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1 Abstract

1 Abstract

The aim of this thesis is to analyse the accuracy of two different tools, duneuro
and SimBio, for the computation of the Magnetoencephalography (MEG) forward
problem. Therefore accuracy of analytical and numerical solutions and the compu-
tation times for different source approaches and sphere models are considered. For
duneuro, a new and more realistic simulation of the sensor coils is implemented
using integration points.
In the first part the accuracy of the analytic solutions of duneuro were tested for
different parameter changes in the setup like the distance between the sensors and
the head, the size of the sensor coils and the integration order of the sensors.
In the second part of this thesis the numerical solutions for both tools were com-
pared for radial and tangential sensors. For duneuro it is also analysed for which
sensors it would be useful to be simulated more realistic, using higher integration
orders.
In the last part the computation times of both tools for the transfer matrices in two
different sphere models and the leadfields with different source approaches like the
Venant, Partial integration and Subtraction approach were compared.
In conclusion it was shown, that both tools deliver fast and accurate solutions for the
MEG forward problem, while both have their advantages and disadvantages. Also it
could be shown that for some sensors in duneuro a higher integration order could
be advisable and that the computation times of the transfer matrices and leadfields
in SimBio are faster than those of duneuro while having the same accuracy.
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3 Introduction

3 Introduction

One of the most complex organized structure known to exist and for us the most
important one, is the human brain.Therefore one of the most important goals of
research in medicine is to understand the human brain and neurological diseases,
e.g. epilepsy better. Knowledge about the complex processes in the brain is manda-
tory to develop techniques for the treatment of brain diseases. There are many
different neuroimaging techniques to get an in vivo insight into the human brain on a
macroscopic scale. The different techniques can be devided in two groups regarding
their properties. The first group contains technologies to display the anatomical
structure of the brain and in the second there are technologies for the imaging of
brain functions.30

Two frequently used imaging technologies are introduced in this thesis. In electroen-
cephalography (EEG), the brain activity is detected by voltage measurements on
the scalp surface. A main advantage of this technique is given by its high temporal
resolution while being noninvasive. Therefore the brain activity can be measured
without direct contact itself, which makes it one of the standard methods in children,
infant and even neonate brain research.13,20

The magnetoencephalography (MEG) measures the magnetic field generated by
the brain. Both MEG and EEG are unique regarding the millisecond range time res-
olution allowing a direct relation between the activity of the brain and the measured
signal at the sensors.6,19

An important feature of EEG and MEG is, that combined MEG/EEG also called
MEEG measurements provide the complementary information of both technologies
and source reconstructions that outperform the ones provided by both technologies
separately.10,4

To reconstruct the source inside the brain, which produces a measurable electric and
magnetic field, the inverse problem of MEG/EEG has to be solved. The accuracy of
the MEG/EEG inverse problem depends on the forward solution which models a
field on the head surface for one specific dipole. Therefore increasing accuracy of
the forward solution is mandatory.23
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4 Physiological Background

4 Physiological Background

In this chapter the cells of the human brain which are able to generate electric and
magnetic fields measured by EEG and MEG will be explained.
The cerebral cortex, which is the outermost layer of the brain contains at least 1010

nerve cells or neurons. These neurons can differ in size, but all of them have the
same anatomical structure, shown in Figure 4.1.

Figure 4.1: Schematic display of a neuron18

Neurons are the active units in a vast signal handling network with approximately
1014 interconnections or synapses. The processing of information in the brain is
done by small current flows produced by thousands of neurons in the neural system.
As known from electrodynamics this current flow creates a weak magnetic field.14

Each neuron can be divided into dendrites, the soma and the axon. The neurons
form a cultivating network and each has about 7000 synaptic connections to other
neurons. The signal transfer is done via chemical transmitters from the axon of
one neuron to the dentrites of another. This process is done on the rise and fall of
electric potentials at the cell membranes. Due to the potential difference between
the membranes ionic currents are flowing inside and outside the neurons forming

2



5 Magnetoencephalography (MEG)

intra- and extracellular ion currents. The signal transfer is dominated by two major
patterns of membrane potentials which are action potentials and post-synaptic
potentials.
If the pre-synaptic neuron reaches a threshold potential at the axon hill, an abrupt
rise and fall of the membrane potential arises. This action potential propagates
through the axon and evokes the dumping of neurotransmitters at the pre-synaptic
membrane of the attached synapses. Due to the diffusion of these transmitters into
the membranes of post-synaptic neurons a potential change is caused which is the
post-synaptic potential. The sum of various of these potential changes can initiate a
new action potential in the post-synaptic neuron and the signal is passed on. One
single action potential does not evoke an exploitable EEG signal, but the nearly
simultaneous creation of post-synaptic potentials of thousands of neighbouring and
similarly oriented neurons does result in a measurable, dipolar electromagnetic
field. The essential contributions of the EEG/MEG signals originates from the
hippocampus and the amygdala, because these have the highest amount of similar
oriented neurons called pyramidal cells.30

5 Magnetoencephalography (MEG)

Magnetoencephalography (MEG) exists for up to 60 years now and is an important
clinical tool for measurements of the human brain functions. The main use of MEG
is the recording of spontanious activity and evoked fields for which a sufficient
signal-to-noise ratio (SNR) is obtained.15

First clinical relevant spontaneous MEG was possible with the introduction of mul-
tichannel instruments covering the whole scalp, but since magnetic fields of the
human brain have a very small amplitude of approximately 10−15 to 10−11 Tesla (T)
it was technically challenging. Furthermore, elimination of artefacts is a huge topic
for MEG, even if it is less sensitive to muscle artefacts than Electroencephalography
(EEG).9

In the 1990s whole-scalp MEG systems were introduced which made it possible to
measure the magnetic field outside the head in a single measurement and not over
several days using serial mapping. Nowadays, MEG systems can consist of up to
300 magnetic field sensors. The main parts of this sensors are superconducting
quantum interference devices (SQUIDs), flux compensators to couple the field to
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6 The EEG Forward Problem

(a)

(b)

(c)

(d)

Figure 5.1: Popular shapes of pick-up coils.32

the SQUIDs and the cryogenic vessel, containing liquid helium to cool down the
sensors.15

Usually the magnetic field is not measured directly by the SQUIDs but by supercon-
ducting pick-up coils. Those are located in a dewar as close to the head as possible.
Some popular shapes of these pick-up coils are shown in Figure 5.1.32

The source activity in the brain causes currents in the coils, which flow through the
pick-up coil which is close to the SQUID. The SQUID measures the magnetic flux
generated by the currents flowing through the pick-up coil.

6 The EEG Forward Problem

Searching for unknown sources by analysing a measured field is called the inverse
problem. This problem can only be solved, if one can handle how the fields arise
from a known source. This is called the forward problem.26

This chapter will introduce the partial differential equation (PDE) known as the
forward problem of EEG. The start will be a short introduction of the Maxwell

4



6 The EEG Forward Problem

equations in a simplification called the quasi-static approximation and in the end a
Poisson equation with Neumann boundary conditions for the electric potential will
be received.

