details of these two four-layer hexahedral meshes are given in Table 5.3 and
they are visualized in Figure 5.4.

(a) hex-res-1mm (b) hex-res-2mm

Figure 5.4.: Visualization of the hexahedral sphere models (a) hex-res-1mm and
(b) hex-res-2mm.

model # nodes # elements
hex-res-2mm 428,185 407,907
hex-res-1mm 3,342,701 3,262,312

Table 5.3.: Parameter of the hexahedral sphere model.

To evaluate the accuracy of the numerical approaches, the global relative error
RE% and the local relative error Err% in each element are used here. We
visualize the local relative error in cross-sections through the sphere.
To show the numerical results of CG-FEM and DG-FEM in hexahedral mod-
els, the visualizations shown in Figures 5.5 and 5.6 are generated.
As a first comparison between CG-FEM and DG-FEM, we visualize the po-
tential of the numerical methods in (a). Then the local relative error Err% is
evaluated in the whole sphere model (b) and only in the brain compartment
(c) for the model hex-res-2mm in Figure 5.5 and for the model hex-res-1mm
in Figure 5.6.
The relative error RE% and the maximal local relative error in the brain and
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CSF compartment for both sphere models are displayed in Table 5.4 and Table
5.5, respectively.

method RE% maxErr%(brain) maxErr%(CSF)
CG-FEM 7.3462 % 25.9771 % 20.7254 %
DG-FEM 6.6039 % 26.3745 % 20.1469 %

Table 5.4.: Global and maximal local relative error for the model hex-4layer-2mm.

method RE% maxErr%(brain) maxErr%(CSF)
CG-FEM 6.0256 % 11.7957 % 16.0424 %
DG-FEM 5.7378 % 11.4673 % 18.2624 %

Table 5.5.: Global and maximal local relative error for the model hex-4layer-1mm.

Using the hex-res-2mm sphere model with CG-FEM the visualization in Fig-
ure 5.5 shows high accuracy in the skin and skull compartments. The local
relative error gets higher in the CSF and brain compartments under the elec-
trodes. This is mainly a geometrical error for which the application of DG-
FEM in those areas shows similar errors. For DG-FEM the numerical error is
smaller in the whole volume conductor (RE% : 6.60%) compared to CG-FEM
(RE% : 7.35%). The maximal relative error for the DG-FEM is slightly higher
in the brain and slightly lower in the CSF (Table 5.4).
In Figure 5.5 the numerical methods are compared for the model hex-res-1mm.
The two approaches also achieve for this model a very similar numerical ac-
curacy. The highest numerical errors can be seen in the CSF compartment in
both models.
Again the CG-FEM shows a higher global relative error (RE% : 6.03%) com-
pared to DG-FEM (RE% : 5.74%). Interestingly other than in the 2mm model
the maximal relative error for the DG-FEM is slightly lower in the brain and
slightly higher in the CSF (Table 5.5).
Comparing the fine mesh to the coarser mesh, a clear reduction of the global
relative error is seen, when increasing the mesh resolution. Even higher is
the improvement if for the peak of local errors in the brain compartment.
Interestingly, the improvement in the CSF compartment is not as strong.
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CG-FEM DG-FEM

(a) Potential in the volume conductor

(b) Relative error

(c) Relative error in the brain

Figure 5.5.: Numerical results for hex-res-2mm sphere model CG-FEM (left) and
DG-FEM (right). First, the potential solution is shown (a) in the sphere model.
Then visualizations of the relative error (b) in the whole volume conductor and (c)
only in the brain compartment are shown.
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CG-FEM DG-FEM

(a) Potential in the volume conductor

(b) Relative error

(c) Relative error in the brain

Figure 5.6.: Numerical results for hex-res-1mm sphere model CG-FEM (left) and
DG-FEM (right). First, the potential solution is shown (a) in the sphere model.
Then visualizations of the relative error (b) in the whole volume conductor and (c)
only in the brain compartment are shown. Note that here the scaling of the error is
different from the one in the previous figure.
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5.4. Study 3: Hexahedral Models with Skull
Leakages

This study is motivated by the results of Engwer and Vorwerk [17, 52], who
showed for EEG that DG-FEM outperforms CG-FEM in the case of skull
leakage scenarios. As discussed in the introduction of this chapter, hexahedral
meshes may have the problem that in reality separated compartments are
unrealistically modeled as touching at vertices. If we use the CG-FEM with
Lagrange ansatz functions, this leads to unrealistic high current flow through
skull leakages [17]. This effect can be reduced by using DG-FEM, where the
current flows through element faces (see Figure 5.7).

