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Abstract

In this thesis, a new experimental and methodological analysis pipeline for combin-

ing the complementary information contained in electroencephalography (EEG) and

magnetoencephalography (MEG) is introduced. The forward problem is solved using

high resolution finite element head models that are constructed from individual T1

weighted, T2 weighted and diffusion tensor (DT-) MRIs. For this purpose, scalp, skull

spongiosa, skull compacta, cerebrospinal fluid, white matter (WM) and gray matter

(GM) are segmented and included into the head models. In order to obtain highly

accurate source reconstructions, the realistic geometry, tissue conductivity anisotropy

(i.e., WM tracts) and individually estimated conductivity values are taken into ac-

count. To achieve this goal, the brain anisotropy is modeled using the information

obtained from DT-MRI. A main focus is placed on the skull conductivity due to its

high inter-individual variance and different sensitivities of EEG and MEG source re-

constructions to it. In order to estimate individual skull conductivity values that fit

best to the constructed head models, simultaneously acquired somatosensory evoked

potential and field data measured for the same individuals are analyzed. As shown

in this work, the constructed head models could be used to non-invasively localize in-

terictal spike activity in patients suffering from pharmaco-resistant focal epilepsy with

higher reliability. In addition, by using these advanced head models, tissue sensitiv-

ities of EEG, MEG and combined EEG/MEG (EMEG) are compared by means of

altering the distinguished tissue types and their conductivities. Finally, the effects of

spike averaging and signal-to-noise-ratios (SNRs) on source analysis are evaluated by

localizing subaverages.

The results obtained in this thesis demonstrate the importance of using anisotropic

and skull conductivity calibrated realistic finite element models not only for EEG

but also for MEG and EMEG source analysis. By employing such advanced finite

element models, it is possible to demonstrate that EMEG achieves accurate source

reconstructions at early instants in time (epileptic spike onset), i.e., time points with

low SNR, which are not yet subject to propagation and thus supposed to be closer to

the origin of the epileptic activity. It is also shown that EMEG is able to reveal the

propagation pathway at later time points in agreement with invasive stereo-EEG, while

EEG or MEG alone reconstruct only parts of it. Spike averaging and SNR analysis

reveal that subaveraging provides important and accurate information about both the

center of gravity and the extent of the epileptogenic tissue that neither single nor



grand-averaged spike localizations could supply. Moreover, it is shown that accurate

source reconstructions obtained with EMEG can be used to determine a region of

interest, and new MRI sequences that acquire high resolution images in this restricted

area can detect FCDs that were not detectable with other MRI sequences.

The pipelines proposed in this work are also tested for source analysis of somatosen-

sory and auditory evoked responses measured from healthy subjects and the results are

compared with the literature. In addition, the finite element head models are also used

to assess the volume conductor effects on simulations of non-invasive brain stimulation

techniques such as transcranial direct current and transcranial magnetic stimulation.



Zusammenfassung

In dieser Arbeit wird eine neue Pipeline, welche die komplementären Informationen

der Elektroenzephalographie (EEG) und Magnetoenzephalographie (MEG) berück-

sichtigen kann, vorgestellt und experimentell sowie methodisch analysiert. Um das

Vorwärtsproblem zu lösen, wird ein hochrealistisches Finite-Elemente-Kopfmodell aus

individuell gemessenen T1-gewichteten, T2-gewichteten und Diffusion-Tensor (DT)-

MRIs generiert. Dafür werden die Kompartments Kopfhaut, spongioser Schädel, kom-

pakter Schädel, Liquor Cerebrospinalis (CSF), graue Substanz und weiße Substanz

segmentiert und ein individuelles Kopfmodell erstellt. Um eine sehr akkurate Quellen-

analyse zu garantieren werden die individuelle Kopfform, die Anisotropie der weißen

Substanz und die individuell kalibrierte Schädelleitfähigkeiten berücksichtigt. Die

Anisotropie der weißen Substanz wird anhand der gemessenen DT-MRI Daten berech-

net und in das segmentierte Kopfmodell integriert. Da sich die Leitfähigkeit des

schwach-leitenden Schädels für verschiedene Probanden sehr stark unterscheidet und

diese die Ergebnisse der EEG Quellenanalyse stark beeinflusst, wird ein Fokus auf die

