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Abstract

The aim of this paper is to advance electroencephalography (EEG) source analysis using finite element method (FEM)
head volume conductor models that go beyond the standard three compartment (skin, skull, brain) approach and take
brain tissue inhomogeneity (gray and white matter and cerebrospinal fluid) into account. The new approach should
enable accurate EEG forward modeling in the thin human cortical structures and, more specifically, in the especially
thin cortices in children brain research or in pathological applications. The source model should thus be focal enough
to be usable in the thin cortices, but should on the other side be more realistic than the current standard mathematical
point dipole. Furthermore, it should be numerically accurate and computationally fast. We propose to achieve the best
balance between these demands with a current preserving (divergence conforming) dipolar source model. We develop
and investigate a varying number of current preserving source basis elements n (n = 1, . . . , n = 5). For validation, we
conducted numerical experiments within a multi-layered spherical domain, where an analytical solution exists. We show
that the accuracy increases along with the number of basis elements, while focality decreases. The results suggest that
the best balance between accuracy and focality in thin cortices is achieved with n = 4 (or in extreme cases even n = 3)
basis functions, while in thicker cortices n = 5 is recommended to obtain the highest accuracy. We also compare the
current preserving approach to two further FEM source modeling techniques, namely partial integration and St. Venant,
and show that the best current preserving source model outperforms the competing methods with regard to overall
balance. For all tested approaches, FEM transfer matrices enable high computational speed. We implemented the new
EEG forward modeling approaches into the open source duneuro library for forward modeling in bioelectromagnetism
to enable its broader use by the brain research community. This library is build upon the DUNE framework for parallel
finite elements simulations and integrates with high-level toolboxes like FieldTrip.

Keywords: Electroencephalography (EEG), Finite Element Method (FEM), Divergence Conforming Vector
Fields, Focal Sources, DUNE Toolbox

1. Introduction

In electroencephalography (EEG) source analysis, brain
activity is to be detected via voltage measurements on
the scalp surface which leads to the so-called EEG in-
verse problem [15]. The major advantages of the EEG
include, for example, its high temporal resolution and non-
invasive nature. That is, the measurements can be carried
out fully outside of the head without a need to touch the
brain itself or to apply high-intensity external electromag-
netic fields present, for example, in functional magnetic
resonance imaging (fMRI) [15]. Because of these reasons,
EEG source analysis is now one of the standard methods
also in children, infant and even neonate brain research
(see, e.g., [29, 48]).
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Email address: atena.rezaei@tut.fi (Atena Rezaei)

The EEG inverse problem is ill-posed, i.e., its solution
is non-unique and sensitive to noise and modeling errors.
Consequently, the reconstruction process necessitates clin-
ical, physical and neurophysiological a priori knowledge
[15]. It is also strongly relying on the accuracy of the solu-
tion to the EEG forward problem, where the electric poten-
tials, generated by the impressed primary current sources
in the brain, have to be simulated using a realistic head
volume conductor model [15].

This paper aims at developing, implementing and val-
idating a more accurate and realistic EEG forward ap-
proach. We want to strive for head volume conductor
models that go beyond the standard three compartment
(skin, skull, brain) approach and take brain tissue inho-
mogeneity, e.g., gray and white matter and cerebrospinal
fluid (CSF), into account.

In order to solve the EEG forward problem in such
realistic geometries, numerical approaches are needed and
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to guarantee the accuracy of modeling the neural currents,
the source needs to be placed into the thin cortical layer
which is on average only slightly more than 2 mm thick
[26, 23, 37]. That is, the focality of the source model is es-
sential [15, 46]. The boundary element method (BEM),
which is currently the most extensively used numerical
EEG forward modeling technique, hardly allows model-
ing of such tissue conductivity inhomogeneity. Although
it is possible to include the distinction of tissue structures
with BEM, this would lead to heavy computational com-
plexity and significantly high memory demand [15, 56]. A
broader overview of EEG forward modeling techniques can
be found, for example, in [15].

In this article, the forward problem is approached via
the finite element method (FEM) [14]. The FEM is known
to provide an accurate modeling framework with advanced
computational features for several applied fields of science
and engineering. The FEM has also been proven to be a
feasible method for the EEG forward problem [36, 30, 47],
where the finite element (FE) mesh can be generated based
on a precise MRI based head geometry including its in-
ternal surfaces and complex 3D conductivity structures
[43, 46]. It has been shown that very fine 3D structures
need to be modeled, e.g., the CSF and compact and spon-
gious bone [43, 40]. The FEM allows modeling of such
complex geometries and, consequently, it has a great po-
tential regarding future EEG applications.

As the reference model for validation, we use a multi-
layer sphere model and a classical mathematical point dipole
determined by its location, orientation and magnitude,
since analytical solutions have been derived for it [19].
However, it was also already shown that the point dipole
source results in small, but systematic depth localization
errors due to its over-focal nature when compared to a
more realistic and slightly more extended source model
[20]. The point dipole can also be modeled with its full
focality in a FEM framework using the so-called subtrac-
tion approach, but it is known that this approach is com-
putationally expensive and that numerical errors might
get significant on the boundaries in thin cortices, where
sources are very close to the next conductivity disconti-
nuity [10, 3, 36, 49, 21]. The computational costs of all
direct approaches presented in this paper including the
H(div) technique are very low compared to the computa-
tionally expensive full subtraction approach [21] and some-
what similar to each other, since it is considerably lower
than what is needed for generating the transfer matrix.

