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Abstract

The aim of this thesis is to develop, implement and validate accurate and eicient strategies for solv-

ing the electroencephalography (EEG) forward problem– For this purpose, two types of approaches

are considered: itted and unitted inite element methods–

For the ittedmethods, such as the conforming inite elementmethod or the discontinuous Galerkin

method, various discretization schemes of the dipolar source term are derived and evaluated– One

of the schemes represents a new framework for the Venant source model– This framework allows

for a conforming representation of the discrete source term which is applicable for various numer-

ical methods– In addition, the connection of the Venant approach to the partial integration source

model is shown– A new subtraction scheme is mathematically derived and analyzed– This approach

maintains the properties of the classical subtraction approach while drastically reducing the com-

putational load– The application of the new subtraction source model is feasible even in highly

resolved models–

In the second part of this thesis, two unitted inite element methods are introduced for the

solution of the EEG forward problem: the CutFEM method and the unitted discontinuous Galerkin

method (UDG)– These approaches use an implicit representation of the model geometry and lead

to a simpler forward modeling pipeline while keeping or exceeding the accuracy of the conforming

inite element method– Within this framework, a topology preserving marching cubes algorithm

for performing numerical integration over the implicitly deined domains is presented– Finally, the

linear system obtained from an unitted inite element method is solved using algebraic multigrid

techniques–

In the last part of this work and in order to transport the modernmathematical methods presented

in this thesis into application, the duneuro software toolbox is introduced– It ofers extendible

interfaces for forward modeling in neuroscience based on the Dune framework–
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Notations and Abbreviations

u electric potential–

Jp primary current–

σ electric conductivity tensor–

xdp Position of a mathematical dipole–

M Moment of a mathematical dipole–

Ω The open model domain–
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int
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η scalar penalty parameter–
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AMG algebraic multigrid–

CG continuous Galerkin method or conforming inite element method–

DG discontinuous Galerkin method–

EEG electroencephalography–

IQR inter-quartile range–

MAG magnitude error–

MEG magnetoencephalography–

PDE partial diferential equation–

PI partial integration approach–

RDM relative diference measure–

TR total range–

UDG unitted discontinuous Galerkin method–

ʾ



List of Figures

1–1 Illustration of neural cells – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 6

2–1 Schematic Visualization of diferent Venant approaches – – – – – – – – – – – – – – – 26

2–2 One-dimensional visualization of the source models for diferent Venant approaches 27

2–3 Visualization of diferent Venant approaches – – – – – – – – – – – – – – – – – – – – – 28

2–4 CG monopolar Venant mixed moments, hexahedral mesh: RDM and MAG – – – – – 31

2–5 CG monopolar Venant mixed moments, tetrahedral mesh: RDM and MAG – – – – – 32

2–6 CG monopolar Venant mixed moments, hexahedral mesh: Goal function – – – – – – 33

2–7 CG monopolar Venant mixed moments, tetrahedral mesh: Goal function – – – – – – 34

2–8 CG monopolar and conforming Venant, hexahedral mesh: RDM and MAG – – – – – 35

2–9 CG monopolar and conforming Venant, tetrahedral mesh: RDM and MAG – – – – – 36

2–10 Comparison PI, Venant DG: RDM and MAG – – – – – – – – – – – – – – – – – – – – – – 39

2–11 Visualization of the singularity patch – – – – – – – – – – – – – – – – – – – – – – – – – – 41

2–12 Localized subtraction restricted singularity potential – – – – – – – – – – – – – – – – – 41

2–13 Localized subtraction integration order: relative errors – – – – – – – – – – – – – – – – 47

2–14 Localized subtraction patch size: relative errors – – – – – – – – – – – – – – – – – – – – 48

2–15 Localized subtraction convergence: RDM and MAG – – – – – – – – – – – – – – – – – – 50

2–16 Localized subtraction convergence: convergence order – – – – – – – – – – – – – – – – 51

2–17 Localized and full subtraction: RDM and MAG – – – – – – – – – – – – – – – – – – – – 53

2–18 Localized and full subtraction: relative diference – – – – – – – – – – – – – – – – – – 54

2–19 Localized and full subtraction: goal function – – – – – – – – – – – – – – – – – – – – – 55

2–20 Localized and full subtraction: time consumption – – – – – – – – – – – – – – – – – – – 55

3–1 Schematic visualization of a CutFEM mesh – – – – – – – – – – – – – – – – – – – – – – 61

3–2 Schematic visualization of the CutFEM penalty terms – – – – – – – – – – – – – – – – 64

3–3 CutFEM source models: RDM and MAG errors – – – – – – – – – – – – – – – – – – – – 68

3–4 Unitted meshes of a four-layer sphere model – – – – – – – – – – – – – – – – – – – – – 70

3–5 Convergence of CutFEM: RDM and MAG errors – – – – – – – – – – – – – – – – – – – – 71

ʾi



3–6 Covergence of CutFEM: convergence order – – – – – – – – – – – – – – – – – – – – – – 71

3–7 Comparison CutFEM and hexahedral CG: RDM and MAG errors – – – – – – – – – – – 72

3–8 Comparison CutFEM and tetrahedral CG: RDM and MAG errors – – – – – – – – – – – 74

3–9 Convergence of UDG: RDM and MAG – – – – – – – – – – – – – – – – – – – – – – – – – 77

3–10 Convergence of UDG: convergence order – – – – – – – – – – – – – – – – – – – – – – – 77

3–11 Comparison CutFEM UDG: RDM and MAG – – – – – – – – – – – – – – – – – – – – – – 79

3–12 UDG linear and quadratic polynomials: RDM and MAG – – – – – – – – – – – – – – – 80

3–13 Visualization of realistic head model surfaces – – – – – – – – – – – – – – – – – – – – – 82

3–14 Visualization of source space – – – – – – – – – – – – – – – – – – – – – – – – – – – – – – 84

3–15 Compacta distance and gray matter thickness – – – – – – – – – – – – – – – – – – – – – 84

3–16 CutFEM realistic: Electrode distance and signal strength – – – – – – – – – – – – – – – 86

3–17 CutFEM realistic: Cumulative relative frequencies – – – – – – – – – – – – – – – – – – 87

3–18 Realistic head model, CutFEM PI: RDM and MAG – – – – – – – – – – – – – – – – – – – 88

3–19 Realistic head model, CutFEM PI: RDM and MAG over thickness – – – – – – – – – – – 88

3–20 Realistic head model, tetrahedral CG: RDM and MAG – – – – – – – – – – – – – – – – 89

3–21 Realistic head model, tetrahedral CG: RDM and MAG over thickness – – – – – – – – 90

3–22 Realistic head model, hexahedral CG: RDM and MAG – – – – – – – – – – – – – – – – 90

3–23 Realistic head model, hexahedral CG: RDM and MAG over thickness – – – – – – – – 91

3–24 Realistic head model, CutFEM hexahedralized: RDM and MAG – – – – – – – – – – – 91

3–25 Realistic head model, hexahedral CG: RDM and MAG over thickness – – – – – – – – 92

3–26 Realistic head model, 4C: RDM and MAG – – – – – – – – – – – – – – – – – – – – – – – 93

4–1 Discretization of two dimensional level-set function – – – – – – – – – – – – – – – – – 99

4–2 General reconstruction algorithm – – – – – – – – – – – – – – – – – – – – – – – – – – – – 100

4–3 Key-computation for a two-dimensional example – – – – – – – – – – – – – – – – – – – 102

4–4 Ambiguity of the key-computation – – – – – – – – – – – – – – – – – – – – – – – – – – – 102

4–5 Visualization of diferent vertex types – – – – – – – – – – – – – – – – – – – – – – – – – 104

4–6 Multi-layer sphere: relative volume error – – – – – – – – – – – – – – – – – – – – – – – 106

4–7 Multi-layer sphere: relative surface error – – – – – – – – – – – – – – – – – – – – – – – 106

4–8 Level-set ordering: relative volume and surface errors – – – – – – – – – – – – – – – – 107

4–9 Schematic visualization of the overlapping smoother – – – – – – – – – – – – – – – – – 111

4–10 CutFEM multigrid solver: Convergence evaluation – – – – – – – – – – – – – – – – – – 112

4–11 UDG multigrid solver: Convergence evaluation – – – – – – – – – – – – – – – – – – – – 114

5–1 duneuro driver interface diagram – – – – – – – – – – – – – – – – – – – – – – – – – – – 119

5–2 duneuro source model interface diagram – – – – – – – – – – – – – – – – – – – – – – – 121

5–3 duneuro practical example: butterly and topography – – – – – – – – – – – – – – – – 126

5–4 duneuro practical example: realistic head model – – – – – – – – – – – – – – – – – – – 127

5–5 duneuro practical example: reconstructed source on MRI – – – – – – – – – – – – – – 127

5–6 duneuro practical example: reconstructed source and goodness of it – – – – – – – – 128

ʾii



List of Tables

3–1 CutFEM convergence: number of degrees of freedom – – – – – – – – – – – – – – – – – 70

3–2 Comparison CutFEM and conforming CG: timing – – – – – – – – – – – – – – – – – – – 75

3–3 Statistics of four-layer sphere models for a UDG discretization – – – – – – – – – – – – 76

4–1 Level-set ordering: statistical properties – – – – – – – – – – – – – – – – – – – – – – – – 107

A–1 Radii and conductivity values of a four-layer sphere model – – – – – – – – – – – – – – 131

A–2 Properties of the geometry-adapted hexahedral sphere models – – – – – – – – – – – – 131

A–3 Properties of the source positions for the multi-layer sphere studies – – – – – – – – – 132

ʾiii





Introduction

The electroencephalography (EEG) is a tool to measure potential diferences on the surface of the

head that are due to electric activity in the brain– EEG ofers a high time resolution and gives

insight into the function and dysfunction of the brain– Even though the direct signals can already

be used and analyzed, certain investigations require a reconstruction of the origin of the measured

signals– This reconstruction can be formulated as an inverse problem, which aims to estimate the

electric activity within the brain given the EEG measurements on the head surface– As the solution

is in general not unique, the inverse problem is ill-posed– A crucial component for solving the

inverse problem for source analysis is the EEG forward problem– Assuming a known source current

in the brain, the forward problem simulates the current propagation and the resulting potential

diferences on the head surface– The accuracy of solving the forward problem strongly inluences

the overall accuracy of source analysis– In particular, errors in the forward solution deteriorate

the estimated reconstruction– The EEG forward problem can be formulated as a partial diferential

equation (PDE)– For simple approximations of the head geometry, such as a set of concentric spheres,

formulas are available to solve the PDE quasi-analytically (De Munck and Peters, 1993)– However,

a set of concentric spheres is only a rough approximation of the human head and large errors

in the solution can be expected– To improve the model geometry, individual head models based

on imaging data, such as magnetic resonance imaging or computed tomography, can be adopted–

For such models, no analytical formulas exist and the PDE has to be solved numerically– Several

methods have been proposed for the numerical solution of the EEG forward problem, such as inite

diference methods (Montes-Restrepo et al–, 2014; Vatta et al–, 2009; Wendel et al–, 2008), inite

volume methods (Cook and Koles, 2006), boundary element methods (Acar and Makeig, 2010;

Gramfort et al–, 2011; Mosher et al–, 1999; Stenroos and Sarvas, 2012) or inite element methods

(Gençer and Acar, 2004; Schimpf et al–, 2002; Vorwerk et al–, 2012; Weinstein et al–, 2000) and

each of them has speciic advantages and disadvantages–

Challenging problems for inite element methods are the discretization of the source term, which

is usually modeled as a singular current dipole, and an accurate treatment of the model geometry–

In order to include the source term into the numerical model, a discrete representation of the singu-

larity has to be provided– Several approaches have been introduced to construct this discretization,
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Introduction

such as the partial integration approach, the Venant approach (Medani et al–, 2015; Vorwerk, 2016;

Wolters et al–, 2007b), the Whitney approach (Bauer et al–, 2015; Pursiainen et al–, 2011, 2016)

or the subtraction approach (Bertrand et al–, 1991; Drechsler et al–, 2009; Wolters et al–, 2007a)–

For the Venant approach, the dipole is replaced by a set of monopoles around the source location

whose strengths are computed such that speciic properties of the dipole are maintained– While this

approach ofers a way to include the dipole into the numerical model, it uses singularities in the

source representation and provides a non-smooth source distribution– A smoother distribution and

a way to completely remove the singularity from the mathematical model is provided by the sub-

traction approach– The complete removal of the singularity comes at the cost of a strong increase in

the computational load compared to other discretization approaches, which makes the subtraction

approach currently unfeasible for many applications when using highly resolved model geometries–

Important for the practical relevance of a source discretization is the combination of accuracy and

time consumption– The second challenging problem is the accurate representation of the individual

head geometry– For the inite element method the individual head geometry is partitioned into a set

of simple elements– Two approaches are currently used: a tetrahedral or a hexahedral geometry-

conformingmesh– While a tetrahedral mesh ofers a high accuracy in representing the surfaces of the

diferent tissue compartments of the head, its construction is a challenging task which might even

involve careful manual interaction and modiication of the tissue surfaces (Vorwerk et al–, 2014)–

On the other hand, a hexahedral mesh ofers the advantage of an automatic mesh generation based

on a voxel segmentation of the imaging data, but it results in a staircase-like representation of the

diferent surfaces (Wolters et al–, 2007b)– Both approaches have in common that the discrete rep-

resentation of the geometry is conforming the head geometry– We will refer to such approaches as

itted inite element methods–
The contributions of this thesis respond to the two challenges identiied above and provide meth-

ods towards an automated and accurate simulation pipeline for solving the EEG forward problem–

In the irst part we address the questions regarding the discretization of the dipolar source term– We

provide a framework for the Venant approach which is applicable for various inite element methods

and which avoids the introduction of singularities into the numerical model– Using a localization

approach we provide a new subtraction approach– On the one hand, it keeps the properties of the

original approach but on the other hand it is applicable even when using highly resolved meshes–

The representation of the model geometry is considered in the second part, where two new inite el-

ement methods for solving the EEG forward problem are introduced: the CutFEM method (Burman

et al–, 2015; Burman and Hansbo, 2012) and the unitted discontinuous Galerkin method (Bastian

and Engwer, 2009; Engwer, 2009)– Both methods use an implicit representation of the geometry

which avoids the construction of a geometry-conforming mesh but still ofers an accurate forward

solution– These methods are also referred to as unitted inite element methods– In this thesis, some

implementational aspects related to the practical application of such methods are considered– For

example, we need to perform numerical integration over the implicitly deined domains within the

numerical model– Furthermore, we need to eiciently solve the resulting linear systems– Another

aspect considering the development of modern mathematical methods for solving the EEG forward

problem is the transfer of those methods into application– With this purpose in mind, we present

duneuro, an extendible software framework based on the Dune framework (Bastian et al–, 2008a,b)

that allows for an accessible usage of the presented methods and that is robust with respect to future

ޡ
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extensions–

The thesis is structured as follows: in Chapter 1 we present the physiological and mathemati-

cal background of the EEG forward problem– We introduce the well established conforming inite

element method as well as the more recent discontinuous Galerkin method and the mixed inite

element method– The focus of Chapter 2 lies on the extension of two approaches for discretizing

the dipolar source term– We introduce a conforming formulation of the Venant approach and in-

vestigate various properties of the discrete source model– Additionally, we derive and analyze the

localized subtraction approach, which modiies the full subtraction approach and uses a local sup-

port of the discretized source term– This enables the practical use of the subtraction approach even

for high mesh resolutions– In Chapter 3 we introduce two cut-cell methods for solving the EEG

forward problem– The CutFEM method uses a conforming function space for each tissue compart-

ment while the UDG method allows for discontinuities within each tissue– The cut-cell methods are

validated in multi-layer sphere models as well as in realistically shaped head models– In Chapter 4

we consider implementational aspects of cut-cell methods: the numerical integration over implicitly

deined domains and the eicient solution of the linear system using algebraic multigrid techniques–

All methods that are presented in this thesis are implemented in the duneuro toolbox which is pre-

sented in Chapter 5– An extendible software framework is introduced which enables the transfer of

the modern mathematical methods into application– Finally, a summary of the main results of this

thesis and an outlook are given in Chapter 6–
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CHAPTERޠ

Phʿsiological and Mathematical Background

In this chapter we will briely recall the established physiological and mathematical background of

the EEG forward problem– In Section 1–1, the physiological origin of the measured electric signals

is described– Based on Maxwell’s equations, the derivation of Poisson’s equation is presented which

forms the basis of electrostatics– Section 1–2 describes the mathematical foundation for describing

Poisson’s equation and its source term and introduces a conforming inite element method using La-

grangian elements– In order to solve the EEG forward problem numerically, discrete approximations

of analytical source terms are presented– In Section 1–3, an alternative approach to the conforming

inite element method, the non-conforming discontinuous Galerkin method is introduced– It allows

discontinuities within the computational domain and provides conservation properties on the dis-

crete level– Section 1–4 briely introduces the mixed inite element method– It is based on a irst

order formulation of Poisson’s equation and is able to provide conservation properties– The chapter

closes with a summary and conclusion in Section 1–5–

ޠ.ޠ The EEG Forward Problem
The generators of the electric signals that are measured by EEG devices are groups of neurons in the

gray matter of the brain as described, e–g–, in (Hämäläinen et al–, 1993)– These neurons are con-

nected among each other and form a large network to communicate and transport signals through

the cortex– The neurons can be separated into two main types, the stellate cells and the pyramidal

cells– The pyramidal cells consist of the cell body or soma, the axon and multiple dendrites which

form connections via synapses to other neurons– They receive electrical input signals of multiple

neighboring neurons and propagate these signals by iring an action potential, if a certain input

threshold has been reached– The postsynaptic potential diferences of a group of neurons produce

a current of dipolar form, which can be modeled as a current dipole– Due to the orientation of the

pyramidal cells, the dipole moment is mainly oriented normal to the cortical surface– Figure 1–1

shows an illustration of the neural cells in the cortex–
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Chapter ޠ Phʿsiological and Mathematical Background

Figure :ޠ.ޠ Illustration showing a group of neural cells in a rat cortex– Both, stellate cells and pyra-
midal cells are visible– Drawn by Ramón y Cajal in 1888 and presented in (Hämäläinen
et al–, 1993)–

The basis of the macroscopic model for volume conduction in the head is described by Maxwell’s

equations, which can be formulated as

∇ · E =
ρ

ε0
(1–1)

∇× E = ď
∂B
∂t

(1–2)

∇ · B = 0 (1–3)

∇× B = µ0

(

J + ε0
∂E
∂t

)

– (1–4)

With the electric ield E, the electric charge density ρ, the electric constant ε0, the magnetic ield

B, the magnetic constant µ0 and the current density J– (Hämäläinen et al–, 1993) derive, that

for the occurring frequencies and spatial scales occurring in neuroelectromagnetism, the quasi-

static approximation of Maxwell’s equations is valid and the time dependent components ∂B—∂t
and ∂E—∂t can be neglected when considering the macroscopic behavior– From (1–2) we can see

that the rotational component of the electric ield is zero and the electric ield can be represented as a

gradient ield, i–e–, E = ď∇uwith the electric potential u– We split the current density into two parts

J = Jp + σE, a primary current Jp and a volume or return current σE– Here σ denotes the electric

conductivity tensor– The primary current can be seen as the main source of the electric activity

which is located in the vicinity of the active neural cells, while the volume current describes the

current low within the remaining portion of the head– Taking the divergence of (1–4), considering

that the divergence of the curl is zero and inserting the electric potential, we obtain

∇ · σ∇u = ∇ · Jp– (1–5)
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As noted above, the primary current can be modeled as a current dipole, which is deined as

Jp := Mδ(x ď xdp),

with the moment M at the position xdp and the delta distribution δ–

ޡ.ޠ A Conforming Finite Element Method
In this section we will describe the mathematical foundation of describing Poisson’s equation and its

source term and introduce a conforming inite element method to solve the EEG forward problem

numerically– This sectionmainly follows (Braess, 2007), (Brenner and Scott, 2007) and (Friedlander

and Joshi, 1998)–

Aweak formulation The main function space that we consider and that is the basis of the Sobolev

spaces is the space L2(Ω) over the domain Ω ⊂ Rd, d ∈ N which consists of the square-integrable

functions– In the strict sense, L2(Ω) is an equivalence class of functions, where two functions are

considered equivalent if they difer only on a set of zero measure– Together with the scalar product

〈u, v〉L2(Ω) :=
∫

Ω

u(x)v(x) dx

and the associated norm

‖u‖L2(Ω) :=
√

〈u, u〉L2(Ω),

the space L2(Ω) forms a Hilbert space– If no ambiguities arise, we will omit the subscript of both

scalar product and norm– In order to deine Poisson’s equation for this function space in a weak

sense, we introduce the concept of weak derivatives, which requires the concept of distributions–
Distributions also form the basis of deining the source term of the EEG forward problem as moti-

vated in the previous section: the mathematical point dipole– A distribution is a linear form that is

described by its efect on a set of test functions, which are smooth functions of compact support:

Deinition 1.1 (Test functions). Let Ω ⊂ Rd be a domain. Denote by D(Ω) the C∞(Ω) functions with
compact support, i.e., D(Ω) := C∞

0 (Ω). These functions will also be called test functions.

We will deine derivatives with respect to diferent variables– A useful short hand notation for

this multi-dimensional derivative is provided by multi-indices:

Deinition 1.2 (Multi-index). A vector α ∈ Nd is called a multi-index. We deine the norms

|α|1 :=
dď1∑

i=0

αi, |α|∞ :=
dď1
max
i=0

αi, (1–6)

Using this multi-index, we will write

Dαu =
∂|α|1u

∂xα0
0 ∂xα1

1 . . . ∂xαdď1
dď1

(1–7)
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for a multi-index α ∈ Nd and u ∈ C|α|1(Ω)– Distributions form a generalization of the concept of

functions and can be deined as

Deinition 1.3 (Distribution (Friedlander and Joshi, 1998, Deinition 1–3–1)). Let Ω ⊂ Rd be a
domain. A linear form u : D(Ω)→ R is called a distribution if, for every compact set K ⊂ Ω, there is a
C ∈ R with C ≥ 0 and N ∈ N such that

|u(ξ)| ≤ C
∑

|α|1≤N

sup
x∈K

|Dαξ(x)|

for all ξ ∈ D(Ω) with supp ξ ⊂ K. The space of distributions on Ω is denoted by D′(Ω).

One example distribution that was used for deining the source terms for the EEG forward problem

and that will be used further in diferent discretization schemes of it is the delta distribution:

Deinition 1.4 (Dirac delta distribution). For a point y ∈ Rd, the functional evaluating a test function,
i.e.,

δy : D(Ω)→ R; ξ 7→ ξ(y)

is called Dirac delta distribution.

Note that the delta distribution is indeed a distribution, which can be seen directly by setting

N = 0 and C = 1 in Deinition 1–3– In addition to the delta distribution, each function f ∈ L2(Ω)
induces a distribution by using the functional ξ 7→ 〈f , ξ〉– However, the converse is not true, as the

delta distribution can not be represented by an L2 function– For a distribution, we can deine its

derivative as

Deinition 1.5 (Derivative of a distribution). Let Ω ⊂ Rd be a domain. The distributional derivative
of u ∈ D′(Ω) with respect to α ∈ Nd is deined as

(Dαu)(ξ) := (ď1)|α|1u(Dαξ),

for all ξ ∈ D(Ω).

The derivative of a distribution is again a distribution and a distribution has derivatives of any

order (Friedlander and Joshi, 1998, 2–1)– This property can be directly applied to the source term

∇ · Jp of the EEG forward problem–

Lemma 1.1. For a dipole position xdp ∈ Ω and a dipole momentM ∈ Rd, the source term f := ∇·Jp =

∇ · (Mδxdp) is a distribution, i.e., f ∈ D′(Ω).

Proof. The linearity follows immediately from the deinition of the distributional derivative– Let

ξ ∈ C∞(Ω)– Using the triangle inequality we ind

|f (ξ)| = |∇ · (Mξ(xdp))| ≤
dď1∑

i=0

|Mi∂xiξ(xdp)| ≤ C
dď1∑

i=0

‖∂xiξ‖∞, (1–8)

with C := supdď1i=0 |Mi|–
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When deining discrete approximations of the dipolar source term in a distributional form, we

will make use of the support of a distribution–

Deinition 1.6 (Support of a distribution (Friedlander and Joshi, 1998, Deinition 1–4–1)). Let Ω ⊂
Rd be a domain and let u ∈ D′(Ω). The support of u, written as supp(u) is deined as the complement
of the set

{

x ∈ Rd : u = 0 on a neighborhood of x
}

– (1–9)

We will mainly need the support of a set of monopoles and the mathematical point dipole– A set

of monopoles is deined by the distribution f =
∑

i qiδxi , with monopoles located at xi ∈ Rd with

strength qi ∈ R– For this distribution, it holds that f = 0 on Rd \
⋃

i{xi} and thus supp(f ) =
⋃

i{xi}–
In a similar manner, the support of a dipolar source term given by the distribution g = ∇ · (Mδxdp)

is given by supp(g) = {xdp}– A set of functions that will be the basis of the weak formulation of

Poisson’s equation, is the set of L2 functions whose distributional derivatives are again L2 functions:

Deinition 1.7 (Sobolev space). For Ω ⊂ Rd and k ∈ N, the Sobolev space is deined as

Hk(Ω) :=
{

u ∈ L2(Ω) : Dαu ∈ L2(Ω), |α|1 ≤ k
}

– (1–10)

If the distributional derivative of a function is square-integrable, it will also be called the function’s

weak derivative– If a function is diferentiable in a classical sense, then its weak derivative exists and

both derivatives coincide– Based on the scalar product

〈u, v〉k :=
∑

|α|1≤k

〈Dαu,Dαv〉L2(Ω)

and its associated norm ‖ · ‖k, Hk forms a Hilbert space– When dealing with the pure Neumann

problem of Poisson’s equation, the solution is only determined up to a constant– In order to select

a ixed solution, we will restrict the Sobolev space Hk(Ω) to the space of functions with zero mean:

Deinition 1.8 (Sobolev space with zero mean). For Ω ⊂ Rd and k ∈ N, the Sobolev space with zero
mean is deined as

Hk
∗(Ω) :=

{

u ∈ Hk(Ω) :
∫

Ω

udx = 0
}

– (1–11)

Starting from the strong formulation of Poisson’s equation, formally multiplying it with a test

function v, integrating and applying integration by parts yields its weak formulation:

Deinition 1.9 (Weak formulation). The weak formulation of Poisson’s equation is deined as: ind
u ∈ V := H1(Ω) such that

〈σ∇u,∇v〉L2(Ω) = 〈f , v〉L2(Ω)

for all test functions v ∈ V.

Note that this deinition assumes f ∈ L2(Ω), which is not the case for the mathematical point

dipole– The basis for the theoretical treatment of the weak formulation is given by the Lax-Milgram

theorem, which can be used to show existence and uniqueness of solutions of the weak formulation–
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Theorem 1.1 (Lax-Milgram Theorem (Brenner and Scott, 2007, Theorem (2–7–7))). Given a Hilbert
space (V, 〈·, ·〉), a continuous, coercive bilinear form a(·, ·) and a continuous linear functional f ∈ V ′,
there exists a unique u ∈ V such that

a(u, v) = f (v) ∀v ∈ V

Proof. (Brenner and Scott, 2007, Theorem (2–7–7))

In (Wolters et al–, 2007a) it is shown, that the bilinear form a of the weak formulation in Def-

inition 1–9 is continuous and coercive and thus fulills the prerequisites of Theorem 1–1– Under the

assumption that there is a representation f of the right-hand side for the EEG forward problem such

that f ∈ V ′, Theorem 1–1 gives the main result for existence and uniqueness–

AConforming Finite ElementMethod Based on themathematical foundation presented above, we

introduce a discretization method to numerically solve the EEG forward problem: the conforming

inite element method with Lagrangian elements–

There are several alternative approaches to solve the EEG forward problem, such as the boundary

element method (Acar and Makeig, 2010; Gramfort et al–, 2011; Mosher et al–, 1999; Stenroos and

Sarvas, 2012)– The diferent domains are represented by diferent surfaces and Poisson’s equation is

transformed into an integral form– Introducing a inite dimensional function space on the surfaces,

the resulting integral form can be solved numerically– A diferent class of methods takes the volume

of the domain into account– Examples are the inite diference method (Montes-Restrepo et al–,

2014; Vatta et al–, 2009; Wendel et al–, 2008) or the inite volume method (Cook and Koles, 2006)–

For the description of the inite element method, we mainly follow (Braess, 2007) and will focus

on the description of two and three spatial dimensions– The main idea of the inite element method

is to use the weak formulation and replace the ininite dimensional space V with a inite dimension

space Vh– It has been applied extensively for the EEG forward problem, e–g–, see (Gençer and

Acar, 2004; Lew et al–, 2009; Medani et al–, 2015; Pursiainen et al–, 2011; Schimpf et al–, 2002;

Weinstein et al–, 2000)– The classical Lagrangian inite element method uses a conforming approach

to construct the inite dimensional subspace, i–e–, Vh ⊂ V– Instead of searching for a solution u ∈ V,
we search for a solution uh ∈ Vh and the weak formulation then reads

a(uh, vh) = f (vh), for all vh ∈ Vh, (1–12)

with a(uh, vh) =
∫

Ω
〈σ∇uh,∇vh〉dx and a source term f which is to be deined below– Here h ∈ R

denotes a discretization parameter which describes a convergence process to the original problem

for h→ 0– We introduce a basis of the discrete function space Vh: ϕ0, . . . ,ϕNď1, with N = dim(Vh)–
For the function uh we introduce the form

uh(x) =
Nď1∑

i=0

ziϕi(x),
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with the coeicients zi ∈ R– Then (1–12) is equivalent to

Nď1∑

i=0

zia(ϕi,ϕj) = f (ϕj) for j = 0, . . . ,N ď 1,

or in matrix form: Find z ∈ RN such that

Az = b,

with Aij = a(ϕi,ϕj) and bi = f (ϕi)– It can be shown that if the bilinear form a is coercive, the matrix

A is positive deinite and thus the linear system has a unique solution–

Lemma 1.2 (Céa’s lemma (Brenner and Scott, 2007, Theorem 2–8–1)). Given a Hilbert space (V, 〈·, ·〉),
a continuous, coercive bilinear form a(·, ·), a continuous linear functional f ∈ V ′ and u ∈ V solving the
weak formulation. For the solution uh ∈ Vh of the inite element variational problem we have

‖u ď uh‖V ≤
C
α
min
v∈Vh
‖u ď v‖V

where C is the continuity constant and α is the coercivity constant of a(·, ·) on V.

According to Lemma 1–2, the accuracy of the inite element solution strongly depends on how

the discrete function space is chosen to approximate the solution u– The basis of constructing this

discrete function space is a partition of the computational domain Ω–

Deinition 1.10 (Tessellation). A tessellation of a domain Ω is a set Th(Ω) = {E0, . . . , Emď1} of open
convex polytopes Ei ⊂ Ω such that

mď1⋃

i=0

Ei = Ω,

Ei ∩ Ej = ∅, i 6= j–

A tessellation is called admissible, if the following conditions are met:

1. if Ei ∩ Ej consists of exactly one point, this point is a common vertex of Ei and Ej.

2. if Ei ∩ Ej consists of more then one point for i 6= j, then Ei ∩ Ej is a common edge or, in three
dimensions, a common face of Ei and Ej.

A family of tessellations {Th} is called shape-regular, if there is a κ > 0 such that every T in Th contains
a circle of radius ρT with

ρT ≥ hT—κ,

where hT denotes the diameter of T. A family of tessellations is called uniform, if every T in Th contains
a circle of radius ρT with

ρT ≥ h—κ,
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with h := maxT∈Th hT .

A property of admissible tessellations is that they do not contain hanging nodes– In this thesis we

will mainly focus on admissible tessellations and give a comment when a method is also applicable

for non-admissible tessellations– When investigating convergence behavior in subsequent sections,

we will use shape-regular tetrahedral tessellations and uniform hexahedral tessellations– On such

tessellations, we deine the inite-element space Vk
h :

Deinition 1.11 (Finite element space). The space Vk
h is deined as the space of continuous, piecewise

polynomial functions, i.e.,

Vk
h :=

{

vh ∈ C0(Ω) : vh|E ∈ Pk(E) ∀E ∈ Th(Ω)
}

where Pk(E) denotes a space of polynomials of degree k ∈ N on an element E.

In (Braess, 2007, Theorem 5–2) it is shown that this function space is a conforming space, i–e–,

Vk
h ⊂ H1(Ω)– We will usually employ irst order polynomials, i–e–, linear polynomials on tetrahe-

drons and multi-linear polynomials on hexahedrons– The basis functions ϕi for this piecewise linear

function space are chosen as the Lagrangian basis functions

Deinition 1.12 (Lagrangian basis functions). Let x0, . . . , xNď1 ∈ Rd denote the vertices of a tessella-
tion Th. The basis consisting of the linear functions ϕi, i = 0, . . . ,N ď 1 which fulill the property

ϕi(xj) =







1 , i = j

0 , i 6= j

is called Lagrangian basis.