Untersuchung der Schädelleitfähigkeit gelegt. Um die individuelle Schädelleitfähigkeit

möglichst genau zu bestimmen werden simultan gemessene somatosensorische Poten-

tiale und Felder der Probanden verwendet und ein Verfahren zur Kalibrierung der

Schädelleitfähigkeit durchgeführt. Wie in dieser Studie gezeigt, können individuell

generierte Kopfmodelle dazu verwendet werden um, in einem nicht-invasivem Ver-

fahren, interiktale Aktivität für Patienten, welche an medikamentenresistenter Epilep-

sie leiden, mit einer sehr hohen Genauigkeit zu detektieren. Außerdem werden diese

akkuraten Kopfmodelle dazu verwendet um die unterschiedlichen Sensitivitäten von

EEG, MEG und einer kombinierten EEG und MEG (EMEG) Quellenanalyse in Bezug

auf verschiedene Gewebeleitfähigkeiten zu untersuchen. Wie in dieser Studie gezeigt

wird liefert eine kombinierte EMEG Quellenanalyse zuverlässigere und robustere Ergeb-

nisse für die Lokalisierung epileptischer Aktivität als eine einfache EEG oder MEG

Quellenanalyse. Zuletzt werden die Auswirkungen einer Spikemittelung sowie die Ef-

fekte verschiedener Signal-Rausch-Verhältnisse (SNRs) anhand verschiedener Teilmit-

telungen untersucht.

Wie in dieser Arbeit gezeigt wird sind realistische Kopfmodelle mit anisotroper

weißer Substanz und kalibrierter Schädelleitfähigkeit nicht nur für die EEG Quellen-

analyse, sondern auch für die MEG und EMEG Quellenanalyse vorteilhaft. Durch die



Anwendung dieser akkuraten Kopfmodelle konnte gezeigt werden, dass EMEG Quel-

lenanalyse sehr gute Quellenrekonstruktionen auch schon zu Beginn des epileptischen

Spikes liefert, wo nur eine sehr geringe SNR vorhanden ist. Da zu diesem Zeitpunkt

noch keine Ausbreitung der epileptischen Aktivität eingesetzt hat ist die Lokalisation

von frühen Quellen von besonderer Bedeutung. Während die EMEG Quellenanal-

yse auch Ausbreitungseffekte für spätere Zeitpunkte genau darstellen kann, können

einfache EEG oder MEG Quellenanalysen diese nicht oder nur teilweise darstellen.

Die Validierung der Ausbreitung wird anhand eines invasiv gemessenen Stereo-EEG

durchgeführt. Durch die durchgeführten Spikemittelungen und die SNR Analyse wird

verdeutlicht, dass durch eine Teilmittelung wichtige und exakte Informationen über

den Mittelpunkt sowie die Größe des epileptischen Gewebes gewonnen werden können,

welche weder durch eine einfachen noch einer ”Grand-average” Lokalisation des Spikes

erreichbar sind. Eine weitere Anwendung einer genauen EMEG Quellenanalyse ist die

Bestimmung einer ”region of interest” anhand von standardisierten MRT Messungen.

Diese kleinen Gebiete werden dann später mit einer optimalen und höher aufgelösten

MRT-Sequenz gemessen. Dank dieses optimierte Verfahren können auch sehr kleine

FCDs entdeckt werden, welche auf dem standardisierten gemessenen MRT-Sequenzen

nicht erkennbar sind.

Die Pipeline, welche in dieser Arbeit entwickelt wird, kann auch für gesunde Proban-

den angewendet werden. In einer ersten Studie wird eine Quellenanalyse der so-

matosensorischen und auditorisch-induzierten Reize durchgeführt. Die gewonnen Daten

werden mit anderen Studien vergleichen und mögliche Gemeinsamkeiten diskutiert.

Eine weitere Anwendung der realistischen Kopfmodelle ist die Untersuchung von Vol-

umenleitungseffekten in nicht-invasiven Hirnstimulationsmethoden wie transkranielle

Gleichstromstimulation und transkranielle Magnetstromstimulation.
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List of Figures

2.1 Mean number of people with epilepsy per 1000 population in WHO

regions and in the world . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 Structure of the brain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Layered structure of visual cortex layers 1 to 6 and the white matter . 12

2.4 EASYCAP EEG cap with 74 equidistant electrode positions (10/10-

System) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 The schematic representation of the sensors of the MEG system used in

this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Illustration of epileptogenic tissue . . . . . . . . . . . . . . . . . . . . . 33

3.1 FDG-PET showing left fronto-temporal hypometabolism . . . . . . . . 37

3.2 Fiducials on T1 MRI . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 T1, T2 and the segmented (lower row) MRIs . . . . . . . . . . . . . . . 40