In this paper, we will study current preserving H(div)
source models, which are slightly less focal than the stan-
dard mathematical point dipole, but, as will be shown,
well-localized enough to be embedded in the thin corti-
cal structures [26, 23, 37] and the even thinner cortices
as needed especially in children brain research [33] and/or
pathological situations [50]. The issues and sensitivity of
the classical St. Venant [16, 53] and partial integration
[61, 59] source models regarding these situations has re-
cently been observed and studied in [41, 38, 39]. The

simplest case of the current preserving H(div) approach
is the Whitney (Raviart-Thomas) source model [9, 44] in
which the linear Whitney functions constitute the sources.
Recent studies [46, 57] have shown that the generalized
H(div) model results in a focal and highly exact solu-
tion for the EEG forward problem. It is also a fast tech-
nique compared to the full subtraction approach [21] as
the source modeling process requires effectively the same
computational cost as in the simple classical methods [9].
That is, the source field can be obtained in a fraction of
the time which is required to evaluate the transfer matrix.

In this study, we implemented and validated an adapt-
able solver into duneuro 1 [41, 42, 22, 57], an open source
C++ library for solving forward problems in bioelectro-
magnetism applications belonging to the open source tool-
box DUNE 2 [12, 13, 6, 7]. DUNE is currently being devel-
oped for various different applications of partial differen-
tial equations. For its modular programming interface, it
provides a suitable platform for EEG/MEG computations
where the geometrical complexity of the biological tissue
structures has to be taken into account in the modeling
process. As a novel design, we explore how the number of
the elements in the source configuration affects the mod-
eling accuracy. Our interest is, in particular, in the areas
close to the outer gray matter boundary, where the dis-
continuity in the electrical conductivity distribution eas-
ily causes forward errors. In order to prevent those, the
element patch of the source configuration needs to be re-
stricted to avoid an overlap with the cerebrospinal fluid
(CSF) compartment.

In the numerical experiments, we find out how the
H(div) model performs with respect to a varying num-
ber of current preserving source basis elements n (n =
1, . . . , n = 5) in comparison to the St. Venant and par-
tial integration method. We also give a computed exam-
ple on how the adaptivity with respect to n potentially
affects source localization inverse estimates in a realistic
multi-compartment head model. The results suggest that
the best H(div) source model outperforms the competing
methods with regard to overall balance and that it is espe-
cially well-suited for situations in which the focality of the
source model is essential such as on the boundaries. The
best balance between accuracy and focality in thin cor-
tices is achieved by adaptive H(div) n = 4 (or in extreme
cases even n = 3) basis functions, while in thicker cortices
n = 5 is recommended to obtain the highest accuracy by
non-adaptive H(div).

This paper is structured as follows: The materials and
methods are described in Section 2 including the H(div)
source model, its implementation into duneuro, and nu-
merical evaluation process. After that, the results of the
numerical experiments are presented in Section 3 and dis-
cussed in Section 4. Finally, the conclusions are summed
up in Section 5.

1duneuro: http://www.duneuro.org
2DUNE: https://www.dune-project.org
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2. Materials and Methods

2.1. Forward Model
The EEG forward problem is to solve the electric po-

tential field u on the surface ∂Ω of the head model (do-
main) Ω with a given source current density ~JP and a con-
ductivity tensor distribution σ that is known to be point-
wise symmetric and positive definite [15]. Applying the
quasi-static approximation,

the electric potential u can be modeled using the fol-
lowing Poisson type equation equipped with the zero Neu-
mann boundary condition. That is, the normal current
density on the surface equals zero, as the head is electri-
cally isolated [28, 15]:

∇·(σ∇u) = ∇· ~JP in Ω with (σ∇u)·~n = 0 on ∂Ω
(1)

Multiplying both sides with a test function v, and tak-
ing the partial integral over Ω results in the weak form [46]

∫
Ω

∇v ·(σ∇u)dV = −
∫

Ω

v(∇· ~JP )dV for all v ∈ H1(Ω)

(2)
which consists of two parts: the operator part on the
left side and source part on the right side. Here, H1(Ω)
denotes the Sobolev space containing the functions that
have square integrable first-order partial derivatives, i.e.,
that are in L2(Ω). If the divergence of the primary cur-
rent density is square integrable, i.e., if ~JP ∈ H(div) =
{~w|∇ · ~w ∈ L2(Ω)}, the electric potential u determined by
the weak form is unique up to choosing the ground level
[21]. Namely, L2(Ω) means the primary current field is a
finite energy.

The domain Ω is subdivided into a set of tetrahedral
finite elements (FEs) [14]. It is assumed that the poten-
tial u belongs to a subspace S ∈ H1(Ω) that is spanned
by the FE basis functions. The potential distribution is
approximated as the finite sum uh =

∑N
i=1 ziψi in which

ψ1, ψ2, . . . , ψN ∈ H1(Ω) are piecewise linear nodal basis
functions. Similarly, the primary current distribution is
modeled with the H(div) approach via ~JPh =

∑K
j=1 xj ~wj

where ~w1, ~w2, . . . , ~wK ∈ H(div) are the divergence con-
forming basis functions [46]. Associating uh and ~JPh with
coordinate vectors z = (z1, z2, . . . , zN ) and x = (x1, x2, . . . , xK),
the weak form turns to a solvable linear system Az = Gx
where A ∈ R(N×N) and G ∈ R(N×K) with

Ai,j =

∫
Ω

∇ψj · (σ∇ψi)dV and Gi,j =

∫
Ω

ψi(∇· ~wj)dV.