Figure 5.7.: Current flow for CG-FEM (left) and DG-FEM (right). The current
flows through vertices in CG-FEM and causes current leakages. In DG-FEM current
flow is only allowed through element faces. [17]

We will validate and compare the CG-FEM (Section 3.1) and the DG-FEM
(Section 3.2) in four-layer hexahedral volume conductor models with leakages
in the skull compartment. Thereby we will use the three models with reduced
skull thickness from Vorwerk [52] with a mesh resolution of 2mm. Details of
these three four-layer hexahedral meshes are given in Table 5.6 and they are
visualized in Figure 5.8. In this study, we will again use the analytical solution
as reference (Section 4.2).

model outer skull radius leaky points
hex-res-2mm-r84 84 0
hex-res-2mm-r83 83 1,344
hex-res-2mm-r82 82 10,080

Table 5.6.: Parameter of the hexahedral sphere models with leakages.

We investigate the accuracy of the finite element methods by using the global
relative error RE% and the local relative error Err% in each element. The
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(a) hex-res-2mm-r84 (b) hex-res-2mm-r83 (c) hex-res-2mm-r82

Figure 5.8.: Visualization of the three hexahedral sphere models (a) hex-res-2mm-
r84 (b) hex-res-2mm-r83 and (c) hex-res-2mm-r82.

local relative error is plotted in cross-sections of the sphere model. To show the
influence of current skull leakages in the two numerical methods, we generated
the Figures 5.9, 5.10 and 5.11.
Figure 5.9 shows cross-sections through the hex-res-2mm-r84 model. We first
show the potential distribution of the numerical methods in (a). The local
relative error Err% is evaluated in the whole sphere model (b) and then only
in the brain compartment (c). We show an identically structured visualization
of the model hex-res-2mm-r83 in Figure 5.10 and of the model hex-res-2mm-
r82 in Figure 5.11. The relative error RE% and the maximal local relative
error in the brain and CSF compartment of all models are shown in Table 5.7.

model method RE% max Err%(brain) max Err%(CSF)
hex-res-2mm-r84 CG-FEM 10.2639 % 28.5111 % 23.0743 %
hex-res-2mm-r84 DG-FEM 9.2137 % 28.5902 % 22.4983 %
hex-res-2mm-r83 CG-FEM 18.9834 % 35.9705 % 42.5717 %
hex-res-2mm-r83 DG-FEM 12.0926 % 29.7925 % 26.7644 %
hex-res-2mm-r82 CG-FEM 23.9140 % 73.2800 % 79.1827 %
hex-res-2mm-r82 DG-FEM 11.8523 % 37.0218 % 40.3959 %

Table 5.7.: Global and maximal local relative error for leaky sphere models

For the model hex-res-2mm-r84, where we do not have any leakages, similar
errors for CG-FEM and DG-FEM are observed. But in comparison to the
hex-res-2mm model of Study 2, the error increases, which should be mainly a
geometrical error.
In the other two models, higher errors in the CG-FEM compared to DG-FEM
are seen, which are clearly caused by the skull leakages.
In the visualization of the local relative error for the model hex-res-2mm-r83,
it is clearly shown that the leakage allows current to flow directly from the

34



5. Numerical Evaluation

skin compartment into the brain compartment for CG-FEM. Therefore in the
brain and also in the CSF compartment, the local relative error is significantly
higher for CG-FEM compared to DG-FEM. The strongest errors is found di-
rectly under the leakage.
In Table 5.7, it is shown that the global relative error RE% is 6% higher for
the CG approach compared to the DG approach. The maximal local relative
error Err% in the brain is 6% higher for CG-FEM and in the CSF the max.
Err% is even 16% higher.
For the model hex-res-2mm-r82 with overall 10,080 leaky points, already in
the potential of the volume conductor (a) is seen that there is almost no influ-
ence of the low-conductive skull barrier in the case of the CG approach. The
current almost directly flows through the skull compartment. This unrealistic
modeling is also clearly visible in the local relative error. If the two finite ele-
ment approaches are compared, in CG-FEM causes the leakage an unrealistic
potential in a large region under the leakage.
The CG-FEM (RE% : 23.91%) is half as accurate for the global relative error
as the DG-FEM (RE% : 11.85%). If the max. relative error in the brain and
CSF is investigated, the DG approach is two times more accurate (Table 5.7).
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CG-FEM DG-FEM

(a) Potential in the volume conductor

(b) Relative error

(c) Relative error in the brain

Figure 5.9.: Numerical results for hex-res-2mm-r84 sphere model CG-FEM (left)
and DG-FEM (right). First, the potential solution is shown (a) in the sphere model.
Then visualizations of the relative error (b) in the whole volume conductor and (c)
only in the brain compartment are shown.
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CG-FEM DG-FEM