3.4 Head model visualized with SCIRun . . . . . . . . . . . . . . . . . . . 41

3.5 Geometry adapted and regular hexahedral meshes . . . . . . . . . . . . 42

3.6 A sample slice from the blip-up data, blip-down data and their difference

before and after susceptibility correction . . . . . . . . . . . . . . . . . 43

3.7 Main fiber directions (largest eigenvalues of diffusion tensors) weighted

according to the fractional anisotropy . . . . . . . . . . . . . . . . . . . 44

3.8 An example source space with 2 mm resolution limited to gray matter,

the dipole scan map obtained for an epileptic spike and the final dipole

when only visualizing the dipole that corresponds to the peak of the

dipole scan map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.9 Steps of Algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.10 RV obtained from Algorithm 2 in step 2.d. for different skull conduc-

tivity parameters for 6C and 3C head models . . . . . . . . . . . . . . 57

3.11 The waveform and topography of a representative FT9 spike . . . . . . 59

3.12 Influence of skull conductivity on EEG and MEG localizations . . . . . 60

3.13 Single spike localizations and corresponding centroid and spread sphere 62



List of Figures vii

3.14 Comparison of three and six compartment head models . . . . . . . . . 63

3.15 Differences of EEG, MEG and EMEG localizations . . . . . . . . . . . 64

3.16 Best three DS locations in terms of metrics for an exemplary MEG

dipole scan for head model 6C 132 plotted on T1 MRI . . . . . . . . . 69

4.1 Butterfly plots and topographies of EEG and MEG for the grand-average

(average over all 200 single epileptic spikes) . . . . . . . . . . . . . . . 77

4.2 The summary of the sEEG findings for all contacts . . . . . . . . . . . 80

4.3 Locations of sEEG contacts inside the brain and epileptic activity mea-

sured with sEEG and ldEEG . . . . . . . . . . . . . . . . . . . . . . . . 81

4.4 Average SNRs for EEG, MEG and EMEG . . . . . . . . . . . . . . . . 83

4.5 Centroid dipoles determined from the dipole scan peaks of EEG, MEG

and EMEG for different sub-averages at 23 ms before the EEG spike peak 84

4.6 Peaks of the deviation scans of EEG, MEG and EMEG for different

sub-averages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 Square distance index and the percentage of dipoles closer than 10 mm

for each sEEG contact . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.8 Dipole localizations of EEG, MEG and EMEG for sub-averages of 10 . 89

4.9 Average waveform of the spikes measured simultaneously with sEEG

and 21 electrodes low density scalp EEG . . . . . . . . . . . . . . . . . 90

4.10 EEG, MEG and EMEG deviation scan peaks of Av10 for time-points

from -33 ms (spike onset) in steps of 10 ms until time-point -3 ms (late

propagation phase close to EEG peak) . . . . . . . . . . . . . . . . . . 92

4.11 Square distance indexes and the percentage of dipoles closer than 10

mm for each sEEG contact . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.12 SDI values for EEG, MEG and EMEG at -33 ms . . . . . . . . . . . . 95

4.13 An example concave topology for single spike localizations with MEG . 100

5.1 Segmented MRI, T1 MRI, and the source space points shown on T1 MRI105

5.2 Butterfly plots for MEG and EEG, and topographies of MEG and EEG

for the averaged spike at 11 different time instances . . . . . . . . . . . 108

5.3 Source localizations at -7 ms . . . . . . . . . . . . . . . . . . . . . . . . 109

5.4 Source localizations at -23 ms, slices selected according to the left hemi-

spheric activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.5 Source localizations at -23 ms, slices selected according to the right

hemispheric activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.6 The results of DTI tractography . . . . . . . . . . . . . . . . . . . . . . 112

Dissertation Ümit Aydin
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Abbreviations xii

RV . . . . . . . . . . . . . . . . . Residual variance

SDI . . . . . . . . . . . . . . . . Square distance index

sEEG . . . . . . . . . . . . . . Stereo electroencephalography

SEF . . . . . . . . . . . . . . . . Somatosensory evoked field

SEP . . . . . . . . . . . . . . . . Somatosensory evoked potential

SER . . . . . . . . . . . . . . . . Somatosensory evoked response

sLORETA . . . . . . . . . . Standardized low resolution brain electromagnetic tomography