Due to their shape, the Lagrangian basis functions are also called hat functions–

Direct source models The handling of the source-term for the EEG forward problem can be cate-

gorized into two main categories of direct and indirect source models– While the direct approaches

perform a direct discretization of the dipolar source term, an indirect approach modiies the weak

formulation–

The direct source models presented in the literature are the partial integration approach, the

St– Venant source model and the Whitney approach– The partial integration approach resolves the

distributional derivative of the mathematical point dipole onto the test function– As functions in L2

are not uniquely deined on a set of zero measure, such as the set {xdp}, this source model is only

applicable in the discrete case, when using a piecewise polynomial test function– We will use the

implicit assumption that the dipole is not located exactly on the boundary of an element– If so, we

will shift it by ε≪ h into the volume of an element–

Deinition 1.13 (Partial integration source model). For a dipole at xdp ∈ Rd with moment M ∈ Rd

and a test function vh ∈ Vh, the partial integration source model is deined as

〈f , vh〉 :=







ď
〈

M,∇vh(xdp)
〉

, xdp ∈ supp(vh)

0, else
– (1–13)
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When using piecewise linear test functions, the partial integration approach is independent of the

local position within an element, due to the piecewise constant gradient in (1–13)– For piecewise

multi-linear test functions, this is not the case–

Another direct source model is the St– Venant approach (Medani et al–, 2015; Vorwerk, 2016;

Wolters et al–, 2007b)– In its classical formulation, it replaces the mathematical point dipole, con-

taining the derivative of the delta distribution, by a set of monopoles, which are weighted such that

certain properties of the original source term are maintained– This approach is described in detail

in Section 2–1–

A diferent discretization scheme is performed by the Whitney source model (Bauer et al–, 2015;

Pursiainen et al–, 2011, 2016)– Instead of discretizing the complete dipolar source term, the primary

current Jp is discretized in a vector-valued function space which consists of functions with square-

integrable divergence– Depending on the source-space, theWhitney approach shows high accuracies

comparable to the Venant approach–

A Continuous Subtraction Approach In the following, we present an indirect source model for

discretizing the singular right-hand side of the EEG forward problem– As mentioned above, the

dipole source term is a distribution that can not be represented as an element of the L2(Ω) space–
Through this lack of regularity, the common framework of inite element methods is not directly

applicable– In (Wolters et al–, 2007a), the theory of the subtraction approach for resolving the

singularity has been presented, with an idea going back to (Bertrand et al–, 1991)– Furthermore, in

(Drechsler et al–, 2009), an extension of the approach, namely the full subtraction approach has been

described, which we will recall in the following section– The main assumption behind this approach

states, that we ind an area around the dipole location, where the conductivity has a constant value

σ∞ ∈ Rd×d– If this is the case, then we can split the potential and the conductivity tensor into two

parts, a singularity contribution and a correction part:

u = ũ+ u∞ (1–14)

σ = σ̃ + σ∞– (1–15)

Here u∞ : Rd → R solves the Poisson’s equation in an unbounded domain with constant conduc-

tivity σ∞ ∈ Rd×d, i–e–,

∇ · σ∞∇u∞ = ∇ · Jp in Rd– (1–16)

This assumption is fulilled, if the dipole has a certain distance from the next conductivity jump– As

presented in (Hämäläinen et al–, 1993) dipoles are located in the center of the gray matter compart-

ment, which has an approximate width of 2mm to 6mm (Li et al–, 2014)– Thus, the assumption can

be considered reasonable in a realistic scenario– The singularity potential u∞ can be analytically

computed and is given as

u∞(x) =
1

4π
√

|σ∞|

〈

M, (σ∞)ď1(x ď xdp)
〉

〈

(σ∞)ď1(x ď xdp), x ď xdp
〉 3

2

, (1–17)
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where |σ∞| ∈ R denotes the determinant of σ∞ and xdp, M ∈ Rd denote the dipole position

and the dipole moment respectively– Note that u∞ has a singularity at the dipole position– In the

following derivation we will need the gradient of u∞, which can be formulated analytically as

∇u∞(x) =
1

4π
√

|σ∞|

(σ∞)ď1M
〈

(σ∞)ď1(x ď xdp), x ď xdp
〉 3

2

ď
1

4π
√

|σ∞|

3
〈

M, (σ∞)ď1(x ď xdp)
〉

(σ∞)ď1(x ď xdp)
〈

(σ∞)ď1(x ď xdp), x ď xdp
〉 5

2

– (1–18)

If we can compute the correction potential ũ ∈ H1
∗(Ω), the full potential u can be obtained via

(1–14) (cf– Deinition 1–8 for the deinition of H1
∗(Ω))– Inserting (1–14) into the Poisson’s equation

and considering (1–15) gives the strong formulation of the subtraction approach:

∇ · σ∇ũ = ď∇ · σ̃∇u∞ in Ω (1–19)

〈σ∇ũ,n〉 = ď 〈σ∇u∞,n〉 on ∂Ω– (1–20)

Note that by this approach, the singularity has been efectively eliminated as σ ≡ σ∞ in an area

around the dipole location and thus σ̃ ≡ 0 in the same area– Even though u∞ still has a singularity

at the dipole location, σ̃ is constantly zero in this area– An advantageous property of the subtraction

approach compared to the direct approaches can be seen in the accurate representation of the source

term in the vicinity of the dipole position–

In order to derive a weak formulation for the subtraction approach, we multiply (1–19) with a test

function v ∈ H1(Ω), applying integration by parts while considering the inhomogeneous Neumann

boundary condition in (1–20)– The weak formulation of the subtraction approach then reads: Find

ũ ∈ H1
∗(Ω) such that

a(ũ, v) = l(v) for all v ∈ H1(Ω)

holds, with

a(ũ, v) :=
∫

Ω

〈σ∇ũ,∇v〉dx

l(v) :=
∫

Ω

〈σ̃∇u∞,∇v〉dx ď
∫

∂Ω
〈σ∞∇u∞,n〉ds –

In (Wolters et al–, 2007a), the mathematical theory of the subtraction approach along with proofs

for existence and uniqueness as well as error-estimates have been presented– The main theoretical

result is the existence and uniqueness, which uses the Lax-Milgram theorem 1–1–

Theorem 1.2 (Existence and uniqueness (Wolters et al–, 2007a, Theorem 3–7)). Let Ω ⊂ Rd be
compact with a piecewise smooth boundary. Then the variational problem: Find ũ ∈ H1

∗(Ω) such that

a(ũ, v) = l(v) ∀v ∈ H1(Ω) (1–21)

has a unique solution ũ ∈ H1
∗(Ω).
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Proof. (Wolters et al–, 2007a, Theorem 3–7)

For the weak formulation of the subtraction approach, we can introduce a continuous inite el-

ement formulation in the same way as introduced in (1–12)– Especially the bilinear form a is un-

changed compared to the non-subtraction approach– For a one-layer model with homogeneous

conductivities, (Wolters et al–, 2007a) derived error estimates for the inite element solution of the

correction potential– The irst one gives an estimate of the error in the H1 norm–

Theorem 1.3 (Quantitative error estimate for one-layer model (Wolters et al–, 2007a, Theorem

3–8)).

‖ũ ď ũh‖1 ≤ C1h‖ũ‖2 (1–22)

Proof. (Wolters et al–, 2007a, Theorem 3–8)

The second estimate considers the error in the L2 norm–

Lemma 1.3 (Aubin-Nitsche (Wolters et al–, 2007a, Lemma 3–9)).

‖ũ ď ũh‖0 ≤ C1h
2‖ũ‖2 (1–23)

Proof. (Wolters et al–, 2007a, Lemma 3–9)

Note that this error estimate only considers the error in the correction potential ũh and not the

full potential–

Transfer matriʾ approach Usually, the solution of the EEG forward problem u is used in an in-

verse procedure to ind the electrical activity underlying data measured at electrodes on the head

surface– Within these inverse procedures, the EEG forward problem has to be solved for many dif-

ferent source locations– These electrode evaluations can be represented as point evaluations or by

considering the electrode impedances and their areas in the complete electrode model (Pursiainen

et al–, 2018, 2012)– Let Ne ∈ N denote the number of electrodes– The evaluation for both of these

approaches can be represented as the application of a linear operator R ∈ RNe×N :

U = Ru

where U ∈ RNe denotes the resulting discrete values– In the following, we will only consider the

point electrode model for electrodes located at p0, . . . , pNeď1 ∈ Rd– The entries rk,i of the linear

restriction operator are given as rk,i = ϕi(p0) ď ϕi(pk), where ϕi denotes the i-th basis function of

the inite element space– As the solution of the EEG forward problem is only determined up to a

constant, the irst electrode is chosen as a reference electrode and set to zero– Usually, the num-

ber of source locations Ns, for which the EEG forward problem has to be solved, strongly exceeds

the number of electrodes, i–e–, Ns ≫ Ne– Standard electrode montages consist of up to a few hun-

dred electrodes, e–g–, the common 10-10 system contains 74 electrodes (Oostenveld and Praamstra,

2001), while the number of sources within a discrete source space might contain more than 100 000

sources (cf– Section 3–1) and the full solution of the EEG forward problem is computationally highly
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expensive– An approach to circumvent this high computational cost can be found in the transfer

matrix approach (De Munck et al–, 2012; Gençer and Acar, 2004; Weinstein et al–, 2000; Wolters

et al–, 2004), which is closely related to the adjoint approach (Vallaghé et al–, 2008)– Replacing the

solution u by Aď1b we get U = RAď1b = Tb with the transfer matrix T = RAď1 ∈ RNe×N , where n
denotes the dimension of the inite element space– This transfer matrix T can be computed by solv-

ing ATt = Rt, considering the symmetry of the stifness matrix A– The solution can be performed

for each column of Tt and Rt separately– Once the transfer matrix has been computed, the potential

diferences at the electrode positions can be computed by assembling the right-hand side vector

and performing a matrix vector multiplication– Thus, in order to compute a full lead ield matrix,

the linear system has to be solved only Ne times– This approach can be used for almost any kind of

discretization of the EEG forward problem, including the approaches presented in the subsequent

chapters–

ޢ.ޠ A Discontinuous Galerkin Finite Element Method
Compared to the continuous inite elementmethods described in Section 1–2, discontinuous Galerkin

methods do not enforce a global continuity of the potential– In (Arnold et al–, 2002), a uniied def-

inition and a common analysis of various discontinuous Galerkin methods has been presented– Of

special interest are the results of (Engwer et al–, 2017), where a discontinuous Galerkin method of

the Subtraction approach for the EEG forward problem has been derived– In the following, we will

briely introduce the general formulation of the symmetric, weighted interior penalty discontinu-

ous Galerkin method– Its description mainly follows (Arnold et al–, 2002) but also takes ideas and

notations from (Di Pietro and Ern, 2011) and (Engwer et al–, 2017) into account–

Similar to the previous section, Ω ⊂ Rd denotes a domain and Th(Ω) denotes a geometry con-

forming tessellation of Ω with an element diameter of h ∈ R– The discrete space representing test

and ansatz functions is given as the space of piecewise polynomial functions–

Deinition 1.14 (Broken polynomial space). The broken polynomial space of degree k ∈ N is deined
as

Vk
h :=

{

u ∈ L2(Ω) : u|E ∈ Pk(E), E ∈ Th(Ω)
}

for a space Pk of local polynomials of degree k ∈ N.

Note that these functions are not assumed to be continuous across element boundaries– The poly-

nomial space that is used depends on the shape of the elements of the tessellation– For tetrahedrons,

we will use the space spanned by the basis functions

Pk(E) =
{

xα : α ∈ Nd ∧ |α|1 ≤ k
}

,

using the multi-index notation xα =
∏

i x
αi
i (cf– Deinition 1–2)– For hexahedrons we will use the

space spanned by

Qk(E) =
{

xα : α ∈ Nd ∧ |α|∞ ≤ k
}

–

In the following we will mainly use a irst order space, i–e–, k = 1 and will omit k if no ambiguities
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arise– The set of intersections between two elements and between an element and the domain

boundary is called the skeleton of the tessellation–

Deinition 1.15 (Skeleton). The internal skeleton of a tessellation Th(Ω) is deined as

Γ
int
h := {∂Ee ∩ ∂Ef

︸ ︷︷ ︸

=:γef

: Ee, Ef ∈ Th(Ω), Ee 6= Ef , |γef | > 0}

and the skeleton of a triangulation is deined as

Γh := Γ
int
h ∪ {∂Ee ∩ ∂Ω

︸ ︷︷ ︸

=:γe

: Ee ∈ Th(Ω), |γe| > 0}–

On the skeleton, the functions of the broken polynomial space are not uniquely deined but can

be assigned two values, one from either side of the intersections– In the following descriptions, we

will make use of an operator which expresses the diference between the values of both sides, i–e–,

the jump of the function on an interface–

Deinition 1.16 (Jump). The jump of a scalar function u or a vector-valued function v on an edge γef
between two elements Ee, Ef ∈ Th(Ω) is deined as

JuK := u|Eene + u|Efnf

JvK := 〈v|Ee ,ne〉+ 〈v|Ef ,nf 〉

where ne,nf ∈ Rd denote the unit outer normals on Ee and Ef , respectively.

Note that the jump of a scalar function is a vector and the jump of a vector-valued function is

a scalar– Another operator on the skeleton that will be used in the deinition of the discontinuous

Galerkin method is the weighted average operator (Di Pietro and Ern, 2011)–

Deinition 1.17 (Weighted average). The weighted average of a (scalar or vector-valued) function u
on an edge γef between two elements Ee, Ef ∈ Th(Ω) is deined as

{u} := ωeu|Ee + ωfu|Ef

with two weights ωe,ωf ∈ R with ωe+ωf = 1. If not stated diferently, these weights will be deined as

ωe =
δf

δe + δf
ωf =

δe
δe + δf

δe = nteσne δf = ntfσnf

where ne,nf ∈ Rd denote the unit outer normals on Ee and Ef , respectively and σ : Ω→ Rd×d denotes
a symmetric, positive deinite conductivity tensor. The skew-weighted average is denoted by

{u}∗ := ωfu|Ee + ωeu|Ef –

A direct computation using the deinitions of the jump and average shows the following multi-
plicative property which will be used in the subsequent sections–
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Chapter ޠ Phʿsiological and Mathematical Background

Lemma 1.4. For u, v ∈ L2(Ω) and an edge γef ∈ Γ
int
h the following multiplicative property holds:

JuvK = JuK {v}∗ + {u} JvK –

Proof. In the following, we use the notation ue := u|Ee –

JuvK = uevene + uf vfnf

= (ωe + ωf )
︸ ︷︷ ︸

=1

uevene + (ωe + ωf )
︸ ︷︷ ︸

=1

uf vfnf + ωeuevf (ne + nf )
︸ ︷︷ ︸

=0

+ωfuf ve (ne + nf )
︸ ︷︷ ︸

=0

= (uene + ufnf )(ωf ve + ωevf ) + (ωeue + ωfuf )(vene + vfnf )

= JuK {v}∗ + {u} JvK

Using the deinitions of the jump and weighted average terms, we can deine the general sym-

metric weighted interior penalty discontinuous Galerkin method

Deinition 1.18 (SWIPG). The symmetric weighted interior penalty discontinuous Galerkin method
(SWIPG) is deined as: Find uh ∈ Vh such that

a(uh, vh) + J(uh, vh) = l(vh)

for all vh ∈ Vh, where

a(uh, vh) =
∫

Ω

〈σ∇uh,∇vh〉dx ď
∫

Γint
h

〈{σ∇uh}, JvhK〉+ 〈{σ∇vh}, JuhK〉ds

J(uh, vh) = η

∫

Γint
h

σ̂γ

ĥγ
〈JuhK , JvhK〉ds –

The term l(vh) describes a general source term and will be deined in subsequent sections. The weighting
parameter σ̂γ on an intersection γ between elements e and f is deined as the harmonic average of the
projected conductivity tensors (cf. Deinition 1.17)

σ̂γ =
2δeδf
δe + δf

The local mesh-size parameter ĥγ is chosen following (Georgoulis et al., 2007) as

ĥγ =
min(measd(Ee),measd(Ef ))

measdď1(γ)

where measd and measdď1 denote the d-dimensional volume measure and d ď 1-dimensional surface
measure respectively.

The term J forms a penalty term that penalizes jumps in the potential on the internal skeleton

and is used to obtain coercivity of the combined bilinear form using the penalty parameter η ∈

R– The construction of the source term l in Deinition 1–18 will be the subject of the following
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sections– In (Di Pietro and Ern, 2011) theoretical properties of the SWIPG scheme with piecewise

constant conductivity tensors are investigated– It is assumed that the exact solution follows a certain

regularity u ∈ V∗ for V∗ := H2– Note that, in general, the solution of the EEG forward problem with

the singular right-hand side does not fulill this regularity assumption–

Lemma 1.5 (Consistency (Di Pietro and Ern, 2011, Lemma 4–49)). Assume u ∈ V∗. Then, for all
vh ∈ Vh

a(u, vh) + J(u, vh) = l(vh)

Lemma 1.6 (Discrete Coercivity (Di Pietro and Ern, 2011, Lemma 4–51)). Let η0 and ‖ · ‖swipg be
deined as in (Di Pietro and Ern, 2011, Eq. (4.69)). Then, for all η > η0, the SWIPG bilinear form is
coercive on Vh with respect to the ‖ · ‖swipg-norm, i.e.,

∀vh ∈ Vh, a(vh, vh) + J(vh, vh) ≥ Cη‖vh‖
2
swipg

with a constant Cη ∈ R.

Lemma 1.7 (Boundedness (Di Pietro and Ern, 2011, Lemma 4–52)). Let V∗h and ‖ · ‖swipg,∗ be
deined as in (Di Pietro and Ern, 2011). Then, there is a Cbnd ∈ R, independent of h and σ, such that

∀(v, yh) ∈ V∗h × Vh, a(v, yh) + J(v, yh) ≤ Cbnd‖v‖swipg,∗‖yh‖swipg

Combining Lemmata 1–5, 1–6 and 1–7 provides existence and uniqueness of a solution for the

SWIPG method, under the assumptions noted above–

A Discontinuous Subtraction Approach In (Engwer et al–, 2017) a discontinuous Galerkin dis-

cretization of the subtraction approach (cf– Section 1–2) has been presented– Its main motivation

stemmed from the observation of unphysical skull leakages in the continuous Galerkin discretization

on hexahedral meshes (Sonntag et al–, 2013)– These leakages might occur if the resolution of the

imaging data is very poor or if the skull compartment is very thin– This might be especially relevant

in infant studies (Roche-Labarbe et al–, 2008) or for temporal bone areas, where the skull thickness

is 2mm or even less (Kwon et al–, 2006)– In such cases, an element of the CSF compartment might

be connected to an element of the skin compartment via a single node– Due to the nature of the

Lagrange inite element method, a basis function at such a node provides a direct shortcut for the

current between the CSF and the skin compartment– The resulting observations are unphysical

hotspots in the current strength– In (Dannhauer et al–, 2011) it was shown, that an appropriate

modeling of the skull is especially important for an accurate EEG forward solution and thus errors

in the skull compartment can severely impact the accuracy of the method–

One general property of Poisson’s equation, which forms the basis and motivation of the discon-

tinuous Galerkin approach in (Engwer et al–, 2017), is the conservation of charge–

∫

∂K
〈σ∇u,n〉ds =

∫

K
fy dx

for an arbitrary control volume K ⊂ Ω and fy := ∇ · Jp– Introducing the splitting of the potential
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u = ũ + u∞ into the singularity potential u∞ and the correction potential ũ and the correspond-

ing splitting of the conductivity tensor σ = σ̃ + σ∞, we obtain a conservation property for the

subtraction approach

∫

∂K
〈σ∇ũ,n〉ds = ď

∫

K
∇ · σ̃∇u∞ dx –

We note that for an arbitrary control volume, the continuous Galerkin inite element method does

not fulill this conservation property, as the constant function on the control volume is not an ele-

ment of the test function space– In (Engwer et al–, 2017), a derivation of the SWIPG method for the

subtraction approach is presented, which results in the discrete weak formulation: Find ũh ∈ Vh
such that

a(ũh, vh) + J(ũh, vh) = l(vh) ∀vh ∈ Vh

with a and J as deined in the general SWIPG scheme in Deinition 1–18 and the source term

l(vh) = ď
∫

Ω

〈σ̃∇u∞,∇vh〉dx +
∫

Γint
h

〈{σ̃∇u∞}, JvhK〉ds ď
∫

∂Ω
〈σ∞∇u∞,n〉 vh ds –

For this SWIPG scheme, a corresponding discrete conservation property can be formulated as

∫

∂K
{σ∇ũh} ď η

σ̂γ

ĥγ
JũhK ds =

∫

K
ď∇ · σ̃∇u∞ds

which converges to the conservation property for the exact solution for h→ 0–

In (Engwer et al–, 2017), numerical studies were performed to investigate convergence properties

and to compare the discontinuous Subtraction approach with the continuous counterpart, both in a

four-layer sphere model as well as in a realistic six-compartment head model– In the sphere studies,

both methods showed similar results, while the DG method outperformed the CG method for lower

mesh resolutions and for spheres with thinner skull compartments–

ޣ.ޠ A Miʾed Finite Element Method
In (Vorwerk et al–, 2017) a mixed inite element method (MixedFEM) for solving the EEG forward

problem has been presented– Instead of discretizing the scalar second order Poisson’s equation, a

system of irst order equations is derived and subsequently discretized– The resulting method is,

similarly to the DG-FEM approach, able to preserve the current on the discrete level–

The basis of the mixed approach is the reformulation of Poisson’s equation as: Find (j, u) such

that

j+ σ∇u = Jp

∇ · j = 0 in Ω,

〈j,n〉 = 0 on ∂Ω–

In order to derive a weak formulation for this system, we introduce the space of vector-valued L2
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functions with a square-integrable divergence:

H(div;Ω) =
{

q ∈ L2(Ω)3 : ∇ · q ∈ L2(Ω)
}

–

Together with a norm taking the divergence into account, H(div;Ω) forms a Hilbert space– The

homogeneous Neumann boundary condition is embedded into the function space by setting:

H0(div;Ω) =
{
q ∈ H(div;Ω) : 〈q,n〉 = 0 on ∂Ω

}
–

The weak formulation of the MixedFEM approach then reads: Find (u, j) ∈ L2(Ω) × H0(div;Ω),

such that

a(j,q) + b(q, u) = l(q) for all q ∈ H0(div;Ω),

b(j, v) = 0 for all v ∈ L2(Ω),

with

a(p,q) =
〈

σď1p,q
〉

L2(Ω)3

b(p, v) = 〈∇ · p, v〉L2(Ω)

l(q) =
〈

σď1Jp,q
〉

L2(Ω)3
–

In (Vorwerk et al–, 2017), conditions are presented for the existence and uniqueness of a solution

for this weak formulation– Furthermore, discrete spaces for representing the vector-valued lux

and the scalar potential are introduced– Using these spaces, two diferent representations of the

dipolar source terms are introduced: a direct application of the delta distribution to the lux, and a

projection of the source term into the potential space– The resulting discretized linear system has

a saddle-point structure, and speciically tailored linear solvers have to be employed for its eicient

solution–

Both sphere-model studies as well as simulations using a realistically shaped head model are

performed in (Vorwerk et al–, 2017)– The MixedFEM approach was compared to the conforming

Lagragian inite element method (CG-FEM) and the discontinuous Galerkin method (DG-FEM)–

So far, only evaluations in structured hexahedral meshes, but no evaluations in geometry-adapted

hexahedral meshes or in tetrahedral meshes have been performed– However for the hexahedral

models, MixedFEM showed comparable accuracies to CG-FEM in standard high resolution scenarios

but outperformed CG-FEM in scenarios containing thin structures, where it showed an accuracy

similar to DG-FEM–

ޤ.ޠ Conclusion
In this chapter, we presented the established background and theory of inite element methods for

solving the EEG forward problem– We introduced the physiological origin of the signals measured

by EEG and recalled the derivation of Poisson’s equation– Following the introduction of the weak for-

mulation, we presented the classical conforming inite element method using Lagragian elements–
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We described the discretization of the dipolar source term using direct source models such as the

partial integration approach, the approach of St– Venant or the Whitney approach and using the

indirect subtraction approach– Besides the classical conforming inite element method, we recalled

the recent developments for a discontinuous Galerkin approach and a mixed inite element method–

Even though the methods presented in this chapter are well established, there are still some open

questions– A common problem among inite element methods for the EEG forward problem is the

handling of the singular source term provided by the mathematical point dipole– A popular choice

is the approach following the principle of St– Venant which has been briely mentioned above– It

replaces the singular point dipole by a set of point monopoles which are still singular– Instead of

using the monopolar sources, a conforming approach could be considered, which approximates

the dipolar source term within the discrete function space– An open question is the relation of the

Venant approach to the partial integration source model– For the discontinuous Galerkin method,

the Venant approach has not yet been introduced and evaluated– A main disadvantage of the Sub-

traction approach compared to the direct models is its high computational cost due to the increased

support of the right-hand side– This could be remedied by restricting the support of the introduced

singularity potential to a small patch around the source location– These modiications to the Venant

and subtraction source models will be addressed in Chapter 2– The approaches introduced in this

chapter have in common that they require a tessellation that is adapted to the model domain– The

construction of a highly accurate tessellation is not straightforward and might even involve man-

ual interaction– Instead, discretization approaches which consider the model geometry without the

need for tailored tessellation could be evaluated– Such approaches will be introduced and evaluated

in Chapter 3–
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Source Models for Modern Finite Element Methods

The conforming inite element method using Lagrangian elements is the predominant method when

considering inite element methods for solving the EEG forward problem– For this approach, various

discretizations of singularity provided by the dipolar source term have been presented– Among

these source models the Venant approach, following the principle of St– Venant, is widely used in

practice, due to its accuracy and comparatively low computational costs– In Section 2–1, we will

address open questions regarding the Venant approach– We will show its connection to the partial

integration source model and demonstrate the efect of including mixed higher order moments in its

interpolation scheme– Instead of replacing the dipolar source term by a set of monopolar sources,

we show the possibility of using a conforming source representation–

Recently, a non-conforming inite elementmethod has been presented: the discontinuous Galerkin

method– In this method, the discrete functions are coupled weakly on element boundaries, instead

of using globally continuous ansatz functions– So far, only the partial integration and the subtrac-

tion approach have been described for this method– We will introduce the Venant approach in this

discontinuous setting in Section 2–2–

While the subtraction approach shows a high accuracy and a mathematical theory is available

for this approach, its main downside is its high computational cost, which makes it unfeasible in

practice for many applications– In Section 2–3 we will present a modiication of the subtraction

approach which reduces this cost by decreasing the size of the support of the source discretization–

ޠ.ޡ Source Models Following the Principle of St. Venant
The idea of the Venant approach for discretizing the dipolar source term of the EEG forward problem

follows the principle of St– Venant– It replaces the source given by the mathematical point dipole

by an equivalent source distribution which maintains certain properties of the original source– In

the description and deinition of the Venant approach, we will provide a generalization of the ideas

given e–g–, in (Vorwerk, 2016; Wolters et al–, 2007b)–
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In (Vorwerk, 2016), N ∈ N monopoles are placed on mesh vertices x0, . . . , xNď1 ∈ Rd close to

the source location xdp ∈ Rd– By scaling the monopoles with the strengths q0, . . . , qNď1 ∈ R, the

discrete source distribution is given as ρ :=
∑Nď1

i=0 qiδxi where δxi denotes the delta distribution at

xi– We will call this source distribution the monopolar Venant approach– The goal is to ind a set of

monopole strength, such that for l ∈ {0, . . . ,Nm ď 1},Nm ∈ N, the centered moments, deined as

Sl(f ) :=
∫

Ω

(x ď xdp)
lf (x) dx , (2–1)

are maintained– Inserting the discrete source distribution ρ into (2–1) and resolving the delta dis-

tribution results in

Sl(ρ) =
Nď1∑

i=0

qiSl(δxi) =
Nď1∑

i=0

qi(xi ď xdp)
l–

For the dipolar source term ∇ · Jp = ∇ · Mδxdp , where M ∈ Rd denotes the dipole moment, we

obtain

Sl(∇ · J
p) =







ďM, l = 1

0, else
–

The monopole strengths are computed such that

∑

i=0

qiSl(δxi) = Sl(∇ · J
p),

for all l ∈ {0, . . . ,Nm ď 1}–

In the following, we will generalize this monopolar Venant approach, such that it is applicable

for diferent discretization schemes, as well as for diferent representations of the discrete source

term– Our goal is to approximate the dipolar source term by a more simple, but equivalent source

distribution– The equivalence of two source distributions will be measured by a linear operator

T : D′(Ω) → Rn, n ∈ N– We will call two distributions f , g ∈ D′(Ω) equivalent with respect to the

operator T, written as f ∼=T g, if the values of T are equal, i–e–,

f ∼=T g ⇔ T(f ) = T(g)– (2–2)

Note that ∼=T does indeed deine an equivalence relation on D′(Ω)– The problem of inding an

equivalent source distribution for the dipolar source term can be seen as a classical inverse problem:

given measured observations y := T(∇ · Jp) ∈ Rn of the dipolar source term ∇ · Jp, ind g ∈ G ⊂
D′(Ω) such that T(g) = y– Here, G denotes a discrete subspace of D′(Ω) which forms the basis of

a Venant approach and will be described further below– Once such an approximation is found, the

right-hand side of the partial diferential equation is given by g(ϕi) for every test function ϕi– As the

inverse problem usually admits to multiple solutions, we will formulate the problem in a variational
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setting using Tikhonov regularization:

g = argmin
g̃∈G

J(g̃), J(g̃) :=
1
2
‖T(g̃) ď y‖22 + λ‖L(g̃)‖22, (2–3)

with a regularization parameter λ ∈ R≥0 and an operator L : D′(Ω) → Rn which can be used to

incorporate a-priori-knowledge of the desired source distribution– If we search for the equivalent

source distribution in the inite dimensional space G, which is spanned by the basis ξ0, . . . ξmď1 ∈

D′(Ω), m ∈ N, the solution of (2–3) can be found by solving the linear system

(AtA+ λBtB)q = Aty, (2–4)

with A = (Ti(ξj))i,j and B = (Li(ξj))i,j, where Ti and Li denote the i-th component of T and L
respectively–

The monopolar Venant approach introduced above can be formulated within this general frame-

work– The subspace G used to represent the approximated source term is chosen as the span of a

set of monopolar sources– The monopoles are located at x0, . . . , xNď1 ∈ Rd and lead to the basis

functions ξj = δxj , where δx denotes the delta distribution at x– The linear operator T : D′(Ω)→ Rn

that measures the equivalence is chosen as the one computing the centered moments around the

source location xdp– For i ∈ {0, . . . ,n ď 1} it is deined as

Ti(u) := u(ti),

ti(x) :=
(
xďxdp
C

)αi
,
, (2–5)

for a set of multi-indices α0, . . . ,αnď1 ∈ Nd, where C ∈ R denotes a scaling factor which is used

to improve the conditioning of the linear system (2–4)– In the description of the monopolar Venant

approach that was presented above, the multi-indices where chosen as the zero vector and the

vectors consisting of a single non-zero entry l ∈ N with l < Nm– In the following, we will also

allow moments with mixed multi-indices, i–e–, multi-indices with more than one non-zero entry– As

the monopolar Venant approach has been developed with CG-FEM and irst order ansatz functions

in mind, it seems natural to choose a set of mesh vertices for the monopole locations– Following

(Wolters et al–, 2007b), for a dipole position xdp, the closest mesh vertex is identiied and monopoles

are placed on all mesh vertices sharing an element with the closest vertex– As a weighting matrix

B, which is the discretization of the a-priori operator L, the diagonal matrix consisting of entries

∥
∥
∥
∥

xi ď xdp
C

∥
∥
∥
∥

s
,

with s ∈ {0, 1} is used– Setting s = 0 penalizes the overall strengths of the monopoles, independent

on their location, while setting s = 1 leads to stronger monopoles closer to the source location–

Note that it is also possible to choose diferent sets of vertices and thus increasing or decreasing the

dimension of the discrete source space– As it turns out, choosing a small set of vertices consisting

only of the vertices of the element containing the dipole, will lead to the same right-hand side as

the partial integration approach (see below for a general statement)–

While the choice of mesh vertices is beneicial for this speciic inite element space, it is not directly
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a) vertex monopoles b) element monopoles c) conforming

Figure :ޠ.ޡ dark gray shows the monopoles or the support of the source approximation, light gray
shows the domain of functions with non-zero right-hand side, orange shows the degrees
of freedom in a CG discretization–source closest to the central vertex–

applicable to a DG-FEM space, as functions within the DG-FEM space can be discontinuous at the

vertex locations– A strategy in this case can be found in choosing monopoles in the interior of

the mesh elements– In order to simplify the choice of the internal positions, we use the points

of a Gaussian quadrature rule on each element of a set of elements around the source location

(Quarteroni et al–, 2010)–

The monopolar Venant is a simpliication of the dipolar source term and ofers a direct way to

enrich the discrete source space compared to the partial integration approach but it is still a dis-

tribution that is not an element of L2(Ω)– However, the general deinition of the Venant approach

can also be used with a discrete source term in L2(Ω)– In the following, we will describe a con-

forming discretization that is a member of the inite element space– This approach will be called

the conforming Venant approach– The basis functions of the source space are chosen as a set of basis

functions ϕj ∈ Vh of the inite element space– The equivalence, given by the linear operator T is

again measured by the centered moments, however this time, we use the L2 scalar product:

Ti(u) :=
∫

Ω
u(x)ti(x) dx ,

ti(x) :=
(
xďxdp
C

)αi
–

(2–6)

This approach can be directly applied to both CG-FEM and DG-FEM– Similar to the monopolar

approach, we use the diagonal matrix consisting of the entries

∫

Ω

ϕj(x)
∥
∥
∥
∥

x ď xdp
C

∥
∥
∥
∥

s
dx ,

with s ∈ 0, 1 as the discrete a-priori operator L– A visualization of the degrees of freedom and

support of the diferent source models can be seen in Figure 2–1– Additionally, Figure 2–2 shows a

visualization of the diferent source terms for a one-dimensional CG-FEM discretization–

In order to visualize the diferences between the diferent source models, we use an L2 projection

to project the source terms into the ansatz space Vh– Given a right-hand side vector g ∈ RN , we are

looking for a source term f ∈ Vh which results in the same right-hand side when tested with a test

function ϕi ∈ Vh, i–e–,
〈f ,ϕi〉L2 = gi ∀i, 0 ≤ i < N– (2–7)

As f is a member of the ansatz space, we have a discrete representation f (x) =
∑Nď1

j=0 fjϕj(x) for
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Figure :ޡ.ޡ Source models of the diferent Venant approaches in 1d– Positive values are colored
in green, negative values are colored in red– A Light gray background highlights the
elements with a non-zero right hand side, a dark gray background highlights the support
of the source distribution– The dipole is located at 0–59–

coeicients fj ∈ R for 0 ≤ j < N– Inserting this representation into (2–7) gives

Nď1∑

j=0

fj
〈
ϕj,ϕi

〉

L2 = gi ∀i, 0 ≤ i < N (2–8)

⇔ Mf = g, M =
(〈
ϕi,ϕj

〉)

0≤i,j<N , (2–9)

with the mass matrixM ∈ RN×N – Solving (2–9) will result in a source term f ∈ Vh that produces the
right-hand side g when tested with the basis functions of Vh– Note that (2–9) is uniquely solvable,

as ϕi, 0 ≤ i < N is a basis for Vh–
We create a two dimensional four layer sphere model and put two dipoles into the inner most

compartment– The irst dipole is located such that the supports of all source models do not touch

a compartment boundary– The second dipole is located within an element touching the irst con-

ductivity jump– The resulting projected source models can be seen in Figure 2–3– We irst observe,

that the projections of the monopolar approaches are very similar and mainly difer in magnitude–

Although they have a local support, the projection into the ansatz space produces oscillations that

have a bigger extent– In comparison, the conforming Venant approach retains its local support,

as the discrete source model is already an element of the ansatz space and does not change when

applying the projection–

In certain situations, the use of centered moments leads to a discretization that is identical to the

partial integration approach (see 1–2)– To proof this, we need the following theorem:

Theorem 2.1 (Taylor’s formula (Forster, 2008, Chapter 7, Theorem 2)). Let E ⊂ Rd be an open
domain, x, y ∈ E such that x + t(y ď x) ∈ E for all 0 ≤ t ≤ 1. Further let f : E → R denote a
(k+ 1)-times continuously diferentiable function. Then there exists θ ∈ [0, 1] such that

f (y) =
∑

|α|≤k

Dαf (x)
α!

(y ď x)α +
∑

|α|=k+1

Dαf (x + θ(y ď x))
α!

(y ď x)α (2–10)

Proof. (Forster, 2008, Chapter 7, Theorem 2)

A polynomial ϕ of degree k ∈ N fulills the prerequisites of Theorem 2–1, as it is ininitely often
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a)mesh b) vertex monopoles c) element monopoles d) conforming

Figure :ޢ.ޡ Visualization of the diferent Venant approaches– The two rows show two diferent
source locations– The irst column shows the hexahedral mesh– The elements are colored
according to their conductivity value– The remaining columns show the diferent Venant
approaches– Depicted is the L2-projection of the source model into the ansatz space–

diferentiable– However, the remainder of (2–10) is zero, as the derivative Dαϕ is zero for |α| > k–
Thus, for such a polynomial it holds that

ϕ(y) =
∑

|α|≤k

Dαϕ(x)
α!