6.1 Quasi-Static Approximation

The quasi-static approximation of the Maxwell equations is derived following the
ideas of Hämälainen et al. (1993).14

The Maxwell equations and the continuity equation ∇ · J = −∂ρ/∂t can be used to
calculate the electric field E and the magnetic field density B of the human brain, if
the conductivity σ and the generators of electric currents in the brain are known. J
and ρ denote the total current density and the charge density.
The Maxwell equations can be simplified by noting, that the permeability of tissue in
the head is the same as in free space, which leads to µ = µ0. The Maxwell equations
now take the form

∇ · E =
ρ

ε0
(6.1)

∇× E = −∂B
∂t

(6.2)

∇ · B = 0 (6.3)

∇× B = µ0

(
J + ε0

∂E
∂t

)
, (6.4)

where ε0 denotes the permittivity of free space. In a passive nonmagnetic medium,
J contributes the ohmic volume current σE and the polarization current ∂P/∂t to

J = σE +
∂P
∂t

,

where P is the polarization. Most of the times, in neuromagnetism cellular electrical
phenomena contain frequencies below 1 kHz. If an electromagnetic phenomena at
frequency f with uniform σ and ε is considered an electric field of

E = E0(r )exp(i2πft) (6.5)

5



6 The EEG Forward Problem

is received. Equation 6.4 and P = (ε− ε0)E result in

∇× B = µ0

(
σE + (ε− ε0)

∂E
∂t

+ ε0
∂E
∂t

)
. (6.6)

In the quasi-static approximation of the Maxwell equations, ∂E/∂t and ∂B/∂t are
not treated as source terms for the calculation of E and B. For this approximation
to be valid time-derivative terms have to be small compared to the ohmic current:
| ε∂E/∂t |�| σE | or 2πf ε/σ � 1.
In the human head we measure values in the order of σ ≈ 0.3 Ω-1m-1, ε = 105ε0,
therefore f is most often smaller than 100 Hz and definitively smaller than 1 kHz
which makes 2πf ε/σ = 2 · 10−3 � 1 valid assumptions. In that way ∂E/∂t can be
assumed as negligible.
This is also valid for ∂B/∂t , which can be shown by using Equation 6.2 and 6.4 to
get

∇×∇× E = − ∂

∂t
(∇× B). (6.7)

This equation has solutions with spatial changes on characteristic length scales of

λc =| 2πfµ0σ
(

1 + i2πf
ε

σ

)
|−1/2 . (6.8)

With the mentioned parameters λc = 65 m is received which is bigger than the
normal diameter of the human head. This indicates that the effect of ∂B/∂t on E is
small, too. In other words the quasi static approximation of the Maxwell equations
seems justified for the human head.

6.2 The Mathematical Dipole as Source Function

Nowadays a common model of active neurons in the human brain is a cylinder with
a certain extend d . The cylinder is oriented parallel to the primary current density
JP . In addition, primary current density is constant in the cylinder and 0 everywhere
else. On one side of the cylinder a current I is injected, flows through the cylinder
and is discharged on the other side. The extend vector d (see Figure 6.1) is oriented
from one side of the injection to the other.

6



6 The EEG Forward Problem

Figure 6.1: The physical dipole.

The primary current density caused by neurons can be expressed as

JP = −Id
δ(x)
|ΩCyl |

, (6.9)

where |ΩCyl | is the volume of the cylinder and δ(x) is 1 for every x inside the volume
of ΩCyl and 0 outside of it. Equation 6.9 is used to describe the physical dipole.
In the farfield the field of two monopoles is nearly similar to the field of a dipole.A
common and valid approach is to represent spatially distributed sources by total
current contributions at one point. The collection of two or more proximit monopoles
can be used to model every randomly distributed dipole orientation.27,8,7 If the radius
of the cylinder is decreased the dipole can be seen as two monopoles with a very
small distance |d |. For such a set up and with

M := lim
|d |→0

Id , (6.10)

the expression for the mathematical dipole at x0 is received as

JP = Mδx0. (6.11)

6.3 Equation of the Forward Problem

Since the time-derivatives of E and B are treated as negligible in the quasi static
approximation, Equation 6.2 can be described as ∇ × E = 0.29 Therefore E is a

7



7 The MEG Forward Problem

gradient field and a scalar potential V which fullfills

E = −∇V , (6.12)

can be found.
In the following the current density J is divided into two parts. The first part is the
primary current density JP caused by active sources within the brain during neural
activity.33 The second part is called return current density, or secondary current
density JS = σE = −σ∇V and flows through the whole medium as an effect of the
macroscopic electric field.29 Hence

J = JP − σ∇V (6.13)

is called the total current density. To receive the equation for the forward problem
the divergence of Equation 6.4 has to be taken and ∇ · ∇ × B = 0 yields

∇ · (σ∇V ) = ∇ · JP = f in Ω, (6.14)

∂n(σV ) = 0 on ∂Ω (6.15)

where f is an abstract source term, Ω is the open and connected head domain and
∂Ω is the surface of the head domain, which is sufficiently regular.

7 The MEG Forward Problem

In both methods EEG and MEG measured signals are caused by the same neuronal
activity in the brain. So MEG and EEG are closely related.14 Also the forward
problem of MEG is closely related to the forward problem of EEG. To obtain magnetic
field density B the law of Biot-Savart and the total current density J are used. The
law of Biot-Savart is given by

B =
µ0

4π

∫
Ω

J(r ′)× r − r ′

| r − r ′ |3
dν ′. (7.1)

To obtain J in Equation 6.13 the potential V has to be found. The forward problem
of EEG, given in Equation 6.14 has to be solved.26

8



7 The MEG Forward Problem

7.1 The MEG Forward Problem in Simbio

The magnetic flux Φ through the area of a measurement coil C defined as

Φ =
∫

C
BdC, (7.2)

can be calculated in two different ways. It can be either calculated as the magnetic
field in the whole area or calculated as a magnetic flux through the surface enclosed
by the coil

Φ =
∫

C
BdC =

∮
∂C

Adr . (7.3)

Here A denotes the vector potential of the B field in Coulomb’s gauge and the
equality is due to Stokes’ theorem.30,35 In SimBio1 the magnetic flux is calculated
by the usage of the vector potential.35 To do so the vector potential A in Coulomb’s
gauge for which ∇ · A = 0 and B = ∇ × A applies, is introduced. Using A in
Equation 7.1 it can be rewritten to

A =
µ0

4π

∫
Ω

J(r ′)
| r − r ′ |

dr ′. (7.4)

Splitting the total current density again leads to

Φ =
∮
∂Ω

µ0

4π

∫
C

(JP(r ′)− σ∇V (r ′))
| r − r ′ |

dr ′dr . (7.5)

Using Fubini’s theorem and defining

C(r ′ :=
∮
∂C

1
| r − r ′ |

dr , (7.6)

simplifies this equation to

Φ = Φprimary + Φsecondary , (7.7)

Φprimary =
µ0

4π
〈M , C(r0)〉, (7.8)

Φsecondary = −µ0

4π

∫
Ω

〈σ∇V (r ′), C(r ′)〉dr ′, (7.9)

9



7 The MEG Forward Problem

where a dipolar source JP = Mδr0 is assumed and the primary and secondary
magnetic flux ΦP and ΦS are introduced.

7.2 The MEG Forward Problem in duneuro

In duneuro22,2,23 the magnetic flux is computed directly from the magnetic field
density B. So the magnetic flux is calculated using Φ =

∫
C BdC. It is further

assumed, that the magnetic field above the coil has only little variations and can
be seen as constant, so for x ∈ C, B(x) = B can be assumed. So one point of the
magnetic B field in the middle of the coil is computed and integrated over the coil.
When assuming a dipolar source and splitting the total current density into primary
and secondary current density as before, Equation 7.1 can be written as

B(r ) =
µ0

4π

∫
C

(JP(r ′) + JS(r ′)× r − r ′

| r − r ′ |3
d3r ′

=
µ0

4π
M × r − r ′

| r − r ′ |3
− µ0

4π

∫
C
σ∇V (r ′)× r − r ′

| r − r ′ |3
d3r ′

= BP(r ) + BS(r ). (7.10)

Hence, the magnetic B field can be split into a primary BP and secondary BS field.
The primary field can be calculated analytically for a specific mathematical dipole,
while the secondary field has to be calculated numerically, since it depends on the
electric potential V.23

7.3 Integration Points for duneuro

Since the magnetic field over the coil is not neccesarily constant and to reduce the
error resulting from this assumption integration points on the coil, following the ideas
of B.J. Roth and S. Sato (1993) are introduced.25

A two-dimensional circular coil, with radius a, is assumed. In polar coordinates the
coil lies in the center of the r − θ-plane. By approximation of the normal component
of the magnetic B field Bz as a weighted sum with N weighted points, leads to

∫ a

0

∫ 2π

0
Bzrdrdθ =

N∑
i=1

wiBz . (7.11)

10



7 The MEG Forward Problem

wi are the weights of the magnetic field component Bz on different positions on the
coil. The approximation in Equation 7.11 is accurate for zeroth order, if the sum
of the wi equals the area of the circle, πa2. Since the coil lies in the center of the
coordinate system, first order functions (x,y) integrate to zero and therefore first
order accuracy requires