SNR . . . . . . . . . . . . . . . Signal-to-noise-ratio

SOA . . . . . . . . . . . . . . . Stimulus onset asynchrony

SPECT . . . . . . . . . . . . Single-photon emission computed tomography

SWARM . . . . . . . . . . . sLORETA-weighted accurate minimum-norm

T1 MRI . . . . . . . . . . . . T1 weighted MRI

T2 MRI . . . . . . . . . . . . T2 weighted MRI

tACS . . . . . . . . . . . . . . . Transcranial alternating current stimulation

tDCS . . . . . . . . . . . . . . Transcranial direct current stimulation

TMS . . . . . . . . . . . . . . . Transcranial magnetic stimulation

WHO . . . . . . . . . . . . . . World health organization

WM . . . . . . . . . . . . . . . . White Matter

Dissertation Ümit Aydin
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1 Introduction

1.1 Motivation

Epilepsy surgery is often used to treat pharmaco-resistant focal epilepsy and its suc-

cess depends profoundly on the correct determination of the epileptogenic zone. This

zone is defined as the minimum amount of cortex that has to be resected (inactivated

or completely disconnected) to produce seizure freedom [1]. This zone is estimated

prior to surgery based on information available from initial seizure semiology, lesions

in magnetic resonance images (MRI), video and electroencephalography (EEG) long-

term monitoring, magnetoencephalography (MEG), single photon emission computed

tomography (SPECT), positron emission tomography (PET), and neuropsychological

examination. The irritative zone, one of the important zones for locating the epilep-

togenic zone, is identified by EEG and/or MEG. The irritative zone is defined as the

brain area producing synchronous discharges of nerve cell clusters between seizures

(interictal). The identification of the irritative zone has not only localizatory, but also

prognostic value [2, 3, 4]. Multifocal or contralateral epileptic discharges are correlated

to a less favorable postoperative outcome regarding seizure freedom [3]. Although the

irritative zone might not always be identical to the epileptogenic zone, it holds im-

portant information regarding the location of the epileptogenic zone. An accurate

identification of the irritative zone can therefore be of crucial importance.

EEG and MEG have been shown to contain complementary information both in

theory and practice. It has, for example, been reported that some epileptic spikes

could be recorded only in MEG and not in EEG and vice versa. Because of this com-

plementarity, the combined analysis of EEG and MEG data is of increasing interest

for the neuroscientific community in a wide range of applications including presurgical

epilepsy diagnosis (by the reconstruction of epilepsy-characteristic electric potentials

and magnetic fields), evoked response analysis and connectivity studies [5, 6, 7, 8, 9].

However, the interplay of single modality EEG or MEG and combined EEG/MEG

(EMEG) source reconstructions with volume conduction effects using realistic head

models has not yet been investigated satisfactorily. It is important to perform these
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combined EEG/MEG studies not only for showing the advantages of using EMEG

over EEG or MEG, but also disclosing the risks of EMEG and single modality EEG or

MEG source reconstructions of interictal epileptic activity and to point out a guide-

line how to minimize the risks when working with simultaneously acquired data. This

study thus contributes to important and long-standing questions on feasibility and

accuracy of combined EEG/MEG versus single modality EEG or MEG source recon-

struction not only with respect to application in epileptology, but also more generally

for neuroscientific studies.

Another important issue in source analysis of epileptic activity is the propagation

phenomenon. Epileptic activity should be localized as close as possible to the spike

onset to avoid propagation. However, the low signal-to-noise-ratio (SNR) limits the

confidence in source reconstructions at these early time instants. Thus, this work

aimed to investigate if EMEG could increase the reliability in localizations compared

to single modality EEG or MEG at early time instants.

The decision between localizing each single epileptic spike separately and averaging

spikes with similar topographies before source reconstruction is another highly disputed

issue in presurgical epilepsy diagnosis, and both approaches have their merits and

drawbacks. Single spike localizations might be used to estimate the size of the irritative

zone [10, 11, 12, 13, 14, 15]. However, these localizations suffer from low SNRs [16,

17, 18]. In contrast, averaging similar spikes might increase the SNR remarkably and,

thus, also the reliability of the localizations [16], but information on the extent (size

of the irritative zone) might get lost. Therefore, in this study the effects of SNR

and averaging on EEG, MEG and EMEG source reconstructions were investigated by

calculating multiple subaverages (e.g., instead of averaging all spikes only 10 spikes

were averaged). This enabled comparison of the effects of averaging and the resulting

SNRs in a step-by-step approach.