(a) Potential in the volume conductor

(b) Relative error

(c) Relative error in the brain

Figure 5.10.: Numerical results for hex-res-2mm-r83 sphere model CG-FEM (left)
and DG-FEM (right). First, the potential solution is shown (a) in the sphere model.
Then visualizations of the relative error (b) in the whole volume conductor and (c)
only in the brain compartment are shown.
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CG-FEM DG-FEM

(a) Potential in the volume conductor

(b) Relative error

(c) Relative error in the brain

Figure 5.11.: Numerical results for hex-res-2mm-r82 sphere model CG-FEM (left)
and DG-FEM (right). First, the potential solution is shown (a) in the sphere model.
Then visualizations of the relative error (b) in the whole volume conductor and (c)
only in the brain compartment are shown.
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5.5. Study 4: Current Density Differences
In this section, the skull leakage effects are evaluated for the current flow in
tES stimulation for CG-FEM and DG-FEM. Therefore, the current density
solution J = −σ∇u was computed for the same pair of electrodes as in the
previous study.

hex-res-2mm-r82 hex-res-2mm-r83 hex-res-2mm-r84

(a) Current density for CG-FEM

(b) Current-density for DG-FEM

Figure 5.12.: Visualization of current density solution for hex-res-2mm-r82 (left
column), hex-res-2mm-r83 (middle column) and hex-res-2mm-r84 (right column) for
(a) CG-FEM and (b) DG-FEM. Note the different scaling of the current density
magnitude between models.

In Figure 5.12, the current density is visualized in the models hex-res-2mm-
r82 (left column), hex-res-2mm-r83 (middle column) and hex-res-2mm-r84
(right column) for the numerical approaches CG-FEM (a) and DG-FEM (b).
For the model with the thinnest skull compartment hex-res-2mm-r82, a very
high current density is found in the CSF elements directly under the electrode
using the CG approach. The current density in the skull compartment is neg-
ligible, which can be explained by current leakages through the shared vertices
of skin and CSF compartments. Also in the brain, the current is higher in
those elements radial under the CSF elements with strong current flow. For
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DG-FEM, the current in the skin is higher and in the CSF lower than for the
CG approach and in the brain the current density is more realistically dis-
tributed.
For the other two models, the magnitude of the current density is much lower
(note the different scaling of the current density magnitude) and the differences
between CG-FEM and DG-FEM are much lower compared to the model hex-
res-2mm-r82. In the models hex-res-2mm-r83 and hex-res-2mm-r84, no clear
sign for skull leakages is visible, but a higher channeling of current through
the highly conductive CSF compartment is seen for the CG approach. For the
CSF, the elements only touch via vertices, but the geometry is connected in
reality. Hence, the current is reduced for the DG approach as the current can
not flow realistically through the CSF compartment. But for CG-FEM, the
current flows through vertices and therefore is allowed to flow directly through
this highly conductive layer.

5.6. Discussion
In this chapter, we compared CG and DG approaches to solve the tES forward
problem. We presented numerical experiments in different sphere models.
In the first study, the CG-FEM was simulated in a tetrahedral sphere model.
It showed high accuracy for both tetrahedral meshes.
In study 2 we investigated the differences between CG and DG approaches
in two hexahedral meshes with 1mm and 2mm mesh resolution. No signifi-
cant difference between the FEM approaches was found for these models. In
these models, large geometrical errors were seen, due to the staircase-like rep-
resentation of the geometry in hexahedral models. The first two numerical
experiments showed higher numerical accuracy for tetrahedral and hexahedral
meshes with increasing mesh resolution.
In the third and fourth study, the CG-FEM vs DG-FEM comparison was con-
ducted in hexahedral models with a mesh resolution of 2mm and decreasing
skull thickness to investigate the influence of skull leakages. The achieved nu-
merical accuracy for DG-FEM were comparable to those achieved by CG-FEM
in the model hex-res-2mm-r84 without leakages, while for the two models hex-
res-2mm-r83 and hex-res-2mm-r82 with skull leakages the numerical accuracy
was far higher for DG-FEM. Similar results were seen in [17] for the EEG
forward problem.
To show the differences in the current flow we presented in Study 4 the dif-
ferences in the current density between CG-FEM and DG-FEM. The skull
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leakage was strongly visible in the model hex-res-2mm-r82 with most leaky
vertices. In all three models, the CSF compartment was modeled too thin and
therefore there are often only connections via vertices between CSF elements.
These connections caused an unrealistic current flow for DG-FEM. The current
was only able to flow for the CG-FEM directly through the highly conductive
CSF compartment.
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In this chapter, we will give an introduction to the optimization problem of
tES and compare the two numerical CG and DG approaches from Chapter
3 for tES optimization. The two numerical approaches are implemented in
duneuro. The influence matrices are computed via duneuro-python.
We will introduce the physical background and the optimization problems
mathematically. Then we will show how sensitive the optimization is to the
usage of different FEM approaches in a leaky sphere model and a realistic
six-compartment volume conductor head model. At last, we will conclude the
results.