N∑
i=1

wixi =
N∑

i=1

wiyi = 0 (7.12)

which can be satisfied, if xi and yi are chosen symmetrically.
For an accurate approximation of second order polynoms (x2,xy ,y2) three integration
points (N = 3) are necessary to fullfill the conditions in Equation 7.11 and 7.12.
wi has to be set as wi = πa2/3. The three points are positioned symmetrically
with θi = i2π/3 at a radial distance ri = r . The condition in Equation 7.12 for the
second order functions (x2,y2) is fullfilled if the right side is equal to these functions
integrated over the circular coils and therefore equal to πa4/4. This yields

3∑
i=1

wix2
i =

πa2

3
r 2

3∑
i=1

cos2(θi) =
πa4

4
(7.13)

which is satisfied if r = a/
√

2. Because of its symmetry, this is sufficient for function
(xy), too. For formulas of higher orders this can be done analogously. The positions
of the integration points from order 1 to 7 are shown in Figure 7.1.
The values for the integration orders from order 1 to 7 can be found in Table 7.1.
As default the first integration order is used in duneuro with only one integration
point. The other integration orders were implemented in this work, to test if higher
integration orders are necessary. By doing so, the reduction of the error along with
this approximation was validated.

11



7 The MEG Forward Problem

Figure 7.1: Positions of the integration points for: a) first order; b) second order; c)
third order; d) fourth order; e) fifth order; f) seventh order.25

Table 7.1: Values for the integration formulas.25

Integration Points Angle Radius Weighting
Order N θi ri wi

1 1 0 0 πa2 i = 1
2 3 i2π/3 a/

√
2 πa2/3 i = 1, ..., 3

3 4 iπ/2 a/
√

2 πa2/4 i = 1, ..., 4
4 6 i2π/5 0.81650a 0.15πa2 i = 1, ..., 5

0 0 0.25πa2 i = 6
5 7 iπ/3 0.81650a 0.125πa2 i = 1, ..., 6

0 0 0.25πa2 i = 7
7 12 (i − 1/2)π/2 0.45667a 0.12321πa2 i = 1, ..., 4

iπ/2 0.86603a 0.074074πa2 i = 5, ..., 8
(i − 1/2)π/2 0.91100a 0.052715πa2 i = 9, ..., 12

7.4 MEG Forward Problem for simplified models

In simplified models, like the multi-layer homogeneous sphere model exact analytical
solutions for the MEG forward problem as shown in Sarvas et al.(1987)26 and
Ilmoniemi et al. (1995)16 exist. For a multi-layer homogeneous sphere model the
analytical solution is derived following the ideas of Sarvas et al.(1987).26

It is assumed, that JP is caused by a current dipole inside the head domain Ω.
Outside of the head the total current density vanishes and according to Equation 6.4
and the quasi-static approximation of the Maxwell equations we have ∇× B = 0.

12



7 The MEG Forward Problem

Therefore the magnetic field outside of the head can be described by a magnetic
scalar potential U with

B = −µ0∇U. (7.14)

By that, an expression for U is received if the position r is fixed outside the head
and create a line integral for ∇U from 0 ≤ t ≤ ∞ and along the radius r + ter . Since
the potential vanishes at infinity,

U(r ) = −
∫ ∞

0
∇U(r + ter ) · erdt

=
1
µ0

∫ ∞
0

Br (r + ter )dt

= − 1
4π

M × r0 · r
F

(7.15)

is received, where we used, that for a dipole in the homogeneous space the magnetic
field density B can be expressed by

B(r ) =
µ0

4πσ
M × r − r0

| r − r0 |3
. (7.16)

F is defined as F = a(ra + r 2 − r · r0), a = r − r0, a =| a |, r =| r |. Since the potential
U outside of the head domain Ω does not depend on the conductivity σ the magnetic
B field is not depending on the conductivity, too. Applying the expression for U on
Equation 7.14, we obtain

B(r ) =
µ0

4πF 2 (FM × r0 −M × r0 · r∇F ), (7.17)

with ∇F = (r−1a2 + a−1a · r + 2a + 2r )r − (a + 2r + a−1a · r )r0, as the analytical solution
of the magnetic field for a multi-layer homogeneous sphere model.
From Equation 7.17 three important properties for the magnetic B field can be
derived. First the field does not depend on the conductivity of the head domain and
Ilmoniemi (1995) has shown that radial anisotropy does not have an effect on the
external field. Second, for radial sources the B field outside the head vanishes due
to the cross product. Third, the normal projection of BS is zero for any r outside of
the head domain Ω.
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8 The Finite Element Method (FEM)

There are a few different methods to solve the EEG forward problem. The most
extensively used numerical method is the boundary element method (BEM). This
technique does not allow to model realistuc tissue conductivity anisotropy and
hardly allows a realistic modeling of tissue conductivity inhomogeneity, too. Even
though BEM makes it possible to model up to 4 head tissue structures (scalp, skull
CSF, brain)28 an accurate representation of the CSF and of further compartments
such as grey and white matter would need a significant amount of computational
resources and memory.5,31 Whereas the finite element method (FEM) only has a
linear increase in computational resources for the sophisticated head geometry,
as shown by Wolters, Grasedyck and Hackbusch.35 Also to provides the needed
features for several fields of science and is an accurate modeling technique, resulting
in FEM usage in this work.20

8.1 FEM Solutions for the EEG

The FEM solves a differential equation by discretizing the base domain and separat-
ing it into smaller regions, the elements. For each element an appropriate ansatz
function is chosen. In this thesis tetrahedral elements are used. Common ansatz
functions are linear polynomial ansatz functions in the form of

(e)φh(x , y , z) = c1 + c2x + c3y + c4z. (8.1)

Since the electric potential is continuous the potential or his approximation has to
be continuous, too. To achieve this continuity the element based ansatz functions
are constructed by node based form functions ψk . For a single element the form
function then reads

(e)φh(x , y , z) =
p∑
i

ukψk (x , y , z), (8.2)

where p is the number of nodes per element and uk are the node variables. As
this equation has to be fulfilled for any node variable, the form function (e)ψk has to
fulfill specific criteria. Since Equation 8.2 has to be true for every choise of node
variables, the ansatz function has to be 1 at one specific point Pk and 0 for every
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other point Pj 6=k resulting in

(e)ψk (rj) =

{
1, if j = k
0, if j 6= k

(8.3)

The base domain ansatz function also called global form function ψk is created
by the ansatz functions for the single elements and nodes. Hence the only non-
zero components of the global form function are belonging to a element which is
constructed by the node k . Using the global form functions an ansatz for the electric
potential in the whole base domain can be written as

V (x , y , z) =
n∑
k

ukψk (x , y , z). (8.4)

To apply Galerkin’s method the ansatz is inserted into the partial differential equation
6.14. For an arbitrary choice of the node variables the differential equation will not
be solved perfectly, but there will be a residuum R(x , y , z) in the form of

R(x , y , z) =
n∑
k

uk∇ · (σ∇ψk (x , y , z))−∇ · JP . (8.5)

Following the method of weighted residues the variables uk are chosen so that the
weighted residuum integrated across the whole base domain Ω is zero∫

Ω

R(x , y , z)wjdΩ = 0 j = 1, ..., n. (8.6)

Here wj are the weighting functions and in Galerkin’s method these are chosen
equal to the form functions wJ = ψj . Applying Green’s formula and multiplying with
-1 results in

n∑
k

∫
Ω

(σ∇Vk ) · ∇ψjdΩ︸ ︷︷ ︸
≡Kij

+
∫
Ω

(∇ · JP)ψjdΩ︸ ︷︷ ︸
≡−Jj

= 0. (8.7)

The surface integral of Green’s formula is zero because of the homogeneous
boundary condition of the forward problem. Kij is called the stiffness matrix. With
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this definition of the stiffness matrix, the potential vector V and the source vector J
Equation 8.7 can be rewritten to

K · V = J. (8.8)

Solving this equation leads to the electric potential V at the nodes of the finite
element mesh. The stiffness matrix K depends on ψk and therefore has only non-
zero elements if its nodes i and j are of the same finite element. Due to this and
the fact, that K is symmetric, the equation system can be handled on a common
desktop computer for finite element meshes with thousands of nodes.30

8.2 FEM solution for the MEG

The magnetic flux can be split into a primary and secondary part. Since the
secondary magnetic flux can be calculated analytically only the primary flux from
Equation 7.9 has to be calculated using the finite element method. The ansatz
Equation 8.2 is applied for the electic potential first, giving

ΦS = −µ0

4π

n∑
k=1

uk

(∮
∂C

σ∇vk (r ′)
|r − r ′|

dCdr
)

︸ ︷︷ ︸
Sjk

. (8.9)

S is called secondary magnetic flux integration matrix.24 The entries of S can be
interpreted as the secondary magnetic flux measured at sensor j caused by a unit
potential at node k . Again Equation 8.9 can be rewritten as

SV = ΦS. (8.10)

In conclusion to compute the secondary magnetic flux the electric potential at every
node of the finite element mesh has to be calculated, first.