(y ď x)α– (2–11)

Note that this also holds for y ∈ E–

Corollar 2.1. Let E ⊂ Rd be a convex domain, xdp ∈ E,M ∈ Rd and ϕ : E → R a polynomial of
degree k ∈ N. Let f denote a source distribution fulilling the Venant equivalence (2–2) for the centered
moments up to |α| ≤ k with supp(f ) ⊂ E. Then it holds that

f (ϕ) = ď
〈

M,∇ϕ(xdp)
〉

– (2–12)

Proof. Given x, xdp ∈ E then xdp + t(x ď xdp) ∈ E for all t ∈ [0, 1] as E is assumed to be convex–

Using (2–11) on ϕ gives

f (ϕ) =
∑

|α|≤k

Dαϕ(xdp)
α!

f
(

(· ď xdp)
α
)

(2–13)

As f is assumed to fulill (2–2) with the centered moments, it holds that

f
(

(· ď xdp)
α
)

=







ďMi, |α|1 = 1,αi = 1

0, else
–
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Inserting this property into (2–13) results in

f (ϕ) = ď
〈

M,∇ϕ(xdp)
〉

–

For the deinition of the support of a distribution see 1–6– Note that the Venant equivalence is

only needed up to exponents |α| ≤ k, as the higher order derivatives of the polynomial vanish–

Note additionally, that the right-hand side of (2–12) is the right-hand side of the partial integration

approach– Especially the restriction on the support of the source distribution supp(f ) ⊂ E makes

Corollar 2–1 not applicable to an arbitrary Venant approach– However, if the support of the ap-

proximate source distribution is contained in the element which also contains the dipole and if the

source distribution fulills the Venant equivalence with respect to the centered moments, the result-

ing right-hand side is identical to the one given by the partial integration approach– This also means

that in such a situation, increasing the number of degrees of freedom for representing the discrete

source term above what is necessary to ind a distribution that fulills (2–2) does not lead to a dif-

ferent right-hand side with an increased accuracy– If the support of the discrete source distributions

spans multiple elements the test functions are not polynomials on the support and Taylor’s formula

is not applicable–

ޠ.ޠ.ޡ Validation Studies
In this section we will validate the Venant approaches presented above and investigate diferent

properties of the source models when solving the EEG forward problem in a four-layer sphere model–

Using Higher Order Miʾedmoments In the monopolar Venant approach as reported in the litera-

ture (Vorwerk, 2011), only the diagonal moments, i–e–, moments whose corresponding multi-index

has only exactly one non-zero entry, are considered– When employing higher order moments, one

can also include mixed moments, e–g–, non-diagonal entries– The partial integration approach, seen

as a special case of the Venant approach, uses these mixed moments in its natural formulation–

We use a 1mm hexahedral mesh as shown in Table A–2– The nodes of the mesh are shifted to-

wards neighboring minority compartments following the geometry-adaption approach presented

in (Wolters et al–, 2007b)– We use a shifting parameter of 0–3– We employ a four-layer sphere

model which is described in Table A–1 and use the sources shown in Table A–3– Monopolar sources

are placed on the corners of all elements which contain the mesh node that is closest to the source

position– If an element is not part of the brain compartment, it is omitted from this patch– We

include moments of orders 0,1 and 2 and use a reference length C = 20mm– As a relaxation factor

we set λ = 10ď6 and use the exponent s = 1 for the weighting matrix– If not stated diferently, we

will use these parameters in every subsequent study which uses the Venant approach– The results

of the numerical solution at the electrodes are compared to the quasi-analytical solution (De Munck

and Peters, 1993)– We use two measures to quantify the diference between two solutions: the
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relative diference measure (RDM)

RDM(unum, uana) := 50
∥
∥
∥
∥

unum
‖unum‖2

ď
uana
‖uana‖2

∥
∥
∥
∥
2
% (2–14)

and the magnitude error (MAG)

MAG(unum, uana) := 100
(
‖unum‖2
‖uana‖2

ď 1
)

% (2–15)

where unum, uana ∈ RNe denote the potential values of the numerical and analytical solution evalu-

ated at the electrodes and referenced to a zero average, respectively– The RDM can be interpreted as

a measure of the error with respect to the topology– It is bound from below by 0% and from above

by 100%, with an optimal value of 0%– As the name suggests, the magnitude error measures

the relative diference in the magnitude between the numerical and analytical solution– A positive

MAG error indicates an overestimation of the magnitude by the numerical solution, while a negative

values indicates an underestimation– It is bounded from below by ď100% and not bounded from

above, with an optimal value of 0%– Figure 2–4 shows the RDM and MAG measures of the monopo-

lar Venant approach including and not including the mixed moments on a 1mm geometry-adapted

hexahedral mesh– For the inner sources, i–e–, sources which do not lie in an element touching the irst

conductivity jump, we observe a general decrease of the inter-quartile ranges and the total ranges

for the RDM of the mixed moments approach compared to the approach not using the mixed mo-

ments for both, radial and tangential source orientations– The MAG error is less afected and shows

no signiicant diference for the inner sources– For more eccentric sources, the diference between

both approaches is less clear– Figure 2–5 shows the efect of using mixed moments for the RDM

and MAG errors on a tetrahedral sphere model– We create the sphere model using a constrained

Delaunay-triangulation with a volume constraint (Si, 2015), resulting in a tetrahedral mesh with

274 401 nodes and 1551 508 elements– In general, the trend of the error measures behaves simi-

larly compared to the hexahedral model, but more pronounced– Overall, we observe a signiicant

decrease of the RDM error for radial and tangential sources– For the highest eccentricities, the ap-

proach without mixed moments shows strong outliers with an increased RDM andMAG error– These

outliers are not observed when including mixed moments– For both orientations, the total range of

the MAG error is reduced, while tangential sources also show a reduced inter-quartile range–

In order to investigate the efect of mixed moments with respect to an inverse solution, we con-

sider the process of a single dipole itting method (Hämäläinen et al–, 1993)– The dipole itting

method moves a dipole through the computational domain while minimizing a goal function– As

the solution of the forward problem depends non-linearly on the dipole position, the moving dipole

it performs a non-linear optimization scheme– We simulate a target potential by computing a for-

ward solution uana using the quasi-analytical formula of (De Munck and Peters, 1993)– We place

two diferent target sources at an eccentricity of 0–8 with unit strength and radial and tangential

orientations respectively– Let Lx ∈ RNe×d denote the leadield at a position x ∈ Rd, i–e–, the columns

of Lx contain the forward solutions for the Cartesian directions evaluated at the electrodes– We

deine the residual norm as

rx : Rd → R; y 7→ ‖Lxy ď uana‖2–
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Figure :ޣ.ޡ Errors of a CG discretization with the monopolar Venant approach including and not
including the mixed moments on a 1mm hexahedral mesh– On the left side, the RDM
error and on the right side, the MAG error is shown– The dots indicate sources not fully
contained in the brain compartment– Sources with an eccentricity lower than the vertical
yellow line are guaranteed to be within an element not touching the irst conductivity
jump– At eccentricities between the vertical yellow and red lines, sourcesmight be within
an element touching the irst conductivity jump but are still guaranteed to be within the
brain compartment– A bold eccentricity label indicates a signiicant diference (t-Test,
p < 0–01) between the two boxplots–
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Figure :ޤ.ޡ Errors of a CG discretization with the monopolar Venant approach including and not
including the mixed moments on a tetrahedral mesh– On the left side, the RDM error
and on the right side, the MAG error is shown– A bold eccentricity label indicates a
signiicant diference (t-Test, p < 0–01) between the two boxplots–
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Figure :ޥ.ޡ Goal function for a dipole itting approach using monopolar Venant approaches includ-
ing (green) and not including (orange) mixed moments on a 1mm hexahedral mesh–
The left column contains results for a radial target, the right column for a tangential
target– Each column contains an overview plot of the goal function (top), a zoomed-in
plot of the goal function (middle) and a plot of the diference between two neighboring
values of the zoomed-in data (bottom)– The dashed vertical line shows the location of
the target source– The shaded area in the top plot indicates the zoomed-in area of the
two lower plots–

The goal function of the dipole itting approach is given as

gf : Rd → R; x 7→ rx(argmin
y

(rx(y))),

i–e–, the residual norm of the optimal source orientation at the given location– On a diagonal line

from the center of the sphere to the irst conductivity jump which passes the source location, we

distribute test dipoles with a spacing of 0–1mm, resulting in 780 dipole locations– For each of these

source positions, we compute the goal function of the dipole itting method using the diferent for-

ward modeling approaches– Note that for a given position, the optimal strength and orientation can

be computed using least squares– In order to investigate the smoothness of the goal function curve,

we compute the diference between the goal function values of two neighboring dipole positions–

Figure 2–6 shows the goal function of a dipole it including and not including mixed moments on a

1mm geometry-adapted hexahedral mesh– We observe a convex shape of the goal function plots for

both approaches and both target source orientations– The minimum of the goal functions, i–e–, the

zero-crossing of the diference plots, lies below the target position at the eccentricity of 0–8– The

goal function of the source model without mixed moments shows kinks, which correspond to the

locations where the closest mesh vertex of the source changes– These kinks can be seen as spikes in

the corresponding diference plots– The monopolar Venant approach including the mixed moments

does not show these kinks in the vicinity of the target and provides an overall smoother goal func-

tion– Figure 2–7 shows the goal function of a dipole it including and not including mixed moments

on the tetrahedral mesh– The minimum of the goal function is closer to 0–8 than for the hexahedral

approaches– The approach without mixed moments shows a stronger dependency on the local mesh
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Figure :ަ.ޡ Goal function for a dipole itting approach usingmonopolar Venant approaches including
(green) and not including (orange) mixed moments on a tetrahedral mesh– The left
column contains results for a radial target, the right column for a tangential target–
Each column contains an overview plot of the goal function (top), a zoomed-in plot of
the goal function (middle) and a plot of the diference between two neighboring values
of the zoomed-in data (bottom)– The dashed vertical line shows the location of the target
source– The shaded area in the top plot indicates the zoomed-in area of the two lower
plots–

structure and the goal function contains many jumps and plateaus– In some cases, especially for

the tangential target orientation, local minima can be found– The approach including the mixed

moments still includes some of the jumps at element boundaries, but is overall smoother– A clear

zero-crossing of the diference plot at approximately 0–8 can be observed for both orientations–

To conclude, we can see slight increases in accuracy with respect to RDM and MAG when includ-

ing the mixed moments for interior sources– These increases are more pronounced for tangential

orientations and when using tetrahedral meshes– When performing a dipole it, the mixed moments

lead to an overall smoother goal function curve– For a moving dipole it, the goal function is used

within a non-linear optimization procedure, which might fail for non-smooth or non-convex goal

functions– Computationally, including mixed moments leads to a slight increase in the time con-

sumption for solving the local system as its size depends on the number of moments– For up to

second order moments in 3D, the total number of moments increases from 7 to 10– In the practical

applications considered in this thesis, this increase is irrelevant– However, if computation time is the

main concern, e–g–, in real-time applications, one would rather use the partial integration approach–

In the following studies, we will always include the mixed moments–

Monopolar or Conforming Source Representation In this study, we evaluate the diference be-

tween the non-conforming source representation using monopoles and the conforming representa-

tion as an element of the ansatz space– Based on the results of the previous study, both approaches

include the mixed higher order moments– The remaining parameters of the Venant approach are

chosen as described above, and are identical for both approaches– Figure 2–8 shows the RDM and

MAG error for the conforming and monopolar Venant approach on a 1mm geometry-adapted hex-

ޣޢ



ޠ.ޡ Source Models Following the Principle of St. Venant

0.3 0.6 0.771 0.869 0.925 0.957 0.976 0.986 0.992 0.995
eccentricity

0

1

2

3

4

5

6

7

RD
M

 in
 %

monopolar
conforming

0.3 0.6 0.771 0.869 0.925 0.957 0.976 0.986 0.992 0.995
eccentricity

30

20

10

0

10

20

30

M
AG

 in
 %

monopolar
conforming

a) radial source orientations

0.3 0.6 0.771 0.869 0.925 0.957 0.976 0.986 0.992 0.995
eccentricity

0

1

2

3

4

5

6

7

RD
M

 in
 %

monopolar
conforming

0.3 0.6 0.771 0.869 0.925 0.957 0.976 0.986 0.992 0.995
eccentricity

30

20

10

0

10

20

30

M
AG

 in
 %

monopolar
conforming

b) tangential source orientations

Figure :ާ.ޡ Errors of a CG discretization with the monopolar Venant approach and the conforming
Venant approach on a 1mm hexahedral mesh– On the left side, the RDM error and on
the right side, the MAG error is shown– The dots indicate sources not fully contained
in the brain compartment– Sources with an eccentricity lower than the vertical yellow
line are guaranteed to be within an element not touching the irst conductivity jump–
At eccentricities between the vertical yellow and red lines, sources might be within an
element touching the irst conductivity jump but are still guaranteed to be within the
brain compartment– A bold eccentricity label indicates a signiicant diference (t-Test,
p < 0–01) between the two boxplots–
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Figure :ި.ޡ Errors of a CG discretization with the monopolar Venant approach and the conforming
Venant approach on a tetrahedral mesh– On the left side, the RDM error and on the
right side, the MAG error is shown– The dots indicate sources not fully contained in
the brain compartment– Sources with an eccentricity lower than the vertical yellow
line are guaranteed to be within an element not touching the irst conductivity jump–
At eccentricities between the vertical yellow and red lines, sources might be within an
element touching the irst conductivity jump but are still guaranteed to be within the
brain compartment– A bold eccentricity label indicates a signiicant diference (t-Test,
p < 0–01) between the two boxplots–

ahedral mesh– For interior sources, i–e–, sources that do not lie within an element touching the irst

conductivity jump, we do not observe any signiicant or visually discernible diference between the

two approaches, neither for the RDM nor for the MAG error– For higher eccentricities, the conform-

ing approach shows lower RDM errors, while the efect on the MAG error is not as clear– Figure 2–9

shows the RDM and MAG error for the conforming and monopolar Venant approach on a tetrahe-

dral mesh– The tetrahedral mesh is the same as in the previous study– The conforming approach

shows slightly lower RDM errors for interior sources– For tangential orientations, the RDM error is

also reduced for more eccentric sources, while for radial sources, the RDM error is slightly higher–

With respect to the MAG error, there is no clear trend between both approaches and orientations–

To conclude, we do not see a strong diference with respect to numerical accuracy when compar-

ing the conforming and the monopolar Venant approach– This efect might be due to the piecewise

linear ansatz functions that are commonly used when solving the EEG forward problem and might
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be more pronounced when employing higher-order polynomials– Note that the assembly of the lo-

cal system is computationally more expensive when using the conforming approach, as we need to

integrate over the element volumes instead of only evaluating the basis functions at the monopole

locations– Additionally, the resulting right-hand side contains more entries due to the additional

coupling introduced by the ramping-down at the boundary layer of the patch– However, in the

practical computations in this study, the absolute time increase was not signiicant and we used the

conforming approach in subsequent studies–

ޡ.ޡ The St. Venant Source Model for Discontinuous Galerkin
So far, two diferent source models have been described in the literature for discontinuous Galerkin

discretizations of the EEG forward problem (Engwer et al–, 2017; Vorwerk, 2016): the partial in-

tegration and the subtraction approach– The results obtained by these two approaches replicate

indings for conforming approaches, where the subtraction approach shows a higher accuracy but

it is computationally more expensive than the partial integration approach– For the conforming i-

nite element method, a popular source model is the monopolar Venant approach, see e–g–, (Medani

et al–, 2015; Vorwerk, 2016), where monopoles are placed on the vertices of the mesh and their

strengths are computed such that they form an equivalent source term when seen from a distance

(cf– Section 2–1)–

In the following, we will use the Venant approach in a discontinuous Galerkin setting– The

monopoles within the classical formulation are modeled as singular Dirac distributions– While this

approach its to the setting of conforming Lagrange inite elements where discrete functions are

deined by their nodal values, it is not directly applicable to a discontinuous Galerkin discretiza-

tion– As described in Section 1–3, the test and ansatz functions are not strongly coupled between

elements and thus they might be discontinuous on element boundaries which include the nodes of

the mesh– The point-evaluation of these functions on element boundaries is thus not well deined

and the delta source terms cannot be placed on the mesh nodes– One straightforward extension of

the Venant approach with node monopoles has been presented in Section 2–1– Instead of placing

monopoles on the mesh nodes, where the discrete functions are not uniquely deined, we place

monopoles in the interior of the elements– In this domain, the discrete functions are polynomials

and thus have a unique value and the delta distribution is applicable and well deined– We will call

this approach the monopolar Venant approach for a discontinuous Galerkin discretization– A difer-

ent concept for the Venant approach that has been described in Section 2–1 is the conforming Venant
approach– Instead of replacing the singularity of the dipolar source term by a set of singularities

given by monopolar sources, we replace the term in a conforming way using a piecewise polynomial

function of the discrete ansatz space– The same approach can be directly used for a discontinuous

Galerkin method– In addition to the discontinuities on the patch boundary, the interpolated source

term might also be discontinuous on the internal skeleton of the mesh in the interior of the patch–

All parameters that were described in Section 2–1 and used in the validation studies remain valid

and are used in the same way for the discontinuous case– As the time consumption of a source

model is strongly dependent on the number of degrees of freedom it considers, an idea might be

to reduce the size of the local patch where the Venant approach is employed to a single element–

However, the theoretical considerations in Section 2–1 show that this would result in a source model
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producing the same right-hand side as the partial integration approach– It would thus not increase

the accuracy compared to the partial integration approach–

Validation: Partial Integration, Venant for DG We evaluate the Venant approaches for a discon-

tinuous Galerkin discretization in a four-layer sphere scenario– As a comparison, we use the partial

integration approach, which can be applied directly in a discontinuous setting (Vorwerk, 2016)–

In this case, the support of the source model is completely contained within a single element and

the right-hand side has only as many entries as the number of basis functions for the local polyno-

mial space– For the Venant approaches, we use a monopolar Venant approach and the conforming

Venant approach– For the monopolar Venant approach, we create monopoles within the dipole el-

ement and all elements sharing a mesh vertex with the dipole element– Elements which are not

part of the gray matter compartment are omitted, similar to the modiied Venant approach de-

scribed in (Medani et al–, 2015)– On each element, we place 8 monopoles at the positions of the

Gauss-Legendre quadrature points (Quarteroni et al–, 2010)– For the conforming Venant approach,

we use the same elements as for the monopolar approach– As we use the linear ansatz functions

to represent the source term, the number of degrees of freedom used for the interpolation is the

same for both approaches– For the regularization and for the solution of the local system we use

the same parameters as described above for the conforming inite element method– Based on the

investigation in Section 2–1, both Venant approaches include the mixed higher-order moments– We

use the sphere radii and conductivity values shown in Table A–1, the 1mm geometry-adapted hex-

ahedral mesh shown in Table A–2 and the source positions shown in Table A–3– For each source

position and radial and tangential orientation, we compute the RDM and MAG errors with respect

to the quasi-analytical solution (cf– Eq– (2–14), (2–15))– The results of this comparison can be seen

in Figure 2–10– Similar to previous results, we observe an increasing RDM error with increasing

source eccentricity– The RDM error for both Venant approaches is almost identical, while the partial

integration approach yields slightly higher errors– This holds true for both, radial and tangential

source orientations– Results in (Li et al–, 2014) indicate that, depending on the location, the cor-

tex has a thickness of 2mm to 6mm– The generators underlying the electrical activity measured

by EEG are located in the center of gray matter– From the range of eccentricities chosen here, we

will provide a detailed description of the eccentricity of 0–986 which corresponds to a distance of

approximately 1–1mm from the irst conductivity jump– At the eccentricity of 0–986, the median of

the RDM for radial source orientations is 1–6% for the partial integration approach, 1–2% for the

monopolar Venant approach and 1–2% for the conforming Venant approach– The maximal RDM

error at this eccentricity is 6–6%, 4–5% and 4–8% for the diferent source models, respectively– For

tangential source orientations, the median is 1–3% for the partial integration approach, 1–0% for

the monopolar Venant approach and 1–0% for the conforming Venant approach– The respective

maximal RDM errors are 9–0%, 5–0% and 5–1%– With respect to the MAG error, we observe an

increase in total range and inter-quartile range for the partial integration approach as compared

to the Venant approaches– The latter again provide similar errors, both for radial and tangential

sources– We observe a shift in the positive direction of the MAG error over all eccentricities and for

both orientations– At the eccentricity of 0–986, the total range of the MAG error for radial orienta-

tions is 23–4% for the partial integration approach, 15–4% for the monopolar Venant approach and

15–3% for the conforming Venant approach– The inter-quartile range at this eccentricity is 5–3%,
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Figure :ޟޠ.ޡ Comparison of the partial integration and the Venant approaches for a DG discretization
on a 1mm geometry-adapted hexahedral mesh– On the left side, the RDM error and
on the right side, the MAG error is shown (both in %)– The dots indicate sources not
fully contained in the brain compartment– Sources with an eccentricity lower than
the vertical yellow line are guaranteed to be within an element not touching the irst
conductivity jump– At eccentricities between the vertical yellow and red lines, sources
might be within an element touching the irst conductivity jump but are still guaranteed
to be within the brain compartment–
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2–7% and 2–6% for the diferent source models, respectively– For tangential source orientations,

the total range if 21–8% for the partial integration approach, 17–8% for the monopolar Venant ap-

proach and 18–3% for the conforming Venant approach– The respective inter-quartile ranges are

2–9%, 2–4% and 2–4%–

The results for these direct approaches reproduce the results reported in the literature as well

as in the previous section for the continuous Galerkin method– In Vorwerk (2016), the partial

integration approach was found to provide increased error rates when compared to the monopolar

Venant approach for a continuous Galerkin approach– In Section 2–1, themonopolar and conforming

Venant approaches were compared in a continuous Galerkin inite element methods– Similar to the

results here, both showed comparable error measures, for both RDM and MAG errors as well as for

both source orientations– To conclude, when using the Venant approach in a discontinuous Galerkin

discretization scheme, using a conforming representation within the ansatz space gives the same

accuracy than using the non-conforming monopolar approach and we can thus avoid using the

singular delta distribution– In addition, the accuracy of the partial integration approach can be

increased by using the Venant approach in a discontinuous Galerkin setting–

ޢ.ޡ A Localization of the Subtraction Source Model
When using the transfer matrix approach, the time it takes to solve the EEG forward problem for

a single dipole can be split into two parts: the time for assembling the right-hand side vector and

the time for performing the matrix vector multiplication– When employing sparse vector types, the

run time of both parts is directly proportional to the number of non-zero entries in the right-hand

side– It is thus desirable to reduce the support of the source term to decrease the computation

time– Considering the subtraction approach introduced in Section 1–3, we can observe a densely

populated right-hand side, as the singularity potential u∞ has a support covering the whole domain

Ω– In addition, performing the assembly of the source term necessitates the integration over the

whole computational domain– Comparing this to the sparse structure of the direct approaches such

as the partial integration approach presented in Section 1–2 or the Venant approach in Section

2–2, we can observe a dramatic increase in computation time for the subtraction approach– As the

support of the right-hand side of the subtraction approach is directly coupled to the support of the

singularity potential, the idea of this section is to reduce this support by restricting the singularity

potential to a subset Ω∞ ⊂ Ω which is signiicantly smaller than Ω– A schematic representation on

Ω (in a multi-layer sphere model) and Ω
∞ is shown in Figure 2–11–

We will call this splitting approach the localized subtraction source model– In the following deriva-

tion, we will mainly follow (Engwer et al–, 2017), where the full discontinuous Galerkin formulation

of the subtraction approach has been derived– We recall (see equation (1–14)) that the subtraction

approach is introduced by providing a splitting of the potential

uh = ũh + u∞,

where u∞ is the solution of

ď∇ · σ∞∇u∞ = ∇ · Jp in Rd, (2–16)
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Figure :ޠޠ.ޡ Schematic representation of the domain Ω and the patch Ω
∞ centered in the source

location (black dot)– The diferent gray tones indicate diferent tissue compartments–

a) u∞ b) u∞χΩ∞

Figure :ޡޠ.ޡ Singularity potential u∞ and its restriction to a patch on a two dimension domain–
A blue color indicates negative values and a red color indicates positive values– The
colormap is scaled logarithmically towards zero–

which can be computed analytically– In this splitting, the singularity potential is considered in the

whole domain Ω– The main idea of the localization and the main diference to the full subtraction

approach is to consider u∞ only on a volumetric patch Ω
∞ ⊂ Ω around the source location– The

splitting of the potential for this localization approach can be given as

u = ũ+ χΩ∞u∞, (2–17)

where χΩ∞ denotes the indicator function of the domain Ω
∞– For the coupling on the boundary of

the patch, we require that

Jσ∇uK = 0, on ∂Ω∞, (2–18)

with the jump J·K as deined in Deinition 1–16– This coupling condition means that the lux is

continuous across the boundary of the patch– Figure 2–12 visualizes both u∞ and χΩ∞u∞ for

a dipolar source in a two dimensional setting– We observe that the magnitude of u∞ in Figure

ޠޣ



Chapter ޡ Source Models for Modern Finite Element Methods

2–12 falls of quickly away from the source position and similarly the magnitude of the gradient

becomes smaller– This observation leads to the assumption that cutting of u∞ outside of Ω∞ does

not lead to a large decrease in accuracy and it can be recovered by the correction potential– Since

the restricted singularity potential χΩ∞u∞ has a jump on ∂Ω∞, it is not weakly diferentiable and

thus not a member of H1(Ω)– As we require the full potential to be continuous on the boundary,

the correction potential will contain a jump in the opposite direction and will thus also not be a

member of H1(Ω)–

In (Engwer et al–, 2017) a conservation property for the correction potential has been derived

and can be formulated as
∫

∂K
〈σ∇ũ,n〉ds =

∫

K
ď∇ · (σ̃∇u∞) dx , (2–19)

for an arbitrary control volume K ⊂ Ω– Here, n denotes the unit outer normal in K– In following

surface integrals n denotes the normal with respect to the integration domain– We start the deriva-

tion of an equivalent property for the localized subtraction from the general conservation of charge,

which reads
∫

∂K
〈σ∇u,n〉ds =

∫

K
fdx, (2–20)

with f = ∇ · Jp– We deine Ω̃ := Ω \Ω∞ and transform the left-hand side by adding 0 using (2–18)

as
∫

∂K
〈σ∇u,n〉ds

=
∫

∂K
〈σ∇u,n〉ds+

∫

(∂Ω∞)∩K
Jσ∇uKds

=
∫

∂K
〈σ∇u,n〉ds ď

∫

(∂Ω∞)∩K
〈σ∇u,n∞〉ds+

∫

(∂Ω∞)∩K
〈σ∇u,n∞〉ds

=
∫

∂(K\Ω∞)

〈
σ∇u|

Ω̃
,n
〉
ds+

∫

∂(K∩Ω∞)
〈σ∇u|Ω∞ ,n〉ds ,

where n∞ denotes the unit outer normal on ∂Ω∞– For the irst term, i–e–, the integral of the lux

over the boundary of the part of the control volume outside of Ω∞, we derive

∫

∂(K\Ω∞)

〈
σ∇u|

Ω̃
,n
〉
ds =

∫

∂(K\Ω∞)

〈
σ∇ũ|

Ω̃
,n
〉
ds ,

as the singularity potential is restricted to Ω
∞– By inserting the splitting of the potential into the

second term, i–e–, the integral over the boundary of the part of the control volume within Ω
∞, we

get

∫

∂(K∩Ω∞)
〈σ∇u|Ω∞ ,n〉ds

=
∫

∂(K∩Ω∞)
〈σ∇ũ|Ω∞ ,n〉ds+

∫

∂(K∩Ω∞)
〈σ̃∇u∞,n〉ds+

∫

∂(K∩Ω∞)
〈σ∞∇u∞,n〉ds –

Inserting both transformed terms into (2–20), the last term of the previous equation cancels out
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with the source term on the right-hand side of (2–20) as u∞ is the solution of (2–16) and we get

∫

∂(K\Ω∞)

〈
σ∇ũ|

Ω̃
,n
〉
ds+

∫

∂(K∩Ω∞)
〈σ∇ũ|Ω∞ ,n〉ds = ď

∫

∂(K∩Ω∞)
〈σ̃∇u∞,n〉ds –

Applying Gauss’ theorem to the right-hand side and extracting the boundary of Ω∞, we arrive at

∫

∂K
〈σ∇ũ,n〉ds+

∫

(∂Ω∞)∩K
Jσ∇ũKds =

∫

K
ďχΩ∞∇ · σ̃∇u∞ dx – (2–21)

Comparing 2–21 to 2–19, the source term on the right-hand side is only non-zero on the patch Ω
∞–

In addition, another lux occurs on the boundary of the patch due to the cut-of of the singularity

potential– Since we require continuity of the lux on the patch boundary, i–e–, Jσ∇uK = 0 on ∂Ω∞

(cf– (2–18)) this lux can also be expressed as ď 〈σ∇u∞,n∞〉– Equation 2–21 can be seen as a con-

servation property for the localized subtraction approach with a source term on the patch and an

additional lux on its boundary both due to the singularity potential–

As mentioned above, due to the cutof of the singularity potential at the boundary of Ω∞, the cor-

rection potential will have a jump and will not be an element of H1(Ω), but only of L2(Ω)– Thus the
conforming inite element method with piecewise linear ansatz functions is not directly applicable

as such jumps cannot be resolved– However, it directly its into the framework of the discontinuous

Galerkin methods which are able to represent such discontinuous solutions (cf– Section 1–3)– In

the following derivation, we assume that we have the tessellations Th(Ω
∞) and Th(Ω̃) of Ω

∞ and

Ω̃ = Ω \Ω∞ respectively, that together form a conforming tessellation of Ω– In practice, we extract

the elements of the singularity patch from a tessellation of the domain–

To start the derivation of the localized subtraction approach, we multiply Poisson’s equation with

a test function and integrate over an element K ∈ Th(Ω∞)–

ď
∫

K
(∇ · σ∇uh)vh dx =

∫

K
(∇ · Jp)vh dx –

Using the splitting of the potential for the localized subtraction approach (2–17) and the splitting of

the conductivity tensor σ = σ̃ + σ∞, the left-hand side can be transformed to

ď
∫

K
(∇ · σ∇ũh)vh + (∇ · σ̃∇u∞)vh + (∇ · σ∞∇u∞)vh dx –

As u∞ is the solution of (2–16), the last term cancels out with the source term on the right-hand

side resulting in

ď
∫

K
(∇ · σ∇ũh)vh dx =

∫

K
(∇ · σ̃∇u∞)vh dx –

Applying integration by parts to both sides gives

∫

K
〈σ∇ũh,∇vh〉dx ď

∫

∂K
vh 〈σ∇ũh|Ω∞ ,n〉ds

= ď
∫

K
〈σ̃∇u∞,∇vh〉dx +

∫

∂K
vh 〈σ̃∇u

∞,n〉ds –
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We sum over all elements K ∈ Th(Ω∞) of the triangulation of the patch and get

∫

Ω∞

〈σ∇ũh,∇vh〉dx ď
∫

Γ∞

Jvhσ∇ũhKds ď
∫

∂Ω∞

vh|Ω∞ 〈σ∇ũh|Ω∞ ,n∞〉ds

= ď
∫

Ω∞

〈σ̃∇u∞,∇vh〉dx +
∫

Γ∞

Jvhσ̃∇u
∞Kds+

∫

∂Ω∞

vh|Ω∞ 〈σ̃∇u∞,n∞〉ds ,

where n∞ again denotes the unit outer normal on ∂Ω∞ and Γ
∞ denotes the internal skeleton of

the patch– Using the multiplicative property of the jump (cf– Lemma 1–4), the left-hand side of the

above equation can be transformed to

∫

Ω∞

〈σ∇ũh,∇vh〉dx ď
∫

Γ∞

Jσ∇ũhK {vh}
∗

︸ ︷︷ ︸

†1

+ 〈{σ∇ũh}, JvhK〉ds ď
∫

∂Ω∞

vh|Ω∞ 〈σ∇ũh|Ω∞ ,n∞〉ds ,

and similarly, the right-hand side transforms to:

ď
∫

Ω∞

〈σ̃∇u∞,∇vh〉dx +
∫

Γ∞

Jσ̃∇u∞K {vh}
∗

︸ ︷︷ ︸

†2

+ 〈{σ̃∇u∞}, JvhK〉ds+
∫

∂Ω∞

vh|Ω∞ 〈σ̃∇u∞,n∞〉ds –

The terms †1 and †2 cancel each other out as Jσ∇ũh + σ̃∇u∞K = 0 holds (cf– (Engwer et al–, 2017,

Lemma 2–2)) and, combining the left-hand side and the right-hand side, we arrive at

∫

Ω∞

〈σ∇ũh,∇vh〉dx ď
∫

Γ∞

〈{σ∇ũh}, JvhK〉ds ď
∫

∂Ω∞

vh|Ω∞ 〈σ∇ũh|Ω∞ ,n∞〉ds

= ď
∫

Ω∞

〈σ̃∇u∞,∇vh〉dx +
∫

Γ∞

〈{σ̃∇u∞}, JvhK〉ds+
∫

∂Ω∞

vh|Ω∞ 〈σ̃∇u∞,n∞〉ds –
(2–22)

Next, we consider an element of the triangulation of the domain outside of the patch– For a K ∈
Th(Ω̃) we have uh ≡ ũh and

ď
∫

K
(∇ · σ∇ũh)vh dx = 0

⇔

∫

K
〈σ∇ũh,∇vh〉dx ď

∫

∂K
vh|Ω̃

〈
σ∇ũh|Ω̃,n

〉
ds = 0–

We again sum over all K ∈ Th(Ω̃) and consider the homogeneous Neumann boundary condition at

the outer surface of the domain Ω:
∫

Ω̃

〈σ∇ũh,∇vh〉dx ď
∫

Γ\(Γ∞∪∂Ω∞)
Jvhσ∇ũhKds+

∫

∂Ω∞

vh|Ω̃
〈
σ∇ũh|Ω̃,n

∞
〉
ds = 0–

Using the multiplicative property of the jump (cf– Lemma 1–4), this transforms to

∫

Ω̃

〈σ∇ũh,∇vh〉dx ď
∫

Γ\(Γ∞∪∂Ω∞)
Jσ∇ũhK {vh}

∗ + 〈{σ∇ũh}, JvhK〉ds

+
∫

∂Ω∞

vh|Ω̃
〈
σ∇ũh|Ω̃,n

∞
〉
ds = 0–

(2–23)

Summing the contributions from the patch in (2–22) and the remaining domain in (2–23) while
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considering the interface condition Jσ∇ũhK = 0 on all internal edges in Γ \ (Γ∞ ∪ ∂Ω∞) gives:

∫

Ω

〈σ∇ũh,∇vh〉dx ď
∫

Γ\∂Ω∞

〈{σ∇ũh}, JvhK〉ds ď
∫

∂Ω∞

Jvhσ∇ũhK
︸ ︷︷ ︸

‡

ds

= ď
∫

Ω∞

〈σ̃∇u∞,∇vh〉dx +
∫

Γ∞

〈{σ̃∇u∞}, JvhK〉ds+
∫

∂Ω∞

vh|Ω∞ 〈σ̃∇u∞,n∞〉ds –

Splitting the term ‡ on the boundary of the patch using the multiplicative property transforms the

left-hand side to
∫

Ω

〈σ∇ũh,∇vh〉dx ď
∫

Γ

〈{σ∇ũh}, JvhK〉ds ď
∫

∂Ω∞

Jσ∇ũhK {vh}
∗ ds – (2–24)

On a face on the patch boundary between two elements e ∈ Th(Ω∞) and f ∈ Th(Ω̃) we can use the

continuity condition for the full lux σ∇u and derive

0 = Jσ∇uK = 〈σ∇ũh|e,ne〉+ 〈σ∇u
∞,ne〉+

〈
σ∇ũh|f ,nf

〉
= Jσ∇ũhK + 〈σ∇u

∞,ne〉 ,

which gives Jσ∇ũhK = ď 〈σ∇u∞,ne〉, where ne and nf denote the unit outer normals on e and f ,
respectively– Inserting this equation into the left-hand side (2–24) results in

∫

Ω

〈σ∇ũh,∇vh〉dx ď
∫

Γ

〈{σ∇ũh}, JvhK〉ds+
∫

∂Ω∞

{vh}
∗ 〈σ∇u∞,n∞〉ds –

As the last term does not depend on ũh anymore, we transfer it to the right-hand side and arrive at

∫

Ω

〈σ∇ũh,∇vh〉dx ď
∫

Γ

〈{σ∇ũh}, JvhK〉ds

= ď
∫

Ω∞

〈σ̃∇u∞,∇vh〉dx +
∫

Γ∞

〈{σ̃∇u∞}, JvhK〉ds

+
∫

∂Ω∞

vh|Ω∞ 〈σ̃∇u∞,n∞〉ds ď
∫

∂Ω∞

{vh}
∗ 〈σ∇u∞,n∞〉ds –

Note that all terms on the right-hand side do not depend on the correction potential ũh– To gain

consistency, we subtract the symmetry term for the full potential
∫

Γ
〈{σ∇vh}, JuhK〉 ds from the left-

hand side– On an intersection within Ω
∞ or within Ω̃ it holds that JuhK = JũhK as the singularity

potential is continuous– On a face on the boundary of the patch between two elements e ∈ Th(Ω∞)

and f ∈ Th(Ω̃) it holds that

JuhK = uh|ene + uh|fnf = ũh|ene + u∞ne + ũh|fnf = JũhK + u∞ne– (2–25)

The symmetry term thus transforms to the symmetry term for the correction potential with an

additional term on the patch boundary

∫

Γ

〈{σ∇vh}, JuhK〉ds =
∫

Γ

〈{σ∇vh}, JũhK〉ds+
∫

∂Ω∞

u∞ 〈{σ∇vh|Ω∞},n∞〉ds

Within the jump term J(uh, vh) = η
∫

Γ

σ̂
h 〈JuhK , JvhK〉ds of the discontinuous Galerkin method, the

modiied singularity potential has to be considered as well: Using the same transformation (2–25)
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of the jump on ∂Ω∞ we get

J(uh, vh) =η

∫

Γ

σ̂

h
〈JuhK , JvhK〉ds

=J(ũh, vh) + η

∫

∂Ω∞

σ̂

h
u∞ 〈JvhK ,n

∞〉ds

We bring all terms that do not depend on ũh over to the right-hand side and arrive at

a(ũh, vh) + J(ũh, vh) =

ď
∫

Ω∞

〈σ̃∇u∞,∇vh〉dx +
∫

Γ∞

〈{σ̃∇u∞}, JvhK〉ds+
∫

∂Ω∞

vh|Ω∞ 〈σ̃∇u∞,n∞〉ds

ď
∫

∂Ω∞

{vh}
∗ 〈σ∇u∞,n∞〉ds+

∫

∂Ω∞

u∞ 〈{σ∇vh},n
∞〉ds ď η

∫

∂Ω∞

σ̂

h
u∞ 〈JvhK ,n

∞〉ds –

We use σ̃ = σ ďσ∞ to split the third term of the right-hand side and consider (vh|Ω∞ ď{vh}∗)n∞ =

ω∞ JvhK, where ω∞ denotes the average weight on the side of Ω∞– Finally, we get the localized
subtraction approach:

Deinition 2.1 (Localized Subtraction). The localized Subtraction approach for a discontinuous Galerkin
discretization on a patch Ω

∞ is given as: Find ũh ∈ Vh such that

a(ũh, vh) + J(ũh, vh) = (2–26)

ď
∫

Ω∞

〈σ̃∇u∞,∇vh〉dx +
∫

Γ∞

〈{σ̃∇u∞}, JvhK〉ds ď
∫

∂Ω∞

vh|Ω∞ 〈σ∞∇u∞,n∞〉ds (2–27)

+
∫

∂Ω∞

ω∞ 〈σ∇u∞, JvhK〉ds+
∫

∂Ω∞

u∞
〈

{σ∇vh} ď η
σ̂

h
JvhK ,n

∞

〉

ds (2–28)

holds, for all vh ∈ Vh.