6.1. Basics
The inverse problem of multi-electrode tES is to optimize the electric stimu-
lation. The goal is to determine a current injection pattern that optimally (in
a certain sense) stimulates a given target or region of interest. Normally, we
are interested in maximizing the current density at the target location in the
target orientation while limiting the applied currents for safety reasons. The
common safety criteria are the total injection current over all electrodes and
the maximal current per electrode [6]. Regarding the optimization criteria,
one can choose a fitting optimization procedure.
For the inverse problem, we take the results of the FEM forward problem
(Chapter 3), which results in the linear equation system. To compute the elec-
tric potential, this equation system is solved. We are then able to compute
the electric field E = −∇φ in each mesh element. And therefore we can also
calculate the current density J = σE = −σ∇φ in each element.

6.2. Superposition of the Current Density
In this section, we will introduce the linear superposition as the physical model
of current conduction in the head. So, we will analyse the relationship between
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injected currents and current density in the head. This concept was first em-
ployed for tES in [16]. If we apply currents with more than two electrodes, the
stimulation is called multi-electrode tES. These m = 1, . . . ,M electrodes are
normally arranged like in the 10/10 or 10/20 electroencephalography (EEG)
systems. The first electrode is always fixed as the reference electrode.
We compute the current density for each pair of injection electrode m =
2, . . . ,M and sink (reference) electrode. So we obtain M − 1 independent
current injection patterns.
The superposition principle now states that all other patterns can be computed
from linear combinations of the following basis:

eee = AAAsss, (6.1)

where AAA ∈ R3N×(M−1) is the tES influence matrix, sss ∈ R(M−1) is the applied
current vector and eee ∈ R3N is the resulting current density solution. In matrix
form, they are defined as follows

AAA =


a1(r1) a2(r1) · · · aM−1(r1)
a1(r2) a2(r2) · · · aM−1(r2)

...
... . . . ...

a1(rN ) a2(rN ) · · · aM−1(rN )

 , eee =


e(r1)
e(r2)

...
e(rN )

 , sss =


s1

s2
...

sM−1


where column m of AAA is the current density solution J = −σ∇φ for injection

electrode m and sink electrode in the finite elements r1, . . . , rN .
With this knowledge, we are now able to apply different optimization ap-
proaches. In the next section, we will introduce algorithms used to optimize
applied stimulation currents.

6.3. Optimization Approaches
In tES optimization there is always a trade-off between maximizing the current
in the target and the focality of the stimulation. In this section, we will mainly
focus on optimization methods that will maximize the intensity.

Maximal Intensity Optimization

Following Dmochwoski [16], the maximal intensity (max int) approach is pre-
sented. In this method, we are interested in maximizing the field intensity
at the target in a specific direction without considering how the current flows
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elsewhere. A safety constraint is used to limit the injected currents to 2mA.
The desired orientation at the target is defined by etetet ∈ R3. To maximize the
intensity of the current flow parallel to the target orientation, the following
problem is solved:

smax = arg max
s

etetetCCCsss subject to ‖s̃̃s̃s‖ ≤ 2Itotal (6.2)

with s̃̃s̃s = (s1, s2, · · · , sM−1,−
∑

sm)T (6.3)

where s̃̃s̃s is the full current pattern including the reference electrode (−∑ sm),
CCC ∈ R3×M is the sub-matrix of AAA corresponding to the target, while Itotal is
the total injected current. The linear optimization problem was solved using
CVX, a package for specifying and solving convex programs [23, 24].

Penalized Maximal Intensity Optimization

Because the maximal intensity optimization always results in a bipolar elec-
trode montage, we developed a novel stimulation approach using an additional
regularization, that forces the distribution of the injection current over elec-
trodes. We additionally limit the maximum current at each electrode to ensure
safety and comfort of the stimulation in the penalized maximal intensity (pe-
nalized max int) approach. Then the following problem is solved:

smax = arg max
s

etetetCCCsss+ λ‖s̃̃s̃s‖2 subject to ‖s̃̃s̃s‖1 ≤ 2Itotal (6.4)

and ‖s̃̃s̃s‖∞ ≤ Imax with s̃̃s̃s = (s1, s2, · · · , sM−1,−
∑

sm)T , (6.5)

where the regularization parameter λ forces the current distribution and Imax
is the maximum current at each electrode. This problem was also solved using
the CVX toolbox [23, 24].