8.3 Source Models for FE Methods

To solve the EEG forward problem it was assumed, that the sources in the human
brain are in shape of mathematical dipoles. One of the main issues of the FE ap-
proaches is to handle the singularity in Equation 6.11. Three common approaches
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to handle this are the direct partial integration and Venant approach and the indi-
rect Subtraction approach.17,11,37,36 In this section the Venant direct approach is
introduced.

8.3.1 The Venant Direct Approach

The Venant direct approach follows the principle of St. Venant.7 The principle of
St. Venant describes, that in some distance from a source, small or fine load
applications do not influence the measured field. Therefore the dipole is replaced
by a load of monopoles on all neighbouring FE nodes so that the dipolar moment
is conserved. Therefore the source distribution p =

∫
(x − x0)ρ(x)dx for the dipole

moment is used. The monopoles are placed on k-1 neighboring nodes x2, x3, ..., xk

of the node x1 which is closest to the dipole position in x0. Only vertices of elements
are used which share an edge with the element of x1 leading to 16 vertices for
tetrahedral meshes and 27 for cubic meshes.7 The monopole sources hold a
strength qi depending on the distance to x0. Arbitrarily Small distances lead to high
loads and can lead to numerical instabilities, therefore no monopole is placed on
x1 Approximating the mentioned source distribution by a monopole distribution and
denoting the first Moment with 1T leads to

1T = p =
k∑

i=2

(xi − x0)qi =
k∑

i=2

∇xiqi . (8.11)

Next a suitable reference length aref is chosen to scale the length so that
∇x/aref < 1∀i = 2, ..., k .. For general moments of higher order lT , l ≥ 0, this yields

(l T̄ )j =
k∑

i=2

(∇x̄i)l
jqi , j = 1, 2, 3, (8.12)

where the bar indicates scaled values. For 0T represents the sum of charges which
has to be zero, because there may not be any monopole contributions in the far
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field. As the zeroth order all odd moments vanish, too. This yields
(0T )j

(1T )j
...

(nT )j


︸ ︷︷ ︸

t̄j

=


(∇x̄1)0

j · · · (∇x̄k )0
j

(∇x̄1)1
j · · · (∇x̄k )1

j
... . . . ...

(∇x̄n)1
j · · · (∇x̄k )n

j


︸ ︷︷ ︸

X̄j

·


q1

q2
...

qn


︸ ︷︷ ︸

q

. (8.13)

For a given dipole moment p the moments l T̄ can be computed up to order 2 with

l T̄ =
1− (−1)l

(2 ∗ aref )l · p. (8.14)

To receive a value for the vector q a matrix (W̄j)(m,s) = (∇x̄m)rδm,s for r = 0 or 1 is
defined. The vector q can now be received by minimizing the functional

Fλ(q) = ‖t̄j − X̄jq‖2
2 + λ‖W̄jq‖2

2. (8.15)

In the first term of the functional the difference between the original and approxi-
mated moment is calculated, while the second sanctions loads of large values for
the absolute value | qi | and ensures the uniqueness of the solution. The vector q is
given by

q =

 3∑
j=1

(X̄ T
j X̄j + λW̄ T

j W̄j)

−1

·
3∑

j=1

X̄ T
j t̄j . (8.16)

λ should be chosen as small as possible to ensure that the desired moment is
approximated accurately, but not to small because otherwise it causes an indetermi-
nation of the equation system.30

To solve the EEG forward problem the certainty that the first Maxwell equation
states is used. The divergence of the electric field reveals his sources and sinks
and the divergence of the primary current density is given by the current sources.
This lead to Equation 8.17.

∇ · JP =
k∑

l=2

qlδxl . (8.17)
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To handle the source term in the EEG forward problem, Equation 6.14 is integrated
over the whole head domain Ω and multiplied with a linear FE basis function φj as
described in Equation 8.2. Replacing the electrical potential by its projection and
using partial integration on the left hand side yields

∑
j

Vj

∫
Ω

σ∇φj · ∇φidr =
k∑

l=2

∫
Ω

qlδxl · φidr =
k∑

l=2

qlδil . (8.18)

The last equality sign results from the fact, that the ansatz function φi is 1 only on
node i and 0 elsewhere. Equation 8.18 can be rewritten, using the stiffness matrix
K and the equation system

KV = JV (8.19)

is received, with the right hand side vector

(JV )i =

{
ql , if i = node(l),
0, otherwise .

(8.20)

8.4 Transfer Matrices

Even though the computers nowadays have several GB of random access memory
(ram) the forward computation of EEG with the mentioned approaches takes a lot of
time if the mesh has a common resolution of a few millimeters. Transfer matrices
are one tool to drastically reduce this computation time.35,34

In the equation system in Equation 8.19 the vector V has as many entries as the FE
mesh has nodes. For common meshes this can be up to a few million unknowns.
The main idea of the transfer matrix is, not to compute the potential vector on every
node, but only at the sensor nodes, because these are the only points of interest.
Therefore a matrix R called restriction matrix is introduced to assign the potential V
to the potential of the node next to the measurement sensors and store this in V eeg.

V eeg = R · V (8.21)

Furthermore, the restriction matrix is defined to be only non-zero in R(i ,j) if the FE
node j corresponds to the electrode i + 1. The first electrode then is the reference
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electrode and R has only one none-zero entry per line. The transfer matrix T is
defined as

T = R · K−1 (8.22)

and this definition yields

TJ = (RK−1)J = R(K−1J) = RV = V eeg. (8.23)

Concerning this, the transfer matrix maps the right hand side vector to the unknown
electrode potentials. This is very important since it reduces the computational very
expensive solution of thousands of equation systems to a matrix multiplication with a
sparse vector for the Venant approach and a fully populated one for the subtraction
approach.
Unfortunately the computation of the inverse of the stiffness matrix is not doable
and the transfer matrix is computed using the relation

KT T = RT (8.24)

and solved iteratively line by line. This relation results from Equation 8.22 if K is
multiplied from the left side and transpose it.
To calculate the transfer matrix in MEG the restriction matrix has to be replaced by
the secondary flux Matrix S and the secondary flux ΦS is given by ΦS = T megJ.30

9 Error Measures

To evaluate the accuracy of the numerical approaches two error measures were
used. These are the relative difference measure (RDM) and the logarithmic magni-
tude error (lnMAG) defined by

RDM(V num, V ref ) =
∣∣∣∣∣∣∣∣ V num

||V num||
− V ref

||V ref ||

∣∣∣∣∣∣∣∣ , (9.1)

lnMAG(V num, V ref ) = ln
(
||V num||
||V ref ||

)
(9.2)
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where V num and V ref are the numerical and reference solution and ||V || :=
√
Σs

i=1u2
i

is the Euclidian norm. The RDM measures topography errors of the solution and is
not influenced of errors in the overall magnitude. A higher RDM indicates a worse
source localization and connectivity estimation. The lnMAG gives the difference of
the overall magnitudes. Both error measures have optimal values of 0. A lnMAG
of 0.01 is equal to a percentage change of 1 % and an RDM of 0.01 is equal to a
percentage change of 0.5 %. Therefore, the percentage difference of the lnMAG
can be calculated by 100·lnMAG.