First, we want to remark, that the bilinear form in (2–26) for the localized subtraction approach

is the same as for the other DG approaches– This means, in particular, that transfer matrices can be

directly reused with the new right-hand side– Another observation can be made about the irst three

right-hand side terms (2–27)– They are identical to the right-hand side of the standard subtraction

approach, if one replaces Ω∞ by Ω, Γ∞ by Γ and n∞ by n– With regard to a software implementa-

tion of this localized source model, the last point is especially advantageous, as one can reuse the

implementation of the standard subtraction approach– The main diference of the localization as

compared to the non-localized subtraction is the addition of the last two terms in (2–28)– A short

reformulation of the last two terms shows
∫

∂Ω∞

ω∞ 〈σ∇u∞, JvhK〉ds+
∫

∂Ω∞

u∞
〈

{σ∇vh} ď η
σ̂

h
JvhK ,n

∞

〉

ds

=
∫

∂Ω∞

〈{σ∇(χΩ∞u∞)}, JvhK〉+ 〈{σ∇vh}, JχΩ∞u∞K〉ds ď η
σ̂

h

∫

∂Ω∞

〈JvhK , JχΩ∞u∞K〉ds

which directly gives insight into their origin, as these integrals can be seen to stem from a Nitsche-

type weak enforcement of continuity of ũh + χΩ∞u∞ on ∂Ω∞ (Nitsche, 1971)–
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Figure :ޢޠ.ޡ Relative error in percent for radial and tangential dipoles along a diagonal line within
a 1mm geometry-adapted hexahedral four-layer sphere model, using the localized sub-
traction approach with diferent integration orders– Each plot corresponds to a diferent
integration order– The ordinate is depicted on a logarithmic scale–

ޠ.ޢ.ޡ Validation Studies
In this section we will validate the localized subtraction source model for solving the EEG forward

problem in a four-layer sphere model– We investigate the numerical integration and the size of the

patch Ω
∞– Subsequently, we compare the localized subtraction approach to the full subtraction

approach with respect to the accuracy as well as the time consumption–

Choosing the Integration Order In a irst study, we investigate the efect of the numerical inte-

gration for the integrals of the localized subtraction approach– The quadrature rule used for the

integration is based on Gaussian quadrature using Legendre points (Quarteroni et al–, 2010)– For

hexahedral models, we use two and three dimensional tensor-product quadrature rules– We will

denote a tensor-product quadrature rule by its number of one-dimensional quadrature points n ∈ N

which we will call its order– The number of points for a rule of order n is n3 for three spatial di-

mensions and n2 for two dimensions– A quadrature rule of order n is able to exactly integrate

polynomials of degree 2n ď 1 and less– Note that this order does not correspond to the quadrature

rule order of the Dune toolbox, where the order is the maximal degree of the polynomial functions

for which the rule is exact– We distribute dipoles along a line from the center of the sphere to the irst

conductivity jump, spaced regularly at 0–1mm intervals, resulting in 780 positions– Starting from

the integration order of 2 for both surface and volume integrals, which was proposed by (Drechsler

et al–, 2009) for tetrahedral models, we increase the order by 1 up to an order of 6– For each point

and each integration order, we compute the relative error for radial and tangential source orien-

tations– The investigation is performed in a geometry-adapted hexahedral four-layer sphere model

with a 1mm resolution– Details of the spheres are found in Table A–1 and details of the discretiza-

tion are found in table A–2– For Ω∞, we use a patch that consists of the dipole element and all

elements that share a mesh vertex with the dipole element– Figure 2–13 shows the relative error in

percent for radial and tangential sources for the diferent integration orders– We observe a stronger

efect of the integration order for radial orientations compared to tangential orientations– For radial

orientations, the relative error decreases with increasing integration order– Especially orders 2 and
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Figure :ޣޠ.ޡ Relative error in percent for radial and tangential dipoles along a diagonal line within
a 1mm geometry-adapted hexahedral four-layer sphere model, using the localized sub-
traction approach with patch sizes– Each plot corresponds to a diferent patch size–

3 show a high error which is varying strongly with the eccentricity– The results for order 5 and 6

are visually not distinguishable– The relative error for tangential sources is not as strongly afected

by the integration order and results for order 4 and higher are not distinguishable–

The diferent integrands within the localized subtraction approach consist of products of the test

function vh, or its gradient, and the singularity potential and its gradient as well as the Jacobian

determinant of the transformation from global to local coordinates– The test function and the Ja-

cobian determinant both are irst order polynomials and their product is a polynomial of second

order– Note that Jacobian determinant is irst order since we use a geometry-adapted mesh and the

element transformation is a multi-linear function– We thus need at least a quadrature rule of order

2 in order to perform an accurate integration– Additionally, we need to integrate the singularity

potential and its gradient which are both not polynomial functions– In (Drechsler et al–, 2009), a

second order quadrature rule was suicient for accurate integration in the full subtraction approach

on tetrahedral meshes– We did not investigate the efect of the patch size on the quadrature rule–

A larger patch might reduce the necessary quadrature rule order as the boundary of the patch is

further away from the singularity and thus the restricted singularity potential is smoother– As a

conclusion, we will use a quadrature rule of order 5 in the following sections, based on the results

of this study–

Effect of the Patch Size Similar to the previous study of the quadrature rule order, we investigate

the size of the patch for the localized subtraction approach– Starting from the single dipole element,

we extent the patch by including elements which share a vertex with an element that is already part

of the patch– This extension approach is applied recursively 1, 2 and 3 times– Note that in contrast

to the Venant approach, elements are added to the patch independently of their conductivity value–

We again use the geometry-adapted hexahedral four-layer sphere model with a resolution of 1mm–

The patch with 1,2 and 3 extensions thus consists of 33 = 27, 53 = 125 and 73 = 343 elements

and thus has a diameter of 3mm, 5mm and 7mm, respectively– Note that the number of elements

within the patch does not depend on the mesh resolution– Figure 2–14 shows the relative error in

percent for radial and tangential sources for the various patch sizes– For radial source orientations,

we observe slight jumps in the relative error for the smaller patch size– For tangential sources and
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the smallest patch size, the relative error shows a dependency on the position of the source in the

element and we observe jumps corresponding to the crossing of element boundaries– The plots

for the two and three times extended patches are visually not distinguishable both for radial and

tangential sources–

We note that diferent patch sizes have no strong efect on the overall relative error and the

localized subtraction approach performs similarly for all sizes– The main diference between the

patches lies in the smoothness of the relative error curve– If smoothness is not the main concern, a

smaller patch size and thus a computationally cheaper source model can be considered suicient–

Due to the results of this investigation, we will use the two times extended patch, consisting of 125

elements, for the remainder of this section– We did not investigate diferent shapes or diferent

extension strategies of the local patch– It might be beneicial to create a patch that is more spherical

or that is adapted to the singularity potential or to the source orientation–

Convergence of the Localized Subtraction Approach In this study, we will investigate the con-

vergence behavior of the localized subtraction approach– We employ geometry-adapted hexahedral

meshes of a four-layer sphere scenario with increasing resolutions (see Table A–1 for the sphere radii

and conductivity values)– The number of elements as well as the number of degrees of freedom of

the model can be found in Table A–2– The patch Ω
∞ is chosen as the two-times extended patch

around the dipole element (see the results of the previous study)– For hexahedral meshes, this

patch consists of 53 = 125 elements and thus 125 · 8 = 1000 degrees of freedom, independently

of the mesh resolution– Note that when reining the mesh, the diameter of the mesh elements gets

smaller and the boundary of the patch approaches the singularity and thus the jump of singularity

potential at the boundary of the patch increases– We generate a total number of 29 884 source lo-

cations in the innermost compartment of the sphere model, distributed over 10 eccentricities– The

number of sources on each eccentricity are scaled with the surface area of the corresponding sphere

and the eccentricities are scaled logarithmically towards the irst conductivity jump– Each position

is generated randomly within its assigned eccentricity, and the number of positions within each

eccentricity are shown in Table A–3– Note that depending on the mesh resolution, certain source

positions at higher eccentricities might lie in a diferent compartment than the brain compartment–

The number of sources for which this is the case are indicated in Table A–3 as well– In the follow-

ing boxplots, sources which do not lie in a brain element are displayed separately as small dots–

For each source position, we compute the unique radial orientation as well as a random tangential

orientation– Figure 2–15 shows the convergence behavior of the RDM and MAG measures when in-

creasing the mesh resolution– In general, we observe an increase of the RDM error with increasing

eccentricity for both radial and tangential source orientations– The same behavior can be seen for

the total range and the inter-quartile range of the MAG error– For all eccentricities, we see a clear

convergence behavior for both measures when increasing the mesh resolution– At the eccentricity

of 0–925, which corresponds to a distance of approximately 5–9mm from the conductivity jump,

all source positions lie in the gray matter compartment for resolutions of 4mm and higher– At this

eccentricity, the maximal RDM error for radial source orientations decrease from 9–6% over 5–8%

to 0–9% for the resolutions of 4mm, 2mm and 1mm respectively– For tangential orientations, a

decrease from 7–6% over 4–0% to 0–7% can be observed– The total range of the MAG error de-

creases at the same eccentricity from 48–7% over 20–6% to 3–4% for radial orientations and from
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Figure :ޤޠ.ޡ Convergence of the errors of a DG discretization with the localized subtraction approach
on hexahedral meshes with increasing resolution– On the left side, the RDM error and
on the right side, the MAG error is shown (both in %)– The dots indicate sources that
do not lie within the brain compartment– Sources with an eccentricity lower than the
vertical dashed lines are guaranteed to be in the brain compartment, for the resolution
with the same color as the line–
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Figure :ޥޠ.ޡ Convergence order of the localized subtraction approach– Each brown line represents
the convergence of the median relative error in percent of a single eccentricity, where
a darker color represents a higher eccentricity– The black dashed line shows a linear
convergence while the dotted line shows a quadratic convergence–

40–8% over 21–2% to 3–1% for tangential orientations– Results in Li et al– (2014) indicate that the

cortex has a thickness of approximately 2mm to 6mm, depending on the exact location– As the

generators of the measured activity lie in the center of the gray matter, we can assume a distance

of 1mm to 3mm– Among the 10 chosen eccentricity values, the eccentricities of 0–986 and 0–976,

corresponding to a distance of approximately 1–1mm and 1–9mm to the irst conductivity jump,

are within this range and we focus a detailed description of the results on the eccentricity of 0–986–

Only the highest resolution of 1mm guarantees that sources at the eccentricity of 0–986 are within

an element of the brain compartment– We do not investigate the efect on the error measures when

moving the dipole to a diferent location or interpolating the leadield from nearby valid sources–

The total range of the RDM error at this eccentricity for radial source orientations is 6–2%, the inter-

quartile range is 0–04% with the median being at 1–5% and the maximum at 6–6%– For tangential

source orientations, the total range of the RDM error is 4–6%, the inter-quartile range is 0–03%

with the median being at 1–1% and the maximum at 5–0%– The total range of the MAG error for

radial source orientations is 17–3%, the inter-quartile range is 0–9% with the median being at 2–4%

and the maximal absolute value lies at 13–1%– For tangential source orientations, The total range

of the MAG error is 19–6%, the inter-quartile range is 0–7% with the median being at 2–2% and

the maximal absolute value lies at 12–5%– Figure 2–16 shows a visualization of the order of con-

vergences of the median relative error for each eccentricity when increasing the mesh resolution–

Each plot corresponds to the median values of a single eccentricity, where a darker color represents

a higher eccentricity– We observe a clear convergence behavior of the median relative error for all

eccentricities and source orientations– For higher eccentricities, the slope of the convergence plot is

less steep than for the lower eccentricities– With each mesh resolution, we see again the increase of

the error for increasing eccentricities–

Comparing the results of the error measures between radial and tangential measures, we see a

reduced RDM error for tangential orientations while there is no clear trend for the MAG error– The

convergence behavior does not difer signiicantly between the two diferent orientations– The exact

convergence order is not clearly observable, but we can see a trend towards second order for lower

eccentricities and towards irst order convergence for higher eccentricities– This is in line with the
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theoretical indings of (Wolters et al–, 2007a) for the full subtraction approach– Note however that

the results are not directly comparable, as the relative error evaluated here only considers point

evaluations on the model surface for the full potential, while the results in (Wolters et al–, 2007a)

are given for the L2 and H1 norm errors of the correction potential– Results not shown here indicate

that the accuracies and the general convergence behavior remains valid also for a lower patch size

of the dipole element and a single layer of neighboring elements, while the patch consisting of only

the dipole element did not show stable results–

Comparison to the Full Subtraction Approach In this study, we compare the results of the lo-

calized subtraction approach to the results of the full subtraction approach– The main assumption

behind restricting the singularity potential was its lower contribution in the splitting at a distance

to the singularity– Note that in contrast to the other results presented in this section, this statistical

comparison uses a 2mm mesh resolution, due to the high time consumption of the full subtraction

approach (see below)– Figure 2–17 shows the direct comparison between the full and the localized

subtraction on a 2mm hexahedral mesh– Aside from one eccentricity (0–995) for the RDM of tan-

gential sources, there is no signiicant diference between the boxplots of the two approaches– The

RDM increases with increasing eccentricity for both source orientations and we observe a steeper

ascend for the highest eccentricities– Due to the small diference between the two approaches, we

will report the results for the localized subtraction approach– For internal sources (sources that do

not lie within an element on the compartment boundary, delimited by the yellow line) the maximal

RDM error of the localized subtraction is 5–8% for radial sources and 4–0% for tangential sources

and occurs at an eccentricity of 0–925 for both cases– For boundary sources (sources which might lie

in an element at the compartment boundary, but not in an element within the CSF, between yellow

and red line), the maximal RDM error is 15–4% for radial sources and 9–0% for tangential sources

and occurs at an eccentricity of 0–976 for both orientations– Corresponding to the increase in the

RDM, the inter-quartile range (IQR) and total range (TR) of the MAG increases with increasing

source eccentricity and the increase becomes more pronounced for the highest eccentricities– For

internal sources (see above), the maximal IQR of the MAG is 2–1% for radial sources and 4–7% for

tangential sources– The maximal TR for these sources is 12–3% for radial orientations and 23–0%

for tangential orientations– These maxima for the MAG are observed at the eccentricity of 0–925–

For boundary sources, the maximal IQR of the MAG for radial sources is 6–8% and for tangential

sources it is 9–9%– The maximal TR is 28–7% for radial orientations and 54–9% for tangential ori-

entations– Figure 2–18 shows the relative diference between the leadields of the full subtraction

Lfull and the localized subtraction approach Llocal, i–e–

‖Llocal ď Lfull‖F
‖Lfull‖F

, (2–29)

where ‖ · ‖F denotes the Frobenius norm and L denotes the respective leadield matrix consisting

of the potential at the electrodes for all source positions and the three Cartesian directions– Note

that only sources which lie within an element of the brain compartment are considered in this

comparison– Based on the mesh resolution, the sources are split into three categories: internal,
boundary and possibly external sources– Internal sources are located within a mesh element that is

not touching the conductivity jump– Boundary sources might be located within an element touching
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Figure :ަޠ.ޡ Errors of a DG discretization with the full and localized subtraction approach on a 2mm
hexahedral mesh– On the left side, the RDM error and on the right side, the MAG error
is shown (both in percent) for both radial and tangential sources– The dots indicate
sources not fully contained in the brain compartment– Sources with an eccentricity
lower than the vertical yellow line are guaranteed to be within an element not touching
the irst conductivity jump– At eccentricities between the vertical yellow and red lines,
sources might be within an element touching the irst conductivity jump but are still
guaranteed to be within the brain compartment– A bold eccentricity label indicates a
signiicant diference (t-Test, p < 0–01) between the two boxplots–
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Figure :ާޠ.ޡ Relative diference between the leadields of the full and the localized subtraction ap-
proach on a 2mm hexahedral mesh using (2–29)– Sources with an eccentricity lower
than the vertical yellow line are guaranteed to be within an element not touching the
irst conductivity jump– At eccentricities between the vertical yellow and red lines,
sources might be within an element touching the irst conductivity jump but are still
guaranteed to be within the brain compartment–

the irst conductivity jump, but are still within the gray matter compartment– Possibly external

sources might be within an element of a diferent compartment– In Figure 2–18, these categories

are separated by vertical lines– We observe an increasing diference between the two approaches

with increasing eccentricity– The maximal relative diference for internal sources of 1–0% occurs

at the eccentricity of 0–925– At the lowest eccentricity of 0–3, the maximal relative diference is

0–03%– For boundary sources, the maximal relative diference is 2–6% occurring at the eccentricity

of 0–976– The diference between both approaches increases strongly for possibly external sources–

Figure 2–19 shows the goal function of a dipole itting approach for the full and the localized

subtraction approach in a 1mm model for a target source at an eccentricity of 0–8 with a radial and

a tangential orientation– The reference solution of the target source was created using the quasi-

analytical solution of the forward problem– The plots of the goal functions overlap and are, on

this scale, visually not distinguishable from each other– For both radial and tangential orientations,

we see a convex shape of the goal function plots with a minimum slightly below the eccentricity

of 0–8– When computing the diference between two neighboring source locations, the localized

subtraction approach shows small jumps for a tangential target source– These jumps in the dif-

ference mean that the goal function plot contains small kinks at the corresponding locations– These

kinks are regularly spaced and correspond approximately to the diagonal diameter of the mesh

elements– The magnitude of these jumps is larger for tangential orientations, but the direction of

the jump, i–e–, the sign of the diference, points towards the minimum of the goal function– Results

not shown here indicate that the magnitude of these jumps is reduced when increasing the patch

size and slightly increased when reducing the patch size to a single extension–

To evaluate the time consumption of the diferent approaches, we measure the time for applying

the transfer matrix to a single dipole– The time consumption is averaged over 1000 runs on a single

core of a conventional laptop (Intel i7 6700HQ, 2–6 GHz)– The results are shown in Figure 2–20–

We observe an increase of the time consumption for the full subtraction approach with decreasing

h in the order of hď3– The mean time at the resolution of h = 2mm is 10 008ms ≈ 10 s– The time

consumption for the localized subtraction approach stays approximately constant, and is 88ms ≈
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Figure :ިޠ.ޡ Goal function for a dipole itting approach using the full (green) and the localized
(orange) subtraction approach on a 1mm geometry-adapted hexahedral mesh– The
left column contains results for a radial target, the right column for a tangential target–
Each column contains an overview plot of the goal function (top), a zoomed-in plot of
the goal function (middle) and a plot of the diference between two neighboring values
of the zoomed-in data (bottom)– The dashed vertical line shows the location of the
target source– The shaded area in the top plot indicates the zoomed-in area of the two
lower plots–
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Figure :ޟޡ.ޡ Time consumption for applying the transfer matrix for the full subtraction approach
and the localized subtraction approach on a series of hexahedral meshes– The y-axis
shows the time consumption in milliseconds for a single dipole averaged over 1000
runs and the x-axis shows the mesh resolution– Both axes are scaled logarithmically–
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0–09 s at the resolution of h = 2mm– The time for locating the element containing the dipole is

0–017ms, 0–021ms and 0–037ms for resolutions of 8mm, 4mm and 2mm, respectively–

In the following, we discuss the results of the comparison between the full subtraction approach

and the localized subtraction approach– First we note that themeasures for the RDM andMAG are in

line with the values reported in (Engwer et al–, 2017) (after applying the necessary transformations

due to the usage of rdm and lnmag instead of RDM and MAG in percent that were used here)– For

internal and boundary sources, the only observable diference between the full and the localized

subtraction approach can be seen in the slight kinks of the goal function and in highly eccentric

sources– With respect to the RDM andMAGmeasures, both approaches can be used interchangeably–

The largest diference between the two approaches can be seen with respect to the computational

load– The main diference shown in Figure 2–20 is the linear increase with increasing number of

elements for the full subtraction approach, while the time consumption of the localized approach

stays approximately constant– The time consumption for both approaches can be split into three

parts: the time for localization of the dipole element, the time for the assembly of the right-hand

side and the time for the multiplication with the transfer matrix– The duration of the irst step is

identical for both approaches– It depends on h but it is signiicantly smaller than the total time taken

for both the full and the localized subtraction approach– The second step, i–e–, the assembly of the

right-hand side, shows a diferent time consumption for the two approaches– For the full subtraction

approach, integrals have to be evaluated over the volume of all elements, over the internal skeleton

and over the external domain boundary– For the localized subtraction approach, these integrals

are only evaluated on a patch around the source location which contains a constant number of

hexahedrons, that is independent of h– A similar diference can be found for the time consumption

of the third step, the multiplication of the assembled right-hand side with the transfer matrix– The

right-hand side of the full subtraction approach is densely populated, leading to amultiplication that

depends of the number of mesh elements– The right-hand side of the localized approach is sparse,

as it consists only of those entries whose degrees of freedom are associated with the patch, leading

to a multiplication independent of the number of mesh elements (excluding the increased size of

the transfer matrix itself)– Thus the time consumption of the full subtraction approach strongly

depends on the number of mesh elements– The only part of the time consumption for the localized

approach that depends on the number of elements is the localization of the dipole element, which

takes signiicantly less time than the remaining assembly– Note that this might change for higher

resolutions of the mesh– However, using an eicient nearest neighbor search, the time consumption

for locating the dipole element scales with log(N), where N denotes the number of mesh elements–

We can conclude, that this high time consumption of the full subtraction approach makes it cur-

rently unfeasible for computations with many sources on 1mm hexahedral meshes– The localized

subtraction approach however is an attractive alternative to the full subtraction approach– It main-

tains the high accuracy of the full subtraction approach, while strongly reducing the time consump-

tion–

ޣ.ޡ Conclusion
In this chapter, we presented extensions to two discrete source models for modern inite element

approaches– In Section 2–1 we recalled the existing monopolar Venant approach and showed its con-
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nection to the partial integration approach– We introduced a conforming Venant approach, which

uses a conforming source representation instead of non-conforming monopoles– By using mixed

higher-order moments, the smoothness of the goal function could be increased– We presented the

irst application of a Venant approach for a discontinuous Galerkin discretization in Section 2–2– In

Section 2–3 we introduced a localized subtraction approach which reduced the high computational

load while maintaining the general behavior and accuracy– This localization makes the subtraction

approach feasible for practical applications even in high-resolution head models–

There are still some open questions regarding the extensions presented in this chapter– As the

source term of the Venant approach is now representable in a conforming way, it could be possible

to represent the interpolation process as a classical regularization approach and replacing the sin-

gular source term by a regularized dipolar source term– In addition, it should be possible to derive

convergence properties of the conforming Venant approach, by estimating the norm of the resulting

source term, which should depend on the mesh size h– For the localized subtraction approach, an

investigation on the efect to the magnetoencephalography forward problem should be considered,

as the classical full subtraction approach outperformed the partial integration and the Venant ap-

proaches for this application– With regard to the construction of the local patch, diferent strategies

can be considered and investigated, such as constructing a spherical shaped patch or adapting to

the form of the singularity potential or the orientation of the dipolar source– Furthermore, the idea

of the localization can be transferred to the conforming inite element method– Instead of cutting

of the singularity potential on the patch boundary, one can consider a splitting of the form

uh = ũh + k∞u∞

where k∞ ∈ H1(Ω) is a regularization of the indicator function– This regularization could for

example be built as an interpolation of the indicator function into the conforming inite element

space–
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CHAPTERޢ

Unitted Finite Element Methods
for Solving the EEG Forward Problem

In Chapter 1, two diferent inite element methods for solving the EEG forward problem have been

presented, namely the continuous and discontinuous Galerkin methods– Both methods have in

common that they use a tetrahedral or hexahedral mesh that is adapted to conform to the model

geometry– Using a geometry conforming tetrahedral mesh provides a highly accurate representation

of the smooth head surface and the surfaces of the diferent tissue compartments– This accuracy

comes at the cost of a more involved modeling pipeline– In order to create the tetrahedral mesh

from a segmented MRI image, triangular surfaces separating the diferent tissue compartments

have to be created from which a volume tetrahedralization can be derived– Most algorithms for

creating a tetrahedralization impose restrictions onto the regularity of the surfaces, such as not

intersecting and not touching each other– In contrast to the tetrahedral approach, the creation of

a hexahedral mesh is straightforward– The nodes and mesh elements can be derived directly from

a voxel segmentation– While this approach provides a very simple simulation pipeline, it imposes

a larger geometry error, as the adaption to the model geometry is limited– In order to provide a

reasonable approximation of the geometry, a higher mesh resolution has to be used, leading to an

increase in computation time–

In this chapter, we present two methods based on a diferent approach to incorporate the model

geometry– Instead of creating a mesh that conforms to the model geometry, we use a structured

hexahedral mesh and incorporate the geometry weakly into the discretized mathematical model–

The diferent surfaces are represented by level-set functions (Osher and Sethian, 1988)–

For the EEG forward problem, a similar approach has been presented and evaluated in (Val-

laghé and Papadopoulo, 2010)– Based on the level-set representation of the diferent surfaces, the

local basis functions of a hexahedral approach are modiied to conform to the diferent tissue com-

partments– This modiication is restricted to the case of a single interface per mesh element or two

interfaces that do not intersect each other– Furthermore, it is tailored to multi-linear test and ansatz
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functions– It was shown that the accuracy of a geometry-conforming tetrahedral approach could be

met, while ofering a simpler simulation pipeline–

In Section 3–1, we irst describe and evaluate the CutFEM approach in a multi-domain setting–

It uses a standard, conforming Lagrangian inite element space without modiication within each

subdomain, but introduces a weak coupling between the diferent tissue compartments– Section

3–2 presents the unitted discontinuous Galerkin method, which additionally allows for disconti-

nuities between mesh elements and allows for using higher-order ansatz functions, similar to the

discontinuous Galerkin method presented in Section 1–3– Both methods share the discretizations of

the dipolar source term, which will be presented in Section 3–3– In Section 3–4, several validation

studies are performed to evaluate the performance of the presented methods, compared to each

other and in comparison to the existing inite element methods– Finally, a summary and conclusion

will be given in Section 3–5–

ޠ.ޢ A Cut Finite Element Method
For the description of the CutFEMmethod, we mainly follow (Burman and Hansbo, 2012) and (Bur-

man et al–, 2015) but take ideas and notations from (Engwer, 2009) into account– The origin of the

CutFEM method goes back to the unitted inite element method (Barrett and Elliott, 1987; Hansbo

and Hansbo, 2002)– Instead of incorporating the diferent tissues only into the conductivity tensor,

we split the domain into diferent subdomains, based on a level-set representation of the diferent

tissue compartments, allowing for a sub-voxel resolution of the domain boundaries– On each subdo-

main, we employ a conforming Lagrange inite element method and couple the subdomains weakly

on their boundaries– An additional penalty term in the boundary zone of each subdomain ensures

the stability and robustness of the resulting discretization method independent on the interface

positions–

First of all we require that the domain Ω is embedded in an auxiliary domain Ω̂ ⊂ Rd, i–e–, Ω ⊂ Ω̂–

This auxiliary domain will also be called the background domain– Usually, this background domain

is given as a box, i–e–, a d-dimension Cartesian product of intervals– We now assume that the domain

Ω can be split into non-overlapping subdomains, i–e–, that there are Ω0, . . . ,Ωmď1 ⊂ Rd such that

Ω =
mď1⋃

i=0

Ωi

Ωi ∩ Ωj = ∅, for i 6= j

hold– In our case, these subdomains describe the diferent tissue compartments, e–g–, the skull or

the white matter compartment– The tissue compartments usually difer between each other by the

values of a symmetric and positive deinite conductivity tensor σ : Ω→ Rd×d– By G ⊂ Rd, we denote

the internal skeleton between the diferent subdomains, i–e–, the intersections of their closures:

G :=
⋃

0 ≤ i, j < m
i 6= j

(
Ωi ∩ Ωj

)
–

ޟޥ



ޠ.ޢ A Cut Finite Element Method

a) fundamental mesh Tĥ(Ω̂) b) submesh T
0
ĥ
(Ω̂) c) submesh T

1
ĥ
(Ω̂)

Figure :ޠ.ޢ Fundamental mesh of a CutFEM discretization with two subdomains Ω0 (green) and
Ω1 (red) delimited by two intersecting spheres– The elements colored in gray indicate
elements cut by an interface–

In this multi-domain setting, we can formulate the strong Poisson’s equation for the potential u as:

∇ · σ∇u = f in
mď1⋃

i=0

Ωi,

〈σ∇u,n〉 = 0 on ∂Ω,

JuK = 0 on G,

Jσ∇uK = 0 on G,

where f denotes the dipolar source term and J·K denotes the jump of a quantity on an interface (cf–

Deinition 1–16)– Similar to the previous chapters, the potential is only determined up to a constant

due to the pure Neumann boundary condition on ∂Ω– To determine a unique solution, we ix the

value of the integral of u by requiring
∫

Ω
udx = 0– To discretize the multi-domain Poisson’s equa-

tion, we introduce a tessellation Tĥ(Ω̂) of the background domain Ω̂, called the fundamental mesh or

the background mesh– In contrast to the methods presented in the previous chapters, the mesh does

not conform to the domain Ω or the diferent tissue compartments, i–e–, the element boundaries

are not itted to ∂Ω nor to G– Usually, the fundamental mesh will be a structured hexahedral mesh

with elements of a ixed diameter ĥ ∈ R– When intersecting each subdomain with the fundamental

mesh, the resulting submesh is deined as

T i
ĥ
(Ω̂) :=

{

E ∈ Tĥ(Ω̂) : E ∩ Ωi 6= ∅

}

⊂ Tĥ(Ω̂)–

The submeshes are formed of those elements of the fundamental mesh, that contain parts of the

corresponding subdomain– Figure 3–1 shows a visualization of a two domain scenario along with

the fundamental mesh and two submeshes– We see that the submeshes overlap on each element

that contains an interface between two subdomains– On each of these submeshes T i, we deine a

inite element space V i
ĥ
, which we will choose as the space of continuous, piecewise linear functions–

Each space is spanned by a set of global basis functions: V i
ĥ
= span

{

ϕi
0, . . . ,ϕ

i
Niď1

}

– Combining
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the local inite element spaces, we deine the global inite element space as

Vĥ :=
mď1∏

i=0

V i
ĥ
–

Note that the discrete functions within this global space have multiple values on elements that are

cut by an interface between subdomains– As the functions are continuous on each subdomain, they

are strongly coupled within the diferent tissue compartments– On this inite element space, we

deine the bilinear form of the weak formulation of Poisson’s equation as

ã(uh, vh) :=
mď1∑

i=0

∫

Ωi

〈

σ∇uih,∇v
i
h

〉

dx , (3–1)

where uih and vih denote the restriction of uh and vh to the local space on Ωi, respectively– In the fol-

lowing, wewill omit the index of the domain if no ambiguities arise andwill write
∫

Ω
〈σ∇uh,∇vh〉dx

instead– Note that the functions within each discrete subspace are only integrated over the parts

of the domain that lie within the associated subdomain, even though their support extends over

the subdomain boundary– The numerical integration over domains that are deined implicitly via

level-set functions is described in detail in Section 4–1–

The coupling between the diferent subdomains is performed weakly using Nitsche’s method

(Nitsche, 1971)– This coupling is employed on the discrete subdomain skeleton, deined as

Γ :=
{

E ∩
(
Ωi ∩ Ωj

)
: E ∈ T (Ω̂), 0 ≤ i, j < m, i 6= j,measdď1(E ∩ (Ωi ∩ Ωj)) > 0

}

where measdď1 denotes the d ď 1-dimensional measure in d-dimensional space– Thus, for each in-

tersection γ ∈ Γ, there is an element E of the fundamental mesh and two subdomains Ωi and Ωj

such that γ forms the interface between these two subdomains in the element E– Note that, since

the model problem considered here is Poisson’s equation with a homogeneous Neumann boundary

condition, this discrete skeleton only contains intersections between two subdomains and no inter-

section on the domain boundary– The weak coupling between the subdomains provided by Nitsche’s

method is deined as:

a(uh, vh) := ď
∫

Γ

〈JuhK , {σ∇vh}〉+ 〈{σ∇uh}, JvhK〉ds+ ηνk

∫

Γ

σ̂

ĥ
〈JuhK , JvhK〉ds , (3–2)

with the jump operator J·K and average operator {·} as in Deinitions 1–16 and 1–17, respectively,

adapted to the formulation of two subdomains instead of two elements on the two sides of an

interface– Here ĥ, denotes the diameter of the element of the fundamental mesh and η ∈ R is a

scalar penalty constant– The last term in (3–2) describes a penalty which penalizes jumps on the

boundary between the subdomains– Following (Di Pietro and Ern, 2011) (cf– Section 1–3), it is

scaled by the harmonic average σ̂ of the conductivity tensors: on an intersection γ ∈ Γ between

subdomains Ωi and Ωj, σ̂ is deined as

σ̂γ :=
2δiδj
δi + δj

,
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with δk := ntσkn, k = i, j, where n denotes a unit normal vector on γ and σk denotes the con-

ductivity tensor on the respective side of the interface– To accommodate for diferent polynomial

degrees, the penalty term is additionally scaled by νk = k(k+ d ď 1) ∈ R following (Epshteyn and

Rivière, 2007)– As we mainly use linear polynomials in three spatial dimensions, we obtain ν1 = 3–

Summing the two bilinear forms ã from (3–1) and a from (3–2), we obtain the bilinear form of the

coupled multi-domain equation:

a(uh, vh) := ã(uh, vh) + a(uh, vh) (3–3)

Using this bilinear form, we can state a discrete analogue to the weak formulation of the multi-

domain Poisson’s equation– However, theoretical considerations of (Burman and Hansbo, 2012)

show that the resulting discretization is not stable with respect to how the interfaces cut the fun-

damental mesh elements– As no restrictions on the occurring level-set functions have been made,

the cut of the interface with the elements of the fundamental mesh can become arbitrarily small,

which deteriorates the robustness of the method– One approach to circumvent this problem is called

cell-merging or cell-aggregation (Badia et al–, 2017)– Cut-cells of small size are identiied and their

contribution is attributed to a neighboring cell of larger size– However in practice, especially in a

multi-domain setting, the identiication of the neighboring cell is an involved process and might fail

if the neighboring cell is also of smaller size– (Burman and Hansbo, 2012) propose an approach

which is called edge penalization or ghost penalty to remedy this problem– This penalty term is

deined on the skeleton of the fundamental mesh and ensures a weak coupling between neighbor-

ing cut cells independent of the actual size of the cut cells– By Γ̂, we denote the skeleton of the

fundamental mesh, i–e–, we deine

Γ̂ :=
{

Ei ∩ Ej : Ei, Ej ∈ Tĥ(Ω̂), i 6= j,measdď1(Ei ∩ Ej) > 0
}

,

which consists of the intersections of the closures of two fundamental mesh elements– On this

skeleton, the ghost penalty is deined as

b(uh, vh) :=η̃

∫

Γ̂

ĥ Jσ∇uhK J∇vhKds , (3–4)

where η̃ ∈ R is a penalty constant independent of ĥ and of how the interface cuts the mesh, but

not independent of η– Note that this ghost penalty term is only appropriate for piecewise linear

ansatz functions considered here and has to be modiied if higher polynomial degrees should be

considered (Burman, 2010)– The integral of the ghost penalty is to be understood to afect only the

interface zone of each subdomain and σ is thus well-deined on Γ̂– Figure 3–2 shows a visualization

of the diferent penalties for a two-dimensional example– Summing the bilinear form (3–3) and the

ghost penalty (3–4) gives the CutFEM method–

Deinition 3.1 (CutFEM). The CutFEM approach for solving the EEG forward problem is deined as:
Find uh ∈ Vĥ such that

a(uh, vh) + b(uh, vh) = l(vh)
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Figure :ޡ.ޢ Visualization of the diferent penalty terms in the CutFEM discretization between two
subdomains, light gray and dark gray– The dashed lines indicate faces on which a ghost
penalty is added– The red lines indicate a ghost penalty afecting the light gray domain,
the green lines afecting the dark gray domain and the yellow lines afecting both do-
mains– On the solid black line, the penalty of Nitsche’s method is added– No penalty is
considered on the dotted lines–

for all vh ∈ Vĥ, with a and b deined in (3–3) and (3–4), respectively.