1.2 Contributions

One of the main contributions of this thesis is the introduction of a new experimen-

tal and methodological source analysis pipeline that benefits from the complimentary

information in the combined simultaneously measured EEG and MEG data sets. In

this context, conductivity calibrated six compartment high resolution head models

of the patients were constructed and the forward problem was solved with finite ele-

ment method (FEM). The conductivity of the skull was estimated using a calibration

method, which relies on the differences in inverse solutions of simultaneously mea-
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sured somatosensory evoked potentials and fields (one additional run that precedes

the acquisition of multiple runs of epileptic discharges) and to the best of the author’s

knowledge, this is the first source analysis study for simultaneously measured EEG and

MEG of epileptic activity using an individual, conductivity calibrated six compartment

high resolution finite element model of the patient’s head. This way, the feasibility and

reliability of EMEG versus single modality EEG or MEG source reconstructions for

localizing interictal epileptic activity and somatosensory evoked responses were stud-

ied. Furthermore, the design of this study allowed the investigation of the influence

of the number of head tissue compartments (six versus the standard three compart-

ment approach) as well as the effects of conductivities of compartments (individually

calibrated versus standard skull conductivity parameters as found in the literature) on

the localizations.

Another important contribution was the investigation of the optimal choice of the

number of epileptic spikes in averaging to (1) sufficiently reduce the noise bias for an

accurate determination of the center of gravity of the epileptic activity and (2) to still

get an estimation of the extent of the irritative zone. For this purpose, motivated

by the findings of Bast et al. [16] and Wennberg and Cheyne [17] for EEG, and

Wennberg and Cheyne [18] for MEG source reconstructions, multiple subaverages were

calculated in order to investigate the effects of SNRs and averaging on EEG, MEG

and EMEG source reconstructions. The results showed that subaveraging provides

important and accurate information about both the center of gravity and the extent of

the epileptogenic tissue that neither single nor grand-averaged spike localizations can

supply. Moreover, a strategy, which tracks the location changes in centroid dipoles for

different subaverages in order to estimate the optimal subaverage number, was tested

and confirmed.

The final contribution in presurgical epilepsy diagnosis was the introduction and

evaluation of a three step MRI-EMEG source reconstruction-MRI pipeline. In this

pipeline accurate source reconstructions obtained with EMEG were used to determine

a region of interest (ROI) and a new MRI sequence that benefits from the new advance-

ments in parallel transmit coils in MRI [19] was used to acquire high resolution images

(ZOOMit MRI) in the predefined ROI (cubic voxels with 0.5 mm edge length). The

ability to restrict the area enabled to reach these high resolutions within reasonable

acquisition times with special 3T MRIs. To the best of the authors knowledge, this

is the first study that uses this function coupled with source analysis and it might be

very relevant in future studies aiming to detect cortical malformations that cannot be

seen in lower resolution MRI images.

Dissertation Ümit Aydin
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The head modeling pipeline, proposed in this work, was coupled with the combined

information supplied by EMEG and was used to study auditory (AER) and somatosen-

sory (SER) evoked responses that were obtained from two healthy subjects. In this

direction, special emphasis was put on the AERs measured from a subject for whom the

audiogram, clinical examination and radiologic examination showed no pathology, but

the AERs in one hemisphere was mainly silent for components up to 100 ms. To the

best of the author’s knowledge, this is the first study to show such a case for a subject

without any detectable brain lesion or pathology and is an important demonstration

of the high variance of the brain activities even within the healthy population.

In addition to the applications in EEG and MEG source analysis, the finite element

head models constructed with the pipeline presented here were also used for study-

ing the volume conductor effects in non-invasive brain stimulation techniques such as

transcranial direct current stimulation and transcranial magnetic stimulation.

In general, this thesis clearly shows that EEG and MEG are not competing modal-

ities but they complement each other especially in situations with low SNRs, and in

particular if they are coupled with individual and advanced head models that consider

the different sensitivity profiles of EEG and MEG in a source analysis framework. Fur-

thermore, although the main focus of this thesis was the reconstruction of the epilepsy

characteristic signals, the methods and results covered here will be of interest not only

to clinical researchers but also to other neuroscientists who perform methodological

and experimental research and interested in using the combination of EEG, MEG and

MRI.

1.3 Scope of the Thesis

InChapter 2 the reader is introduced to the fundamental and theoretical knowledge of

the issues covered in this thesis. In the beginning of this chapter, the basics of epilepsy

and anatomy of the head and the brain are shortly explained. In the later sections,

the EEG/MEG and their sensitivity differences are explained. In the next section,

the widely used techniques to solve the forward problem are listed and the steps to

obtain the formulation of the Venant finite element approach, based on the general

Maxwell’s equations, are provided. Following the forward problem, the formulation for

signal-to-noise-ratio (SNR) based whitening process is explained and the SNR based

EEG/MEG problem is defined. After a short literature survey on some of the most

widely known inverse solution algorithms, in the end of the chapter source analysis in

presurgical epilepsy is discussed.