(3)
The measurement vector y for the electrode voltages

can be formed as y = RA−1Gx = Tf , in which f = Gx
is a load vector which represents the activity in the brain
and T = RA−1 is a so-called transfer matrix [25, 21]. In
addition, the matrix R is a restriction operator for picking
the skin potentials at the electrode positions [46]. The
matrix R denotes the zero potential level, here the mean

of the measurements y. The elements of matrix R are
defined as follows: If the `-th electrode on the boundary
∂Ω is positioned at the i`-th node, R`,i` = 1− 1/L. Also,
if ` 6= j, R`,ij = −1/L. Finally, R`,j = 0, if the j-th node
is not associated with any electrode.[46]

2.2. Dipolar Sources
In this study, the primary source currents are con-

structed using synthetic dipolar sources for the linear and
quadratic basis functions of H(div) [1]. The dipolar mo-
ment ~q~w of the basis function ~w is defined as ~q~w =

∫
Ω
~w dV .

In a tetrahedral FE mesh, the moment and position of a
synthetic dipole can be expressed as follows:

~q~w =
~rPj − ~rPi

‖~rPj
− ~rPi

‖
and ~r~w =

1

2
(~rPi

+ ~rPj
) (4)

in which ~rPi
and ~rPj

are the position vectors of mesh nodes
Pi and Pj [46]. The right-hand side matrix G can be
formed as

Gψ,~w =

∫
Ω

ψ(∇ · ~w)dV =
s{ψ,Pj}−s{ψ,Pi}

‖~rPj − ~rPi‖
(5)

for a given pair ψ, ~w of the basis functions with s{ψ,P} = 1,
if ψ corresponds to node P and s{ψ,P} = 0, otherwise. For
more detailed formulation, see e.g., [46, 9].

For the linear H(div) basis functions, the resulting
source dipole is defined by nodes Pi and Pj that are lo-
cated on the opposing sides of a shared face in an adjacent
tetrahedron pair. This is referred to as the face intersect-
ing (FI) orientation. For the quadratic basis, Pi and Pj
are attached by an edge, leading to an edgewise (EW) ori-
entation. As shown later on, various source configurations
can be formed by taking different combinations of these
dipoles.

For constructing the load vector f = Gx for an arbi-
trary dipole position ~r and a moment ~p, an interpolation
technique needs to be applied. That is, to find coefficients
c = (c1, c2, . . . , cM ) such that

~p ≈
M∑
`=1

c`~q~w`
and ~r ≈

M∑
`=1

c`~r~w`
. (6)

In this study, we use the position based optimization (PBO)
technique [9] in which the preference is on ~p over ~r. With
PBO, the coefficients c` are found by solving the linear
system minc

∑M
`=1 c`

2ω`
2 subject to Qc = p. Here ω`

is a weighting coefficient, defined as ω` = ‖~r~ω`
− ~r‖2.

Moreover, the matrix Q is determined by the synthetic
source dipole moments as Q = (q̃w̃1 , q̃w̃2 , . . . , q̃w̃M

). The
minimizer of

∑M
`=1 c`

2ω`
2 is obtained by implementing the

method of Langrangian multipliers, resulting in a uniquely
solvable linear system. The number of source dipoles M
depends on the source configuration, which is explained in
more detail below.

We also test adaptability, i.e., how the number n of the
elements in the patch affects the source modeling accuracy
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for n = 1, 2, . . . , 5. In the simplest case n = 1, the sources
correspond to the edges of a single tetrahedron (six EW
dipoles). For n = 2, . . . , 5, this configuration is extended
by including the EW and FI dipoles from the neighbor-
ing elements, leading to a total of 10–22 synthetic dipoles
(Figure 2).

In the PBO interpolation scheme, a given dipole po-
sition and moment can be estimated with different com-
binations of the synthetic dipoles [46]. As a fundamental
source configuration we use a set of 22 synthetic FI and
EW dipoles corresponding to a five-element patch: a cen-
ter tetrahedron together with its facial neighbors (Figure
1). To avoid forward modeling errors due to discontinuities
in the electrical conductivity distribution, those elements
which do not belong to the gray matter are excluded from
the configuration (Figure 1). That is, in the vicinity of
the boundary of the brain, fewer elements and sources are
used in the interpolation.

In the partial integration method, the element patch
consists of a single element which is assumed to contain
the dipole source. The St. Venant approach is to place
monopolar sources at the nodes of the element patch, so
that their net effect corresponds to that of the given dipole.
The ball-like patch is formed as the set of all the elements
sharing the node that is closest to the dipole location. This
strategy usually results in around 20 elements in an un-
structured tetrahedral mesh. Figure 3 shows that approx-
imately one half of the elements are taken out of the final
patch on the gray matter boundary.

2.3. Implementation in duneuro
As a platform of forward computations, we utilized

the C++ based toolbox DUNE [12, 13, 6, 7]. In fact,
the implementation was created for the duneuro module
[42, 22, 57], which is a DUNE based toolbox for bioelec-
tromagnetic (EEG, MEG, tES) forward modeling. The
divergence conforming H(div) source model was newly im-
plemented whereas the scripts for the partial integration
and St. Venant methods already existed in the toolbox.