10 Models and Sensors

10.1 Used Sphere Models

In this thesis spherical volume conductors with different numbers of layers or com-
partments are used. The most simple one is the single layer sphere model where the
whole head has the same isotropic conductivity of σ = 0.33 S/m which represents
the conductivity of the human brain.3 The radius of this sphere is r = 92 mm as
shown in Figure 10.1a
This model is simulated by a FEM mesh with 801,633 nodes and nearly 5 million
elements. Another simple but more complex model to simulate the human head is
shown in Figure 10.1b. This multi layer sphere model consists of four layers with
different conductivities. From the inside to the outside those simulate the brain, the
cerebro spinal fluid (CSF), the skull and the scalp. The isotropic conductivities of
these compartments and their radii are shown in Table 10.1.
For this type of model two different FEM meshes were used. The first one was used

Table 10.1: Radii and conductivities used in the multi layer there model.
scalp skull CSF brain

Radius 92.0 mm 86.0 mm 80.0 mm 78.0 mm
Conductivity 0.33 S/m 0.0042 S/m 1.79 S/m 0.33 S/m

for the Venant and Partial integration approach and also has 801,633 nodes and
nearly 5 million elements. The second one was used for the Subtraction approach,
because its computation is very expensive. Therefore the second model was cre-
ated to be very sparse at the center of the model and very fine at the boundary of

21



10 Models and Sensors

(a) Single layer sphere model. (b) Multi layer sphere model.

Figure 10.1: Displays of the single layer and multi layer sphere model.

the spheres. It only consists of 518,730 nodes and more than 3 million elements.
These models can be extendet further by adding more layers like the white and grey
matter of the brain where the white matter can be isotropic or anisotropic.12 Further
one can split the skull into the spongiosa surrounded by the compacta, because the
conductivity of the spongiosa is considered to be much higher.

10.2 Sensor Configurations

Two different sensor configurations were used. For both configurations 258 magne-
tometers were equally distributed around the sphere to simulate the magnetic flux.
As the head models, the center of the sensors were also distributed on a sphere
with a radius of 110 mm. Therefore, the distance to the head surface is about 18 mm
which is approximately the realistic distance of the sensors to the head surface in a
MEG machine. Also like in a realistic MEG machine the radius of the sensors was
chosen to be 9 mm. The difference between the two sensor configurations lies in the
direction of the sensors. In the first configuration shown in Figure 10.2a the sensors
were oriented radially to the head surface and in the second shown in Figure 10.2b
they were oriented tangentially. In a realistic MEG machine the sensors are also
oriented radially, but the tangential configuration helps to examine the numerical
errors of the computations.

22



11 Analytical Studies

(a) Configuration of radial sensors. (b) Configuration of tangential sensors.

Figure 10.2: Display of the different sensor configurations with 258 magnetometers
equally distributed around the sphere.

11 Analytical Studies

To reduce the errors caused by numerical calculations and to analyse the influence
of the number of integration points per sensor on the magnetic flux density B, in this
section only analytical solutions were compared.
To analyse all influences of the sensors to the error in the magnetic flux density three
different parameters were analysed. First, the integration order of the sensors in
duneuro and therefore the number of points per sensor was increased. Second,the
distance between the sensors and the head was decreased and lastly the size of
the sensors was increased.

11.1 Increasing the Integration Order

In this section the influence of the integration order in duneuro or in other words the
number of points used to simulate a sensor on the RDM and lnMAG is analysed.
To implement the higher integration orders into the code of duneuro a new Matlab
script was written. The script is using the sensor positions and projections of the
first integration order and needs the radius and integration order of the coil to
calculate the new sensor points as described in subsection 7.3. The positions
of the sensors in the first integration order are the center points of the sensors
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of higher integration order. Since the sensors are treated as plain sensors each
point of the new sensor has the same projection as the center point. Also for
each point a weight is calculated to determine how much the magnetic flux of each
point contributes to the over all magnetic flux per sensor. Each point of the new
sensors is treated as a new sensor for duneuro. This means that if in the first
integration order duneuro has to solve the forward problem for 258 sensors it has to
solve the same for 3× 258 = 774 sensors if the second integration order is used,
because the second integration order contains 3 integration points per sensor. After
computing the forward problem for all sensors the computed magnetic flux densities
are weighted with the calculated weights and the values of all sensor points are
added together to receive the over all magnetic flux density per sensor.
The distance of the sensors to the head and the radius of the sensors is kept
constant at 110 mm and 9 mm. The results for the RDM and lnMAG are shown in
Figure 11.1.
The RDM and lnMAG both get significant smaller for higher integration orders.

While for the first integration order the median of the RDM still goes up to 3.5 % in
integration order 2 which has only 3 points per sensor it only reaches a maximal
value of 0.5 % which is a significant improvement of the solution. Also a huge
improvement is, that for higher integration orders the errors are increasing less and
for higher eccentricities than for the first order and with an integration order of 4
which has 6 points per sensor the error is nearly zero for eccentricities of 0.97.
The same counts for the lnMAG where the median for integration order 1 increases
up to 7 % and in integration order 2 vanishes nearly entirely with a small difference
from 0 %.

11.2 Decreasing the Sensor Distance

To analyse the error increase of the magnetic flux density when the distance between
the sensor and the head is decreased different analytical solutions were calculated
for sensors with a distance from 18 to 2 mm from the head surface. For all distances
RDM and lnMAG were calculated between the analytical solution of integration order
1 and the analytical solution of integration order 7 as the reference solution. The
results are shown in Figure 11.2.
For superficial sources with a high eccentricities the median of the RDM increases

rapidly to up to 12 % for sensors directly at the head surface and the median of
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Figure 11.1: Calculated median of RDM and lnMAG for different integration orders
and integration order 7 as reference solution for analytical solutions of
duneuro on the left and boxplots on the right. The distance to the head
surface is constant at 18 mm and the sensor radius at 9 mm.
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Figure 11.2: For decreasing sensor distances to the head calculated median of
RDM and lnMAG between analytical solutions of duneuro in integration
order 1 and integration order 7 as reference solution on the left, and
boxplots on the right.
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the lnMAG even increases to a maximum of 27 %. For more realistic systems with
a distance between 10 and 18 mm the median of the RDM is getting closer to
acceptable values with maximum values of 6 and 2 %. The lnMAG is way better
with values between 2.5 and 2 %.
Furthermore, for higher eccentricities the boxplots are also getting wider, which
implifies, that there may be a few sensors causing bigger errors than most of the
others, leading to higher medians. This splitting is also getting wider for smaller
distances between the head and the sensors.
In conclusion it seems like the system is very sensitive to changes in the sensor
distance to the head and small variations in this parameter can lead to significant
errors for superficial sources which are the most relevant in the MEG.

11.3 Increasing the Sensor Radius

For different MEG machines the sensor radius can vary so in this section the
radius of the sensors was increased gradually from 9 to 27 mm. The distance
between the center of the Sensors and the head was kept constant at 18 mm and
as in subsection 11.2 the RDM and lnMAG were calculated between the analytical
solution of integration order 1 and the analytical solution of integration order 7 as
the reference solution.
As shown in Figure 11.3 for the biggest analysed sensor radius of 27 mm the median
of the RDM increases to values up to 22 % and the median of the lnMAG goes
up to even 43 %. One reason for such a huge error is that for point sensors as in
integration order 1 the whole sensor can be seen as radial while for integration order
7 the sensor is simulated using 12 integration points and therefore gets a real extend.
This means, for big sensors the sensor can not be seen as only radial but has some
tangential components which increase the errors. This is a main disadvantage of
point like sensors and the error of this disadvantage is not negligible.
For a realistic sensor radius between 9 and 13.5 mm the median of the RDM goes

up to 7 % and the median of the lnMAG to even 14 % and its minimum is even at a
few percent and does not reach zero. This significant error indicates, that higher
integration orders could be needed in duneuro.
An interesting observation in this study is, that the spreading of the errors is just
slightly increasing for bigger sensor radii as it can be seen in the box plots. The
reason for this could be, the distance from the head of 18 mm. For such a huge

27



11 Analytical Studies

Figure 11.3: For different sensor radii calculated median of RDM and lnMAG be-
tween analytical solutions of duneuro of integration order 1 and inte-
gration order 7 as reference solution on the left and boxplot on the
right.
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distance the main differences in the errors occurs in the sensors directly above the
source and therefore most of the sensors are creating the same errors leading to
small differences in the box plots. Still the spreading of the errors is increased for
sources of higher eccentricities.