Dissertation Ümit Aydin
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Chapter 3 begins with the methods section that explains the head modeling pipeline

starting from the raw MRI data, skull conductivity calibration steps, and source re-

construction procedure. Afterwards, in the results and discussion sections, the volume

conduction effects in source analysis of epileptic activity and somatosensory evoked

responses for EEG, MEG and EMEG are investigated.

Chapter 4 focuses on the ability of EEG, MEG and EMEG to estimate the center

and the extent of the irritative zone accurately at different phases of epileptic spikes.

Chapter 5 describes a case study, in which the potential of non-invasive EEG/MEG

to measure the signals from the whole head is investigated in order to decide on the

pre-surgical operation. Here a new MRI sequence that benefits from a parallel transmit

technology is used to obtain high resolution MRI images within a region of interest

(ROI). The described approach coupled with source analysis might be very relevant to

future studies aiming to detect the cortical malformations that cannot be seen in low

resolution MRI images.

Chapter 6 describes the source analysis results obtained with somatosensory (SER)

and auditory (AER) evoked responses for two healthy subjects. The study with the first

subject demonstrates the common responses in general population and the study with

a second subject illustrates the auditory evoked responses in the case of exceptional

brain formation.

Chapter 7 is dedicated to the studies of non-invasive brain stimulation techniques

such as transcranial direct current stimulation and transcranial magnetic stimulation

using finite element head models.

Chapter 8 provides general conclusions and the outlook.
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2 Fundamentals and Theory

2.1 Epilepsy

According to the World Health Organization (WHO) epilepsy is one of the most com-

mon neurological diseases in the world [20]. As of 2005, there were 8.23 and 8.93 people

with epilepsy per 1000 population in Europe and in the world, respectively (Figure 2.1)

[20]. The main indication of epilepsy is seizures, but since approximately 10 % of the

general population has at least one seizure during the lifetime, the diagnosis of epilepsy

requires at least two unprovoked seizures. Until the middle of the 19th century, epilepsy

was widely assumed to be a vascular disease, but in 1849 Robert Bentley Todd, who

was influenced by Michael Faraday’s contemporary work on electromagnetism, came

up with a new explanation to epilepsy that is based on the electric theory [21, 22]. To-

day it is known that epileptic seizures are due to abnormal, synchronous and excessive

electrical activity in the brain [22].

The first line treatment of epilepsy is administration of anti-epileptic drugs. Al-

though about 60 % of the patients become seizure free after the treatment with the

first drug, the number of recovered epilepsy patients can be increased only up to 70 %

with additional medication. Thus, still 30 % remains with uncontrolled seizures and

are candidates for the epilepsy surgery [23]. The first epilepsy surgery was performed

by William Macewen in 1879 and until the invention of electroencephalography (EEG)

in 1929 by Hans Berger, the main source of information for the surgery was the seizure

semiology observed by the physician [24, 25, 26]. The seizure semiology, however, can-

not be used as a reliable method in the diagnosis of epileptogenic brain areas that are

away from the motor areas as in the case of temporal lobe epilepsy. Only after 1951,

when 25 patients were operated based on the EEG, EEG has gained a wide acceptance

as a powerful diagnostic method for the epilepsy surgery [26, 27]. In recent years, the

number of epilepsy surgeries is increasing especially in the developed countries due to

the advancements in presurgical epilepsy diagnosis. Despite some studies showing that

many patients still do not receive surgical evaluation because of the lack of interdisci-

plinary teams that include neurologists, neurosurgeons, radiologists and engineers or
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mathematicians [20].

Figure 2.1: Mean number of people with epilepsy per 1000 population in WHO regions
and in the world (adapted from [20])

The mechanisms underlying epilepsy are complex and include: (i) changes at the cell

membrane (especially ion channels) and neuron, (ii) molecular defects (especially in

inherited epilepsy), (iii) abnormalities in neurotransmitter systems (especially gamma-

aminobutyric acid (GABA)), (iv) alterations in neuronal architecture or populations,

(v) alterations in neuronal networks within cortex or between the cortex and subcortical

structures, and (vi) abnormalities in connections between neurons [26].

2.1.1 Zones in presurgical epilepsy diagnosis

There are different zones identified in presurgical evaluation of pharmaco-resistant

epilepsy and all of them represent a part of the puzzle that needs to be solved for a

seizure free outcome. These zones are:

Epileptogenic zone: This is defined as ”the minimum amount of cortex that must
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be resected (inactivated or completely disconnected) to produce seizure freedom” [1].