In (Burman and Hansbo, 2012), coercivity and continuity of the bilinear form a + b as well as

optimal convergence is shown for the single compartment model with a regular source term–

ޡ.ޢ An Unitted Discontinuous Galerkin Method
The unitted discontinuous Galerkin (UDG) method extends concepts of the CutFEM approach (cf–

Section 3–1) to the whole domain– The general approach can be seen similar to the step from

the itted continuous Galerkin inite element method presented in Section 1–2 to the discontinuous

Galerkin inite element method in Section 1–3– In addition to the weak coupling between diferent

subdomains and on the domain boundary that was introduced by Nitsche’s method, also the cou-

pling between diferent cut-cells within the same subdomain is performed weakly– This approach

leads to a discretization scheme that provides local conservation of charge within each set of cut-

cells– The description of the UDG method and parts of the validation results that will be presented

in Section 3–4 have been published in (Nüßing et al–, 2016)–

The unitted discontinuous Galerkin method was irst presented in (Bastian and Engwer, 2009;

Engwer, 2009) and applied in the context of micro-scale simulations in porous media– Its main

advantage was seen in the direct usability of surfaces obtained from a level-set segmentation of

imaging data, and the straightforward use of higher order polynomial functions– Since then, it

has found diferent applications (Burman et al–, 2017; Engwer and Westerheide, 2014; Gürkan

and Massing, 2018; Heimann et al–, 2013)– In general, a discrete weak formulation for this unitted

discontinuous Galerkin method can be deined similarly to the itted discontinuous Galerkin method

(DG) from Section 1–3, while redeining the computational domain–

The description follows closely the deinition of the CutFEM method and we refer to Section 3–1

for the deinition of most concepts– We start with a domain Ω ⊂ Rd which is embedded within an

auxiliary domain Ω̂– By Ω0, . . . ,Ωmď1 we denote a partition of Ω into non-overlapping subdomains–

Let Tĥ(Ω̂) = {E0, . . . , Enď1} denote the fundamental mesh, i–e–, a tessellation of Ω̂– By intersecting
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the elements of the fundamental mesh with the diferent subdomains, we obtain the cut-cell mesh

T ĥ =
nď1⋃

i=0

{Ei ∩ Ωj
︸ ︷︷ ︸

=:Eji

: Ei ∩ Ωj 6= ∅}–

The elements Eji of this mesh are called cut-cells– In order to couple the cut-cells within and between

the diferent domains, we deine the inter-domain skeleton

Γ
d
ĥ :=

{

γ
j,k
i := Eji ∩ Eki : Eji, E

k
i ∈ T ĥ, k 6= j,measdď1(γ

j,k
i ) > 0

}

and the inter-element skeleton as

Γ
e
ĥ :=

{

γki,j := Eki ∩ Ekj : Eki , E
k
j ∈ T ĥ, i 6= j,measdď1(γ

k
i,j) > 0

}

–

The inter-domain skeleton contains the intersection of cut-cells of diferent domains on the same

fundamental mesh element, while the inter-element skeleton contains intersections between cut-

cells of the same domain but on diferent fundamental mesh elements– The union of the two skeleton

parts is deined as Γĥ := Γ
e
ĥ ∪ Γ

d
ĥ– We introduce the space of piecewise polynomial functions

Vk
h := {vh ∈ L2(Ω) : vh|E ∈ Pk(E)∀E ∈ T ĥ}– P

k(E) denotes a space of polynomials on E of degree

k ∈ N– On the cut-cell mesh and its skeleton, we deine the UDG discretization as: Find uh ∈ Vk
h

such that for all test functions vh ∈ Vk
h

a(uh, vh) + J(uh, vh) = l(vh) (3–5)

holds– The bilinear forms a and J are given as

a(uh, vh) =
∫

Ω

〈σ∇uh,∇vh〉dx ď
∫

Γĥ

〈JuhK , {σ∇vh}〉ds ď
∫

Γĥ

〈JvhK , {σ∇uh}〉ds , (3–6)

J(uh, vh) =ηνk

∫

Γĥ

σ̂γ

hγ
〈JuhK , JvhK〉ds , (3–7)

l(vh) =
∫

Ω

fvh dx – (3–8)

Following (Georgoulis et al–, 2007) and similar to the discontinuous Galerkin method introduced

in Section 1–3, the penalty term is scaled with the local cut-cell size hγ , which is deined as

hγ :=
min(measd(Ei),measd(Ej))

measdď1(γ)
,

where γ ∈ Γĥ denotes the interface between two cut-cells Ei and Ej– To accommodate for diferent

polynomial degrees, the penalty term is additionally scaled by νk = k(k + d ď 1) ∈ R following

(Epshteyn and Rivière, 2007)– On each cut-cell, we introduce a local basis of the polynomial space

and assemble the system matrix– The right-hand side is discretized following methods similar to

those presented for the geometry-conforming approaches– Diferences to those approaches with re-

spect to the source model are shown in Section 3–3– Compared to the CutFEM approach presented
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in Section 3–1, the UDG method ofers additionally local conservation of charge within each subdo-

main– It can be shown that the condition number of the linear system depends on the cut-cell size–

In (Engwer, 2009), the local basis functions on each cut-cell are scaled with respect to the respective

bounding box, which resulted in a reduction of the condition number– To additionally reduce the

computational load, small cut-cells were merged with larger neighboring cells in (Heimann et al–,

2013)– A diferent approach, following the principles presented for the CutFEM approach, has been

presented in (Gürkan and Massing, 2018)– A ghost-penalty term, that is independent of the cut-cell

size, is added on faces of the fundamental mesh–

ޢ.ޢ Source Models for Cut-Cell Methods
The source models presented in Chapter 1–2 for the standard Lagrange inite element method can

also be applied in a CutFEM discretization, but they have to be modiied to it the unitted frame-

work– The partial integration approach can be applied with almost no modiications using the basis

functions deined on the background mesh– For the UDG method, we have to take the scaling of

the basis functions to the bounding box of the cut-cell into account, which results in an additional

scaling of the gradient in the partial integration approach– Note that, even if a source lies slightly

outside of the discrete representation of the gray matter compartment, we can still evaluate the gra-

dient as long as the dipole position lies within an element containing a cut-cell of the gray matter

compartment– The monopolar Venant approach can be transferred to the unitted case by placing

the monopoles with respect to the fundamental mesh– However, distributing the monopoles on the

nodes of the background mesh might be a poor choice, as the nodes are independent of the interface

and might thus also lie at a distance from the interface or geometrically in the next compartment–

Instead, we place the monopoles in the volume of the elements of the fundamental mesh– Their

local positions are chosen based on a Gauss-Legendre quadrature rule of a certain order– For the

placement of the monopoles, we only consider elements that contain cut-cells of the gray-matter

compartment– When using local positions with respect to the fundamental mesh elements, some

monopoles might geometrically lie in a diferent compartment, even though they contribute only to

the basis functions belonging to the dipole compartment– Instead of distributing the positions in the

element, it might thus be beneicial to consider the local positions obtained from the quadrature

rule with respect to the bounding box of intersection of the element and the domain– A further

extension might be to ind a better distribution of the monopoles by taking the local interface into

account– The formulation of the subtraction approach can be given in a similar way as for the DG

method by taking the weak coupling of Nitsche’s method on the domain boundaries into account–

However, the high computational load that was observed for the geometry-conforming approaches

will be even more pronounced in the Unitted case, as the integration over the implicitly deined

domain is computationally more expensive than the direct integration of the elements of a tessel-

lation– The restriction of the support of the singularity potential that was presented in Section 2–3,

which strongly reduces the support of the source-term, can be adapted for the UDG approach in a

straightforward way, but has not been implemented so far–
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ޣ.ޢ Validation Studies
In this section we present validation studies for the CutFEM method presented in Section 3–1 and

the UDG method presented in Section 3–2– In Section 3–4–1, we study the CutFEM discretization

in four-layer sphere models– We evaluate diferent source models, study the convergence behavior

and compare the method to the conforming inite element method on tetrahedral and hexahedral

meshes– The UDG method is evaluated in four-layer sphere models in Section 3–4–2– We present the

convergence behavior, compare the UDG method to the CutFEM method and investigate the use of

higher order polynomials within the UDG discretization– In Section 3–4–3, we evaluate the CutFEM

method in a scenario using a realistically shaped head model–

ޠ.ޣ.ޢ CutFEM Sphere Model Studies
In this section we evaluate the CutFEM method in four-layer sphere models–

Source Models As a irst study, we investigate diferent source models for the CutFEM approach

in an isotropic four-layer sphere model– The radii and conductivity values can be found in Table A–1–

We distribute dipolar sources of diferent orientations in the innermost compartment of the multi-

layer sphere model– In previous studies it was observed that the accuracy of a numerical solution of

the EEG forward problem in amulti-layer spheremodel difers between radial and tangential dipoles

and the errors increase the closer a source is to the irst conductivity jump– A theoretical reasoning

for the latter has also been given in (Wolters et al–, 2007a)– On each of 10 diferent eccentricities

we generate a number of random source positions and for each position we compute the radially

outwards pointing and a random tangential source orientation– An eccentricity of 0 corresponds

to the center of the sphere, while an eccentricity of 1 corresponds to the irst conductivity jump,

e–g–, the innermost sphere– The number of sources at a given eccentricity is scaled proportional

to the surface area of a sphere with a radius corresponding to that eccentricity in order to get

a uniform sampling of the source space over all eccentricities– Table A–3 shows the number of

source positions that are generated for each eccentricity– Results in (Li et al–, 2014) indicate that,

depending on the location, the cortex has a thickness of 2mm to 6mm– The generators underlying

the electrical activity measured by EEG are located in the center of the gray matter– From the range

of eccentricities chosen here, we will focus a detailed description on the eccentricity of 0–986 that

corresponds to a distance of approximately 1–1mm from the irst conductivity jump– The numerical

solutions at the electrode positions are compared to the quasi-analytical solution (De Munck and

Peters, 1993) using the RDM and MAG measures (cf– (2–14) and (2–15))– We compare the partial

integration source model with two variants of the monopolar Venant approach using a fundamental

mesh with a resolution of 1mm– Both Venant approaches use a patch consisting of those elements

of the fundamental mesh that share a vertex with the element containing the dipole– For the irst

version we scale the monopoles with respect to the local coordinates of the fundamental mesh

element– For the second version we consider the local coordinates with respect to the bounding

boxes of the cut-cells– The remaining parameters of the Venant approaches are chosen in the same

way as presented in Section 2–1– Figure 3–3 shows the RDM and MAG errors for the diferent source

models– Up to the eccentricity of 0–976, both Venant approaches are identical regarding the RDM
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Figure :ޢ.ޢ Comparison of diferent source models for a 1mm CutFEM discretization– Left: relative
diference measure in percent– Right: magnitude error in percent– Top: radial source
orientations– Bottom: tangential source orientations– Each boxplot contains the respec-
tive measure of a set of sources– The horizontal green lines show the optimal values at
0%–
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and MAG errors, as no element in the respective patches is cut by the interface and the bounding

boxes coincide with the fundamental mesh elements– For the RDM error we see an overall increase

of the error with increasing source eccentricity– For radial sources at the eccentricity of 0–986 the

median RDM error for the partial integration approach is 0–29%, for the element Venant approach

it is 0–24% and for the bounding box Venant approach it is 0–24%– The respective maximal values

are 0–80%, 0–63% and 0–64%– For tangential orientations the median RDM error for the partial

integration approach is 0–32%, for the element Venant approach it is 0–26% and for the bounding

box Venant approach it is 0–24%, while the corresponding maximal errors are 0–78%, 0–68% and

0–59% respectively– For the highest eccentricities of 0–992 and higher, only the Venant approach

scaled to the bounding box yields an RDM error lower than 1% for both source orientations– With

respect to the MAG error we observe an increase in the total and inter-quartile range for both source

orientations and all source models– For radial sources, we see a strong increase in the MAG error for

eccentricities of 0–986 and higher– At the eccentricity of 0–986, the total range of the MAG error for

the partial integration approach is 2–51%, for the element Venant approach it is 4–94% and for the

bounding box Venant approach is is 2–07%– The respective maximal absolute values are 2–08%,

3–86% and 1–07%– For tangential orientations the MAG error does not show the strong increase

that occurred for radial sources– The total range of the MAG error at the eccentricity of 0–986 is

1–27% for the partial integration approach, 0–84% for the element Venant approach and 0–82% for

the bounding box Venant approach, while the corresponding maximal absolute values are 1–26%,

1–08% and 1–08% respectively–

Overall, we observe a clear increase in accuracy when using the Venant approach compared to the

partial integration approach with respect to both error measures, as well as both source orientations–

The scaling of the local positions of the monopoles only becomes relevant in areas that are cut by

an interface– Especially for the tangential sources with the highest eccentricity the scaling has a

positive efect on the stability and on the magnitude of the RDM error– Based on these results we

will use the monopolar Venant approach with local positions scaled to the bounding boxes for the

subsequent CutFEM studies–

Convergence In this study, we evaluate the convergence behavior of the CutFEM discretization in

a four-layer sphere model– We create fundamental meshes of diferent resolutions and employ the

CutFEM discretization– The level-set function Φ for a sphere centered at c ∈ Rd with a radius of

r ∈ R is deined as

Φ : Ω̂→ R; x 7→ ‖x ď c‖2 ď r

The radii and conductivity values of the diferent tissue compartments can be seen in Table A–1– Fig-

ure 3–4 shows the discrete reconstructions of the unitted meshes obtained by the marching cubes

method for mesh resolutions from 8mm to 1mm– As described in Section 4–1, these reconstructions

are used for performing the integrations in the discrete forms, but do not inluence the represen-

tation of the discrete functions– We can observe the structured hexahedral background mesh along

with its nodes– The discrete representation of the geometry is created on the fundamental mesh

without any subreinement– Through the increased resolution we observe a better approximation

of the smooth surfaces of the spheres– The number of degrees of freedom for the diferent mesh res-
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8mm 4mm 2mm 1mm

Figure :ޣ.ޢ Discrete unitted meshes of the four-layer sphere model obtained with the marching
cubes method– From left to right, the resolution increases– A brighter color indicates a
higher conductivity and a darker color indicates a lower conductivity–

Table :ޠ.ޢ Number of degrees of freedom for the diferent CutFEM discretizations of the four-layer
sphere model–

resolution 16mm 8mm 4mm 2mm 1mm

#DOFs 4731 21825 108 352 635 581 4173 085

olutions are presented in Table 3–1– We use the same sources as described in the previous study (cf–

Table A–3)– The results of the numerical computations are compared to a quasi-analytical solution

using the RDM and MAG errors (cf– (2–14), (2–15))– The results for the convergence evaluation are

shown in Figure 3–5– For the RDM error we observe an overall increase of the error with increasing

source eccentricity, both for radial and tangential orientations– Considering radial sources at the

eccentricity of 0–986, the median RDM errors for resolutions 16mm, 8mm, 4mm, 2mm and 1mm

decrease as 6–0%, 3–0%, 1–5%, 0–6% and 0–2% respectively– The maximal RDM errors have the

values of 11–8%, 6–6%, 3–4%, 1–6% and 0–6%– For tangential source orientation, the median RDM

errors reduce from 4–3%, 2–1%, 1–0% and 0–5% down to 0–2% while the reduction of the maxi-

mal RDM errors is 7–9%, 5–0%, 2–4%, 1–1% down to 0–6%– Note that over all eccentricities (i–e–,

including the highest eccentricity of 0–995 that corresponds to a distance of 0–4mm from the con-

ductivity jump) and both orientations, the maximal RDM errors for the diferent mesh resolutions

are 12–8%, 7–5%, 4–0%, 2–1% and 0–9%– For the MAG error we observe an overall increase of the

TR and the IQR with increasing eccentricity– For radial sources at the eccentricity of 0–986 the TR

of the MAG error from coarse to ine resolutions are 21–1%, 13–0%, 7–8%, 4–2% and 2–1%– For

the same sources, the maximal absolute values of the MAG error are 17–9%, 10–1%, 4–9%, 2–2%

and 1–1%– Considering tangential source orientations, the total range reduces from 16–4%, 5–3%,

3–0%, 1–5% to 0–8% while the maximal absolute values are 11–7%, 7–0%, 3–9%, 2–1% and 1–1%–

Figure 3–6 shows a visualization of the order of convergences of the relative error when increasing

the mesh resolution– As the error depends on the eccentricity, we evaluate the convergence behavior

for each eccentricity separately– Each plot corresponds to the median values of a single eccentricity,

where a darker color represents a higher eccentricity– We observe a clear convergence behavior

of the median relative error for all eccentricities and source orientations– Especially for tangential

sources, the convergence curves are smooth over all eccentricities, while the convergence curves for

higher eccentricities of radial orientations are latter– Note that the convergence order deviates from
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Figure :ޤ.ޢ Convergence study of the CutFEM discretization– Left: relative diference measure in
percent, Right: magnitude error in percent– Top: radial source orientations, Bottom:
tangential source orientations– Each boxplot contains the respective measure of a set of
sources– The horizontal green lines show the optimal values at 0%–
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Figure :ޥ.ޢ Convergence order of the CutFEM discretization– Each brown line represents the con-
vergence of the median relative error in percent of a single eccentricity, where a darker
color represents a higher eccentricity– The black dashed line shows a linear convergence–
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Figure :ަ.ޢ Comparison between a 2mm CutFEM discretization (green) and a 1mm hexahedral CG
discretization (red)– Left: relative diference measure in percent– Right: magnitude er-
ror in percent– Top: radial source orientations– Bottom: tangential source orientations–
Each boxplot contains the respective measure of a set of sources– The horizontal green
lines show the optimal values at 0%–

the theoretical order derived in (Burman and Hansbo, 2012) for the single compartment model– In

general, the relative errors obtained from the point evaluations are not directly comparable to the

volumetric L2 and H1 norms– In addition, we employ a multi-domain model and a right-hand side

that depends on the mesh-size ĥ– We might obtain an improved convergence behavior when using

the subtraction approach for the CutFEM method–

Comparison to itted methods In this study, we compare the CutFEM discretization with the

conforming inite element method (CG) on hexahedral and tetrahedral meshes– We use a 1mm

geometry-adapted mesh with a shifting parameter of 0–3 following (Wolters et al–, 2007b)– We com-

pare the hexahedral model with the CutFEM discretization on a fundamental mesh with a 2mm

resolution– The hexahedral model makes use of 3 263 152 DOFs while the CutFEM discretization

uses 635 581 DOFs which corresponds to a factor of approximately 5–1 more DOFs for the hexa-

hedral model– For both approaches we employ a monopolar Venant source model with monopoles

distributed within the volume of the elements around the dipole element– Both, CutFEM and CG

use the same parameters (cf– Section 2–1) for the monopolar Venant approach– Figure 3–7 shows
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the RDM and MAG error for the two methods with respect to the quasi-analytical solution– As the

general behavior of the RDM and MAG errors has been described in the previous section, we now

focus mainly on describing the diferences between the two approaches– With respect to the RDM

error and lower eccentricities both approaches show similar error values for both orientations– The

total ranges and the inter-quartile ranges of the hexahedral approach are lower, but the CutFEM

approach shows lower median values– Closer to the conductivity jump starting from the eccentric-

ities of 0–925 and 0–975, the RDM error of the hexahedral approach strongly increases compared

to the CutFEM approach– Regarding the MAG error at inner eccentricities, the total ranges and the

inter-quartile ranges of both approaches are similar– The hexahedral approach is in general shifted

towards positive values, i–e–, an overestimation of the magnitude, while the CutFEM approach tends

towards negative values, corresponding to an underestimation of the magnitude– The absolute val-

ues of the MAG error of the CutFEM approach are closer to the optimal value of 0%– Similar to

the behavior of the RDM error the total ranges and inter-quartile ranges of the MAG error for the

hexahedral approach increases for more eccentric source positions while the CutFEM approach is

comparatively less afected by the source eccentricity–

For the comparison with a tetrahedral model we use the same sphere model that was used in

Section 2–1 and we again use a conforming inite element method– Similar to the comparison

of the hexahedral model we compare the tetrahedral approach to the 2mm CutFEM model– The

tetrahedral model uses 274 401 DOFs which is a factor of 2–3 less than the 635 581 DOFs of the

CutFEMmodel– As in the previous study, we use the monopolar Venant approach for the tetrahedral

model as well– The resulting RDM and MAG errors with respect to the quasi-analytical solution are

shown in Figure 3–8– With respect to the RDM measure the CutFEM approach shows an increased

accuracy over all eccentricities– However, the inter-quartile ranges of the tetrahedral model are

smaller– Considering the MAG error both approaches show similar total and inter-quartile ranges,

but the median values of the CutFEM approach are shifted away from 0% by approximately ď1%–

This behavior of the CutFEM approach was also observed in the convergence study and is also

present when considering the discontinuous Galerkin method on a geometry conforming mesh–

This shift is reduced with increasing mesh resolution–

With respect to the time consumption of the two itted approaches and the CutFEM approach

we measure the time used for computing the results presented in this section, which consists of

computing the transfer matrix and solving the forward problem for all 29 884 source locations

and the three Cartesian source orientations for each location– All measurements were performed

sequentially on a single core of a conventional laptop (Intel i7 6700, 2–6 GHz)– As the diferent

forward approaches behave diferently with respect to the construction of the forward model and

contain a diferent number of DOFs, we split the time measurements into ive diferent steps– The

initial setup phase constructs the volume conductor model– For the conforming approaches this

step consists of reading and constructing the geometry conforming mesh, while the CutFEM model

performs some initial computations, such as determining the bounding boxes of the diferent cut-

cells– The assembly step consists of the computation of the sparsity pattern of the system matrix

and the numerical integration of the bilinear form– After the system matrix has been setup, the

solver is constructed, which includes the construction of the algebraic multigrid preconditioner and

its matrix hierarchy (cf– Section 4–2)– In the solution phase, the transfer matrix system is solved

for all electrodes sequentially– The last step consists of assembling the right-hand side vectors for
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Figure :ާ.ޢ Comparison between 2mm CutFEM discretization and tetrahedral CG– Left: relative
diference measure in percent, Right: magnitude error in percent– Top: radial source
orientations, Bottom: tangential source orientations– Each boxplot contains the respec-
tive measure of a set of sources– The horizontal green lines show the optimal values at
0%–
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Table :ޡ.ޢ Time consumption for computing the transfer matrix and solving the EEG forward prob-
lem with the 2mm CutFEM approach compared to the 1mm geometry-adapted hexahe-
dral conforming CG and tetrahedral conforming CG– The diferent steps are: the time
for initial setup (initial), assembly of the linear system (assembly), setup of the solver
(setup), solution for all electrodes (solution), application of the transfer matrix to all
dipoles (forward) and the accumulated total time (total)–

model initial assembly setup solution forward total

CutFEM 32–69 s 514–60 s 50–19 s 9837–26 s 459–70 s 10 894–44 s

hexahedral 95–33 s 58–61 s 39–34 s 11 675–76 s 27–19 s 11 896–23 s

tetrahedral 60–14 s 11–24 s 2–53 s 1323–96 s 18–74 s 1416–61 s

all dipole positions and orientations and the sparse matrix-vector multiplication– The results of the

time measurements are presented in Table 3–2– Overall, we observe a reduced time consumption of

approximately 25min for the tetrahedral approach, while the CutFEM method and the hexahedral

approach both take a similar amount of time of approximately 3 h– For all approaches, most of

the time is spent in the solution phase– Relative to the total time the solution phases consume

90–3%, 98–2% and 93–5% for the CutFEM, hexahedral and tetrahedral method respectively– Since

the integration over the model domain is more involved for the CutFEM approach compared to

the conforming approaches, the former uses more time for assembling the system matrix than the

latter approaches– In a similar manner the time consumption for the application of the transfer

matrix is increased for the CutFEM method– Note that the solution phase consists of the solution

of a linear system for multiple right-hand sides, which is easily parallelizable via multi-threading

or vectorization– Similarly, the dipoles within the forward phase can be splitted and handled in

parallel– By this parallelization, even the transfer matrix for the 1mm CutFEM approach can be

computed in an overnight computation with a subsequent application of the transfer matrix that is

mainly independent of the mesh-size–

Summarizing the results of the comparison to the itted method we can conclude that the 2mm

CutFEM approach outperforms the 1mm geometry conforming hexahedral approach while main-

taining the high accuracy of the tetrahedral models– However, it does so without the need for con-

structing triangular surfaces and a volume tetrahedralization– Its time consumption is comparable

to the one of a hexahedral approach–

ޡ.ޣ.ޢ UDG Sphere Model Studies
In this section, we evaluate the UDG method in four-layer sphere models–

Convergence First we study the convergence behavior for a four-layer sphere model using the

UDG method with increasing mesh resolution, similar to the convergence study for the CutFEM

approach– For this study we create UDG meshes of 16mm, 8mm, 4mm and 2mm fundamental

mesh resolution– Table 3–3 shows the number of fundamental mesh elements, the number of cut-

cells and the number of degrees of freedom for the diferent UDG discretizations– For the lowest

mesh resolution of 16mm the number of cut-cells is larger than the number of elements, indicating
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Table :ޢ.ޢ Number of fundamental mesh elements, cut-cells and number of degrees of freedom for
the diferent UDG discretizations of the four-layer sphere model–

resolution 16mm 8mm 4mm 2mm

#elements 1728 13824 110 592 884736

#cut-cells 2576 13544 79 480 521304

#DOFs 20608 108 352 635 840 4170 432

that a high percentage of fundamental mesh elements are cut by the interfaces– On each of 10

diferent eccentricities we generate a number of random source positions and for each position,

we compute the radially outwards pointing and a random tangential source orientation– Table A–3

shows the number of source positions that were generated for each eccentricity– As a source model

we employ the monopolar Venant approach with monopoles distributed in the dipole element and

all elements sharing a vertex with the dipole element– An element is excluded from this patch if it

contains no cut-cell of the gray matter compartment– On each element the local coordinates of the

monopoles are scaled with respect to the bounding box of the cut-cell– The positions are chosen

based on the Gauss-Legendre quadrature of second order resulting in 8 monopoles per element– We

use mixed moments up to second order, a relaxation factor of 10ď6 and a reference scaling of 20mm–

The penalty parameter of the UDGmethod is set to η = 4– When computing the transfer matrix, the

iteration of the linear solver is stopped at relative reduction of the l2-norm of the residuum of 10ď12–

Figure 3–9 shows RDM and MAG errors for the radial and tangential orientations– With respect

to the RDM error we see a clear convergence behavior for both orientations over all eccentricities–

In line with previous results we observe an increasing error with increasing source eccentricities–

Considering radial orientations at the eccentricity of 0–986, the median RDM error decreases from

8–3%, 2–9%, 1–4% down to 0–6% for the resolutions of 16mm, 8mm, 4mm and 2mm respectively–

For tangential orientations at the same eccentricity the error reduces as 5–2%, 2–0%, 0–9% down

to 0–5%– For the inest resolution of 2mm the largest RDM error over all source positions for

radial orientations occurring at the eccentricity of 0–995 is 2–0%– The largest error for tangential

orientations is 2–0%, also occurring at the eccentricity of 0–995– For the MAG error we observe a

convergence behavior of the median and total ranges, excluding the coarsest resolution of 16mm–

In general, we see a shift of the median values towards negative MAG error, i–e–, an underestimation

of the magnitude– At the eccentricity of 0–986 for radial orientations the median MAG error from

coarse to ine resolutions is 2–6%, ď2–5%, ď0–1% and 0–9% while the total range is 33–7%, 13–9%,

8–7% and 6–2%– For tangential orientations the median takes the values of 0–1%, ď3–9%, ď2–3%

and ď1–2% with a total range of 22–3%, 6–4%, 2–9% and 1–6%– For the mesh resolution of 2mm

the largest absolute value of the MAG error over all eccentricities for radial orientations is 5–9%

and occurs at the eccentricity of 0–995, while the largest absolute value for tangential orientations

is 2–1% occurring at the eccentricity of 0–995–

Figure 3–10 shows a visualization of the order of convergence of the relative error when increasing

the mesh resolution– As the error depends on the eccentricity, we evaluate the convergence behavior

for each eccentricity separately– Each plot corresponds to the median values of a single eccentricity,

where a darker color represents a higher eccentricity– Over all eccentricities we again observe the
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Figure :ި.ޢ Convergence study of the UDG discretization– Left: relative diference measure in per-
cent, Right: magnitude error in percent– Top: radial source orientations, Bottom: tan-
gential source orientations– Each boxplot contains the respective measure of a set of
sources– The horizontal red lines show the optimal values at 0%–
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Figure :ޟޠ.ޢ Convergence order of the UDG discretization– Each brown line represents the conver-
gence of the median relative error in percent of a single eccentricity, where a darker
color represents a higher eccentricity– The black dashed line shows a linear convergence–
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convergence behavior with a general linear order– For the step from 16mm to 8mm the order is

slightly lower for internal sources of both orientations– For radial sources we observe a slightly lower

reduction at the step from 4mm to 2mm for the highest eccentricities– Comparing the convergence

results to the results of the convergence study of the CutFEM method, we can see strong similarities

between the two approaches, both with respect to the convergence of the boxplots as well as the

convergence of the median relative error plots–

Comparison with CutFEM In this study we directly compare the UDG method with the CutFEM

method on a fundamental mesh of 2mm resolution– Both methods use the same fundamental mesh

resolution and the same level-set functions without any additional reinement– The UDG method

uses 4 170 432 DOFs, while the CutFEM method employs only 635 581 DOFs which corresponds to

a factor of approximately 6–6– The DOFs of the UDG method are associated with the elements of

the fundamental mesh, while the DOFs of the CutFEM method are associated with the fundamental

mesh nodes– For both methods we use the monopolar Venant approach with the local monopole

positions scaled to the respective bounding boxes and the source model parameters as reported

above– The UDG method uses a global penalty parameter of η = 4, while the CutFEM method uses

a penalty parameter of η = 16 and a ghost-penalty parameter of η̃ = 0–005– The diferent scaling

of the penalty parameter for both approaches is assumed to be mainly due to the diferent scaling of

the parameter with respect to the local mesh size– Figure 3–11 shows the RDM and MAG errors for

the UDG approach and the CutFEM approach– The individual results are already described in the

previous study for the UDG method and in Section 3–1 for the CutFEM method– With respect to the

RDM error both methods perform very similarly for both source orientations– The CutFEM method

produces slightly lower RDM errors for tangential source orientations and higher eccentricities but

the overall trend is mainly identical– Note that with a diferent choice of the respective penalty

parameter an even closer result might be obtained– In general, these results show that the UDG

and CutFEM approach can be used interchangeably for this scenario– As the CutFEM method uses

less DOFs, the resulting linear system is smaller and thus the time needed for the construction of

the transfer matrix is reduced– In the subsequent realistic head model studies we thus choose the

CutFEM approach over the UDG method–

Second order studʿ An advantage of the UDG method that is reported in the literature, e–g–,

(Engwer, 2009), is the direct use of higher-order ansatz functions in the discretization– In previous

studies second-order ansatz functions have been investigated for the conforming inite element

method on geometry conforming tetrahedral meshes (Grüne, 2014; Van Uitert et al–, 2001; Zhang

et al–, 2004)– While these studies could ind an efect on the approximation quality of the use

of higher order polynomials, it was concluded that this efect might be more pronounced with

a better geometric approximation of the diferent tissue compartments– Instead of using second

order polynomials, it was proposed to increase the mesh resolution and use linear ansatz functions

on the iner mesh– For the UDG method the geometric representation and the discrete function

space are treated separately– This especially means that a more accurate geometric representation

of the model domain can be used without increasing the resolution of the Ansatz space– We note that

polynomials of higher degrees can also be used for the CutFEM approach– In this case a diferent

ghost-penalty has to be applied as presented in Burman and Hansbo (2012)–
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Figure :ޠޠ.ޢ Comparison study between a UDG discretization (blue) and a CutFEM discretization
(red) on a 2mm fundamental mesh– Left: relative diference measure in percent, Right:
magnitude error in percent– Top: radial source orientations, Bottom: tangential source
orientations– Each boxplot contains the respective measure of a set of sources–
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Figure :ޡޠ.ޢ Comparison study of the UDG discretization using linear and quadratic polynomials–
Left: relative diference measure in percent, Right: magnitude error in percent– Top:
radial source orientations, Bottom: tangential source orientations– Each boxplot con-
tains the respective measure of a set of sources– The horizontal green lines show the
optimal values at 0%–

