The Unfitted Discontinuous Galerkin Method

for Solving the EEG Forward Problem:
A Second Order Study

Andreas NuBing"**, Carsten H. Wolters', Heinrich Brinck?, Christian Engwer?

'Institute for Biomagnetism and Biosignal Analysis, University of Miinster, Germany
‘Westphalian University of Applied Sciences, Germany

’Institute for Computational and Applied Mathematics, University of Miinster, Germany

INTRODUCTION

The unfitted discontinuous Galerkin finite element method (UDG-FEM) as a new method for solving the elec-
troencephalography forward problem has been introduced in [1]. It showed an overall good accuracy when
compared to competitive methods on conforming meshes, while providing a less complex simulation pipeline.
In addition, it derived properties of the discontinuous Galerkin finite element method (DG-FEM), such as for
example conservation properties on a discrete level. Locally, the discrete model employs polynomial basis
functions. In [1], results where presented only for linear polynomials. Mesh based

methods
. (UDG, ...)

Model generation

This study focusses on comparing the results for UDG-FEM with first order functions to the ones obtained by (TEH'O[?S \

using quadratic polynomials. As UDG-FEM uses level set functions for the representation of the model geom- o

etry, a better geometric representation of the smooth surfaces can be obtained, which can be beneficial for a

second order method. Figure 1: General pipeline of a patient specific simulation
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Ity in the weak formulation.
are called cut cells.
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We evaluate first and second order UDG-FEM using a partial integration
THE UNFITTED MESH (P1) approach [3] for the EEG forward problem on a multilayer sphere
model. We use 4 layers with conductivities from outer to inner compart-
ment: 0.43, 0.01, 1.79 and 0.33 S/m. We generate 1000 radial dipoles and
1000 tangential dipoles on each of 10 eccentricities in the iInner compart-
+ ment and measure the potential at 200 surface electrodes. The potential

Is compared to the analytic solution and the error is measured as:
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Both measures have an optimal value of 0. We compare the UDG method
with first order polynomials UDG(1) to the UDG method with second order
polynomials UDG(2). The mesh size is scaled so that both method have
LOCAL POLYNOMIALS approximately the same number of degrees of freedom (1009k DOFs for

On each cut cell, the potential is approximated by polynomial functions of | | UPG(1) and 963k for UDG(1)).
maximal degree k € N. By employing polynomials with higher degrees, a

Figure 2: Construction of the unfitted mesh for a level set on a 2D grid
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Figure 5: The potential « at the scalp surface (two left images) and the conductivities and the potential on eccentricity eccentricity

a saggital slice (two right images)

Figure 4: Comparison of the first (light blue) and second (green) order UDG-FEM model: RDM% (upper row)
and MAG% (lower row) errors for radial (left column) and tangential (right column) sources.
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