It is the most important zone in presurgical epilepsy due to its definition but it is also

only conceptual. All other zones that will later be described are contributing to the

determination of this zone.

Seizure onset zone: This zone is defined as the area of cortex from which the

seizure activity originates. Even though in many cases this zone gives the most relevant

information for obtaining a seizure free outcome, still the removal of just the seizure

onset zone might not be sufficient for seizure freedom. This zone is usually determined

via invasive and/or non-invasive EEG because, in contrast to magnetoencephalography

(MEG) and functional magnetic resonance imaging (fMRI), the electrode positions are

fixed to the head, thus not affected by the seizure related movements. Although in

some cases, e.g., for patients with focal seizures not involving motor areas, MEG [28]

and fMRI [29] can also be used to determine seizure onset zone, their usage is far less

common than EEG [30, 31]. In addition, single-photon emission computed tomography

(SPECT) is also used in some cases but the need of injection of the radioactive elements

just after the start of the seizure and the requirement to bring the patient within one

hour to the scanner limit its usage [32].

Irritative zone: Irritative zone is defined as the amount of the cortex that pro-

duces synchronous interictal (between the seizures) epileptic activity. It has two main

indications. First, it has been shown that the success of the operation for patients with

multifocal or contralateral irritative zones is significantly lower than for other patients.

Secondly, in cases where the resected area and the irritative zone correspond well the

probability of seizure freedom after the surgery is higher than in the cases where only

the seizure onset was operated. The irritative zone is usually measured via invasive

EEG, non-invasive EEG and MEG, and fMRI [1].

Functional deficit zone: Functional deficit zone is the area of cortex where a func-

tional anomaly is observed. This area is usually larger than the seizure onset and the

irritative zone. The hyper- or hypo-activity observed in positron emission tomography

(PET) can be used to assess this area [33]. In addition to neuroimaging methods,

neuropsychological examinations and seizure semiology are also used for evaluation of

this zone.

Lesional zone: Lesional zone is the area where an anatomical anomaly is seen

on the cortex. These anomalies might be cortical development problems like focal

cortical dysplasia (FCD) and hippocampal atrophy or other lesions caused by trauma

or calcification of hippocampus. To detect these regions, usually MRI sequences that

are sensitive to lesions like FLAIR (Fluid-attenuated inversion recovery) are used. It
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is important to note that for the seizure freedom it might not be needed or sometimes

it is not sufficient to resect the whole lesion because usually the seizures start from the

borders of the lesion. Moreover, the whole extent of the lesion might not be visible

in MRI. Also having a lesion does not always mean that the epileptogenic zone is in

this area, but some types of lesions such as FCD type IIB are shown to be highly

epileptogenic [34].

All these zones usually intersect with each other but this might not always be the

case. For example, for some patients with bi-temporal spikes (with irritative zones

in both right and left hemispheres) seizure freedom was achieved after performing

operation in just one of the temporal lobes [1]. Also the phenomenon of secondary

epileptogenesis has been demonstrated in animals: when seizures are induced to one

hemisphere using sub-convulsive electrical stimulation to amygdala or hippocampus

after a couple of weeks seizures arising from the contralateral side can be measured

[26]. All this data supports the idea of epilepsy as a complicated brain network disease

[35, 36], and thus the precise evaluation of these zones in presurgical epilepsy diagnosis

has important implications on the success of the surgery.

2.2 Anatomy and Physiology of the Head and Brain

Tissues between electrodes measuring EEG and brain can be roughly divided into three

tissue types: scalp, skull and cerebrospinal fluid (CSF).

The outer part of the head is called scalp. The scalp is made up of five layers:

skin, cutaneous tissue (fat and connective tissue), aponeurosis (a tough sheet of dense

connective tissue), loose areolar tissue (most of the major scalp vessels are situated

there) and pericranium (which covers the outside of the skull and supplies nutrition to

the bone).

Inside the scalp lies the skull with bony structure. It has a three layer composition

with the cancellous bone (skull spongiosa) found between two layers of compact bone

(skull compacta) [37].

CSF is found in the subarachnoidal space between the skull and the brain with

a volume of approximately 150 milliliters (for the average cerebral cavity volume of

∼1650 milliliters) [38].

Brain consists of two types of cells: neurons and glial cells. Neurons are responsible

for the transmission of the nerve impulses and the main function of glial cells is to

support them. A neuron has three parts, which are dendrites, soma and axon. The

signals are received from other neurons via dendrites and passed to other neurons via
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axons. The soma is the main cell body, which contains the necessary cell structures

for protein synthesis and energy production.