We compare the UDG method with piecewise linear ansatz functions on a 2mm fundamental

mesh with the UDG method with quadratic ansatz functions on a 4mm mesh– For both methods

we use the same geometric information from a level-set function on a 1mm mesh– The linear UDG

method uses 4 170 432 DOFs while the UDG method with quadratic polynomials uses 2 145 960

DOFs which corresponds to a factor of approximately 1–9– Note however that the second order

method uses more DOFs per element (27 instead of 8) and thus has an increased coupling stencil

when compared to the irst order method– As a source model, we employ the partial integration

approach– Figure 3–12 shows the RDM and MAG errors of the comparison– For all eccentricities of

the radial orientation and for the lower eccentricities of the tangential orientation we see a strong

reduction of the RDM error– For tangential source orientations and higher eccentricities the RDM

error of the approach using the quadratic polynomials increases and shows a wider spread of the to-

tal range– With respect to the MAG error the behavior regarding the source orientation is swapped–

For all eccentricities of the tangential orientation and for the lower eccentricities of the radial ori-

entation we see a strong decrease of the total and inter-quartile range– For the higher eccentricities

and radial orientations both approaches with linear and quadratic polynomials perform similarly
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and show an increase in the total and inter-quartile range as well as a shifting median value–

To conclude, we see a strong increase in accuracy for the lower eccentricities– For the highest

eccentricities this increase is less pronounced or the results are on a similar level– Note that we

employed the partial integration source model in this study– The results, especially close to the

conductivity jump, might be diferent, when using a diferent source model– An investigation of the

Venant approach with respect to higher-order moments or a varying number of monopoles within

each element might be worthwhile– Additionally, the localized subtraction approach presented in

Section 2–3 might improve the results close to the conductivity jump–

ޢ.ޣ.ޢ CutFEM Realistic Head Model Studʿ
In this study, we evaluate the efect of the CutFEM discretization on a realistically shaped head

model– We create four head models, each consisting of six compartments, that are used in the

evaluation: a geometry conforming tetrahedral model, a geometry-adapted hexahedral model, a

CutFEM model using level-sets derived from the tetrahedral surfaces and a CutFEM model using

level-sets derived from the hexahedral mesh– Throughout this section, the CutFEM model obtained

from the tetrahedral surfaces is used as a reference model–

Surfaces The surfaces used as initial data for creating the tetrahedral model as well as the CutFEM

model were created in (Vorwerk et al–, 2014) and used for a single solution of the EEG forward

problem with an unitted inite element method in (Nüßing et al–, 2016)– In the following, we will

describe the main process of creating these surfaces– T1-weighted (T1w-) and T2-weighted (T2w-)

MRI scans of a healthy 25-year-old male subject were acquired in a 3T MR scanner (MagnetomTrio,

Siemens, Munich, Germany) with a 32-channel head coil– For the T1w-MRI, an MP-RAGE pulse se-

quence (TR—TE—TI—FA = 2300ms—3–03ms—1100ms—8°, FOV = 256× 256× 192mm, voxel size =

1×1×1mm) with fat suppression and GRAPPA parallel imaging (acceleration factor = 2) was used–

For the T2w image, an SPC pulse sequence (TR—TE= 2000ms—307ms, FOV = 255×255×176mm,

voxel size = 0–99× 1–0× 1–0mm interpolated to 0–498× 0–498× 1–00mm) was used– MR images

were resampled to 1mm isotropic resolution– The T2w-MRI was registered onto the T1w-MRI using

a rigid registration approach and mutual information as a cost-function as implemented in the FSL-

toolbox1– The skin and skull compartments were segmented by applying a gray-value based active

contour approach (Vese and Chan, 2002)– Subsequently, the segmentation was manually corrected

and, because of the importance of modeling skull holes for source analysis (Oostenveld and Oos-

tendorp, 2002; Roche-Labarbe et al–, 2008), the foramen magnum and the two optic canals were

correctly modeled as skull openings– The model was not cut of directly below the skull but realisti-

cally extended at the neck– CURRY72 was used to extract high-resolution surfaces of skin and skull

compartments– A Taubin smoothing was applied to remove staircase-like efects (Taubin, 1995)–

Cortex segmentation and surface reconstruction were performed using the FreeSurfer-toolbox3–

In order to construct a tetrahedral mesh using a constrained Delaunay tetrahedralization, the ex-

tracted surfaces where manually corrected to ensure that the surfaces are not intersecting and have

a minimal distance from each other– Note however that this manual correction step is in general

1httpǣ..fsl.fmrib.ox.ac.uk.fsl.fslwiki.FSL
2httpǣ..www.neuroscan.com
3httpsǣ..surfer.nmr.mgh.harvard.edu
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Figure :ޢޠ.ޢ Visualization of the triangular surfaces used for the realistic headmodel study– Depicted
are the skin, skull and gray matter surface–

not necessary for an unitted approach, which can also deal with touching or intersecting surfaces–

A visualization of the surfaces used for creating the head models is shown in Figure 3–13–

For the sensors, we used a realistic 10-10 electrode montage consisting of 74 electrode positions–

In (Vorwerk et al–, 2014), the positions were digitized using a Polhemus FASTTRAK device4 and

projected onto the skin surface– For the tetrahedral and hexahedral model, each electrode position

was moved to the closest vertex of the mesh– The solutions obtained by the unitted methods were

directly evaluated at the position of the electrodes, which were all located in an element of the

fundamental mesh containing a cut-cell of the skin compartment–

Discretization schemes The construction of the tetrahedral model is described in (Vorwerk et al–,

2014), where a constrained Delaunay tetrahedralization has been applied to the triangulation sur-

faces (Si, 2015)– For the smooth CutFEM model, we created signed distance functions on an auxil-

iary domain with a resolution of 1mm for each triangular surface that was used for the construction

of the tetrahedral model– These signed distance functions were subsequently used as level-set func-

tions for the description of the CutFEM domain– We employed a CutFEM discretization on a 1mm

background mesh with penalty parameter η = 16 and ghost penalty η̃ = 0–005– This CutFEM is

used as a reference model in the following investigations– From the smooth CutFEM model we de-

rived a hexahedral mesh by assigning to each voxel of the fundamental mesh that conductivity value

with the highest volume within that voxel– We use the geometry-adaption approach described in

(Wolters et al–, 2007b) with a shifting parameter of 0–3– In order to simulate a CutFEM approach in

a situation where no smooth surfaces are available, we extract surfaces from the hexahedral mesh

constructed in the previous step– For these surfaces, we follow the processing pipeline that was used

for creating the smooth surfaces for the tetrahedral model, without applying any manual correc-

4httpsǣ..polhemus.com
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tions to the surfaces– In order to create a reference for the quantitative efects of the aforementioned

models, we create a four-compartment CutFEM model, which does not distinguish between gray

and white matter and which does not contain a skull spongiosa compartment– This model is cre-

ated by excluding the level-set functions for white matter and skull spongiosa and assigning the

conductivity values for gray matter and skull compacta in the whole respective compartment– The

remaining surfaces are identical to the full six-compartment model– The CutFEM model consists of

5 825 336 DOFs, the tetrahedral model of 984 569 DOFs, the geometry-adapted model of 4 193 359

DOFs and the CutFEM model constructed from the hexahedralized surfaces consists of 5 966 398

DOFs– The four-compartment CutFEM model consists of 5 065 074 DOFs– Among all models, the

tetrahedral model has the lowest number of degrees of freedom by a factor of approximately 4– The

highest number of DOFs is used by the hexahedralized CutFEM method which uses only slightly

more DOFs than the original CutFEM mesh–

Source space We created a source space based on the level-set functions used in the CutFEM

approach– As mentioned in the previous chapters, the generators of the electric activity are located

in the gray matter compartment with orientation normal to the cortical surface– First, we created a

level-set function representing the source space by interpolating between the gray and white matter

surfaces:

Φs := αΦwm + (1 ď α)Φgm

with a parameter α ∈ [0, 1]– As the used gray and white matter surfaces were nested, Φwm < Φgm

and the resulting source space lies in between both surfaces– If α is closer to 1, the resulting source

space will be closer to the white matter surface, the closer it is to 0, the closer it will be to the

gray matter surface– For the following investigations, we ixed α = –8 and thus created a surface

that is closer to the white matter compartment, which is similar to the source space construction in

(Vorwerk, 2016)– In order to create approximately evenly spaced sources, we discretized the level-

set using the marching cubes algorithm (cf– Section 4–1)– To create a more uniform distribution

of the nodes, we used the tool MeshLab5 to clean the surfaces and applied a Taubin smoothing

(50 iterations, parameters -0–25 and 0–25)– In this process, the unit surface normal vectors at the

vertices were computed and ixed as the dipole moments– The resulting source space consists of

271 864 dipoles– For a clearer visualization, we created an inlated version of the source space by

applying a Laplacian smoothing– Note however, that all computations were performed using the

original source space– The source space and the inlation are shown in Figure 3–14– The mean

curvature of the surface is colored in gray, where a dark gray color corresponds to a negative mean

curvature, while a light gray color corresponds to a positive mean curvature– In general, areas with

a positive mean curvature are located on the crowns of the gyri, while a negative curvature occurs

within the sulci– At the transition from the light to the dark gray areas, the curvature is close to

zero, corresponding mainly to the walls of the cortical folding– Figure 3–15 shows the distance

to the skull compacta compartment and the local thickness of the gray matter compartment– The

distance to the compacta compartment is measured by evaluating the signed distance function used

for generating the CutFEM model– It ranges from approximately 2mm to 54mm and is in general

5http:——www–meshlab–net
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a) original b) inlation

Figure :ޣޠ.ޢ Visualization of the source space used for the realistic head model study– Left the origi-
nal source space, right its inlation– The dark gray areas have a negative mean curvature
in the original model, while the light gray areas have a positive mean curvature–
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Figure :ޤޠ.ޢ Left: Distance of the source space to the skull compacta compartment– A darker color
corresponds to a higher distance– Right: Local thickness of the gray matter compart-
ment– A darker color corresponds to a thicker compartment–
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lower for supericial areas such as the gyral crowns– In order to better visualize the distance dif-

ferences for the visible supericial areas, the color map was cut of at a distance of 30mm– The local

gray matter thickness at a position is deined as the sum of the distance to the white matter surface

and the distance to the gray matter surface– It is computed using the signed distance function for

the white matter and gray matter compartments as: Φwm ď Φgm– Due to the location of the source

space, it is proportional to the distance of the source to the gray matter surface and it ranges from

approximately 0–3mm to 15–3mm– Again, in favor of a clearer visualization, the color map was cut

at a thickness of 10mm– The highest distances are located in deep sulcal areas that are not resolved

by the gray matter surface– The thickness is lower in gyral areas while being smallest on the central

gyri and in frontal areas–

For the itted methods, especially when using the hexahedral mesh, and for the CutFEM method

using the hexahedralized level-set functions, certain source positions do not lie in an element of the

gray matter compartment, but might lie within a CSF element or an element of the white matter,

due to inaccuracies on representing the compartment boundaries– In order to avoid errors due to the

use of the diferent tissue compartment and thus the diferent conductivity value, we move sources

which do not lie within a gray matter element to the closest center of a gray matter element– For

the hexahedral model, 4577 out of the 271 864 sources were moved to a diferent location with

a maximal distance of 1–55mm and a median distance (among the moved dipoles) of 0–68mm–

Note that the maximal distance is below the diagonal of a 1mm cube and thus no source position

was shifted more than a single voxel– For the tetrahedral model, 4955 sources were moved with a

maximal distance of 1–0mm and a median distance, again among the moved dipoles, of 0–51mm–

For the CutFEMmodel using the level-set functions obtained from the hexahedral mesh, 158 sources

of the original source space were located in a fundamental element with no cut-cells of the gray

matter compartment– Similarly to the previous process, these sources weremoved to the next closest

center of a cut-cell with gray matter contributions– The maximal distance between a moved source

and its original location is 0–96mmwith a median distance (among the moved dipoles) of 0–72mm–

Source models For the CutFEM models, we use the monopolar Venant approach as a source

model– We create monopoles in the dipole element and all elements which share a vertex with

the dipole element– We exclude elements which do not contain cut-cells of the gray matter com-

partment– On each fundamental element, the monopoles are scaled to the bounding boxes of the

respective cut-cell– We additionally use the partial integration approach on the smooth CutFEM

model in order to compare the results obtained from the diferent models and surface representa-

tions with the efect of choosing a diferent source model– Based on the results of Sections 2–1 and

2–2 we use the conforming spatial Venant approach for the itted methods, on a patch consisting

of the dipole element and all elements sharing a vertex with the dipole element– The remaining

parameters of the Venant approaches, such as the relaxation factor or the number of moments are

chosen as described in Section 2–1 and are identical for all models–

Measures and Visualizations In order to compare the diferent approaches, we use the RDM and

MAG measures introduced in the previous sections (cf– (2–14) and (2–15)) to compare the forward

solutions of a model with the results of the smooth CutFEM approach, which is used as a reference

model– These measures are visualized directly on the source space– Note that in contrast to the
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Figure :ޥޠ.ޢ Left: median distance to the electrodes– A lighter color indicates a smaller median dis-
tance to the electrodes– Right: Signal strength of the 1mm CutFEM discretization with
the monopolar Venant source model– A light color indicates a higher signal strength–

evaluations in the previous studies, these measures mainly show diferences in topography and

magnitude compared to the reference model, but not to a correct analytical solution– In order to

obtain a general impression of the efect of the diferent models, we compute the cumulative relative

frequencies (CRF) for the RDM andMAG errors– For a vector of observations v ∈ Rn they are deined

as

CRF : R→ [0, 1]; x 7→
1
n

nď1∑

i=0

χ(ď∞,x](vi),

where χ(ď∞,x] denotes the indicator function on the interval from ď∞ to x– The function CRF(x)
is monotone since it describes the percentage of sources which show an observation of x or lower–

The support of the CRF curve is limited by the support of the respective measure, with an optimal

curve showing a jump from 0 to 1 at x = 0 for both, RDM and MAG– For the RDM error, we indicate

the critical value of 95% of the sources, while for the MAG error, we show the critical values at

2–5% and 97–5%, which delimit the central 95%– In addition to the visualization of the diferent

error measures on the surface of the inlated source space, we show two-dimensional histograms

to compare the dependency between two diferent measures– For each measure, we distribute the

respective observation into uniformly distributed bins and visualize the number of entries in each

bin– For each column, the number of entries in a bin are scaled with the maximal number within a

bin of that column– Additionally, we show classical one dimensional histograms for each of the two

measures–

Results We irst present general results of the signals of the smooth CutFEM model, which serves

as the reference model– Figure 3–16 shows the median distance of each source position to the

electrodes and the signal strength of the reference model using the Venant approach– We observe

higher median electrode distances in the frontal lobe and in frontal areas of the temporal lobes–

In general more medial areas have a lower median distance to the electrodes and positions on the

gyral crowns show a larger median distance– The signal strength is measured as the l2-norm of

the mean referenced lead ield at each location– Overall, we observe a smooth distribution of the

norm over the cortex– We observe a higher signal strength for tangential sources close to the gyral
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Figure :ަޠ.ޢ Cumulative relative frequencies of the RDM (left) and MAG (right) errors in percent–
Each plot corresponds to a diferent model– For the RDM error, the dotted horizontal
line indicates a frequency of 95%– For the MAG error, the two dotted horizontal lines
correspond to frequencies of 2–5% and 95–7% respectively–

crowns while we can see a decrease of the norm for the radial orientations on the gyral crowns– We

can see a trend of reduced signal strength for source positions with a higher median distance to the

electrodes–

In order to compare the general efect sizes of the RDM and MAG errors with respect to the ref-

erence model we compute the corresponding CRF values for the diferent models– We compare the

tetrahedral and hexahedral approaches and the CutFEM approach using hexahedralized level-sets–

All of these models use six-compartments– To obtain quantitative references for the CRF values of

these approaches, we show the results of using a partial integration approach in the reference model

and the results of using a four-compartment model with the CutFEM approach– The cumulative rel-

ative frequencies for the RDM and MAG error of the diferent models are shown in Figure 3–17– For

the RDM error, the curve of the partial integration approach on the smooth CutFEM model shows

the lowest values, with 95% of the sources showing an RDM error of 3–2% or lower– The hexahedral

model and the CutFEMmodel with the hexahedralized surfaces show a similar behavior, the respec-

tive plots are closely correlated and the intersection with the 95% mark occurs at approximately

4–7% for both approaches– The plot for the tetrahedral model crosses the plots of the hexahedral

approaches, i–e–, it contains more sources with a lower RDM, but the bulk of the sources shows a

higher measure– At a CRF of 95%, the RDM error is 6–1% The largest RDM errors can be observed

for the four-compartment model, where 95% of the sources show and RDM error of 12–8% or lower–

For the MAG error, the plot of the partial integration approach is closest to the optimal jump at 0%–

Additionally, 95% of the sources have a MAG error between ď13–2% and 2–4%– The tetrahedral

and hexahedral MAG plots show a similar curve, where the majority of the sources show a positive

MAG error– The bulk of the sources for the tetrahedral model shows a MAG error between ď3–2%

and 22–3% while for the hexahedral model, the boundaries are ď4–7% and 22–1%– For the CutFEM

approach with the hexahedralized surfaces, the overall trend of the MAG error is towards negative

values, with a 95% interval between ď14–4% and ď0–4%– The largest spread over all models can

be observed for the four-compartment model– Here, the bulk of the sources shows a MAG error

between ď17–1% and 43–2%–

In the following, we show the distribution of the RDM and MAG errors visualized on the source

space for the diferent models presented above– First, we present results for using the partial inte-

gration approach on the reference model– Figure 3–18 shows the results of the comparison between
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Figure :ާޠ.ޢ RDM and MAG errors on the inlated source space between the partial integration
source model and the Venant source model source model on a 1mm CutFEM discretiza-
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blue color corresponds to negative values, a red color corresponds to positive values–
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Figure :ިޠ.ޢ Dependency between RDM and MAG errors and gray matter thickness between the
partial integration the Venant source model on the reference model– The color indicates
the frequency of a box relative to the maximum frequency within each column– The
gray barplots at the top and right side show the histograms within each dimension–

the partial integration and the Venant approach on the reference model– With respect to the RDM

error we see the main errors located on the gyral crowns which are reduced closer to the sulci– The

highest RDM errors can be observed in more lateral areas of the central gyri– With respect to the

MAG error the main errors are again located on the gyral crowns, while areas in the sulci show a

reduced MAG error– With a few exceptions the main trend of the MAG error is negative, i–e–, the

magnitude of the partial integration approach is lower than the magnitude of the Venant approach–

Comparing the RDM and MAG error, we observe a strong correlation between the magnitude of the

RDM error and the MAG error– In addition, considering the gray matter thickness in Figure 3–15,

we see a positive correlation between increased error measures and a lower gray matter thickness–

In order to further investigate this correlation, Figure 3–19 shows 2D histograms for the relationship

between the two error measures and the thickness of the gray matter compartment– The range of

both error measures is identical to the range of the color map in Figure 3–18– For the RDM we see
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the aforementioned increase of the RDM with decreasing gray matter thickness– For sources with a

thickness higher than approximately 7–5mm the RDM stays below 0–5% and increases for sources

in thinner areas– Both observations transfer to the MAG error where the total range of the error

increases with a thinner gray matter compartment–

Next, we perform the same investigation for the geometry-conforming tetrahedral mesh– In Figure

3–20 we present the results of the RDM and MAG errors compared to the reference model– With

respect to the RDM error, we see an overall increase of the RDM error especially in supericial areas

and a reduced error in the sulci– Similar to the previous results, the highest RDM values are located

on the post-central gyrus– The MAG error shows an overall trend towards positive values, i–e–, the

magnitude of the CG approach is higher than the magnitude of the CutFEM approach– In some areas

mainly located on the gyri, the MAG error becomes negative– The highest MAG errors are located in

areas around the post-central gyrus as well as in frontal areas– We observe a correlation between the

thickness of the gray matter and the RDM and MAG error and show the dependency in 2D boxplots

in Figure 3–21– We see the efects described based on the visual inspection on the source space also

in these histograms– The spread of the RDM error increases for thinner gray matter compartments

and the MAG error is increased towards positive values– For source positions at locations thinner

than 1mm, we see a higher spread of the MAG error and also the aforementioned negative values–
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Figure :ޟޡ.ޢ RDM and MAG errors on the inlated source space between the conforming inite el-
ement method with a tetrahedral mesh and the 1mm CutFEM reference model– For
the RDM error, a darker color indicates a higher error– For the MAG error, a blue color
corresponds to negative values, a red color corresponds to positive values–
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Figure :ޠޡ.ޢ Dependency between RDM and MAG errors and gray matter thickness between the
conforming Venant for a CGmethod with a tetrahedral mesh and the monopolar Venant
on a 1mm CutFEM discretization– The color indicates the frequency of a box relative
to the maximum frequency within each column– The gray barplots at the top and right
side show the histograms within each dimension–

The second itted approach that is investigated in this section is the conforming inite element

method using a 1mm geometry-adapted hexahedral mesh– In Figure 3–22 we show the results of

the comparison between the CG approach and the reference model– With respect to the RDM error

the results are similar to the tetrahedral approach in their general distribution, while their absolute

values are overall slightly reduced– The highest error values can be found on the gyral crowns,

especially of the central gyri– The MAG error shows positive values on and close to the gyral crowns–

Compared to the tetrahedral model, the MAG error in frontal areas is reduced– Again, in Figure 3–23

we show the dependency between the RDM and MAG errors and the gray matter thickness– The

RDM error increases for thinner gray matter areas, with a strong increase of the error range for the

thinnest locations– This efect is stronger when considering the MAG error, which is increasing with

a thinner gray matter compartment and shows a similar spread for the thinnest locations– Compared
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Figure :ޡޡ.ޢ RDM and MAG errors on the inlated source space between the conforming inite ele-
ment method on a 1mm geometry-adapted hexahedral mesh and the reference model–
For the RDM error, a darker color indicates a higher error– For the MAG error, a blue
color corresponds to negative values, a red color corresponds to positive values–
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Figure :ޢޡ.ޢ Dependency between RDM and MAG errors and gray matter thickness between the
conforming inite element method on a 1mm geometry-adapted hexahedral mesh and
the referencemodel– The color indicates the frequency of a box relative to themaximum
frequency within each column– The gray barplots at the top and right side show the
histograms within each dimension–

to the tetrahedral case, the RDM error is slightly reduced and the MAG error shows a smaller total

range and is closer to the zero line–

For the next model we extracted the surfaces of the hexahedral mesh and applied a smoothing

procedure to construct level-set functions– Using these level-set functions, we created a CutFEM

model and compare it to the reference model– Figure 3–24 shows the RDM and MAG errors of

this comparison– The general distribution of the RDM error is comparable to the hexahedral and

tetrahedral models– We can observe a smoother distribution of the RDM error and slightly higher

values in frontal areas and large values around the post-central gyrus– The most notable feature

of the MAG error is the shift towards negative values, that was already observed in the cumulative

relative frequency plots above– This trend towards negative values can be observed over almost all

source positions, with a reduction on small strips on the gyral crowns– It seems slightly stronger
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Figure :ޣޡ.ޢ RDM and MAG errors on the inlated source space between the 1mm CutFEM dis-
cretization from hexahedralized level-set functions and the reference model– For the
RDM error, a darker color indicates a higher error– For the MAG error, a blue color
corresponds to negative values, a red color corresponds to positive values–
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Figure :ޤޡ.ޢ Dependency between RDM and MAG errors and gray matter thickness between the
1mm CutFEM discretization from hexahedralized level-set functions and the reference
model– The color indicates the frequency of a box relative to the maximum frequency
within each column– The gray barplots at the top and right side show the histograms
within each dimension–

close to the small strips on top of the gyri– Similar to the previous results, we observe a correlation

between the gray matter thickness and the RDM and MAG errors, which is visualized using 2D

boxplots in Figure 3–25– The general correlation between gray matter thickness and the RDM error

is not as strong as for the conforming approaches when considering the thinnest gray matter areas–

The histogram for the MAG error shows the shift of the error curve at approximately ď6%, which

was already observed with regard to the CRF values– The absolute MAG error increases in areas

thinner than 5mm while the MAG error in the thinnest areas is also not as strong compared to the

conforming methods–

In order to obtain a quantitative reference of the RDM and MAG errors in the diferent models

described above, we compare a four-compartment CutFEM model with the six-compartment ref-

erence model– The four-compartment model does not distinguish between gray and white mater

nor between skull compacta and skull spongiosa– Figure 3–26 shows the RDM and MAG error of

this comparison– Note the diferent scaling of the color maps compared to the results of the six

compartment models– The highest RDM errors are mainly located close to the gyral crowns, while

small strips on the crests of the gyri show a lower RDM value– The general distribution with respect

to the gray matter thickness that was observed in the six-compartment model is not present– The

MAG error shows positive values on top of the gyri which are largest in temporal areas and on the

temporal lobes– In the sulci the MAG error is mostly negative–

Discussion In the previous paragraph we presented the results of the comparison between dif-

ferent realistically shaped head models and a CutFEM reference model–

The lowest RDM and MAG errors were observed for the partial integration approach on the ref-

erence model– As the approach used the same forward model the only diference to the reference

is the discretization of the source term– In the results for the comparison of diferent source models

for the CutFEM discretization of the four-layer sphere model, the main diference could be found
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Figure :ޥޡ.ޢ RDM and MAG errors on the inlated source space between the four-compartment
1mm CutFEM discretization and the six-compartment reference model– The six-
compartment model additionally includes the distinction between gray matter and
white matter and between skull compacta and skull spongiosa– For the RDM error,
a darker color indicates a higher error– For the MAG error, a blue color corresponds to
negative values, a red color corresponds to positive values–

close to the conductivity jumps– For the realistically shaped head model the sources that are closest

to the conductivity jumps are located on the gyral crowns and in areas with a thin gray matter com-

partment– For these sources we observe an increased RDM andMAG error for the partial integration

approach– In addition, the distribution of the error is not smooth, which represents the stronger

dependency of the partial integration approach to the local mesh structure–

The results for the two itted approaches, the conforming inite element method with a geometry-

conforming tetrahedral or hexahedral mesh, are very similar with respect to both error measures–

The main diferences to the reference model could be found in areas with a thin gray matter com-

partment– As already noted in the reasoning for the partial integration approach sources in these

areas are closer to the conductivity jumps– The comparison between the itted approaches and the

CutFEM discretization in sphere model studies indicated a larger diference for higher eccentricities–

In the sphere model studies the MAG error of the itted approaches was overall more positive than

the MAG error of the CutFEM approach– This is relected in the results of the realistically shaped

model where the MAG error tends towards positive values– The diferences between the two itted

approaches could be seen in the diferent surface representations and in the diferent representa-

tions of the discrete functions– Compared to the partial integration approach on the reference model

the RDM and MAG errors for the itted approaches are approximately twice as large–

For the hexahedralized model the general distribution of the RDM and MAG errors are similar to

the itted approaches– We can see the efect of the smoothing of the diferent surfaces by an overall

smoother distribution of the error measures– The shift of the MAG error towards negative values

could be due to the construction of the surfaces and the additional smoothing procedure– This

should be part of further investigations, and alternative smoothing approaches should be taken into

account– In (Whitaker, 2000), an approach for anti-aliasing of binary voxel images has been pre-

sented, which uses a constrained smoothing based mean curvature of the surface (see also Section

5–4 for an application of this smoothing approach)–

Summarizing the results of all six-compartment models we see that especially areas on the gyral

crowns or close to them are sensitive to the diferent models with respect to topography changes
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measured by the RDM– These are also the areas, closer to the electrodes and with a higher curvature

of the surface and thus areas that show a stronger change in orientation for close source locations–

The main efects for all diferent six-compartment models were found in areas with a thin gray

matter compartment– Studies using the multi-layer sphere models showed an increasing error as

well as a higher variance of the error when sources are located closer to a conductivity jump– As

the source space is located in the gray matter compartment, the closest surfaces are the gray and

white matter surface– These surfaces are closer to the source space, the thinner the gray matter

compartment is– In addition, the representation of the diferent tissue surfaces can also be seen

as a main diference between the discretization schemes– In the tetrahedral model, the surfaces

are represented as triangular surfaces while in the hexahedral model they have a staircase-like

structure– The hexahedralized CutFEM approach represents the surfaces via level-set functions that

are obtained by smoothing the staircase-like representation of the hexahedral model– Due to these

diferences higher errors in areas with a thinner gray matter compartment can be expected–

However, all efects between the diferent discretization schemes are below the efect of excluding

the gray—white-matter and compacta—spongiosa distinction which is approximately twice as big as

the aforementioned efects– We note that the efect of the error measures for the four-compartment

model reproduces similar indings in (Vorwerk, 2016)– We observe the highest MAG values mainly

in areas that are not covered by the skull spongiosa compartment and on gyral crowns– In these

areas, the MAG error is positive, i–e–, we see an overestimation of the magnitude compared to the

six-compartment model–

We conclude that especially areas with thin structures are sensitive to modeling diferences and

special care should be taken when considering the forward modeling approach for such models–

ޤ.ޢ Conclusion
In this chapter, we presented two cut-cell methods for solving the EEG forward problem– The main

goal was to provide a more simple simulation pipeline without the need for creating a geometry-

conforming tetrahedral mesh, while still allowing for an accurate representation of the diferent

tissue compartments– The irst approach was the CutFEM method which uses a conforming dis-

cretization within each tissue compartment and couples the diferent subdomains weakly– The

second approach presented here was the UDG method, which employs the weak coupling also in

between elements within each subdomain– These methods were evaluated in four-layer sphere

models as well as in a study using a realistically shaped head model– The accuracy exceeded the

accuracy of a staircase-like representation ofered by a hexahedral approach, and the accuracy of

the tetrahedral approach could be met while ofering a more simple simulation pipeline– A potential

beneit of the separation of the model geometry and the computational domain was found in the

use of second order polynomials– In realistically shaped head models the efects that were observed

in sphere model studies could be conirmed– Chapter 4 discusses some implementational aspects

of cut-cell methods that were omitted from this chapter, such as the integration over the implicitly

deined domains, or the eicient solution of resulting linear systems–

In future studies, it would be worthwhile to evaluate the cut-cell methods in realistic head model

scenarios where a modeling with geometry-conforming approaches might be diicult, such as cases

with a very thin bone structure– Directly connected to the EEG forward solution is the magnetoen-
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cephalography, which considers the magnetic ield outside of the head model– An investigation of

the cut-cell methods for magnetoencephalography (MEG) might show an advantage of the geome-

try representation in the source area– In addition, a higher polynomial degree might be beneicial

of the MEG forward solution– In further studies, the efect on other biomedical applications should

be considered, for example the simulation of transcranial electric stimulation– Such applications

perform a reciprocal approach by injecting current on the head surface to modulate electric activ-

ity in the head– Especially if an area below thin bone structures as in temporal regions should be

stimulated, an accurate representation of the thin structures might be needed–
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Implementational Aspects of Cut-Cell Methods

In this chapter, we will discuss two aspects of implementing cut-cell methods with a focus on solving

the EEG forward problem– In Section 4–1 a method for integrating functions over implicitly deined

domains and interfaces is introduced: a topology preserving marching cubes– It generates quadra-

ture rules by discretizing the implicitly deined domain on each element of an auxiliary mesh– In

Section 4–2 we present algebraic multigrid (AMG) techniques which can be used to numerically

solve the linear system of a cut-cell discretization– We introduce multigrid methods for the CutFEM

approach as well as for the UDG method– Finally, a short conclusion will be given in Section 4–3–

ޠ.ޣ Geometric Integration Over Implicitlʿ Deined Domains
Within the context of the cut-cell methods presented in Section 3–1 and Section 3–2, one subtask is

the numerical evaluation of integrals over implicitly deined domains and surfaces– In the special

case of the CutFEM method, these integrals are performed over the volume of domain as well as

on interfaces between the diferent tissue compartments– The UDG method contains the same

integrals as the CutFEM method, but additionally contains integrals over the intersections between

two fundamental mesh elements– In the following, wewill present amethod to numerically evaluate

such integrals– The main results have been published in (Engwer and Nüßing, 2017)– The following

description of the method only considers the case of a single interface– A description of the extension

to multiple interfaces will be given further below–

Let Ω̂,Ω ⊂ Rd be domains withΩ ⊂ Ω̂– Ω describes the computational domain which lies within a

auxiliary domain Ω̂– Instead of giving an explicit deinition of Ω, it can also be deined as a level-set

of a continuous function Φ : Ω̂→ R by setting Ω := {x ∈ Ω̂ : Φ(x) < 0} = {Φ < 0}– The boundary

of Ω is then given as ∂Ω = {Φ = 0}– Note that without loss of generality we restrict ourselves to the

case of the zero level-set– A general level-set of α ∈ R can be used by considering the zero level-set

of the shifted function Φ̃(x) := Φ(x) ď α– As mentioned above we are interested in the evaluation
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of integrals of certain integrable functions f : Ω→ R, g : ∂Ω→ R, i–e–, integrals of the form

∫

Ω̂∩{Φ<0}
f dx ,

∫

Ω̂∩{Φ>0}
f dx ,

∫

Ω̂∩{Φ=0}
g ds (4–1)

In the literature several methods to evaluate such integrals have been presented– One class of

such methods involves generating quadrature rules based on a moment-itting approach (Müller

et al–, 2013; Sudhakar and Wall, 2013)– These methods have been shown to lead to an accurate

approximation of the integrals which is especially useful for higher ordermethods– Another category

of approaches uses a piecewise linear sub-triangulation of the computational domain Ω or of its

boundary ∂Ω– One such approach is presented in (Min and Gibou, 2007)– Based on a partition

of the auxiliary domain into cubes each cube is split into tetrahedrons using a Kuhn triangulation

(Freudenthal, 1942)– This splitting is performed independently of the level-set function– On each

tetrahedron, a sub-triangulation is constructed based on a marching tetrahedron approach (Gueziec

and Hummel, 1995)–

In the following we will present a similar approach to the one mentioned above which is based on

themarching cubes method (Chernyaev, 1995; Lewiner et al–, 2003; Lorensen and Cline, 1987)– We

irst introduce a tessellation Th(Ω̂) of the auxiliary domain Ω̂, i–e–, a set Th(Ω̂) := {E0, . . . , Enď1 ⊂ Ω̂}

such that

Ei ∩ Ej 6= ∅, for i 6= j (4–2)
nď1⋃

i=0

Ei = Ω̂ (4–3)

hold– On this tessellation, we approximate the level-set Φ by a piecewise multi-linear level-set

Φh– The main idea of the algorithm is to approximate the domain Ω, its complement Ω̂ \ Ω and

its boundary ∂Ω by a set of simple polytopes on each element of this tessellation– The poly-

topes are generated such that common quadrature rules are available for them, e–g–, they are

given as simplices or cubes– Subsequently, the integration can be carried out on these more sim-

ple elements– Let Ei ∈ Th(Ω̂) be an element of the tessellation of the auxiliary domain– With

S<0(Ei) := {E0i , . . . , E
miď1
i : Eji ⊂ Ei, 0 ≤ j < mi} we denote the set of polytopes for which

miď1⋃

j=0

Eji ≈ Ei ∩ {Φh < 0} (4–4)

should hold– Similarly, we deine S>0 and S=0– The construction of the subtessellation is the main

contribution of the proposed algorithm and will be described in the remainder of this section– Once
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Φh < 0

Φh > 0

Figure :ޠ.ޣ Discrete level-set function (left) and subtessellation (right) on a square– The gray area
indicates the interior, the white area the exterior part of the domain– The circles indicate
the generated quadrature points–

S(Ei) has been constructed for every Ei ∈ Th(Ω̂) the integration over Ω can be carried out as

∫

Ω

f dx =
∫

Ω̂∩{Φ<0}
f dx (4–5)

≈

∫

Ω̂∩{Φh<0}
f dx (4–6)