As modular platforms, DUNE/duneuro are well-suited
for implementing the H(div) source model together with
the PBO interpolation approach. DUNE includes numer-
ous lower level routines for handling the FE mesh and ba-
sis functions which can be effortlessly applied in the actual
script. In the present case, the most central requirement
for the programming environment is the ability to easily
find the elements belonging to different tissue compart-
ments and to identify the facial neighbors of a given center
tetrahedron. In DUNE, these operations can be handled
through the basic modules.

The algorithm for the EEG forward modeling numer-
ical analysis with duneuro is presented in Figure 4. The
algorithm starts by creating a driver object which serves as
the main interface to the duneuro module. This is done by
defining the grid type, and the nodes, elements, and layer
labels and conductivity values for each element. Next, the

electrodes are passed to the driver object, and the algo-
rithm can compute the transfer matrix. Then, the dipole
set is delivered to the driver, and the source model is se-
lected. After that, the toolbox can compute the potential
values at the electrode locations. Furthermore, the ana-
lytical solution is calculated, and the statistics are then
created for error measures. Finally, the error statistics are
illustrated with MATLAB - boxplot 3 function.

The FE mesh was chosen to be an unstructured and
conforming tetrahedral mesh based on theDUNE-ALUGrid
module [2]. The weak form of the forward problem was
discretized with the DUNE-PDELab module [8].

The linear system was solved using an iterative pre-
conditioned conjugate gradient method (PCG) equipped
with an algebraic multigrid preconditioner (AMG) which
uses a symmetric successive overrelaxation (SSOR) as a
smoother [11]. The stopping criteria for the PCG, i.e., the
relative residual 2-norm, was set to 10−8.

A source model function was implemented for H(div)
sources that form the load vector f (right-hand side) of the
forward problem. It proceeds as follows:

1. The position and moment of a given dipole are send
to the source model.

2. DUNE detects the element in which the dipole is
located and computes the EW source dipoles for that
element.

3. The method loops through the neighboring elements
with the help of the intersections function in DUNE,
and computes the corresponding FI and EW source
dipoles. This is done recursively
until the required number of source elements is reached.

4. The generated source dipoles are delivered to the
PBO interpolation method, and the resulting coef-
ficients are used for computing the load vector f ,
which represents the current field approximation in
the global mesh.

5. Finally, the load vector f is passed to a solver that
computes the corresponding potential distribution.

2.4. Numerical Experiments
The spherical FE mesh applied in this study is pre-

sented in Figure 5. It consists of 5.6M elements and 0.9M
nodes and altogether six compartments: Brain layers 1–
3 (white, dark gray, green), CSF (purple), Skull (blue),
and Scalp (yellow). This mesh was designed based on the
isotropic four-layered Stok model [51] (Brain, CSF, Skull,
Scalp) specifically for evaluating how the source models
perform in the 2 mm thick Brain 3 (gray matter) layer
(green). The radii and conductivity values for all com-
partments can be found in Table 1. A similar 1:80 con-
ductivity ratio between the skull and the brain has been
recently used, e.g., in [5].

3MATLAB, version 9.1 (R2016b), The MathWorks Inc., Natick,
Massachusetts
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The FE mesh was generated using the Gmsh software4,
and it was refined towards the surface of the brain. The
longest and shortest edge length in the mesh were 3.9 and
0.31 mm, respectively.

The accuracy of the FE solution was measured against
the analytical solution, which can be obtained for a multi-
layered sphere. Both the analytical and numerical solution
were evaluated at 120 electrodes evenly distributed over
the scalp layer. We generated two sample sets, each one
consisting of 200 dipole sources with random. The dipoles
of the first set were located at 1.5 millimeters distance
from the outer gray matter boundary, i.e., at the relative
radius (eccentricity) of 98 % with respect to the surface
of the brain. The second set contained dipoles at 0.078
millimeter distance, that is, at an eccentricity of 99.9 %.
Due to the previous study about deeper lying sources by
[46], the interest was mostly on superficial areas of cortex
in this study. That is the reason for considering 1.5 mm
and 0.078 mm source dipoles in line with numerical ap-
proaches, i.e., RDM and MAG, which demonstrated that
the less eccentric sources are, the lower is the numerical
error, which leads to more focal sources regarding to the
multi-layered sphere model.

2.5. Error Measures
The analytical potential values were computed harness-

ing the method of De Munck and Peters [19]. The accuracy
of the H(div) model was compared to that of the reference
techniques, the St. Venant [16, 53] and the partial inte-
gration method [61, 59]. The relative difference (RDM)
and magnitude (MAG) measure [46], defined below, were
evaluated in percents.

RDM(yana,ynum) = 50

∥∥∥∥ yana

‖yana‖2
− ynum

‖ynum‖2

∥∥∥∥
2

(7)

MAG(yana,ynum) = 100(

∥∥ynum
∥∥

2

‖yana‖2
− 1). (8)

The RDM reflects the topographical forward modeling er-
ror in terms of location and orientation. The MAG reveals
the variations in potential amplitude or, in other words,
alterations in the source strength.

The error measures are presented as box plots [32]
which describe the lower (25 %), middle (50 %), and up-
per (75 %) quartiles with a box graph. The thicker part
shows the inter quartile range (IQR or spread) between 25
% and 75 % quartile. The median, i.e., the 50 % quar-
tile, is shown as a horizontal line in the IQR. The vertical
lines, whiskers, show the maximum and minimum values
of the dataset. Here the whiskers are limited with the
1.5IQR rule, i.e., their maximal extent is 1.5 times the
length of the IQR, and the rest of the dataset is marked as
outliers. Furthermore, the statistically significant mutual
differences for RDM and MAG values were evaluated with
the Mann Whitney U-test [35] with the confidence level of
95 %.