11.4 Sensor Plots

To analyse on which sensors the biggest errors occur and if maybe just a few
sensors have to be simulated in higher integration orders the relative error

RE(V num, V ref ) =
∣∣∣∣V num − V ref

V ref

∣∣∣∣ (11.1)

between the magnetic flux density of different integration orders and integration
order 7 as reference solution was computed. In this scenario only one dipole with
an eccentricity of 0.97 was taken into account. The distance between the center of
the sensors and the head was set to 18 mm and the coil radius was chosen to be
9 mm.
The field distribution of the magnetic flux density B caused by the dipole is shown

in Figure 11.4. The calculated relative error for different integration orders of the
sensors is shown in Figure 11.5. For integration order 1 in Figure 11.5a the relative
error is the biggest for the sensors directly over the dipole and nearly negligible
for sensors further away. For integration order 2 in Figure 11.5b one can observe,
that the relative error of the sensors directly over the dipole is nearly zero, but for
some sensors further away in the direction where the dipole is pointing higher errors
appear. This can be explained by two effects. The first one is the numerical effect,
that the field on this sensors is nearly zero and therefore the relative error expands,
or the second one is the asymmetrically distributed integration points leading to
errors in the magnetic flux density for sensors near the dipole maxima.
Nevertheless Figure 11.5c shows, that for integration order 3 the errors at all sensors
are negligible compared to the errors for integration order 1. Therefore the magnetic
flux density near the dipole maxima should be computed using an even number of
points per sensor.
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Figure 11.4: Field distribution of the magnetic flux density B of one dipole with an
eccentricity of 0.97.

11.5 Field Distribution on a Single Sensor

In this section the field distribution over the sensor with the highest relative error is
analysed. The field distribution for 12 integration points is shown in Figure 11.6. The
field seems to change its polarity over the sensor and is changing from−6.4×10−15 T
to 2.5× 10−15 T.
Still the field is not symmetric over the sensor because the negative values are
much higher than the positive values. For a point like sensor like in integration order
1 of duneuro this still may result in a sensor which has a net magnetic flux density
of nearly zero while for a higher integration order like this the net flux density is
negative resulting in a huge error for the point like sensors.
In some cases it might occur that this has no effect on the over all magnetic flux
density, if the field in the middle of the sensor is zero and changing from positive
values on one side to negative values on the other. The negation of the counterpart
fields leads to an observed field of almost zero as for a point sensor. In most of the
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(a) (b)

(c) (d)

Figure 11.5: Relative error of the analytically calculated magnetic flux density B
between a) integration order 1 b) integration order 2 c) integration order
3 d) integration order 4 and integration order 7 as reference solution at
all 258 sensors for one dipole.
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cases as in Figure 11.6 the field on the one side of the sensor is not cancelling out
the field on the other side of the sensor and huge errors occur.

Figure 11.6: Field distribution of the analytically calculated magnetic flux density B
of a single dipole with an eccentricity of 0.97 at the sensor with the
highest relative error.

11.6 Summary

The influence of the sensor distance, its size and the used integration order for
simulation of the magnetic flux density on the accuracy of the analytical solution
was analysed for dipoles of different eccentricities. For superficial sources with
a high eccentricity the median of RDM and lnMAG are reaching significant error
percentages of about 12 % and 27 % for sensors with a distance of 2 mm from the
head surface and 27 % and 42 % for sensors in a distance of 18 mm from the head
surface but a sensor radius of about 27 mm. The errors for bigger sensors are
higher since the analytical solution of integration order 7 uses 12 integration points
per coil. For a coil with a radius of 27 mm the sensor can not be seen as absolutely
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radial because it has some tangential components leading to numerical errors even
in the analytical solutions.
For realistic sensor sizes between 9 and 13.5 mm the median of RDM and lnMAG
for superficial sources is also in a range of 7 % and 4 % or 11 % and 5 % which
represents not negligible errors. RDM and lnMAG resulting from realistic sensor
distances to the head (18 mm) are smaller with 2 % and 4 % but still not optimal.
Errors for superficial and even deep sources are reduced significantly by using
sensors with higher integration orders and giving more integration points per sensor.
Even the second integration order with only 3 points per sensor reduces the median
of the RDM and lnMAG from 3.5 % and 7 % for high eccentricities to 0.5 % and
nearly 0 %. For higher integration orders the errors are reduced even further and
from the third integration order on the errors get nearly negligible.
In plots of the relative error for all sensor and a single dipole in Figure 11.5 the main
reason for errors of superficial sources can be observed, occuring in the sensors
directly above the dipole. For higher integration orders this error is reduced. For
the second integration order most of errors in sensors directly over the source are
gone. Unfortunately because of the asymmetric distribution of integration points,
errors appear on positions where the field distribution of the magnetic flux density
is changing over the area of the sensor. For higher integration orders and even
numbers of integration points per sensor these errors disappear and the solution is
accurate leading to errors of nearly 0 %.
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12 Numerical Studies

After analysis of analytical solutions further investigations on the numerical errors
of the solutions were done. Therefore, the multi layer head model mentioned in
subsection 10.1 was used. First radial sensors are considered and the numerical
solutions of duneuro and SimBio are compared in accuracy and computational effort.
In the second part tangential sensors are considered to analyse the two different
computation methods for maximal numerical errors.

12.1 Radial Sensors

12.1.1 Comparison of Duneuro and Simbio for Radial Sensors

In this section the RDM and lnMAG were computed for 125 tangential oriented
dipoles on 76 different eccentricities in the inner sphere of the multi layer sphere
model which represents the brain. The sensor configuration consists of 258 radial
oriented sensors as shown in Figure 10.2a. As before RDM and lnMAG were
computed for analytical solutions of duneuro with integration order 7 as reference
solution, which contains 12 integration points per sensor coil. For both duneuro
and SimBio only the Venant approach was used to simulate the sources since this
provides the smallest computational effort for both tools and still leads to reasonable
errors. The Subtraction approach may lead to more accurate results but is compu-
tationally expensive and therefore not optimal to test higher integration orders in
duneuro which need more integration points.
For duneuro the numerical solution was computed in integration orders 1 to 4 with
up to 6 integration points per sensor and in SimBio the coils were simulated by 8
elements and therefore 16 points simulating the curvature at the edge of the coil.
RDM and lnMAG are shown in Figure 12.1.

As for the analytical data the coils of first integration order in duneuro, which
represent point like sensors, have even on low eccentricities much higher values of
RDM and lnMAG as other integration orders or data computed by SimBio. Sensors
with higher integration orders and sensors computed by SimBio show percentage
RDM and lnMAG errors of nearly zero for all eccentricities below 0.82. For higher
eccentricities the errors are getting more considerable as shown in Figure 12.2.
Higher integration orders lead to a significant reduction of the maximal RDM and

34



12 Numerical Studies

Figure 12.1: For radial oriented sensors calculated median of RDM and lnMAG from
125 tangential oriented dipoles per eccentricity on the left and boxplots
on the right. The numerical solutions of duneuro and SimBio were
calculated in a multi layer sphere model.
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Figure 12.2: Comparison of RDM and lnMAG of duneuro and SimBio for tangential
oriented superficial dipoles and radial oriented sensors in a multi layer
sphere model. For each eccentricity 125 dipoles were simulated. The
median is shown on the left and the boxplots on the right.
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(a) (b)

Figure 12.3: Relative error of the magnetic flux density B between the analytical so-
lution of duneuro with sensors of integration order 7 and the numerical
solution of a) duneuro with point like sensors, b) SimBio, for a single
superficial dipole.

lnMAG even for superficial sources. Still the numerical solution of SimBio with 8
elements and 16 points outperforms all sensors of duneuro with integration orders
smaller than 4. Therefore duneuro needs sensors with integration order 4 and 6
points per sensor to create a numerical solution that is accurate enough to outper-
form SimBio for superficial sources. RDM and lnMAG for this solution are nearly
0 % for all eccentricities and can be seen as marginal.