tES Optimization using ADMM

The tES optimization using ADMM by Wagner et al in [54] generates a focal
stimulation. This approach solves a numerical optimization problem including
additional constraints of upper bounds in non- targeted areas. The constraint
optimization problem to maximize the current in the target area, while con-
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trolling the magnitude in other regions, is given by

smax = max
s

∫
Ωt

〈AAAsss,eee〉 dx subject to ω|AAAsss| ≤ ε, (6.6)

where Ωt is the target region, eee ∈ R3N is the target vector, ω is a weight
allowing high currents in the target region and ε being the upper bound in
non-target regions.
To ensure convexity of the problem and control the applied currents additional
L1 and L2 regularization terms were added. This leads to the regularized
optimization problem:

smax = max
s

∫
Ωt

〈AAAsss,eee〉 dx− α
∫
∂Ω
sss2 dS + β‖sss‖L1(∂Ω)

subject to ω|AAAsss| ≤ ε,

with α and β being the L1 and L2 regularization parameter. This problem was
solved using the alternating direction method of multipliers (ADMM) [54], a
variant of the augmented Lagrangian method.

6.4. Study 1: Optimization in a Sphere Model
In this study, we analyze the differences in the tES optimizations between
CG-FEM and DG-FEM using a spherical model. The three optimization ap-
proaches introduced in Section 6.3 will be compared. The volume conductor
model used here is the leaky sphere model hex-res-2mm-r82 already used in
Section 5.4 with overall 10,080 leaky points. 522 point-like stimulation elec-
trodes were distributed over the surface of the sphere model visualized in Figure
6.1. Two to the surface tangential target vectors with different target depth
were used for stimulation (Figure 6.1).
The resulting stimulation and the optimized current density are shown for the
three optimization approaches maximal intensity (first row), penalized maxi-
mal intensity (middle row) and optimization using ADMM (bottom row) for
CG-FEM (first column) and DG-FEM (second column) in Figure 6.2 for the
more superficial tangential and in Figure 6.3 for the deeper tangential target.
For the superficial and for the deep target a similar behavior is seen for the
current flow and for the stimulation protocols. When using CG-FEM in the
max int optimization, the active electrodes are quite close to the target, re-
sulting in a more focal current flow in the volume conductor. For DG-FEM
the active electrodes are further apart. Also in the current density, a far more
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(a) (b) (c)

Figure 6.1.: Locations of the stimulation electrodes for the stimulation in the sphere
model hex-res-2mm-r82 and of the different target vectors. The first plot (a) shows
the electrode configuration on the sphere model. The other two plots (b), (c) show
the two target vectors in a cross-section through the volume conductor.

widespread flow is seen and therefore the current density magnitude is lower.
In the penalized max int stimulation the highest currents are applied at the
same electrodes as in the max int stimulation with additional active surround-
ing electrodes. Even if the difference between the two FEM approaches is
lower than in the max int stimulation, the current flow is still more spread for
DG-FEM and the magnitude of the current density is lower than for the CG
approach.
For the optimization using ADMM, the two finite element methods differ least.
This effect was expected, because the ADMM focuses on a focal stimulation, so
the main stimulation electrodes are those close to the target. For CG-FEM the
compensating currents, to reduce the applied currents in non-target regions,
are higher.
The high differences for the two intesity based stimulations seem to be caused
by skull leakages. In the forward problem is current flowing without much
resistance from the CSF into the skin compartment (Section 5.4 and Section
5.5). Hence, an overestimation of the importance of electrodes close to the
target is seen in the inverse problem for CG-FEM.

46



6. Optimization

CG-FEM DG-FEM

(a) Max Int Optimization

(b) Penalized Max Int Optimization

(c) Optimization using ADMM

Figure 6.2.: Visualization using (a) max int optimization (b) penalized max int
optimization and (c) optimization using ADMM for the numerical approaches CG-
FEM and DG-FEM in the leaky sphere model hex-res-2mm-r82 with a more super-
ficial tangential target. Note that here the scaling of the current density magnitude
is different in the different plots.
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CG-FEM DG-FEM

(a) Max Int Optimization

(b) Penalized Max Int Optimization

(c) Optimization using ADMM

Figure 6.3.: Visualization using (a) max int optimization (b) penalized max int
optimization and (c) optimization using ADMM for the numerical approaches CG-
FEM and DG-FEM in the leaky sphere model hex-res-2mm-r82 for the deeper tan-
gential target. Note that here the scaling of the current density magnitude is different
in the different plots.
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6.5. Study 2: Optimization in a Realistic Head
Model