4http://gmsh.info

2.6. Inversion Test with a Realistic Geometry
In order to highlight the differences of the examined

source models and the impact of the presented numerical
forward errors, we performed an inverse investigation in a
realistic head model. The motivation was that the adap-
tive H(div) FEM source model might help to interpret re-
constructions by preventing deteriorated (e.g. spotty) in-
verse results which might occur as a result of minimum
norm estimation (MNE) within a thin cortex. A head seg-
mentation of a healthy 24 year old male subject obtained
via T1- and T2-weighted magnetic resonance images [45]
was utilized to test the potential of the present H(div)
approach in reconstructing the brain activity. The follow-
ing seven different isotropic conductivity (S/m) compart-
ments were distinguished: skin (0.43 S/m), the compact
and spongious bone of the skull (0.0064 and 0.028 S/m,
respectively), cerebrospinal fluid (1.79 S/m), gray matter
(0.33 S/m), white matter (0.14 S/m ), and eyes (0.505
S/m). Justification of conductivity values can be found,
e.g., in [18]. The segmentation was discretized by gen-
erating a regular tetrahedral grid with the element size
0.85 mm via the the open source Zeffiro toolbox56 Mat-
lab (The MathWorks, Inc.). The total number of elements
and nodes in the resulting FE mesh was 37.9M and 6.45M,
respectively.

The lead field matrix was computed for 0.5M randomly
chosen source positions with Cartesian orientations. Two
different source sets (A) and (B) were used. In the first
one of these, the sources were placed deep in the gray
matter compartment. In the second one, the source po-
sitions extended also to the surface of the gray matter,
i.e., part of the sources were associated with the surface
tetrahedra. The following two current preserving source
modeling strategies were tested: (i) non-adaptive H(div),
i.e., the basic five-element configuration n = 5, and (ii)
adaptive H(div) in which the configuration was adapted
(n = 1, 2, . . . , 5) according to the local mesh geometry. Of
(i) and (ii), the latter allows a more focal source placement,
meaning that the source distribution extends closer to the
surface of the gray matter compartment. For comparison,
reconstructions for the sets (A) and (B), were also com-
puted with the partial integration and St. Venant source
modeling approach. The latter one of these was adapted as
shown in Figure 3 to enable source modeling in the vicinity
of the boundary for the set (B).

The measurement data, i.e., the potential values y,
were simulated for a normally oriented source in Brod-
mann area 1 of the right somatosensory cortex (Figure 6).
Gaussian zero mean noise with 5% relative standard devi-
ation with respect to the maximal data entry was added
to the simulated measurements. The reconstruction was
computed via one and two steps of the iterative alternating

5https://github.com/sampsapursiainen/zeffiro_interface/
wiki

6https://se.mathworks.com/matlabcentral/fileexchange/
68285
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sequential (IAS) iteration [17, 34, 44] by setting the shape
and scaling parameter to 1.5 and 1E-3, respectively. With
the present choice of the shape parameter, the one- and
two-step IAS estimate constitute an `2- and `1-regularized
estimate, i.e., a minimum norm and minimum current es-
timate (MNE and MCE), respectively [17, 54].

3. Results

Figure 1: The five-element source configuration near the gray matter
boundary. The top row includes a two-dimensional schematic illus-
tration of the dipolar FI (dark blue) and EW (light green) sources.
The images on the left side present the scenario where the sources
are not limited in the gray matter area. The restricted version is
presented on the right side.

The results of the numerical analysis have been in-
cluded in Figures 7, 8 and 9 as well as Tables 2 and 3.

It can be observed that, for the H(div) model, the for-
ward simulation accuracy increases along with the number
of elements in the source configuration. The smallest me-
dian RDM (0.28 and 0.26 % for 98 and 99.9 % eccentricity,
respectively) is obtained with the five-element patch. Fur-
thermore, the spread (IQR) of the RDM decreases as the
source count grows. The results of the Mann-Whitney test
suggest that, compared to the single-element source config-
uration, a (statistically) significant improvement in RDM
can be obtained, when n ≥ 2 and n ≥ 3 for the eccentric-
ity of 98 and 99.9 %, respectively. For MAG, the spread
decreases, when the number of the elements increases, but
there is no such clear tendency for the median. The median
differences were, however, found to be mainly insignificant
based on the Mann-Whitney test.

In comparison between the H(div) approach and the St.
Venant and partial integration method, the single-element
H(div) was found to yield generally very similar results
with the partial integration. At 98 % eccentricity, the St.
Venant method achieved a median RDM of 0.30 % which
is close to the value obtained with the five-element diver-
gence conforming scheme. At 99.9 % eccentricity, the dif-
ference was more dramatic in favor of the H(div) model, as
the median RDM for the St. Venant approach in that case
was 0.44 %. With respect to the MAG, the St. Venant was
the superior method at 98 % eccentricity, but not at 99.9

%, where its performance was marginally weaker than that
of the five-element H(div). According to the U-test, the
MAG differences at 99.9 % eccentricity were statistically
insignificant, and, therefore, those have been omitted in
Table 2.

An obvious reason for the deteriorated performance of
the St. Venant approach at the eccentricity of 99.9 % can
be found in Table 3, showing that the source element patch
was significantly restricted in that case: the median for
the number of elements in the patch was 20 and 10 for
98 and 99.9 % eccentricity, respectively. For comparison,
maximally one element was restricted out of the patch in
the H(div) approach.