=
nď1∑

i=0

∫

Ei∩{Φh<0}
f dx (4–7)

≈
nď1∑

i=0

miď1∑

j=0

∫

Eji
f dx (4–8)

An example of a multi-linear level-set along with the reconstruction and the resulting quadrature

points can be seen in Figure 4–1– In the above equations, two approximations take place– The irst

one is the replacement of the analytical level-set function Φ with the multi-linear level-set function

Φh in (4–6)– The second approximation can be found in (4–8) where the domain delimited by the

multi-linear level-set function on a single element of the tessellation Th is replaced by the domain

given by the elements of the subtessellation– The irst approximation is a necessary prerequisite

of the algorithm described below– Within the setting of solving forward problems in biomedical

applications there is in fact no approximation taking place, as the analytical level-set function is

usually already given as a multi-linear function obtained by a level-set segmentation of patient-

speciic imaging data– Note that in general this is not the case and should be taken into account

when evaluating the method in an analytical setting such as the multi-layer sphere model used

below– The second approximation is due to the core idea of the marching cubes algorithm– Due to

the choice of simple polytopes, the boundary approximation will be piecewise linear– This might be

of special interest in the setting of inite element methods, if higher order ansatz functions should

be used– In this case, a higher resolution of the tessellation of the auxiliary domain than of the

tessellation used for representing the basis functions might be needed in order to beneit from the

increase in accuracy provided by the higher polynomial degree– Note that through an additional

transformation of the background element, a higher order approximation of the boundary might be

achieved, as for example described in (Lehrenfeld, 2016)–

The remainder of this section will provide the description of the algorithm to produce the subtes-

sellation of the implicit domains such as Ei ∩ {Φh < 0}– This process can be described solely within
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Figure :ޡ.ޣ General algorithm to construct a subtessellation on the reference geometry (Engwer and
Nüßing, 2017)–

coordinates of the reference element Êi of Ei– The resulting subtessellation can then be transformed

into global coordinates via the local-to-global mapping associated with Ei–
In the following we will describe an algorithm to construct a tessellation of a domain implicitly

deined via amulti-linear level-set function– All descriptions will be given on the unit cube, serving as

a reference element in a hexahedral mesh– Other reference geometries, such as simplices or prisms

can be handled in the same way and will not be described here (see for example the comments in

(Engwer and Nüßing, 2017))– The general structure of the algorithm to construct a subtessellation

is depicted in Figure 4–2– Based on the corner values of the discrete level-set function we compute

a key corresponding to the topology of the reconstruction– Depending on the corner values this

key might already uniquely deine the topology or additional tests have to be performed to obtain

a unique reconstruction– Once these disambiguities have been resolved a generic reconstruction

is retrieved from pre-computed look-up tables and the exact coordinates of the reconstruction are

computed based on the corner values–

We will irst describe the requirements that we pose on the discrete reconstructions– Foremost,

we require that the subtessellations S<0 and S>0 of the interior and exterior, respectively, fulill

E ∩ F = ∅ ∀E, F ∈ S<0 ∪ S>0 with E 6= F



⋃

E∈S<0

E



 ∪




⋃

F∈S>0

F



 = R̂,

where R̂ denotes the reference geometry– This means that the subtessellations of interior and ex-

terior do not overlap and ill the complete reference element– For the interface S=0 we require

that

∀γ ∈ S=0∃E ∈ S<0, F ∈ S>0 : γ = E ∩ F (4–9)

holds, i–e–, S=0 is the discrete interface between the two volume subtessellations– In order to obtain
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a tessellation that is robust and applicable in various scenarios we require it to additionally fulill

the following topological guarantees:

preservation of connectivitʿ pattern We require that the connectivity pattern of the cell vertices

must be preserved within each subentity– This means that for every subentity (edge, face

or volume) and every pair of cell vertices it holds that if and only if there is a path in this

subentity from one vertex to the other that lies completely on the one side of the level-set,

then there is also such a path in the discrete reconstruction–

preservation of connected components The number of path-connected components and their do-

main association is preserved by the discrete reconstruction, i–e–, there is a bijective mapping

between the diferent equivalence classes of the path-connected relation that maps only be-

tween classes of the same domain–

robustness of reconstructed vertices All vertices of the reconstruction that are not corners of the

reference element should lie on the zero level-set of the discrete level-set function–

These guarantees should make sure that the reconstruction captures important structures from the

discrete level-set representation–

In order to create a reconstruction that fulills the aforementioned guarantees and that can be

computed eiciently we note that a multi-linear level-set function on the reference cube is uniquely

deined by its values at the corner of the reference geometry– Let x0, . . . , xnď1 ∈ Rd denote these

corners and denote by vi := Φh(xi), i = 0, . . . ,n ď 1 the value of the level-set function– Using these

level-set values at the corners, we generate a key

key(v0, . . . , vnď1) =
nď1∑

i=0

χRď(vi)2
i, (4–10)

where χRď denotes the indicator function of the negative half of the real axis, i–e–

χRď(x) =







1, x < 0

0, else
– (4–11)

Based on the key, we can categorize each set of corner values into one out of 2n cases– For a

hexahedral reference geometry we have n = 8 and thus 256 cases– We assume that for the unit

cube the corners are ordered in a tensor-product fashion (analogue to the unit square in Figure 4–3)–

Figure 4–3 shows an exemplary key-computation on a square– The reference geometries considered

here have certain symmetries that can be exploited, to reduce the number of cases to a set of base

cases– For example, the reference hexahedron can be rotated symmetrically by 90 degrees along the

three Cartesian axes as well as mirrored along the three Cartesian planes– Using these symmetric

transformations, each set of corner values can be assigned a unique base case based only on the signs

of the values– As the discrete level-set Φh is assumed to be multi-linear, some of these base cases,

such as the one depicted in 4–3, already uniquely deine the topology of the diferent domains on

the reference element– The topology for other cases, such as the one depicted in Figure 4–4 cannot

be uniquely determined based solely on the corner values– The two pairs of diagonally opposing

vertices have the same signs but diferent signs than their horizontal and vertical neighbors– Based
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v0 = ď1 v1 = ď–1

v2 = 1 v3 = 1

Φh < 0

Φh > 0

key(v0, v1, v2, v3) = 00112 = 310

Figure :ޢ.ޣ Exemplary key-computation on a unit-square– The gray area indicates the part of the
square on the negative side of the level-set function– The circles indicate the sign of the
corner values, where a red circle indicates a negative value and a green circle indicates a
positive value– The subscript number indicates the base of the numbers representation–

v0 = ď1 v1 = 0–5

v2 = 1 v3 = ď0–3

Φh < 0

Φh > 0

v0 = ď1 v1 = 0–5

v2 = 1 v3 = ď0–7

Φh < 0

Φh > 0

Figure :ޣ.ޣ Two level-set functions on the unit-square showing the ambiguity in the key-
computation based on the corner signs– The level-set functions difer in the corner value
of v3– Note the identical corner signs but the diferent topologies– The center of the
hyperbola is located at the intersection of the dotted lines–

on the sign of the corner values alone, we can not determine whether two diagonally opposing

vertices are connected through the square– As presented in (Chernyaev, 1995), this ambiguity can

be resolved by evaluating the multi-linear level-set function at a speciic point– We can observe, that

the zero level-set function on a square forms a hyperbola for which we can compute the center–

(cx, cy) :=
(

v0 ď v2
v0 ď v1 ď v2 + v3

,
v0 ď v1

v0 ď v1 ď v2 + v3

)

– (4–12)

A visualization of this center is also depicted in Figure 4–4– Depending on the sign of the level-set

function at the center, the two diferent cases can be separated– For the sign, a closed formula

consisting of the four corner values can be given–

sgn(v0) sgn(v0v3 ď v1v2) (4–13)

Evaluating the sign in (4–13) resolves the ambiguity–

In three space dimensions, another type of ambiguity can occur in the unit cube– If there are two

diagonally opposing vertices (e–g–, v0 and v7), that are not connected via a path over faces of the

cube, they can still be connected through the cubes volume– The connection can be formed by a

tube-like structure which is illustrated further below in Figure 4–5– In order to test for this ambiguity,

the level-set function can be evaluated in the center of the tube-like structure, as presented in

(Chernyaev, 1995)– Without loss of generality we assume that these two vertices are v0 and v7, i–e–,
we assume that their values have the same sign and the cannot be connected via a set of faces– If
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and only if v0 and v7 are connected through the volume of the cube, there exists a plane parallel

to a face of the cube, on which the projections of v0 and v7 are connected– Again, the existence of

such a plane can be computed using the corner values– In order to simplify the notation, we will

assume that the corner values of v0 and v7 are both positive– We will denote the corner values at the

corners of the face containing v0 by a0, b0, c0 and d0 while the corner values of the face containing

v7 will be denoted by a1, b1, c1 and d1– Along the edges that are perpendicular to the faces, the

level-set function varies linearly and is given as a : [0, 1] → R; t 7→ a0 + t(a1 ď a0)– The functions

b, c and d for the remaining edges are deined accordingly– For each t, we compute the expression

for evaluating the sign at the center of hyperbola (4–13), i–e–

p : [0, 1]→ R; t 7→ a(t)d(t) ď b(t)c(t) = αt2 + βt+ γ (4–14)

with the coeicients α,β, γ ∈ R deined as

α = (a1 ď a0)(d1 ď d0) ď (b1 ď b0)(c1 ď c0) (4–15)

β = d0(a1 ď a0) + a0(d1 ď d0) ď b0(c1 ď c0) ď c0(b1 ď b0) (4–16)

γ = a0d0 ď b0c0 (4–17)

The positive areas at v0 and v7 are connected, if p has amaximum tmax ∈ [0, 1] with p(tmax) > 0 and

the values a(tmax), b(tmax), c(tmax) and d(tmax) have the correct sign– Again, we refer to Chernyaev

(1995) for more details–

Now that the topological case can be uniquely determined, we can use the marching cubes ap-

proach to use pre-generated look-up tables to obtain a reconstruction– These look-up tables contain

the subtessellations of the interior, exterior and the interface– In (Lewiner et al–, 2003), a complete

list of reconstructions for the diferent base cases has been presented– However, these subtessel-

lations do not fulill the topological guarantees speciied above– They include additional internal

vertices that do not lie on the discrete interface or do not preserve the connectivity patterns– In

the following we will describe an approach to construct reconstructions that fulill the speciied

guarantees– First we will describe the diferent kinds of vertices used–

corner vertices These vertices are located at the corners of the reference element– In general, they

do not lie on the zero level-set of the discrete level-set function and thus do not fulill the third

guarantee– In the reconstruction, they are used as helper vertices when employing internal
vertices (see below)–

edge vertices As the discrete level-set function is assumed to be multi-linear, each edge of the

reference geometry can contain at most one intersection with the interface– The edge vertices

describe these possible intersections and can be identiied with the associated edge–

In order to construct subtessellations that satisfy the topological guarantees, we need to introduce

additional vertices in the interior of the reference element in order to resolve certain base cases:

maʾimum vertices These vertices are deined using the quadratic function p that was used above

to resolve the internal ambiguity in the volume– As noted above, the maximum of this function

is located at the center of tube-like structures within the volume– In order to resolve these

structures in the discrete reconstruction, the maximum vertices are located at the position
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a)maximum b) root c) internal

Figure :ޤ.ޣ Visualization of the diferent additional vertices in the discrete reconstruction of a level-
set function (Engwer and Nüßing, 2017)–

where p assumes its maximum– Similar to the corner vertices, these vertices do not lie on the

discrete interface, but are used as helper vertices–

root vertices The root vertices are deined similarly to the maximum vertices above, as they use

properties of the quadratic function p– As the name suggests, instead of using the maximum,

they are located at the roots of p and thus lie on the discrete interface–

internal vertices Internal vertices are deined as intersections of arbitrary lines with the discrete

interface– As the discrete level-set function is assumed to be multi-linear, its restriction to a

line will be a polynomial– This intersection can be found using a root-inding algorithm for

polynomials such as the Aberth-method (Aberth, 1973)–

Figure 4–5 shows a visualization of the last three vertex types–

Using the presented vertices a generic subtriangulation for each speciic base can be created

manually and stored in a lookup table– After all ambiguities for a set of corner values have been

resolved the generic subtriangulation can be retrieved from this table and the precise positions of

the vertices described above can be calculated– For details on the software implementation and the

usage of the look-up tables we refer to (Engwer and Nüßing, 2017)–

Usagewithin a cut-cell method The descriptions presented so far have been restricted to the case

of a single subdomain– However, considering the case of EEG source analysis, the computational

domain consists of diferent tissue compartments that are separated by more than a single interface–

In order to include these diferent compartments in the construction of the quadrature rules we as-

sume that they are described by a set of level-set functions Φ0, . . . ,Φmď1– We extend the presented

algorithm to multiple level-set functions by applying the reconstruction algorithm to functions re-

cursively on the interior, exterior and interface reconstruction– The output of the reconstruction of

the volume parts for the irst level-set function is again a set of polytopes– On each of these poly-

topes we can approximate the second level-set function by a function that is multi-linear on this

polytope– Applying the reconstruction algorithm again produce an approximate reconstruction for

these two domains– A recursive application extends this idea to any number of level-set functions–

We irst note, that the resulting subtessellation depends on the ordering of the level-set functions–
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Additionally, by applying the algorithm multiple times, we introduce an approximation as the orig-

inal discrete level-set function is not necessarily multi-linear on an arbitrary set of polytopes– An

approach to circumvent this problem would be to restrict the analytical level-set to a piecewise lin-

ear instead of a piecewise multi-linear discrete level-set function in the beginning, which would be

linear on any subset of the original reference geometry– Note however that this would introduce a

further approximation of the analytical level-set function– In order to construct quadrature rules on

the interfaces in the multi-domain setting we follow again a recursive approach– After obtaining

the reconstruction with respect to the irst interface we obtain a set of surface elements– On these

surface elements we can apply the reconstruction method using the second interface in a lower-

dimensional setting– Additionally the interface parts that are obtained from a reconstruction with

the second interface on the reference domain have to be included–

When computing the bilinear form of the cut-cell approaches three diferent types of integrals

appear in the formulation– The irst type consists of the volume integrals for the diferent domains

and the second type consists of surface integrals on the discrete interfaces between diferent sub-

domains– These integrals can be computed directly using the volume subtriangulation and the

interface subtriangulation resulting from the marching cubes method– For the UDG method an ad-

ditional third type of integrals has to be computed– This type consists of the surface integrals on

the cut faces of the fundamental mesh between cut-cells which belong to the same domain but lie

within diferent fundamental mesh elements– In order to generate quadrature rules for these in-

tersections we apply a lower-dimensional marching cubes algorithm to the face of the fundamental

mesh–

ޠ.ޠ.ޣ Validation Studies
Results In the following we validate the proposed topology preserving marching cubes algorithm

for the purposes of solving the EEG forward problem using cut-cell methods– We use a four-layer

sphere model with the radii given in Table A–1– As a irst validation we measure the volume and

surface area of the diferent tissue compartments of the discrete reconstruction when increasing

the mesh resolution– The analytical volume and surface areas of the diferent compartments can

be subsequently used to compute the relative error of the results given by the discretization– We

compare these results to the ones obtained by employing a geometry-adapted hexahedral mesh with

the same resolution and a node-shift parameter of 0–3–

Figure 4–6 shows the relative error of the volumes of the diferent tissue compartments in the

four-layer sphere model when increasing the mesh resolution– For the unitted method, we observe

an overall monotone decrease of the relative error for all tissue compartments with increasing mesh

resolution– Starting from a resolution of 8mm the relative error for all tissue compartments is below

1%– At the highest resolution of 1mm the relative error for all compartments is below 0–01%– We

can observe a second order convergence of the relative error for all tissue compartments over all

mesh resolutions– For the hexahedral method, we can observe a monotone decrease of the relative

error for all tissue compartments with increasing mesh resolution, with the exception of the skull

compartment when increasing the resolution from 8mm to 4mm– The highest resolution of 1mm

is the irst resolution where all compartments have an error below 1%– At the coarsest resolution of

16mm, no CSF compartment is present– Over all mesh resolution, the relative error in the volume
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Figure :ޥ.ޣ Relative error (in percent) of the volumes of the diferent tissue compartments in a
multi-layer sphere model– Left using an unitted mesh, right using a geometry-adapted
hexahedral mesh– Each colored plot corresponds to a tissue compartment, the dotted
and dashed black lines correspond to the linear and quadratic functions respectively–
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Figure :ަ.ޣ Relative error (in percent) of the surfaces of the diferent tissue compartments in a multi-
layer sphere model– Left using an unitted mesh, right using a geometry-adapted hex-
ahedral mesh– Each colored plot corresponds to a tissue compartment, the dotted and
dashed black lines correspond to the linear and quadratic functions respectively–

of the CSF compartment is the highest– The convergence order up to the highest eccentricity can

be seen as second order, although it is reduced to irst order up to a resolution of 2mm and has

an increased jump from 2mm to 1mm– For each mesh resolution and all tissue compartments the

relative errors for the geometry-adapted hexahedral mesh are higher than the corresponding values

for the unitted mesh–

Figure 4–7 shows the relative error of the surfaces of the diferent tissue compartments in the four-

layer sphere model when increasing the mesh resolution– We depict the interfaces between brain

and CSF, CSF and skull, skull and skin as well as skin and air, denoted by the inner compartment–

For the unitted method, we observe an overall monotone decrease of the relative error for all tissue

compartments with increasing mesh resolution– For mesh resolutions higher than 8mm, the error

is below 1% and at the highest resolution of 1mm it is below 0–01%– We can observe a second

order convergence of the relative error for all tissue compartments over all mesh resolutions– For

the hexahedral mesh, the relative error of the surfaces stays approximately constant above a value
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Figure :ާ.ޣ Boxplots showing the relative error (in percent) of the volumes (left) and surfaces (right)
for diferent orderings of level-set functions– Each boxplots contains the results for all
possible orderings and all compartments at that mesh resolution–

Table :ޠ.ޣ Statistical properties of the boxplots presented in Figure 4–8– Each row corresponds to a
background mesh resolution, the diferent columns show diferent statistical properties
of the relative error of the volumes and surfaces–

volume surface

h IQR in % TR in % max in % IQR in % TR in % max in %

16mm 1–642 6–454 6–486 0–228 0–349 1–274

8mm 0–406 0–821 0–938 0–057 0–098 0–345

4mm 0–080 0–128 0–156 0–014 0–023 0–082

2mm 0–016 0–034 0–039 0–003 0–006 0–021

of 10%– We do not observe a reduction with increasing mesh resolution– For the coarsest resolution

of 16mm no CSF compartment and thus no interface between brain and CSF and between CSF and

skull is present– Thus, for each mesh resolution and all tissue compartments the relative errors for

the geometry-adapted hexahedral mesh are higher than the corresponding values for the unitted

mesh–

The approach for using the presented marching cubes method to generate quadrature rule in a

multi-domain setting is to recursively apply the algorithm on the resulting subtessellations– One

property of this approach is that the resulting quadrature rule depends on the order in which the

level-set functions are cut– Cutting the irst level-set function will produce a set of polytopes, which

are used as an input for the cut with a second level-set function– This approach is in general not

symmetric– In order to investigate the efect of this dependency on the ordering, we consider the

four-layer sphere scenario and background meshes of diferent resolutions– For each possible or-

dering of the level-set functions we compute the relative error of the volumes of the diferent tissue

compartments and the area of the diferent sphere surfaces– Figure 4–8 shows the relative error of

the volumes and surfaces for the diferent orderings of the level-set functions– In addition, Table 4–1
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shows statistical properties corresponding to the boxplots in Figure 4–8– We observe a decrease of

all statistical measures, i–e–, the IQR, the TR as well as the maximum for both volumes and surfaces

of approximately second order– The highest measures are observed at the coarsest resolution of

16mm– Starting from a resolution of 8mm, the maximal relative error of both the volumes and the

surfaces is below 1%– Note that 1mm results are omitted as no element is cut by more than one

level-set function and thus the ordering in which the level-set functions are cut has no inluence on

the resulting error–

Discussion We irst note that the results presented here replicate the convergence results pre-

sented in (Engwer and Nüßing, 2017)– In (Engwer and Nüßing, 2017) the convergence of the

volume and surface errors for two entangled tori when increasing the mesh resolution has been

investigated– For both, the volume and surface error a second order convergence has been reported

as could be expected for a irst order method– The results for the volume and surface errors in the

four-layer sphere validation replicate this inding–

In this study it was observed that the surface error of the nested spheres was not reduced when

using the hexahedral mesh– This is due to the constant area of the model surface under reinement

of the mesh, which is due to the staircase-like representations of the surfaces– During reinement

steps the overall surfaces representation is still staircase-like and not improved– When considering

the level-set ordering, we can see a strong decrease of the efect of the ordering for increasing

mesh resolutions– At the practically relevant resolution of 2mm the total range of both volume and

surface errors is below 0–04%– In addition, the maximal volume and surface error does not exceed

a value of 0–04%– We conclude that the diference due to the level-set ordering is negligible for

iner resolutions of the level-set mesh–

An additional validation which especially considers the robustness of the presented marching

cubes method with respect to rotation of the model geometry and the preservation of the topological

guarantees is presented in (Engwer and Nüßing, 2017)– The validation compared the presented

topology preservingmarching cubes method with the original marching cubes method which selects

an arbitrary reconstruction in an ambiguous case– It could be demonstrated that the new method

is robust with respect to the rotation of the two tori and could achieve a subvoxel resolution of the

correct topology–

ޡ.ޣ Algebraic Multigrid Preconditioner for Cut-Cell Methods
In this section we present an evaluation of AMG techniques for solving linear systems arising from

cut-cell discretizations of the EEG forward problem– We describe a general AMGmethod that is used

for CutFEM discretization as well as modiications for a UDG method– The description is followed

by a validation of the two approaches in a four-layer sphere model–

AMG for CutFEM When using certain iterative procedures, such as the Gauss-Seidel method or the

Jacobi-method, one can observe a smoothing efect of the error in each iteration– When separating

the error into components of diferent spatial frequencies, components with a higher frequency are

quickly reduced while the reduction of components with a lower frequency takes more iterations–

This observation forms the basis of the geometric multigrid methods which employ a nested grid
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void multigrid(l, ν0, ν1, γ) ,
if (l ÂÂ Ǎ) ,

xl ← Aď1l bl .. coarse solution
- else ,

for (iÂǍǤ iÃν0Ǥ ½½i) , .. pre smoothing
xl ← xl + Sl(bl ď Alxl)

-
blď1 ← Rl(bl ď Alxl)
xlď1 ← 0
for (iÂǍǤ iÃγǤ ½½i) , .. recursive call
multigrid(l-ǎ, ν0, ν1, γ)

-
xl ← xl + Plxlď1
for (iÂǍǤ iÃν1Ǥ ½½i) , .. post smoothing

xl ← xl + Sl(bl ď Alxl)
-

-
-

Listing :ޠ.ޣ Pseudocode of general multigrid method on level l with ν0 pre- and ν1 post-smoothing
steps, γ recursive calls and an exact solution on the coarsest level–

hierarchy with increasingly coarser resolutions– After performing a few iterations with a smoothing

algorithm on the inest level the defect is transported to the next coarser level– Error components

with a lower spatial frequency on the ine level show a higher frequency on the coarser level and can

thus be eiciently reduced using a smoothing method– The transport to a coarser level is repeated

recursively, until the coarsest level has been reached, where the remaining system is solved exactly–

Additional smoothing steps are performed after updating the solution with the correction obtained

by the recursive call– A pseudocode description of the general algorithm of a multigrid method is

shown in Listing 4–1– A common property of multigrid techniques is the optimal convergence, which

means that the convergence rate is independent on the sizes of the inest level– A challenge for the

practical use of geometric multigrid methods is the construction of a grid hierarchy– Especially

when starting with an unstructured mesh, the coarsening procedure is not straightforward– To

circumvent this problem AMG has been introduced– Instead of constructing the coarser levels using

the geometric information of the mesh, algebraic information of the linear system is taken into

account, while the remaining general algorithm remains the same– The AMG has been shown to

perform well as a preconditioner in a Krylow space solver, such as the conjugate gradient method–

In (Lew et al–, 2009; Wolters et al–, 2002) an AMG is presented and evaluated for solving the

linear system obtained from a conforming inite element method for the EEG forward problem–

The method is based on work of (Ruge and Stüben, 1987) and constructs coarser mesh levels by

selecting certain subsets of the degrees of freedom to be transferred to the coarser level– A dif-

ferent approach of constructing the coarser levels is used by the AMG presented in (Blatt, 2010)–

Groups of degrees of freedom are aggregated to form the coarse degrees of freedom– A special

algorithm is presented to construct the aggregates which is tailored to elliptic problems with highly

discontinuous coeicients and allows for an aggressive coarsening strategy– The aggregates are

built based on the connection strength between diferent degrees of freedom which is measured
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by properties of the corresponding matrix entries– Given a scalar matrix A = (aij)i,j ∈ Rn×n, the

weight wv(i) of a matrix entry i ∈ {0, . . . ,nď1} and the weight wv(i, j) of a coupling between entries

i, j ∈ {0, . . . ,n ď 1} are deined as

wv(i) = aii, we(i, j) = min(aij, 0)–

Using these weights the strength of a connection between two matrix entries is measured as

s(i, j) =
we(i, j)we(j, i)
wv(i)wv(j)

–

A connection between two entries i and j is called strong if s(i, j) > αmin(maxk(s(i, k)),maxk(s(j, k)))
holds– This deinition of strong connections is used to construct the aggregates that deine the coars-

ening between the diferent levels (see (Blatt, 2010) for a detailed description of the aggregation

process)– The resulting AMG method can be applied for symmetric and unsymmetric problems– For

the model problem of a three-dimensional Poisson’s equation an eicient multigrid scheme was ob-

served with slightly suboptimal convergence rates that depended logarithmically on the number of

degrees of freedom– According to (Burman et al–, 2015) using the ghost penalty parameter within

the CutFEM method enables the use of linear algebra techniques for the discrete linear system–

Below, we will employ and evaluate the described aggregation-based AMG for a CutFEM discretiza-

tion–

AMG for UDG The idea of the AMGmethod using aggregation presented above has been applied to

discontinuous Galerkin discretizations in (Bastian et al–, 2012; Blatt, 2010)– Its description follows

the framework of subspace correction methods for a ine and a coarse space (Xu, 1992)– The ine

space is given as the space of piecewise linear, (possibly) discontinuous function VDG
h (Ω)– The coarse

space is deined as the space of piecewise linear, continuous functions and denoted by VCG
h (Ω)– It

holds that VCG
h (Ω) ⊂ VDG

h (Ω) and thus an implicit discrete prolongation operator P : VCG
h → VDG

h
can be deined– In order to obtain a symmetric method, the restriction operator is chosen as the

transpose of the prolongation operator– It is assumed, that the error components introduced by the

discontinuities have a high frequency and can be reduced eiciently using a smoother on the ine

level– The remaining low frequency components and components of the continuous subspace can

be treated by a transfer to the coarse space– On the coarse level the AMG method presented above

is used as an inexact solver–

In the following we use a similar idea to create a multigrid perconditioner for a UDG discretiza-

tion– Instead of restricting the defect to a piecewise linear, globally conforming space, we restrict

the defect to the space of functions that are piecewise linear and continuous on each subdomain–

Note that this space is a subspace of the function space used for the UDG discretization– In addition,

this subspace is the same space as the one used for the CutFEM discretization– After transferring

the defect to the coarse space, we again use the AMG method as an inexact solver– On the ine

level we use a block symmetric successive overrelaxation (SSOR) method on the cut-cell blocks as

a smoother–

Compared to the AMG for CutFEM no ghost penalty is applied to the coarse space, which might

lead to suboptimal convergence properties for small cut-cells in the interface zone– To resolve
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Figure :ި.ޣ Visualization of the overlapping smoother for a UDG discretization with two domains,
shaded in light gray and dark gray, separated by a single interface, depicted by the
solid black line– The red lines delimit the area of the overlapping patches– Each yellow
line marks a cut fundamental mesh intersection which forms an overlapping patch of
all cut-cells of any domain belonging to the fundamental mesh elements touching the
intersection–

this problem, we take ideas from (Engwer et al–, 2016; Johannsen, 2006; Nüßing, 2013) into ac-

count where an overlapping Schwarz method was used as a smoother for a discontinuous Galerkin

discretization– The overlapping subdomains were constructed around the vertices of a geometry-

conforming mesh– Using this idea, we construct overlapping patches to smooth over contributions

from small cut-cells– For each intersection of the fundamental mesh that is cut by an interface we

create a subdomain consisting of all cut-cells belonging to either of both neighboring elements–

Each remaining cut-cell, that does not touch an intersection of the fundamental mesh that is cut by

an interface, forms its own subdomain– Figure 4–9 shows a visualization of the overlapping patches–

The resulting set of subdomains forms the basis of an overlapping Schwarz method which we use

in a multiplicative approach– In order to obtain a symmetric preconditioner each smoothing step

consist of applying the overlapping smoother forward and backward–

Instead of choosing the CutFEM space as a coarse space we could also choose a cell-centered

inite volume space– Results in (Blatt, 2010) show a good performance of the AMG method for such

discretizations– The restriction operator R is deined by restricting a function to its mean over each

cut-cell– For a function u(x) =
∑

k ukϕk(x) this can be formulated as

Ui =
1

|Ei|

∫

Ei
u(x) dx =

∑

k

uk
1

|Ei|

∫

Ei
ϕk(x) dx

︸ ︷︷ ︸

=:ri,k

,

where Ei denotes a cut-cell and Ui ∈ R denotes the new degree of freedom– However this restriction

approach has not been investigated in detail so far–

ޠ.ޡ.ޣ Validation Studies
In this section we investigate the convergence behavior and the robustness with respect to the cut-

cell size of the multigrid algorithms for a CutFEM discretization and a UDG discretization–
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Figure :ޟޠ.ޣ Convergence of the multigrid solver for CutFEM discretizations with a shifted innermost
sphere– Left: ixed resolution of 2mm and shifting innermost sphere center– The x-axis
shows the minimal distance between the innermost sphere and the next sphere– The
y-axis shows the number of iterations until a relative reduction of the residuum of 10ď8–
Both axes are scaled logarithmically– Each plot corresponds to a diferent ghost penalty–
Right: Varying resolution and ixed distance of 0–25mm– The x-axis shows the number
of degrees of freedom– The y-axis shows the number of iterations until the residuum
has been reduced– Each plot corresponds to a diferent ghost penalty– Both axis are
scaled logarithmically–

AMG for CutFEM First we investigate the behavior of the AMGmethod for a CutFEM discretization

for solving the EEG forward problem in a four-layer sphere model– We create level-set functions for

four spheres with radii and conductivity values depicted in Table A–1– In order to investigate the ef-

fect of varying cut-cell sizes, we move the center of the innermost sphere in positive x-direction– This

corresponds to the scenario where the gray matter compartment touches the inner skull boundary

which occurs for example when creating MRI images in reclined positions (Rice et al–, 2013)– The

discrete values of the minimal distances between the inner two spheres range from 2mm (i–e–, no

shift) to approximately 0–125mm– Even though the cut-cells delimited by the two inner spheres

become smaller for lower distances also discretizations at larger distances can contain small cut-

cells depending on how the inner sphere cuts the elements of the fundamental mesh– The multigrid

method is used as a preconditioner in a conjugate gradient method (AMG-CG)– The iteration of the

linear solver is stopped at a relative reduction of the l2 norm of the residuum of 10ď8– We ix a

penalty parameter of η = 16 and evaluate two diferent scenarios for diferent ghost penalty values

η̃ ∈ {0–001, 0–01, 0–1}– For the irst scenario we use a ixed resolution of 2mm and evaluate the

efect of the distance between the inner two spheres– For the second scenario we ix the distance

between the two spheres at 0–25mm and choose the fundamental mesh resolutions of 8mm, 4mm,

2mm and 1mm– The diferent CutFEM discretization consist of 21 825, 108 352, 635 581 and

4173 085 degrees of freedom–

Figure 4–10 shows the number of iterations until convergence with respect to varying distance

between the spheres and with respect to increasing fundamental mesh resolution– We see a de-

creasing number of iterations with increasing ghost penalty– The number of iterations for distances

smaller than 1mm is increased for all ghost penalty values– The strength of this increase is reduced

for higher ghost penalties– With respect to the convergence plot, we observe an approximately loga-
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rithmic dependency on the number of DOFs– Again we observe a reduced number of iterations with

increasing ghost penalty–

The observed convergence order with respect to an increasing mesh resolution are in line with

indings in (Blatt, 2010), where a suboptimal convergence rate for three-dimensional problems was

observed– Even though the number of iterations increases, it only grows logarithmically and is still

in a feasible range for all practical applications considered in this thesis– As presented in (Burman

and Hansbo, 2012) the condition number of the linear system is reduced when increasing the ghost

penalty– Since the convergence rate of the conjugate gradient method depends on the condition

number of the preconditioned linear system, an increased ghost penalty leads to a lower number of

iterations– For a higher ghost penalty value, the number of iterations is almost independent of the

distance of the two innermost spheres– One might conclude to increase the ghost penalty value even

further– However, results in (Burman and Hansbo, 2012) show an increase in the numerical error

when choosing a ghost penalty value that is too large– For the validation studies in Section 3–4 we

chose a value of η̃ = 0–005, that led to a reasonable number of iterations while providing accurate

error values– We did not investigate the efect of the smoother on the convergence properties– As the

CutFEM discretization contains discontinuities on the interfaces between two subdomains, it might

be beneicial to use an overlapping smoother in the interface zone on the inest level (cf– (Johannsen,

2006))– In addition, the coarsening strategy was not modiied and the default values from (Blatt,

2010) where used– A tailored strategy which takes properties of the CutFEM discretization into

account might be worthwhile–

AMG for UDG For the validation of the AMG method of UDG, we use the same problem setup that

was used in the previous validation study for the AMG for CutFEM– For the irst study we move the

center of the inntermost sphere in positive x-direction and for the second study, we increase the

mesh resolution– The UDG discretizations consist of 20 608, 108 352, 635 840 and 4 170432 DOFs

for the mesh resolutions of 16mm, 8mm, 4mm and 2mm, respectively– Note that we do not use a

ghost penalty within the UDG discretization– Instead, we evaluate the performance of two diferent

smoothing methods on the UDG space, which forms the inest level of the multigrid method– The

two smoothers are the block SSOR method and the symmetric multiplicative overlapping Schwarz

method described above– Again, the multigrid method is used as a preconditioner in a conjugate

gradient method and the iteration process is stopped at a relative reduction of the l2-norm of the

residuum of 10ď8–

Figure 4–11 shows the number of iterations until convergence with respect to varying distance

between the spheres and with respect to increasing fundamental mesh resolution– For varying

distance between the innermost sphere, we observe an increase of iterations for the SSOR smoother

for distances lower than 1mm– The number of iterations for the overlapping smoother is almost

independent on the distance between the spheres– Considering the convergence with respect to

h, the SSOR smoother does not lead to a stable convergence scheme– The number of iterations

is strongly increased for the resolution of 8mm– For the overlapping smoother, the number of

iterations increases with increasing mesh resolution and we observe an approximately logarithmic

dependency on the number of DOFs–

Comparing the results of the AMG for the UDG method to the results obtained for the CutFEM

methods, we see a similar behavior with respect to the size of the cut-cells for the SSOR smoother
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Figure :ޠޠ.ޣ Convergence of the multigrid solver for UDG discretizations with a shifted innermost
sphere– Left: ixed resolution of 2mm and shifting innermost sphere center– The x-axis
shows the minimal distance between the innermost sphere and the next sphere– The
y-axis shows the number of iterations until a relative reduction of the residuum of 10ď8–
Both axes are scaled logarithmically– Each plot corresponds to a diferent smoother
method– Right: Varying resolution and ixed distance of 0–25mm– The x-axis shows
the number of degrees of freedom– The y-axis shows the number of iterations until the
residuum has been reduced– Each plot corresponds to a diferent smoother method–
Both axis are scaled logarithmically–

and the lower ghost penalty values– Both approaches show an increase of the number of iterations

for distances smaller than 1mm– The overlapping smoother strongly reduces this dependency on

the size of the cut-cells– The suboptimal convergence rates for the overlapping smoother can be

assumed to be due to the suboptimal rates of AMG method for CutFEM on the coarse level– It might

be worthwile to investigate a combination of the overlapping smoother on the ine level and the

use of a ghost penalty (cf– (Gürkan and Massing, 2018))– This might combine the robustness of the

overlapping smoother with a reduction of the condition number of the linear system on the coarse

space–

ޢ.ޣ Conclusion
In this chapter we focused on two diferent implementational aspects of cut-cell methods–