In this study, we will validate the differences resulting from different tES opti-
mization approaches using the two finite element methods in a realistic human
head model. A six compartment segmentation including skin, skull-compacta,
skull-spongiosa, CSF, gray matter and white matter is generated from T1-
and T2-weighted MRI data [51]. This segmentation is used to generate a hex-
ahedral mesh with a resolution of 2mm with 484,532 elements and 508,412
nodes. The model is not corrected for skull leakages. The model has 1,164
skull leakages, which are mainly located in the temporal bone. In this study,
we simulate the target in the auditory cortex, because of its potential relevance
in tinnitus treatment [57]. The target was located on the gray matter gyrus.
The multi-channel tES cap is based on a realistic 10-10 EEG electrode con-
figuration of 80 channels. The sensor configuration and the stimulation target
are visualized in Figure 6.4.

(a) (b)
(c)

Figure 6.4.: Locations of the stimulation electrodes for the stimulation in the
realistic head model. The first and second plot show the electrode configuration on
the realistic head model from the side (b) and from the top (b). In (c), the target
is shown in the axial plane of the volume conductor.

The optimal current distribution on the electrodes and the resulting cur-
rent densities are displayed in Figure 6.5 for the auditory target. The three
optimization approaches max int (first row), penalized max int (middle row)
and optimization using ADMM (bottom row) are plotted for CG-FEM (first
column) and DG-FEM (second column) in the realistic head model.
The max int stimulation results in a bipolar electrode configuration. It yields
the same anode for both numerical methods but the cathodal electrode is fur-
ther apart for DG-FEM.
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CG-FEM DG-FEM

(a) Max Int Optimization

(b) Penalized Max Int Optimization

(c) Optimization using ADMM

Figure 6.5.: Visualization using (a) max int optimization (b) penalized max int
optimization and (c) optimization using ADMM for the numerical approaches CG-
FEM and DG-FEM in the realistic head model with 2mm resolution for an auditory
target. Note that here the scaling of the current density magnitude is different in
the different plots.

For the penalized max int optimization, the active electrodes are more spread.
The main stimulation electrodes are those also used in the max int stimulation
with additional active surrounding electrodes. The penalized max int opti-
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mization differs less for the anodal stimulation between FEM approaches, but
strongly differs at the cathodal electrodes. For CG-FEM the active cathodes
are not as far away from the cathods as for DG-FEM. Furthermore, the stim-
ulation electrode with the highest applied cathodal currents using CG-FEM is
almost not active at all for DG-FEM.
When using ADMM optimization for archieving a focal stimulation, a broad
stimulation protocol is gained. But there are only minor stimulation differ-
ences between CG-FEM and DG-FEM.
In the resultant montages, active electrodes are arranged further apart for in-
tensity optimization using DG-FEM. This was also seen in the previous study
for sphere models. The higher differences in the cathodal stimulation are ex-
plained by the location of leakages, which are mainly in the temporal bone.

6.6. Discussion
In this chapter, we presented optimization procedures for transcranial electric
stimulation.
Fist, the inverse problem of tES was introduced. Following the superposition
principle of current in volume conductors, we described the different tES opti-
mization approaches as the maximal intensity approach, the penalized maximal
intensity approach and the optimization approach using ADMM.
In Study 1, the differences between CG-FEM and DG-FEM for the three op-
timization methods in a hexahedral mesh with a 2mm resolution and skull
leakages was investigated. The difference between the FEM approaches was
not considerable for the optimization using ADMM because the ADMM fo-
cuses on a focal stimulation restricting currents in non-target areas. In the
two intensity based optimization approaches, higher differences were found.
The optimized stimulation electrodes were further apart for DG-FEM than for
CG-FEM.
In Study 2, the optimization approaches were evaluated in a realistic shaped
head model with a 2mm mesh resolution for CG-FEM and DG-FEM. Similar
results as in the sphere study were found, but the difference was higher for
the cathodal electrodes than for the anodal electrodes, because in the realistic
head model the leakages were mainly located in the temporal bone.
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Summary