In the inversion test involving H(div) sources (Figure 8
and 9), both the (i) non-adaptive (n = 5) and (ii) adaptive
(n = 1, 2, . . . , 5) technique enabled reconstructing the syn-
thetic somatosensory source. The smoother reconstruc-
tion and superior focality was obtained with the source
set (A) which is especially clear in the case of the `2-
estimate. Namely, for (B), the set in which the `2-estimate
essentially differs from zero extends up to 10 mm further
away from the actual source position. Nevertheless, the
`1-estimate converges towards the actual source position
for both (A) and (B) resulting in a well-localized recon-
struction. The results suggest that, of the tested source
modeling techniques, the H(div) approach produces, gen-
erally, the smoothest distribution, which is more regular
in the active area, than what is obtained with the par-
tial integration and St. Venant method. In particular, the
H(div)-based reconstruction was the most intense and least
spotty near the actual source position in the case (B), i.e.,
when the source distribution extended to the boundary.
Overall, the results suggest that the H(div) approach is
more regular and topographically stable compared to St.
Venant and partial integration.

4. Discussion

This article presented, validated and evaluated an adapt-
able open source implementation of the current preserv-
ing (divergence conforming) H(div) model [52, 46, 9] for
EEG forward computations [15] in unstructured tetrahe-
dral grids. The H(div) approach is advantageous in mod-
eling the primary current field generated by the neural ac-
tivity, since it achieves the best balance between realism,
focality, numerical accuracy and computational speed with
regard to source placement in the thin and geometrically
complex gray matter compartment, which is on average
only slightly more than 2 mm thick [26, 23, 37]. Espe-
cially, this is the case for exceptionally thin cortical com-
partments as can be found in children, infant and neonate
brain research [33, 29, 48] and/or in pathological situations
[50].

A function for the present source model was written
for the C++ based duneuro library, which is integrated in
DUNE. This function was evaluated numerically against
the competing source models St. Venant [16, 53, 39, 38]
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Table 1: The sphere radii and conductivity values for all mesh compartments.
Compartment Radius (mm) Conductivity (S/m)
Scalp 92 0.33
Skull 86 0.0042
CSF 80 1.79
Brain 3 (Gray Matter) 78 0.33
Brain 2 76 0.33
Brain 1 72 0.33

Table 2: The results of the Mann-Whitney U-test for restricted source models with n elements, for partial integration, and for St. Venant
with 200 dipoles. The MAG results have been omitted for 99.9 % eccentricity, since all the differences were insignificant in that case.

RDM at 98 % eccentricity
n = 1 n = 2 n = 3 n = 4 n = 5 PI St.V.

n = 1 ∗ ∗ ∗ ∗ ∗
n = 2 ∗ ∗ ∗ ∗ ∗ ∗
n = 3 ∗ ∗ ∗ ∗ ∗ ∗
n = 4 ∗ ∗ ∗ ∗ ∗
n = 5 ∗ ∗ ∗ ∗ ∗
PI ∗ ∗ ∗ ∗ ∗

St.V. ∗ ∗ ∗ ∗
MAG at 98 % eccentricity

n = 1 n = 2 n = 3 n = 4 n = 5 PI St.V.
n = 1 ∗ ∗
n = 2 ∗ ∗ ∗
n = 3
n = 4
n = 5 ∗ ∗
PI ∗ ∗

St.V. ∗ ∗ ∗
RDM at 99.9 % eccentricity

n = 1 n = 2 n = 3 n = 4 n = 5 PI St.V.
n = 1 ∗ ∗ ∗ ∗
n = 2 ∗ ∗ ∗
n = 3 ∗ ∗ ∗
n = 4 ∗ ∗ ∗ ∗
n = 5 ∗ ∗ ∗ ∗
PI ∗ ∗ ∗ ∗

St.V. ∗ ∗ ∗ ∗ ∗ ∗

Figure 2: From left to right, respectively: The element patch of the source configurations for n = 1, 2, . . . , 5 elements with FI and EW dipoles.
In each configuration, the center element is marked with green.

and partial integration [61, 59], which are also implemented
in duneuro. duneuro and DUNE were found to be suitable
platforms for our research purpose, as they are openly
accessible state-of-the-art modeling packages for bioelec-
tromagnetic (EEG, MEG, tES) forward modeling [41, 42,

22, 57], and, more generally, for solving partial differential
equations [12, 13, 6, 7], respectively. Their modular struc-
tures allow easy operation of the lower level code and,
thereby, enable the handling of the FE mesh and basic
functions effortlessly such as, e.g., tracking the local mesh

7



Table 3: The number of the source elements (source element patch
size) for each source model type in the numerical experiments.

At 98 % eccentricity
min max median mean

PI 1 1 1 1
St. V. 14 36 20 21.31
n=1 1 1 1 1
n=2 2 2 2 2
n=3 3 3 3 3
n=4 4 4 4 4
n=5 5 5 5 5

At 99.9 % eccentricity
min max median mean

PI 1 1 1 1
St. V. 5 17 10 10.57
n=1 1 1 1 1
n=2 2 2 2 2
n=3 3 3 3 3
n=4 4 4 4 4
n=5 4 5 4 4.12

Figure 3: A schematic illustration of the ball-like St. Venant source
element patch. On the boundary of the gray matter approximately
one half of the elements (darker red color in the image on the left
side) are taken out of the final configuration (right) in its adapted
version.