12.1.2 Sensor Plots

Differences in the numerical solution of point like sensors in duneuro and the
accurate simulated sensors of SimBio are more clearly by considering the relative
errors between those solutions and the accurate analytical solution of duneuro with
sensors of integration order 7 for one superficial source.
In Figure 12.3a the relative error of point like sensors in duneuro is shown. The
relative error for sensors right above the dipole goes up to 7 % while in SimBio (
Figure 12.3b) the relative error is even for those sensors insignificant.

In Figure 12.4 the relative error of sensors with integration order 1 to 4 and the
analytical solution with integration order of 7 is displayed. Errors for the first and
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second integration order are the same as for analytically calculated solutions in
subsection 11.4. Therefore, the numerical accuracy is improved by sensors with
second integration order while on the other hand new errors occur for sensors
which had no errors before. This leads to a huge disadvantage for this integration
order. This disadvantage can be prevented by using a symmetrical distribution of
integration points as in higher integration orders.
For integration order 3 the relative error of sensors right above the source is can-
celled out and as it has 4 symmetrically distributed points per sensor no errors occur
for sensors at the dipole maxima. Still as we know from subsubsection 12.1.1 the
4th integration order is needed to create more accurate results than the sensors of
Simbio.

12.1.3 Summary

As intended, point like sensors of first integration order in duneuro are connected
with huge errors, especially, for sensors that are right above the simulated dipoles.
For those sensors a more accurate simulation with more integration points can
lead to better results. On the other hand an asymmetric distribution of points as
in second integration order contains the risk of new errors for sensors at positions
where the magnetic flux density B is changing over the area of the sensor. For
the third integration order which uses a symmetric distribution of integration points
with 4 points per coil these errors are reduced, but the numerical solution is still
outperformed by the solution of SimBio which uses 8 elements and therefore 16
integration points to simulate the edge curvature of each coil.
In Figure 12.2 the solution of SimBio outperforms the solutions of duneuros integra-
tion orders 1 to 3 for all eccentricities and especially for superficial sources, which
are the more relevant sources in MEG. Only sensors with integration order 4, which
consist of 6 symmetrical distributed points per sensor the numerical solution of
duneuro outperforms the numerical solution of SimBio for superficial sources of high
eccentricity. Still SimBio provides accurate results with a maximal median of RDM
of 0.01 % and the maximal median of lnMAG of 0.005 %.
For sources deeper in the head both solutions produce errors that are negligible
which makes both solutions quite accurate.
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(a) (b)

(c) (d)

Figure 12.4: Relative error of the magnetic flux density B between the numerically
calculated solution of duneuro in: a) integration order 1 b) integration
order 2 c) integration order 3 d) integration order 4, and integration
order 7 as reference solution at all 258 sensors for one superficial
dipole.
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12.2 Tangential Sensors

In this section numerical errors of the solutions were maximised by using the tangen-
tial sensor configuration shown in Figure 10.2b. Therefore, the dipole configuration
used for the radial sensors was used with 125 tangential oriented dipoles on 76
different eccentricities. Again only the Venant approach was considered. Therefore,
a mesh with 801,633 nodes and nearly 5 million elements is used to compute the
numerical solutions.

12.2.1 Comparison of duneuro and SimBio for tangential Sensors

For different integration orders in duneuro and the solution of SimBio with 8 elements
and 16 points per coil RDM and lnMAG were computed. The solution for the coils of
duneuro with integration order 7 serves as reference solution. RDM and lnMAG are
shown in Figure 12.5. A remarkable difference in the errors of radial and tangential
sensors is, that for tangential sensors the errors for low eccentricities converge
towards infinity while for radial sensors errors approach to zero. An explanation for
this could be, that for deep sources the measured field is nearly zero. Since for
most of the sensors the dipole seems to be tangentially oriented, and for tangential
sensors the numerical error is more significant than for radial sensors leading to
small differences between the numerical and reference solution. This small differ-
ences between two values that are nearly zero lead to RDM and lnMAG having
huge values.
The second difference between the errors of the radial and the tangential sensors is,
that for tangential sensors the boxplots and therefore the spreading of the errors of
more superficial sources are getting smaller than for deeper sources, while for radial
sensors the spreading increases for superficial sources, still the median of the errors
for tangential sensors is bigger than for radial sensors due to the numerical errors.
For tangential sensors duneuro performs better than SimBio does. For SimBio the
median of lnMAG does not converge to values beneath 0.8 % for all eccentricities
while even for duneuro with first integration order the median of lnMAG shrinks to
zero. The median of RDM of both approaches is for all eccentricities above 1.0 %
and even for higher integration orders of duneuro. Even for higher integration orders
it gets up to nearly 2.0 % for superficial sources. This bigger errors for tangential
sensors could be caused by the resolution of the FE mesh, causing higher numerical
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Figure 12.5: Comparison of RDM and lnMAG of duneuro and SimBio for tangential
oriented dipoles and tangential oriented sensors in a multi layer sphere
model. For each eccentricity 125 dipoles were simulated. The median
is shown on the left and the boxplots on the right.
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errors, which are bigger than the improvement of higher integration orders. A higher
resolution could eliminate this errors.

12.2.2 Summary

For tangential sensors the median of the RDM and lnMAG for all integration orders
of the sensors in duneuro and for the sensors in SimBio is higher than the errors for
radial sensors. That is expected and can be explained by the higher numerical errors
of the tangential sensors. Because of these numerical errors deep sources create
errors approaching infinity because the magnetic flux density of those sources
is zero or nearly zero for most of the sensors and small variations between the
numerical and analytical solution lead to huge values for the RDM and lnMAG.
Also for all integration orders of duneuro the median of the RDM is getting bigger for
superficial sources and not even sensors of integration order 4 with 6 integration
points per sensor are reaching error values beneath 2.0 % for the RDM. Still the
box plots and therefore the spreading of the errors is getting smaller for high
eccentricities while it is getting bigger for radial sensors. Those errors could be
eliminated by a higher resolution of the FE mesh.
All in all SimBio and duneuro both create reasonable errors for superficial sources,
but duneuro outperforms SimBio for all integration orders and eccentricities. Still
one should mention that a new multipolar Venant approach was implemented in
Simbio recently, which might also be able to outperform the mixed moment Venant
approach of duneuro.21
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13.1 Computation Times for Transfer Matrices

Apart from errors of different computation tools, methods or approaches computation
times play an important role in this field of research. The numerical computation
of the magnetic flux density B can be split into two parts. In the first part of the
computation the transfer matrix is computed for the sphere model and the chosen
model and configuration of coils as described in subsection 8.4. Most of the time
this is the most time consuming part of the calculation, but the transfer matrix can
be used for every dipole configuration if the configuration of coils stays the same. In
the second part the computed transfer matrix is used to compute the leadfield. In
the case of MEG the leadfield displays the magnetic flux density measured in every
coil and for every dipole in the dipole configuration.
The computation times of the transfer matrices for duneuro with integration order 1
and therefore point like sensors and SimBio with Sensors consisting of 8 Elements
and 16 points for the two different sphere models and 258 Sensors are displayed in
Table 13.1.