The aim of this thesis was to study finite element methods for solving the for-
ward problem of tES and for optimizing procedures used in tES. Therefore, the
continuous Galerkin (CG-FEM) and the discontinuous Galerkin (DG-FEM)
approaches were presented. Both finite element methods were implemented in
duneuro and the analytical solution in Python.
After giving the physiological background and the mathematical derivation of
the tES forward problem, the existence and uniqueness of a weak solution were
shown.
The CG-FEM and DG-FEM for solving the tES forward problem have been
presented in Chapter 3. The DG approach was introduced in the scope of
electric brain stimulation because of its higher accuracy in EEG forward sim-
ulation in leaky scenarios [17].
An analytical solution of the tES forward problem in sphere models was de-
rived using spherical harmonics and the convergence of the analytical solution
was evaluated numerically in Chapter 4.
In Chapter 5, the accuracy of CG-FEM and DG-FEM was compared in sphere
models. The effect of different mesh resolutions for the tES forward solution
was first investigated. Furthermore, the skull leakage effect seen for CG-FEM
in EEG [17] was analyzed. In tES simulations, DG-FEM was able to prevent
current leakages and model the potential and the current density more realis-
tically.
Finally, in Chapter 6 the optimization problem of multi-electrode tES was
introduced. Some background was presented and the three optimization ap-
proaches used were given. In the studies, the optimized current density fields
and the optimized applied currents were visualized in a sphere model and in a
realistic head model for both FEM approaches. Here, the current leakages for
CG-FEM caused a more narrow stimulation protocol than in DG-FEM.
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Outlook

There are several avenues along which the study of tES forward modeling and
tES optimization could be advanced.
An interesting aspect that was not all evaluated in this thesis is the compu-
tational cost. The DG approaches is computationally more expensive due to
the higher number of degrees of freedom and the more complex structure of
the stiffness matrix. In general, the computation time of the tES optimization
matrix is in the order of the transfer matrices used in the EEG inverse prob-
lem. In both modalities, a speedup could be generated by parallelizations.
Furthermore, the integration of the analytical solution into duneuro would be
desirable. For now, the analytical solution is a Python function called via the
Python script. A further modality that could be implemented in duneuro is
the transcranial magnetic stimulation (TMS).
Geometrical errors could be reduced by using meshes that best fit the underly-
ing geometry. Triangular meshes can better represent rather smooth surfaces.
But then more preliminary work has to be done. To increase the accuracy
geometry-adapted hexahedral meshes could be used for tES instead of regular
hexahedral meshes. They will not overcome the leakage effect, but will be able
to diminish the geometrical errors [56].
Promising results showed unfitted FEM approaches, like the unfitted discon-
tinuous Galerkin FEM (UDG-FEM) and the CutFEM in EEG studies using
level-set segmentations [40]. These approaches are able to reduce the geomet-
rical errors while decreasing the computational costs.
With regard to optimization methods, an investigation of combined brain stim-
ulation using the complementary techniques of transcranial electric and mag-
netic stimulation would be interesting. New optimization approaches may be
needed to link the modalities.
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A.1. Mathematical Background
Here we will give some theory of functional analysis. We will introduce the
Lebesgue space Lp and the Sobolev space W k

p and then give some well-known
theorems used in this thesis. Thereby we will mainly follow [8, 9].

Definition A.1 (Lebesgue Space Lp(Ω)) Let Ω ⊂ Rd, d ∈ N, be a Lebesgue-
measurable non-empty open set. Then the Lebesgue norm for 1 ≤ p <∞ of a
measurable function f : Ω→ R is defined by

‖f‖Lp(Ω) = (
∫

Ω
|f(x)|p dx)1/p. (A.1)

Then the Lebesgue space Lp(Ω) is the set of p-integrable functions

Lp(Ω) := {f : Ω→ R|‖f‖Lp(Ω) <∞}. (A.2)

Remark 1 (Hilbert Space L2(Ω)) The Lebesgue space L2(Ω) together with
the inner product

〈u, v〉L2(Ω) :=
∫

Ω
u(x)v(x) dx for u, v ∈ L2(Ω) (A.3)

and norm

‖u‖ :=
√
〈u, v〉L2(Ω) (A.4)

is a Hilbert space.

Definition A.2 (Multi-Index) A vector α ∈ Rd, αi ∈ N0 ∀1 ≤ i ≤ d is called
a multi-index. The length of a multi-index is defined by

|α| :=
d∑
i=1

αi (A.5)
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and for u ∈ C∞(Ω) the partial derivates are defined by

Dαu :=
(
∂

∂x1

)α1

. . .

(
∂

∂xd

)αd

u. (A.6)

Definition A.3 (Sobolev Space W k,p(Ω)) Let Ω ⊂ Rd, d ∈ N be non-empty
open set and let k ∈ N, 1 ≤ p <∞, then the Sobolev space is defined as

W k,p(Ω) := {u ∈ Lp(Ω)|Dαu ∈ Lp(Ω), |α| ≤ k}. (A.7)

Remark 2 (Hilbert Space W k,2(Ω)) The Sobolev space Hk(Ω) := W k,2(Ω) is
a Hilbert space with scalar product

〈u, v〉Hk(Ω) =
∑
|α|≤k
〈Dαu,Dαv〉L2(Ω) (A.8)

and norm

‖u‖Hk(Ω) =
√
〈u, u〉Hk(Ω). (A.9)