Figure 4: The general algorithm for duneuro EEG forward problem
implementation.

structure in the neighborhood of a given element, which
was essential for this implementation. duneuro also of-
fers mathematically advanced FE based EEG, MEG and
tES forward modeling: In addition to the present classi-
cal continuous Galerkin (CG-FEM) approach, it also offers
discontinuous Galerkin (DG-FEM) [22], unfitted FEM ap-

Figure 5: A visualization of the spherical grid used for modeling.

proaches such as CUTFEM [41] and unfitted DG-FEM
[42], and Mixed-FEM computations[57]. Especially, in the
latter one of these, the primary source current is inherently
assumed to be divergence conforming. Hence, a further
optimization of the H(div) model can be considered.

Our code was evaluated numerically using a six-com-
partment spherical domain obtained by subdividing the
brain compartment of the classical isotropic four-layered
Stok model [51] into three parts. The outermost brain
compartment modeled an only 2 mm thin gray matter
layer. Akin to a realistic setting, all the elements in the
patch of the source configuration belonged to this com-
partment. If necessary, a restricted patch was used. Our
goal was to find out how the H(div) forward model per-
forms in the vicinity of the gray matter boundary, where
a restriction has to be made and the discontinuity of the
electrical conductivity distribution between the brain and
the CSF compartment can diminish the accuracy of the
forward simulation. The relative difference and magnitude
measures (RDM and MAG) were evaluated for two sets of
200 dipoles with random positions and orientations. One
of these sets was located at the eccentricity of 98 %, i.e.,
a source depth of 1.5 mm, which is typical in a clinical
measurement. The other one concerned the eccentricity
of 99.9 %, i.e., an extraordinary shallow depth of about
0.1 mm, reflecting an exceptional situation in which the
element patch of the source current needs to be placed
very close to the surface of the gray matter. In realistic
volume conductor modeling, these capabilities are vital as
the cortex of healthy subjects is on average only slightly
more than 2 mm thick [26, 23, 37] or even thinner such
as in children, infant or neonate studies [33, 29, 48], in
pathological situations [50] or in just segmentation related
issues.

Of the present evaluated source models, the H(div) ap-
proach was found to be overall superior compared to the
St. Venant and partial integration. With respect to RDM,
the performance differences between the methods were sig-
nificant based on the results of both boxplot analysis and
the Mann-Whitney’s significance test (U-test). Neverthe-
less, the MAG differences were found to be mainly not
crucial, suggesting that all three models yield essentially
the same performance with respect to the magnitude.

Concentrating on the RDM, the modeling accuracy
was observed to increase along with the number of ele-
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Sagittal Coronal Axial

Figure 6: Placement of a normally oriented source in Brodmann area 1 of the right somatosensory cortex in sagittal, coronal and axial
projection (left, center and right, respectively). The actual source position and orientation is shown by the black circle and line segment,
respectively.

Eccentricity 98 %

Eccentricity 99.9 %

Figure 7: The RDM and MAG errors for divergence conforming source models with n elements, for partial integration and for St. Venant
tested with 200 dipoles at eccentricity 98 % (top row) and 99.9 % (bottom row)

ments in the source patch. The results obtained with a
single-element (n = 1) patch were largely similar to those
produced by the partial integration routine which is also
based on a single element. It seems that a statistically sig-
nificant improvement compared to the simplest n = 1 case
can be obtained using a patch of three or more elements
regardless of the eccentricity. The most significant differ-
ence to the St. Venant method was observed at 99.9 % ec-
centricity which necessitated restricting the St. Venant’s
element patch into one half of its normal composition (a
ball-like object cut into half) and, consequently, led to a
considerably deteriorated RDM. Nevertheless, for H(div),
only a minor single-element restriction was needed with-
out a notable decrease in the performance. Thus, it seems

that the patch formed around a given center element is
advantageous with regard to source placement close to a
boundary.

Skull conductivity is an important parameter in EEG
source analysis. In the present multi-layered simulation
study a conductivity of 0.0042 S/m for the skull layer and
0.33 S/m for the gray matter layer was chosen, i.e., a
skull/brain conductivity ratio of about 1:80 was consid-
ered. This is the classical ratio [31], which is still used as
a default in commercial software packages, see, e.g, [24].
For higher skull/brain conductivity ratios as proposed by
[18], all presented numerical errors and, therefore, also
the differences between the examined dipole modeling ap-
proaches decrease in both normal and tangential orienta-
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Source set (A), Non-adaptive H(div), n = 5 Source set (B), Adaptive H(div), n = 1, 2, .., 5

Source set (A), Partial integration method Source set (B), Partial integration method

Source set (A), St. Venant method Source set (B), Adaptive St. Venant method

Figure 8: The `2-regularized reconstructions (minimum norm estimates) of the primary current distribution for two source sets (A) and
(B) in which the sources are positioned deep and everywhere in the gray matter compartment, respectively. The top row shows the results
obtained with (i) the H(div) (n = 5) and (ii) the adaptive (n = 1, 2, .., 5) H(div) source model (left and right, respectively). The center
row corresponds to the partial integration method, and the bottom row to the non-adaptive and adaptive version of the St. Venant method,
respectively. Notice that as the partial integration method utilizes only a single element, it cannot be adapted akin to the H(div) and St.
Venant model. The actual source position and orientation is shown by the left tip and the stem of the black line segment, respectively.