Table 13.1: Computation times of the transfer matrices in duneuro and SimBio.
Sphere Model Calculator Sensors Computation Times

802k-4Layer Simbio 258 49 min
802k-4Layer Duneuro 258 64 min
519k-4Layer Simbio 258 30 min
519k-4Layer Duneuro 258 36 min

The difference in the computation times of SimBio and duneuro are just a few
minutes for both sphere models. Both methods compute the transfer matrices
for 258 in a reasonable time. But for duneuro multi threading was used in the
computations which means, that more threads on the cores of the CPU were used.
If multi threading is not used duneuro computes the transfer matrices 3 to 4 times
slower than SimBio, but the implementation of multi threading in duneuro is much
easier than in SimBio which makes it reasonable to use but not for SimBio.
For sensors with higher integration orders in duneuro the number of integration

points per sensor is increased. In duneuro the transfer matrix computes the magnetic
flux density in every sensor point and therefore consists of more lines for higher
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Table 13.2: Computation times of the transfer matrices in duneuro for different
integration orders.

Sphere Model Int. Order Sensors Points/Sensor Comp. Times
802k-4Layer 1 258 1 59 min
802k-4Layer 2 258 3 2 h 59 min
802k-4Layer 3 258 4 3 h 48 min
802k-4Layer 4 258 6 5 h 36 min

integration orders. In Table 13.2 it is shown, that the computation times of the
transfer matrices are increasing proportional to the number of the integration points
per sensor.
For the sensors of the 4th integration order the computation time of the transfer
matrix takes longer than 5 hours. Still the computation of such a matrix has to be
done only one time and therefore the computation time is still reasonable.

13.2 Computation Times for Leadfields

The second step in the computation of the magnetic flux density in the forward
problem of MEG is the computation of the leadfield matrix using the transfer matrix.
This matrix maps the magnetic flux density measured at every sensor for every
dipole distribution in the human head. The transfer matrix reduces this computation
time drastically for the leadfield, because it is not necessary to compute the potential
vector on every node, but only at the sensor nodes, because these are the only
points of interest. The computation times of duneuro and SimBio for different source
approaches are shown in Table 13.3.
As mentioned before for SimBio the Venant approach is much faster than both of

Table 13.3: Computation times of the leadfield in duneuro and SimBio.
Sphere Model Calculator Approach Time/Dipole

802k-4Layer Simbio Venant 0.0012 s
802k-4Layer Simbio Subtraction 46.301 s
802k-4Layer Simbio Part. Int. 1.515 s
802k-4Layer Duneuro Venant 0.0006 s
519k-4Layer Duneuro Subtraction 648.25 s
802k-4Layer Duneuro Part. Int. 0.00001 s

the other approaches. Due to the transfer matrix it only takes 0.0012 s to compute
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one dipole and a system of 9500 dipoles can be computed in 11.4 s. Compared to
the 46.3 s and the 1.515 s of the subtraction and partial integration approaches the
Venant approach is by far the fastest approach to compute a leadfield in SimBio.
In duneuro the Venant approach is with 0.0006 s per dipole and 5.7 s for a system
of 9500 dipoles nearly two times faster than in SimBio. Also the partial integration
approach is faster in duneuro than in SimBio and with 0.00001 s per dipole even
faster than the Venant approach. Since the solution of the subtraction approach
usually is more accurate than the solution of the Venant approach the best and
fastest approach to compute the leadfield in duneuro is the partial integration
approach. The subtraction approach with 648.25 s per dipole is way slower than in
SimBio and is to this point not optimised in duneuro therefore a analysis of 9500
dipoles should be done with one of the other approaches or with SimBio.
To analyse the increase in the computation times for sensors with higher integration

Table 13.4: Computation times of the leadfield with the Venant approach in duneuro
for different integration orders.

Sphere Model Int. Order Sensors Comp. Times Time/Dipole
802k-4Layer 1 258 5.7 s 0.0006 s
802k-4Layer 2 258 17.3 s 0.0018 s
802k-4Layer 3 258 23.1 s 0.0024 s
802k-4Layer 4 258 34.2 s 0.0036 s

orders in duneuro the computation times were compared for the Venant approach.
The computation times for integration orders 1 to 4 are shown in Table 13.4. As for
the transfer matrices the computation time of the leadfields increases proportional
to the number of integration points per sensor. That is expected, since the only
difference between these computations is the difference in the number of sensor
points and therefore the size of the transfer and leadfield matrix. Therefore the
time per dipole increases proportional to the number of integration points. For all
integration orders the computation times are still very fast and reasonable for the
used models and sensor configuration. Hence, the computation of higher integration
orders does not need significant more time than for lower integration orders.

45



13 Computation Times

13.3 Summary

For the computation of the MEG forward problem it is recommendable to compute a
transfer matrix once for each model and than the leadfield can be computed using
this transfer matrix. The computation times of the transfer matrices for SimBio and
point like sensors in duneuro do not differ much and are reasonable for both sphere
models. For SimBio the Venant approach is much faster than the other approaches
while it is still slower than the Venant approach in duneuro. Furthermore in duneuro
the Partial integration approach is even faster than the Venant approach which
normally performs better and is more accurate. A big disadvantage of duneuro
is, that until now the Subtraction approach is not optimised with regard to the
computation speed and therefore needs a lot of computation time.
For higher integration orders of duneuro the computation time of the transfer matrix
and also the computation time of the leadfield increases proportional to the number
of integration points. Since in duneuro a higher integration order only changes the
number of points per sensor and therefore only increases the size of the transfer
matrix.
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The solution of the MEG forward problem can be calculated in two different ways.
First using SimBio to compute the magnetic flux by a line integral over the current
density enclosing the edge of the sensor coil. The magnetic flux density is approxi-
mately the magnetic flux multiplied by the area of the coil. The second one which is
integrated in duneuro computes the magnetic flux density by integrating the current
density over the area of the coil.
This thesis demonstrates, that both ways and both tools deliver accurate methods to
solve the MEG forward problem. In SimBio the edges of the sensors are simulated
realistic using 8 elements and 16 points at the edge of the sensor while in duneuro
point like sensors are used. This leads to huge errors for superficial sources in
duneuro, because the magnetic field density changes over the area of the coils
which can not be considered by point like sensors. This disadvantage of duneuro
can be eliminated by simulating the sensors of duneuro with more than just one
integration point. It could be shown, that for radial sensors with 6 integration points
the magnetic flux density computed with duneuro is more accurate than the solution
of SimBio. For tangential sensors even lower integration order are sufficient.
Also it could be shown, that not all of the sensors in duneuro have to be simulated
with a higher integration order, because the main reason for the huge errors of
superficial sources are the sensors directly above the source. Therefore only these
sensors have to be simulated using a higher integration order. This could lead to a
significant improvement for the computation times, if the position of the source is
known.
Furthermore, there is just a small difference in the computation times of the transfer
matrices of both approaches. For higher integration orders in duneuro the number
of sensor points and therefore the transfer matrix is getting bigger, leading to an
increased computation time proportional to the number of integration points per
sensor. Still the computation times are sufficient for the accuracy of the solution.
For the leadfields the computation times of both tools have bigger differences. For
SimBio the Venant approach is the fastest but both other approaches take significant
more time. For duneuro the Partial integration approach is the fastest and even the
Venant approach is two times faster than the solution of SimBio. Still the Subtraction
approach takes so much time, which is not recommendable at this point.
All in all both tools deliver accurate methods to compute the MEG forward problem.
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Both toolboxes SimBio and duneuro show accurate results for the magnetic flux
density measured in an MEG. Since SimBio is an older toolbox than duneuro and
the code of duneuro is more structured the focus should lie on improving duneuro.
Still for clinical applications as for the MEG, duneuro should be improved with the
integration of integration points into its code to reduce the errors in the magnetic flux
density and therefore the location errors of the source. The location errors should
be minimised, because in the treatment of brain diseases like epilepsy the surgeon
has to know the exact position of the epileptic epicentre to treat it.
Also it should be examined if the recently integrated multipolar Venant approach of
SimBio can outperform the mixed moment Venant approach of duneuro and if so
this approach should also be integrated into duneuro to increase its accuracy even
more.
A second thing that should be improved in duneuro is the computation time of
transfer matrices. One could also optimise the computation times of Leadfields, but
the computation of transfer matrices takes much more time. Hence it is the time-
determining factor. Simbio performs much faster than duneuro if no multi-threading
is used and therefore duneuro should be optimised. The subtraction approach has
the by far highest time consumption and is not fully integrated into the toolbox by
now, therefore the focus should lie on this approach.
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