Definition A.4 (Bounded and H-elliptic Bilinearform) Let (H, 〈·, ·〉) be a
Hilbert space and a : H×H → R a bilinearform, then a(·, ·) is called bounded
if there exists a C ≥ 0 such that

|a(u, v)| ≤ C‖u‖H‖v‖H for all u, v ∈ H (A.10)

and a(·, ·) is called H-elliptic if there exists a c ≥ 0 such that

a(u, u) ≥ c‖u‖2
H for all u ∈ H. (A.11)

Theorem A.1 (Lax-Milgram) Let (H, 〈·, ·〉) be a Hilbert-space and a(·, ·) be a
bounded and H-elliptic bilinearform. Then there exists for every l(·) ∈ H ′ a
unique solution u ∈ H of the weak formulation

a(u, v) = l(v) for all v ∈ H. (A.12)

Proof. [19]

Theorem A.2 (Trace Theorem) Let Ω ⊂ R be a Lipschitz domain with bound-
ary ∂Ω. Then there exists a continuous, linear map

γ : H1(Ω)→ H1/2(∂Ω) (A.13)
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with

‖γ(v)‖H1/2(∂Ω) ≤ C‖v‖H1(Ω). (A.14)

Proof. [8]
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A.2. Implementation of tES in duneuroduneuroduneuro

In this section, we will present the implementation of the tES forward prob-
lem for point-like sensors and of the optimization matrix AAA (Section 6.2) in
duneuro 1 [41], a toolbox for forward modeling in neuroscience. duneuro is
an open-source C++ software library for solving the forward problems of elec-
troencephalography (EEG) and magnetoencephalography (MEG) and is now
also able to provide simulations for electric brain stimulation. This library
is built upon the Distributed and Unified Numerics Environment (DUNE) 2

[3, 4], a modular toolbox for solving partial differential equations with grid-
based methods.
To make duneuro more conveniently usable, there exist bindings for Python 3

and Matlab 4. This allows direct integration into established analysis pipelines.
To interact with these scripting languages, an interface to the internal duneuro
toolbox is provided. To solve the EEG and MEG forward problems the
MEEGDriverInterface is used. For tES the provided interface class is
called TDCSPointDriverInterface. In duneuro the continuous Galerkin
(CG-FEM) and the discontinuous Galerkin (DG-FEM) finite element methods
are implemented as fitted discretization schemes for tES. Unfitted discretiza-
tion methods like the unfitted discontinuous Galerkin method and CutFEM
are for now only available for EEG [41].
An example script for solving the tES forward problem and for generating the
optimization matrix is presented in the following. We begin with the construc-
tion of the tDCSPointDriver.

import duneuropy as dp

config = {
’type’ : ’fitted’,

’solver type’ : ’cg’,

’element type’ : ’hexahedron’,

’volume conductor’ : {
’grid.filename’ : ’path of mesh.msh’,

’tensors.filename’ : ’path of tensors.cond’

},
}

1http://www.duneuro.org
2http://www.dune-project.org
3https://www.python.org
4https://www.mathworks.com
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driver = dp.TDCSPointDriver3d(config)

driver.setElectrodes(electrodes , electrode config)

In the driver object, the finite element method can be specified (CG-FEM or
DG-FEM) in ’solver type’ and all mesh information is loaded from files given
in ’volume conductor’. After the driver is created, the electrodes can be loaded
and projected onto the mesh.

forward config = {
’solver’ : {
’reduction’ : 1e−9
},
’subtract mean’ : ’true’

}
potential=driver.solveTDCSPointForward(forward config);

Next, the forward solution - the potential of the tES forward problem - is
computed for a pair of two electrodes. The ’reduction’ parameter indicates
that the iteration of the linear solver should stop, when the relative reduction
of the l2-norm of the residuum is smaller than 10−9.

from analytical tES import analyticalTESsolution

analyticalSolution = analyticalTESsolution(radii,

conductivities , anode pos , cathode pos ,

position , polynomials);

As reference, we then compute the analytical solution. The analytical solution
is not yet integrated into duneuro. It is a Python function called via the
Python script.

opt config = {
’solver’ : {
’reduction’ : 1e−9
},

}
tdcsMatrix=driver.computeTdcsMatrix(opt config);
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Finally, the optimization matrix is computed for a set of electrodes. The
’reduction’ parameter is the same as in the forward solution. We made a direct
comparison to the duneuro-predecessor SimBio 5 for the tES optimization
matrix AAA with the CG-FEM - other methods are not implemented in SimBio
- and we were able to generate the same optimization matrices for all used
models.

5https://www.mrt.uni-jena.de/simbio
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