Source set (A), Non-adaptive H(div), n = 5 Source set (B), Adaptive H(div), n = 1, 2, .., 5

Source set (A), Partial integration method Source set (B), Partial integration method

Source set (A), St. Venant method Source set (B), Adaptive St. Venant method

Figure 9: The `1-regularized reconstructions (minimum current estimates) of the primary current distribution for two source sets (A) and
(B).
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tions. A better way for skull modeling might, however,
be to distinguish the lower conducting skull compacta and
higher conducting skull spongiosa compartments [18, 40]
and to individually estimate their conductivity parame-
ters. This has recently been done using a skull conductiv-
ity calibration procedure based on combined somatosen-
sory evoked potential (SEP) and field (SEF) measurements,
where estimated conductivity values were 0.0024 S/m and
0.0084 S/m in one [5] and 0.0033 S/m and 0.0116 S/m
in another epilepsy patient [4] for the skull compacta and
spongiosa compartments, respectively. This shows that in-
dividual differences in skull conductivity parameters have
to be expected, which will significantly influence EEG based
source analysis. In addition to the skull, also the white
matter is important regarding the source modeling accu-
racy, especially, since the real white matter conductivity
includes anisotropy [60, 27, 55]. The actual effect of the
anisotropy to the accuracy may be expected to depend
strongly on source position and orientation, whereas the
current model only reflects the average effect. Overall,
we expect that the mutual performances between the in-
vestigated source models will be maintained for a wide
range of conductivities, since the conductivity distribution
is primarily a parameter for the system matrix, whereas
the source model mainly reflects the accuracy of the right-
hand-side vector of the forward problem.

Our validation results together with the inversion test
suggest that our implementation can be beneficial for com-
plex 3D meshes. It allows an extremely focal single-element
source placement with the accuracy of the partial integra-
tion, which can be necessary at some locations in a realistic
volume conductor. Additionally, if the local geometry al-
lows using the full source configuration, then the accuracy
of the St. Venant can be surpassed. Thus, a close to op-
timal accuracy can be achieved in each situation without
the need to choose between different source models. Based
on the present numerical analysis, the non-adaptive H(div)
source modeling approach (i) is more robust than the adap-
tive one (ii) and is, therefore, preferable for a normal cortex
thickness, which is on average 2.3 mm [26, 37, 23]. How-
ever, (ii) was found to be sufficient for special cases e.g.
with extremely thin cortices.

In de Munck et al. (1988) [20], it was presented that
the mathematical point dipole, due to its over-focal nature,
results in modest, but systematic errors for depth localiza-
tion when compared to a more realistic and slightly more
extended source model. Using the subtraction approach,
the point dipole can also be modeled with its full focality
in a FEM framework, but it is known that numerical errors
might get significant in thin cortices where sources are very
close to the next conductivity discontinuity and that it is
currently still computationally expensive [10, 3, 36, 49, 21].
In this paper, we showed that H(div)-type source models
can be constructed in a way that is more realistic than the
mathematical point dipole with regard to extent, but as
accurate in multi-layer sphere model validations. In addi-
tion, the H(div) source models were found to be also focal

enough to be induced in even thin cortices. As already
mentioned, this feature is crucial in healthy subjects, but
especially in children, infant and neonate EEG brain re-
search or in pathological situations. In summary, the best
H(div) source thus has the best balance between numerical
accuracy, computational efficiency and modeling accuracy,
i.e., focal enough to be usable in thin cortices, but less fo-
cal and thus more realistic than the mathematical point
dipole.

An important future work will be to evaluate the present
current preserving source model implementation in a group
study with real EEG data and realistic FEM head mod-
els. To do so, the duneuro library will be coupled, for
instance, with the FieldTrip 7 or BrainStorm 8 toolboxes,
similar to the interface that has already been realized for
the duneuro-predecessor SimBio 9 [58]. Likewise, both
Python and Matlab bindings already exist for duneuro.
Further analysis of the relationship between the presented
source model and realistic physiological structures, e.g.,
thin cortices and anisotropy, will be necessary.

5. Conclusions

The purpose of this study was to improve EEG source
analysis using finite element method (FEM) head volume
conductor models that extend the standard three com-
partment approach, and are able to take brain tissue in-
homogeneity (gray and white matter and cerebrospinal
fluid) into account. The focus was on determining the per-
formance of the present current preserving H(div) source
model which was implemented into the open source duneuro
library for FEM forward modeling in bioelectromagnetism,
and validated through numerical experiments for source
configurations corresponding to n = 1, . . . , n = 5 ele-
ments in the FEM mesh. The accuracy of the model was
measured against an analytical solution in a multi-layer
sphere model. The performance achieved was evaluated
with two competing methods, partial integration and St.
Venant. The results obtained within a spherical multi-
layered domain suggest that our new approach provides
a solid way to model the primary current distribution in
the thin cortical compartment, and even in situations of
exceptionally thin cortices. A superior performance was
achieved in the vicinity of the outer gray matter bound-
ary, in particular, as compared to the St. Venant refer-
ence method. The modeling precision was found to im-
prove significantly as the size of the source modeling patch
grew from one to three or more elements. No significant
performance differences were observed between the four-
and five-element patches when the sources were located
close to the outer gray matter boundary. We also per-
formed an inversion test suggesting that our development

7FieldTrip: http://www.fieldtriptoolbox.org
8BrainStorm: http://neuroimage.usc.edu/brainstorm
9SimBio: https://www.mrt.uni-jena.de/simbio
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can be used to improve EEG forward modeling for real-
istic multi-compartment head models, and it might be of
special importance in situations of thin cortices, e.g., in
children and/or pathological applications.
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