In Section 4–1 we presented a topology preserving marching cubes method which can be used

to generate quadrature rules for implicitly deined domains– We introduced the general method

and performed an evaluation with respect to the multi-domain setting of solving the EEG forward

problem– As the model geometry is approximated by a piecewise linear reconstruction, second order

convergence of the volume and surface errors was observed– To apply the method in a multi-domain

setting the algorithm was applied recursively on the various level-set functions– We showed that the

ordering of the level-set functions has a negligible efect for higher mesh resolutions–

In Section 4–2 we introduced algebraic multigrid techniques for solving the linear system resulting

from a cut-cell discretization of the EEG forward problem– For the CutFEM approach we investigated

the use of a multigrid preconditioner based on an agglomeration strategy– It showed a slightly sub-

optimal convergence which is in line with results from the literature for conforming discretizations–
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The robustness with respect to the cut-cell sizes could be improved by increasing the value of the

ghost penalty parameter– For the UDG method we used the algebraic multigrid method as a coarse

grid solver for the subspace of piecewise linear functions that are continuous on each subdomain–

We investigated the efect of the coarse grid smoother and observed an increasing robustness when

using an overlapping smoothing approach–
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CHAPTERޤ

duneuro - A Software Toolboʾ
for Forward Modeling in Neuroscience

In this chapter, we present duneuro, a software toolbox for forward modeling in neuroscience– Its

main focus is to provide an extendible and easy-to-use framework for using various inite element

methods for diferent neuroscientiic applications, such as the EEG or MEG forward problem– We

irst give a general description of the toolbox and its use of existing frameworks for solving partial

diferential equations– In Section 5–1 we introduce the main concepts of diferent interfaces used

within the library– Section 5–2 describes a method for localizing elements within a tessellation

based on a global coordinate– The interaction of a user with duneuro is done through bindings with

a scripting language, which will be presented in Section 5–3– In Section 5–4, we use the duneuro

toolbox to perform source analysis on EEG data obtained from a somatosensory experiment– Finally,

a short conclusion is given in Section 5–5–

The general view on a software toolbox can be split into two parts: the user perspective and

the developer perspective– From the perspective of a user, the toolbox should be accessible and

easy to use– Similar methods should work in a similar way though a common interface and it

should be possible to quickly exchange the forward modeling approach– For example performing

computations using the discontinuous Galerkin method should be as straightforward as using the

conforming inite element method– The user should not be confronted with the high complexity of

a C++ inite element code– Additionally, it should be possible to embed the forward approach into an

already existing processing pipeline– From the point of view of a developer, who wants to implement

diferent forward approaches or extend already existing approaches, further aspects are important–

As the diferent inite element methods share several subcomponents, such as the representation of

the computational domain or the solver of the linear system, the toolbox should bundle the diferent

implementations and enable code reuse– The toolbox should be extendible, especially with respect

to common variable components, such as the forward discretization scheme or the representation

of the source model– In addition, as there are already several libraries ofering codes for inite
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element computations, it would be advantageous to make use of existing components and beneit

from existing maintenance and testing infrastructure–

One such existing library is the distributed and uniied numerics environment (Dune)1, which is

a general purpose open-source C++ library for solving partial diferential equations using mesh-

based methods– It is extendible by ofering a modular structure and providing abstract interfaces

and separation between data structures and algorithms– Due to the modular structure, a user of

Dune only has to use those modules that are needed– At the core of the Dune library is an abstract

deinition of a grid interface (Bastian et al–, 2008a,b)– Using the abstract interface allows writing

reusable code that is independent of the concrete implementation of the grid or the type of the grids

elements– Then the identical code can be used in multiple spatial dimensions and for tetrahedral or

hexahedral or other element types–

The duneuro library makes use of several existing Dune modules– For representing geometry-

conforming tetrahedral and hexahedral meshes, we use the grid implementations provided by the

dune-alugrid module (Alkämper et al–, 2016) and the dune-uggrid module (Bastian et al–, 1997)–

In order to reduce the memory consumption and to simplify the user-code when using a geometry-

adapted hexahedral mesh, we use the dune-subgrid module to extract parts of a mesh that is given

as a segmented voxel image (Gräser and Sander, 2009)– The discretization of the partial diferential

equation makes use of the dune-pdelab module (Bastian et al–, 2010)– In dune-pdelab, many dif-

ferent discretization schemes along with appropriate inite elements are implemented allowing a

rapid prototyping of new models– It ofers abstractions for the concept of a function space on

a grid or for the linear operator used in the discretization– The implementation of the unitted

discontinuous Galerkin method is provided in the dune-udg module (Engwer and Heimann, 2012)–

This module has been extended to support also the CutFEM method presented in Section 3–1– The

topology preservingmarching cubesmethod described in Section 4–1 is implemented in a C++ library

tpmc2– Within the Dune context, the tpmc library is wrapped within its own Dune module– For the

solution of the linear system, we make use of the iterative solver template library (ISTL) ofered by

the dune-istl module (Blatt and Bastian, 2006)–

ޠ.ޤ Librarʿ Interfaces
In this section we present in detail several subcomponents and interfaces of the duneuro toolbox

and give information on the extendibility of each component– We describe the driver interface, the

discretization of the forward model and the EEG source model and provide information about the

MEG implementation–

The EEG-MEG Driver Interface As seen in the chapters of this thesis, there are several diferent

discretization schemes available for solving the EEG forward problem and each scheme provides

diferent source models– The inite element methods presented here can be split into two diferent

categories: the itted and unitted discretization methods– The itted category refers to a discretiza-

tion method that uses a grid whose geometry is itted to the model geometry– The basis of this

approach is a VolumeConductor class, that stores the grid along with the conductivity tensor of

1httpǣ..www.dune-project.org
2httpǣ..github.com.tpmc
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MEEGDriverInterface

FittedMEEGDriver UnfittedMEEGDriver

Solver, SMF Solver, SMF

CG DG CutFEM UDG

parameterized by parameterized by

Figure :ޠ.ޤ Diagram showing the structure of the driver interface and its implementations–

each grid element– Currently, there are two diferent itted discretization schemes implemented in

duneuro: the conforming Galerkin (CG-FEM) and the discontinuous Galerkin (DG-FEM) inite ele-

ment methods– Methods that fall into this category but are not yet available are mixed inite element

methods (cf– Section 1–4) or inite volume schemes– The unitted category refers to a discretization

method that uses a grid which is independent of the model geometry and employs the model geom-

etry weakly– The model geometry is provided implicitely via level-set functions and considered in

the weak formulation– The currently implemented discretization schemes in the unitted category

are: the CutFEM method and the unitted discontinuous Galerkin method (cf– Chapter 3)– From

the user perspective of a software framework, it should be simple and intuitive to change from a

itted to an unitted discretization or between diferent discretization schemes within each category–

For example switching from CG-FEM to DG-FEM should not require fundamental changes in the

user code– A further consideration when designing the interface of the software is the way the user

will interact with it– As described in more detail below, we want to provide bindings to languages

a potential user is already familiar with, such as Python or Matlab (see Section 5–3)– In order to

simplify both, the overall user interface as well as the process of creating such bindings, we deine

a single coarse grained interface class to interact with the internal toolbox– This interface class is

called the MEEGDriverInterface– It describes the general concepts of solving EEG and MEG

forward problems– Each of the two discretization categories is implemented by its own driver class,

the FittedMEEGDriver and the UnfittedMEEGDriver respectively– Figure 5–1 shows a general

diagram of the MEEGDriverInterface– For each category, the implementation of the discretiza-

tion scheme is provided via two template parameters: a Solver and a SourceModelFactory–
The purpose of the solver class is to bundle the handling of the system matrix and the solution of

the resulting linear system– The source model factory will construct source models whose purpose

is the assembly of the right-hand side– Both, the solver and the source model factory, are further

described below– The user of the toolbox will not directly interact with the implementation of the

drivers, but only with the driver interface class–

The Solver and the Source-Model-Factorʿ The purpose of the solver class is the assembly of the

system matrix and the solution of the linear system– It contains the discretization scheme as well

as the necessary functionspaces for representing discrete functions– The main interface method is

a solve method which, given a right-hand side vector, solves Poisson’s equation and returns the
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discrete solution– Several forward problems in bioelectromagnetism, e–g–, the EEG forward problem,

electric or magnetic stimulation or the computation of a transfer matrix, mainly difer with respect

to the right-hand side of the linear system– The solver class can thus be reused for any such purpose–

By using a single solver class, the system matrix has to be assembled only once and can be reused

for further purposes– As the diferent discretization schemes difer in the way the matrix is stored,

e–g–, with respect to the blocking scheme of the matrix entries, this information is hidden from

the interface– The purpose of the source model factory is to construct the diferent source models

dynamically based on a coniguration provided by the user– All source models provide a common

interface which is described below–

We will illustrate the extendibility with respect to the discretization scheme using the exam-

ple of a mixed inite element method (MixedFEM, cf– Section 1–4)– MixedFEM is based on a

irst order representation of Poisson’s equation and employs unknowns for both, the potential

and the electric ield– It derives a weak formulation and uses scalar and vector-valued inite el-

ements on a geometry conforming grid as a discretization– It thus falls into the category of it-

ted discretization schemes– In order to use the described FittedMEEGDriver, one needs to

provide two components: a MixedFEMSolver and a MixedFEMSourceModelFactory– The

MixedFEMSolver contains the discretization of the Stifness matrix as well as the deinition to

solve the resulting linear system– The implementation of such a solver class is heavily based on the

dune-pdelab module, which contains for example the implementations of the local basis func-

tions– The MixedFEMSourceModelFactory ofers a method to create diferent source models

for the MixedFEM approach, whose purpose is then to assemble the right-hand side vector for a

given source position– In (Vorwerk et al–, 2017), two diferent source models have been presented:

a direct approach and a projected approach– Finally, one has to provide means to evaluate a dis-

crete solution at electrode positions along with the resulting right-hand side of the transfer matrix

approach– Once these components are implemented, the features of the driver, e–g–, computing a

transfer matrix or solving the EEG forward problem, are available–

Source Models For each discretization method, there are several diferent source models that are

used to discretize the mathematical point dipole– The common task of these source models can

be stated as: given a dipole position and a dipole moment, assemble the right-hand side vector–

This right-hand side vector will then be passed on to the respective solver class described above–

As there is still research ongoing and new source models are being developed, it should be easy

to provide an additional source model without having to modify the existing code– In addition,

it should be possible to choose the source model at runtime, both for investigating the efects of

diferent source models as well as ruling out the source model as a source of errors– Some source

models, such as the subtraction approach or its localization, do not provide a right-hand side for

the full potential, but need to apply an additional post-processing step to the resulting solution in

order to obtain the full potential– For the subtraction approaches, this post-processing step consists

of adding the singularity potential to the correction potential– As this post processing step depends

on the type of the source model and the user should have the option to turn of the post-processing,

it is provided as a method of the source model interface– Figure 5–2 shows a diagram of the general

SourceModelInterface along with its implementations–

A main advantage of the direct source models such as the partial integration approach or the
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SourceModelInterface
bind(dipole)

assembleRightHandSide(vector)
postProcess(solution)

· · ·PartialIntegrationSourceModel VenantSourceModel

Figure :ޡ.ޤ The structure of the source model interface and its implementations–

Venant approaches, is the sparsity of the right-hand side– When stored inside a sparse vector con-

tainer, the time for applying the transfer matrix, i–e–, multiplying the right-hand side with the trans-

fer matrix, can be reduced– The complexity isO(N), where N denotes the number of mesh elements–

The constant is proportional to the number of non-zero entries of the right-hand side– The latter

is usually independent of the mesh resolution– For indirect source models such as the subtraction

approach, using the same data type as for the sparse source models would introduce an additional

overhead– Thus, in order to be able to handle dense and sparse vector types for the right-hand side,

the vector type is provided as a template parameter of the source model interface–

We will illustrate the extendibility with respect to the source models on the example of a modiied

subtraction approach for CG-FEM– In Section 2–3 a modiication of the subtraction approach has

been presented: the localized subtraction approach– It restricts the contribution of the singularity

part of the potential to a patch around the source location– As the functions within a DG-FEM

discretization can be discontinuous, they can directly capture the jump occurring at the boundary

of the patch– For a CG-FEM discretization, such jumps can not be directly resolved and thus the

localization scheme has to be modiied– Instead of using a restriction of the singularity contribution

to patch, one can multiply the singularity contribution with a function that linearly interpolates

within an interface zone of the patch between the singularity potential and zero– A source model

implementing this localized subtraction approach would provide a class fulilling the source model

interface– Within the bindmethod, the local patch would be created and the linear interpolation in

the interface zone could be constructed– The implementation of the assembleRightHandSide
method contains the integration of the diferent model terms, resulting in the right-hand side– The

postProcessmethod adds the singularity potential to the correction potential on the local patch–

MEG In addition to the EEG forward problem that was described extensively throughout this thesis,

the toolbox described in this chapter provides methods to solve the MEG forward problem (Piastra

et al–, 2018)– Given the electric potential u, the secondary magnetic ield B at a position y ∈ Rd,

resulting from the volume current σ∇u, can be expressed using the law of Biot-Savart (Hämäläinen

et al–, 1993):

B(y) =
µ0
4π

∫

Ω

σ∇u×
y ď x
‖y ď x‖3

dx ,

where × denotes the three-dimensional cross product– For CG-FEM this integral can be directly

evaluated using the discrete representation of the potential uh (see ,e–g–, (Vorwerk, 2016))– Results

for the MEG approach for DG-FEM in (Piastra et al–, 2018) indicate, that a direct usage of σ∇uh
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leads to suboptimal accuracies– Instead, the numerical lux of the discontinuous Galerkin method

should be used, which is deined as

{σ∇uh} ď
η

h
JuhK –

In order to provide a single implementation for the integration using both lux representations,

we split the MEG forward solution into two parts: the projection of the lux into a vector valued

functionspaceWh and the evaluation of the integral functional for functions inWh– In (Piastra et al–,

2018), a lowest order Raviart-Thomas space was used for representing the continuous numerical

lux, while a space representing gradients of piecewise multi-linear functions has been employed to

represent the physical lux– The discrete potential uh is given as

uh(x) =
∑

αiφi(x)

and the discrete representation of the lux is given as

σ∇uh(x) ≈
∑

βjψj(x)–

Using this discrete representation of the lux, the MEG integral for a ixed sensor position y ∈ Rd

can be evaluated by computing

MEG(u) =
∑

βj
µ0
4π

∫

Ω

ψj ×
y ď x
‖y ď x‖3

dx =: 〈S(y),β〉 –

The computation of the coeicients for the lux based on the coeicients of the discrete potential

can be expressed as a linear operator

β = Pα

The exact deinition of this linear operator depends on the interpolation scheme in the vector valued

function space– Combining the projection and the integral evaluation, the MEG solution can be

obtained from a discrete EEG solution by computing

MEG(u) =
〈
PtS(y),α

〉
–

Using this representation, a transfer matrix approach for MEG can be deined following the de-

scription in Section 1–2, where PtS(y) takes the role of the restriction operator– The MEG forward

solution is available for any source model– However, note that when using the subtraction approach

or the localized subtraction approach, the resulting MEG solution does not include the contributions

of the singularity potential–

ޡ.ޤ Element Localization
A common subtask when assembling the right-hand side for a given dipole is the localization of the

mesh element containing the dipole– For a sparse source model, this is especially relevant, as the
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time of assembling the right-hand side is usually constant, once the dipole element has been found–

The complexity of the right-hand side assembly thus strongly depends on the complexity of the

method that is used for inding the dipole element– The most straight forward approach is given by

a linear search among the mesh elements– Assuming an ordering of the mesh elements, we evaluate

for each element of the mesh if it contains the dipole position– Once the result of the evaluation is

positive, we return this element– This algorithm has an average and worst case complexity ofO(N),
where N denotes the number of mesh elements–

A irst step to speed up the localization can be found by using geometric information when iter-

ating the mesh elements instead of using a ixed ordering (Brown and Faigle, 1997)– The method

presented here is called edge hopping:

1– Start at given mesh element and iterate over all faces of the current element–

2– Compute the relative position of the dipole location and the hyperplane induced by the face

center and its outer normal–

3– If the dipole lies in normal direction, continue the search at step 1 with the neighboring

element if such an element exists–

4– If the face has no neighboring element, the dipole lies outside of the mesh or the mesh is not

convex– Terminate the search–

5– If the dipole lies in the opposite direction, continue at step 2 with the evaluation of the next

face–

6– If the dipole lies on the inside of all faces of the current element, the dipole element has been

found–

A requirement of the edge-hopping method is the convexity of the mesh, that is usually only fulilled

by the multi-layer sphere models, and not by the realistically shaped head models– However, as the

algorithm monotonously moves closer to the dipole element, we only need convexity of the mesh

in a sphere around the dipole location and the starting point of the iteration– As the considered

sources lie in the gray matter compartment, that is completely enclosed by the skin, we can easily

ind such a sphere around the source locations if the starting location is close to the source position–

In order to ind an element that is close to the source location, we insert the element centers into

a k-d Tree, that is a datastructure to eiciently perform nearest neighbor searches (Bentley, 1975)–

It does so by recursively splitting the set of element centers along the Cartesian directions– Even

though, the center of the element which is closest to the dipole location does not have to belong

to the element containing the dipole, it can be assumed to be close to the desired element– It thus

ofers an eicient starting point for the edge-hopping algorithm–

ޢ.ޤ Interface to Scripting Languages
In this section we describe the interaction of a user with the duneuro library– A common approach is

to provide a compiled binary executable that the user is able to call directly– This executable would

then load the data provided by the user from the hard disk, perform the desired computation and
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import duneuropy as dp
config Â ,

'type' ǣ 'fitted',
'solver_type' ǣ 'cg',
'element_type' ǣ 'tetrahedron',
'volume_conductor ǣ ,

'grid.filename' ǣ 'path.to.grid.msh',
'tensors.filename' ǣ 'path.to.tensors.dat'

-
-
driver Â dp.MEEGDriverǐd(config)

Listing :ޠ.ޤ Example Python script for creating an MEEGDriver–

write the computed result back to the hard disk– As diferent users might want to perform dif-

ferent sets of computations, the computations to be performed can be conigured by the user, either

through command line parameters or through a coniguration ile– An advantage of this approach is

its very simple and straight forward usage, similar to any other executable on the operating system–

There is no need for additional packages or additional software and the executable can be used

directly by the user– However, the computation of the solution to the forward problems is usually

only a small part in a longer pipeline for source analysis– This pipeline usually consists of the data

measurements and pre-processing steps and the forward solution is part of an inverse estimation

process– When using the library directly in an executable, one has to provide methods for reading

any input data as well as writing out the resulting output– Similarly, the coniguration has to be

transferred to the executable by the user–

A more convenient way to use the provided library can be found by ofering bindings to a scripting

language such as Matlab3 or Python4– For both languages there are already existing software frame-

works for processing EEG andMEG data (Gramfort et al–, 2013; Oostenveld et al–, 2011; Tadel et al–,

2011)– Thus by providing direct bindings one can include the forward modeling approach directly

into an existing analysis pipeline– An example for such an integration is presented in (Vorwerk et al–,

2018), where the authors introduce a pipeline for performing source analysis using the conforming

inite element method together with the classical Venant source model– The forward models are

implemented using the SimBio software5 and integrated into the Matlab-based FieldTrip-toolbox6–

The Python and Matlab bindings for the duneuro module are provided in separate Dune modules:

duneuro-py and duneuro-matlab, respectively– The purpose of both modules is to translate the in-

put data given as data structures in the respective programming language and translate them into

the C++ counterparts– For some cases, this translation can be performed without copying any data,

which is especially relevant for large matrices such as the transfer matrix– An example of the driver

construction in a Python script is shown in Listing 5–1– The coniguration of the discretization is

provided as a python dictionary and the mesh is loaded from a ile– Alternatively, the mesh can

also be provided directly by specifying the vertices, elements, labels and conductivity tensors– Note

that the discretization method, in this case cg, is provided as a parameter in the coniguration– By

3httpsǣ..www.mathworks.com
4httpsǣ..www.python.org
5httpsǣ..www.mrt.uni-jena.de.simbio
6httpǣ..www.fieldtriptoolbox.org
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ޣ.ޤ Eʾample: Source Analʿsis of Somatosensorʿ Evoked Potentials

cfg Â *+Ǥ
cfg.type Â 'fitted'Ǥ
cfg.solver_type Â 'cg'Ǥ
cfg.element_type Â 'tetrahedron'Ǥ
cfg.volume_conductor.grid.filename Â 'path.to.grid.msh'Ǥ
cfg.volume_conductor.tensors.filename Â 'path.to.tensors.dat'Ǥ
driver Â duneuro_meeg(cfg)Ǥ

Listing :ޡ.ޤ Example Matlab script for creating an MEEGDriver–

changing it to dg and adding the necessary additional parameters such as the penalty penalty η, one

can directly use the discontinuous Galerkin method through the same interface– Thus, once a user

is able to use the duneuro library for any discretization method, a switch to a diferent discretization

method can be directly performed– Listing 5–2 shows the same construction of the driver object as

in Listing 5–1 using the Matlab interface– The general structure of the Matlab script is similar to

the Python script– The main diferences are the use of Matlab syntax and the replacement of the

Python dictionary by a Matlab struct array– Even though the wrapper code for creating the driver

object is diferent, both scripting languages interface the C++ library and use the same codebase–

ޣ.ޤ Eʾample: Source Analʿsis of Somatosensorʿ Evoked
Potentials

As a practical example we use the duneuro toolbox to perform a dipole scan on somatosensory

evoked potentials using the CutFEM method presented in Section 3–1– A right-handed, 49 years

old, male subject participated in an electric stimulation experiment of the right median nerve with

simultaneous EEG recordings– The EEG was measured using 74 electrodes, whose positions where

digitized using a Polhemus FASTTRAK device7– The subject was stimulated in supine position in

order to reduce modeling errors due to brain movement (Rice et al–, 2013)– In total, 1200 stimuli

were applied, each with a duration of 200ms– The inter-stimulus interval was randomized in the

range of 350ms to 450ms– Using CURRY88, the EEG data was preprocessed using a band-pass ilter

from 20Hz to 250Hz and notch-ilters at 50Hz and harmonics to reduce power-line noise– After

removing one bad channel the remaining trials where averaged to produce the evoked potential

data– Figure 5–3 shows a butterly plot of the resulting time series of the averaged potentials as well

as a topography plot of the potential measured at the electrodes at the peak of the P20 component

at the time point of 25–8ms–

Using a 3T MRI scanner (Siemens Medical Solutions, Erlangen, Germany), T1-weighted and T2-

weighted MRI sequences were measured– Based on these MRI images, a six-compartment voxel

segmentation has been constructed, distinguishing between skin, skull compacta, skull spongiosa,

csf, gray matter and white matter using SPM129 via Fieldtrip10, FSL11 and internal Matlab rou-

7httpsǣ..polhemus.com
8httpǣ..www.neuroscan.com
9httpǣ..www.fil.ion.ucl.ac.uk.spm.software.spmǎǏ

10httpǣ..fieldtriptoolbox.org
11httpsǣ..fsl.fmrib.ox.ac.uk.fsl
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Figure :ޢ.ޤ Left: Butterly plot of the somatosensory evoked potentials– The vertical red line indi-
cates the 25–8ms time point– Right: topography plot of the averaged potential at the
electrodes for t = 25–8ms

tines– We extracted surfaces from this voxel segmentation to distinguish between the diferent

tissue compartments– To smooth the surfaces while maintaining the available information from the

voxel segmentation, we applied an anti aliasing algorithm created for binary voxel images presented

in (Whitaker, 2000)– The resulting smoothed surfaces are represented as level-set functions and the

digitized electrodes were registered to the head surface– Especially in occipital and inferior regions,

due to the lying position of the subject during MRI measurement, the gray matter compartment

touches the inner skull surface– From Figure 5–3 we see a clear dipolar pattern in the topography

plot– To estimate the location of the dipole, we performed a single dipole scan with ixed orientation

and variable strength on a set of source locations within the gray matter compartment (Hämäläi-

nen et al–, 1993)– The source space is created using a weighted sum of level-set functions for gray

and white matter as αΦwm + (1 ď α)Φgm with α = 0–8– The resulting level-set function for the

source space was discretized using the marching cubes algorithm presented in 4–1, which resulted

in 269 417 source locations– For each location, we computed the dipole orientation normal to the

surface of the source space– Note that there was no manual interaction or modiication of the sur-

faces obtained by this process– Figure 5–4 shows the skin, skull and gray matter surfaces and the

electrode positions as well as the source space that was used in the example computation–

Using the level-set functions, we constructed a CutFEM model and computed the EEG transfer

matrix for all electrode positions– If the fundamental mesh element containing the electrode did not

contain a cut-cell of the skin compartment, the electrode was shifted to the center of the next closest

fundamental mesh element containing such a cut-cell– Using the transfer matrix, we computed the

EEG forward solution for all dipole positions with the ixed orientation and unit strength using the

monopolar Venant source model– The optimal strength swith respect to a given measurementm for

a dipole with the leadield l can be obtained by minimizing ‖ls ďm‖2 over s– The resulting optimal

strength for reproducing the measured data is given as

s = max

(

〈l,m〉2
‖l‖22

, 0

)

,

The maximum with 0 is used in order to restrict the solution along the respective positive normal
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ޣ.ޤ Eʾample: Source Analʿsis of Somatosensorʿ Evoked Potentials

Figure :ޣ.ޤ Left: skin, skull and gray matter surfaces of the six-compartment isotropic head model
along with the electrode montage used in the practical example– Right: source space
relative to the electrode positions–

a) axial b) coronal c) sagittal

Figure :ޤ.ޤ Reconstructed source (red) of the P20 component on a axial, coronal and sagittal slice
of the MRI– Note the left-right orientation of the axial and coronal slices–

direction– This strength is embedded into the goodness of it measure (GOF) that is deined as

GOF = 1 ď
‖ls ďm‖22
‖m‖22

and measures the ability of the numerical solution to reproduce the measured data– In the case of

a single dipole scan this includes how well the data can be represented as a single dipole– If the

data can be exactly reproduced, the GOF has a value of 1– Figure 5–5 shows the source with the

maximal GOF measure on three slices of the subjects MRI data– The GOF for this source is 0–974–

The source is located in the primary somatosensory cortex in the wall of the post-central gyrus

and has a mainly tangential orientation, which reproduces indings of (Buchner et al–, 1994) and

(Aydin, 2015)– Figure 5–6 shows the source embedded in the source space along the distribution of

the GOF measure– We see that the GOF measure is higher for source locations on the gyral walls

with a tangentially oriented normal vector and that the higher values are located close to the central

sulcus– Overall, the GOF measure shows a smooth distribution in these areas while being sensitive
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Figure :ޥ.ޤ Left: Reconstructed source (red) of the P20 component and its location within the source
space– Right: Distribution of the GOF measure on the source space– A darker color
indicates a higher GOF–

to orientation changes–

ޤ.ޤ Conclusion
In this chapter we presented the duneuro software, a toolbox for solving forward problems in neu-

roscience– We provided a general description of the toolbox as well as detailed information on the

main concepts– Short examples showed the extendibility of the diferent subcomponents– We pre-

sented a method to eiciently localize positions within a given mesh and described bindings of the

library for scripting languages– Finally the practical usability of the library was demonstrated by a

source analysis of experimental data of a somatosensory stimulation– The duneuro toolbox ofers a

lexible and eicient way to perform the numerical computations throughout this thesis– However,

there are several open goals regarding the software implementation– Foremost, a direct comparison

with existing tools for computing forward solutions for EEG and MEG, such as the SimBio toolbox,

should be performed– Similar to the latter toolbox, a closer integration into existing source analysis

frameworks, such as FieldTrip, BrainStorm or mne-python should be considered– This integration

would ofer the use of duneuro for diferent inverse approaches– Several other forward problems,

e–g–, electric or magnetic brain stimulation, are only partially implemented and their support should

be improved– Of special interest would then be a connection to optimization procedures for tran-

scranial direct current stimulation– In order to improve the stability of the codebase and ensure

the reliability of the results even under future modiications, a testing framework using continuous

integration should be implemented–
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CHAPTERޥ

Summarʿ and Outlook

Summarʿ In this thesis, we presented itted and unitted inite element approaches for solving the

EEG forward problem– After presenting the physiological background and the established mathe-

matical theory of inite element methods for the EEG forward problem we addressed several open

questions–

In Chapter 2 we showed extensions of two source models for modern inite element methods–

One extension was presented in Section 2–1, where we introduced a conforming formulation of the

Venant approach in a conforming inite element method– We showed the close connection of the

Venant approach to the partial integration approach and evaluated various properties of the source

model in four-layer sphere models– We provided a irst application of the Venant approach for

discontinuous Galerkin methods in Section 2–2 which also made use of the conforming formulation–

In Section 2–3 we derived and analyzed the localized subtraction approach– It removed the main

disadvantage of the full subtraction approach andmade it practically feasible even in high resolution

models– This could be achieved without a reduction of the accuracy of the subtraction approach–

In Chapter 3 we introduced two cut-cell methods for solving the EEG forward problem: the

CutFEM approach and the UDG method– These methods were investigated extensively in multi-

layer sphere studies as well as in realistically shaped head models– An accurate solution of the EEG

forward problem was provided by these methods and a simpler modeling pipeline was ofered–

Implementational aspects of cut-cell methods were presented in Chapter 4– A marching cubes

methods for the numerical integration over implicitly deined domains was presented in 4–1– For

eiciently solving the linear systems arising from cut-cell discretizations we introduced algebraic

multigrid techniques for cut-cell methods in Section 4–2– Furthermore, we investigated the efect of

the ghost penalty in a CutFEM discretization and the smoother for the UDG method–

In order to transfer the modern mathematical methods into application we presented the duneuro

software toolbox in Chapter 5– Its practical use was illustrated by reconstructing the activity of a

somatosensory experiment– Overall we were able to analyze and modify the forward modeling

approach such that an accurate solution with a simpler simulation pipeline is practically feasible–
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ޥ Summarʿ and Outlook

Outlook Two main challenges for solving the EEG forward problem were addressed in this thesis:

the discretization of the dipolar source term and the representation of the model geometry–

Not all of the subproblems regarding these challenges could be addressed in this thesis and some

results gave rise to new questions for future research– The conforming formulation of the Venant

source model ofers a new way for the mathematical treatment of the discretization– This formu-

lation can lead to more robust error estimates for the Venant approach which are not available so

far– An additional idea is the reformulation of the interpolation process of the Venant approach

using a mesh-dependent regularization of the delta distribution– A further investigation should be

performed on the practical consequences of the smoothness properties that were observed when

using higher-order mixed moments with respect to dipole it source reconstructions– The localized

subtraction approach ofers an eicient way to use the subtraction approach even in highly resolved

meshes– Up to now, it is only derived in the context of discontinuous Galerkin method– In principle,

a similar approach can be derived for the conforming inite element method with Lagrangian ele-

ments– Instead of restricting the singularity potential to the patch it could be linearly interpolated

towards zero in the boundary zone of the patch– Additionally, diferent strategies for constructing

the local patch should be investigated– Both ideas can be transferred to the unitted inite element

methods–

With regard to the unitted inite element methods, an evaluation in the context of an automated

simulation pipeline for the construction of head models should be considered– Of special interest is

the direct use of level-set segmentation data– In addition, some segmentation tools provide addi-

tional information such as tissue probability maps that could be used as additional information to

distinguish diferent tissue compartments– For the algebraic multigrid techniques for cut-cell meth-

ods an investigation of the smoother on the ine level could be worthwhile– Especially an overlapping

smoother for the CutFEM method and the efect of using a ghost-penalty for UDG should be con-

sidered– For the overlapping smoother diferent methods of constructing the local patch might lead

to a better robustness with respect to the local cut-cell size– To improve the general convergence

behavior one might evaluate diferent course level solvers–

In order to promote the presented methods in the ield and to enable their use in various prac-

tical investigations, a close coupling of the duneuro toolbox to existing modeling pipelines should

be implemented– Such a coupling would enable the neuroscience community to directly use the

modern mathematical methods and to beneit from future developments through the extendibility

of the presented framework–
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Appendiʾ

A.ޠ Parameters of Validation Studies

Table A.ޠ: Radii and conductivity values of the diferent tissue compartments in a four-layer sphere
model–

skin skull CSF brain

radius in mm 92 86 80 78

conductivity in Smď1 0–43 0–01 1–79 0–33

Table A.ޡ: Properties of the geometry-adapted hexahedral multi-layer sphere models– CG DOFs in-
dicates the number of degrees of freedom of a conforming Lagrange inite lement method
with piecewise multi-linear ansatz function– DG DOFs indicates the number of degrees
of freedom of a discontinuous Galerkin discretization with piecewise multi-linear ansatz
functions–

h 8mm 4mm 2mm 1mm

nodes 7304 55984 428185 3 343 541

elements 6031 50883 407904 3 263 152

CG DOFs 7304 55984 428185 3 343 541

DG DOFs 48 248 407 064 3 263232 26 105 216
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Table A.ޢ: Sources used in the multi-layer sphere studies– For the hexahedral models of diferent
resolutions, some source do not lie within a gray matter element, but in an element
belonging to a diferent compartment– The respective number of sources an their corre-
sponding compartment with respect to the mesh resolution are shown–

eccentricity 0.3 0.6 0.771 0.869 0.925 0.957 0.976 0.986 0.992 0.995

1mm
brain 360 1439 2379 3022 3424 3665 3807 3889 3936 3884

CSF 0 0 0 0 0 0 0 0 0 79

2mm
brain 360 1439 2379 3022 3424 3665 3807 3887 3761 3362

CSF 0 0 0 0 0 0 0 2 175 601

4mm

brain 360 1439 2379 3022 3424 3665 3805 3713 3373 3069

CSF 0 0 0 0 0 0 2 176 559 869

skull 0 0 0 0 0 0 0 0 4 25

8mm

brain 360 1439 2379 3022 3424 3638 3618 3468 3285 3161

CSF 0 0 0 0 0 27 154 287 370 363

skull 0 0 0 0 0 0 35 134 281 439

A.ޡ Software Tools
Several open-source tools were used to create the results and visualizations in this thesis (in alpha-

betic order):

Blender surface renderings in realistic head models

Dune implementation of the diferent inite element methods, using the modules: dune-common,

dune-istl, dune-localfunctions, dune-geometry, dune-grid, dune-alugrid, dune-uggrid, dune-

subgrid, dune-typetree, dune-pdelab, dune-functions, dune-udg, dune-tpmc, duneuro and

duneuro-py

Gimp post-processing of visualizations

LATEX type-setting this thesis

MeshLab processing of triangular surfaces

mne-pʿthon butterly and topography plots for the SEP study

numpʿ performing numerical computations for the validation studies

pandas performing statistical evaluations for the validation studies

ParaView visualizing meshes and computational results

pʿbindޠޠ providing the Python bindings for the duneuro module

seaborn plotting the results of the validation studies
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A.ޡ Software Tools

SimpleITK extracting level-set information from binary images

SegޢD post-processing voxel segmentations

tikz creating schematic visualizations and graphs
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