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Introduction
The unfitted discontinuous Galerkin finite element method (UDG-FEM) as a new method for solving the elec-
troencephalography forward problem has been introduced in [1]. It showed an overall good accuracy when
compared to competitive methods on conforming meshes, while providing a less complex simulation pipeline.
In addition, it derived properties of the discontinuous Galerkin finite element method (DG-FEM), such as for
example conservation properties on a discrete level. Locally, the discrete model employs polynomial basis
functions. In [1], results where presented only for linear polynomials.
This study focusses on comparing the results for UDG-FEM with first order functions to the ones obtained by
using quadratic polynomials. As UDG-FEM uses level set functions for the representation of the model geom-
etry, a better geometric representation of the smooth surfaces can be obtained, which can be beneficial for a
second order method.
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Figure 1: General pipeline of a patient specific simulation
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Unfitted Discontinuous Galerkin
UDG-FEM is a method for discretizing partial differential equations, in
this case the Poisson equation ∇ · σ∇u = f

Unfitted

The computational mesh does not
resolve the geometry. The latter is
given as level sets. The elements of
the mesh are restricted to the dif-
ferent domains. These restrictions
are called cut cells.

Discontinuous Galerkin

Galerkin method similar to the fi-
nite element method [2]. Allow dis-
continuities of the potential be-
tween elements. Consider continu-
ity in the weak formulation.

a(u, v) =
∫
Ω
∇u · ∇vdx−

∫
Γ
(JuK · {∇v}+ {∇u} · JvK)dx+ η

h

∫
Γ
JuK · JvKdx
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Figure 2: Construction of the unfitted mesh for a level set on a 2D grid
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Figure 3: The modular structure of the DUNE library

DUNE = Distributed and Unified Nu-
merics Environment
http://www.dune-project.org

• C++ open source library for the
discretization and solution of
partial differential equations

• modular structure, general in-
terfaces

Local Polynomials
On each cut cell, the potential is approximated by polynomial functions of
maximal degree k ∈ N. By employing polynomials with higher degrees, a
better approximation can be achieved. For first order and second order
polynomials, the basis of the local polynomial space consists of 8 and 27
basis functions respectively.

Multilayer Sphere Model
We evaluate first and second order UDG-FEM using a partial integration
(PI) approach [3] for the EEG forward problem on a multilayer sphere
model. We use 4 layers with conductivities from outer to inner compart-
ment: 0.43, 0.01, 1.79 and 0.33 S/m. We generate 1000 radial dipoles and
1000 tangential dipoles on each of 10 eccentricities in the inner compart-
ment and measure the potential at 200 surface electrodes. The potential
is compared to the analytic solution and the error is measured as:
RDM%(Unum, Uana) = 50 ·

∥∥∥ Unum

‖Unum‖ − Uana

‖Uana‖

∥∥∥ ∈ [0, 100] MAG%(Unum, Uana) = 100 · (‖Unum‖
‖Uana‖ − 1) ∈ [−100,∞)

Both measures have an optimal value of 0. We compare the UDG method
with first order polynomials UDG(1) to the UDG method with second order
polynomials UDG(2). The mesh size is scaled so that both method have
approximately the same number of degrees of freedom (1009k DOFs for
UDG(1) and 963k for UDG(1)).
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Tangential
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Figure 4: Comparison of the first (light blue) and second (green) order UDG-FEM model: RDM% (upper row)
and MAG% (lower row) errors for radial (left column) and tangential (right column) sources.

Realistic Head Model
We test the first order UDG-FEM for the EEG forward problem with an au-
ditory source in a 4 compartment isotropic head model. We use the same
conductivities as for the sphere model on the right. The level sets are
generated artificially from a surface based segmentation.

Figure 5: The potential u at the scalp surface (two left images) and the conductivities and the potential on
a saggital slice (two right images)

Conclusion and Outlook
We presented a study of the unfitted discontinuous Galerkin method for
solving the EEG forward problem with second order polynomials. Second
order polynomials could achieve a better accuracy while using the same
number of degrees of freedom compared to linear polynomials.