Brain is mainly divided into three parts. These are the cerebrum, cerebellum and

the brainstem.

The cerebrum is the largest part of the brain and is the most relevant component for

presurgical epilepsy diagnosis. It is divided into five lobes: frontal, parietal, temporal,

occipital, and limbic lobe (some sources also define insular as a sixth lobe) [39]. It

consists of approximately three mm thick gray matter (GM) which surrounds the

white matter (WM) except for the limbic system, in which GM structures exist deeply

inside the WM. The main functions of these lobes are [40]:

1. The frontal lobe is involved in complicated cognitive tasks such as reasoning,

problem solving, decision making and emotions as well as the control of movement

(primary motor cortex) and speech (Broca’s area).

2. The parietal lobe is associated with somatosensory information (primary so-

matosensory cortex), integration of auditory visual and somatosensory informa-

tion and spatial orientation.

3. The temporal lobe is involved in hearing (primary auditory cortex), language

comprehension (Wernicke’s area in dominant hemisphere) as well as emotion

regulation.

4. The occipital lobe differs from other lobes in the sense that it’s only main func-

tion is controlling the vision processing and this shows the importance of visual

processing in humans.

5. Limbic system is mainly related to emotions, learning and memory. It plays an

important role in epilepsy since mesio-temporal epilepsy in which the epilepto-

genic origin is usually within the limbic system (hippocampus and amygdala)

accounts for approximately 41 % of adult epilepsies and is the most common one

[41].

In the cerebellum, gray matter cortex covers the white matter in a uniform way.

However still deep gray matter nuclei also exist inside the white matter. Cerebellum

is mainly involved in coordination of movements.

The brain stem connects the brain to other parts of the body and regulates crucial

functions such as heart rate, blood pressure, body temperature, breathing, hunger and

thirst.
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Figure 2.2: Structure of the brain. (adapted from wikicommons).

2.3 Electroencephalography and

Magnetoencephalography

EEG and MEG are two widely used techniques to measure the electrical activity of

the brain. In surface EEG electrodes pasted to the scalp are used to measure the

electrical activity (see Figure 2.4 for the schematic representation of the electrode cap

used in this thesis). In contrast to EEG, in MEG there is no direct contact between

the scalp and the superconducting quantum interference devices (squid), which reside

inside the Dewar flask filled with liquid helium [42] (see Figure 2.5 for the illustration

of the MEG sensors used in this thesis). The main advantage of EEG and MEG

over other functional neuroimaging methods like fMRI or PET is their high temporal

resolution in the range of milliseconds (ms) and their ability to measure the electrical

activity directly without using indirect phenomena like hemodynamics or metabolism.

However, their spatial resolution is usually lower than fMRI and their sensitivities

decrease for sources that are far away from the sensors (e.g., sources in deep structures)

Dissertation Ümit Aydin
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[43]. The EEG and MEG signals are produced by the pyramidal cells (see layers II,

III and V in Figure 2.3) that are perpendicular to the cortex surfaces [42, 44, 45]. It

is usually regarded that the sources generated by the cortex should be on the order

of 10 nAm to produce signals measurable by EEG or MEG [42]. According to the

calculations in [45] this corresponds to 50,000 cells. The electrical activity measured

with EEG and MEG is due to movement of the ions when the neuron is excited. This

electrical activity of a neuron includes two phenomena: action potentials and post-

synaptic potentials. With noninvasive EEG and MEG mainly the contributions of the

post-synaptic currents are measured because unlike action potentials, which occur very

fast and have a quadrupole term, the postsynaptic currents are slower. This slower

current increases the chances of a synchronized activity that results in signals that are

measurable from far field.

Figure 2.3: Layered structure of visual cortex layers 1 to 6 and the white matter (WM).
(adapted from wikicommons).
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Figure 2.4: EASYCAP EEG cap with 74 equidistant electrode positions (10/10-
System). (adapted from www.easycap.de).

2.3.1 Sensitivity differences between EEG and MEG

Although the sources that produce EEG and MEG recordings are the same, the distinct

properties of EEG and MEG cause them to produce different sensor signals. Unlike

MEG, which measures almost only quasi-tangential sources, EEG can measure both

quasi-tangential and quasi-radial sources [6, 42, 46, 47, 48, 49, 50, 51]. When compared

to the EEG, MEG is thus less sensitive to all deeper sources, not only because the signal

decays with the square of the distance from the source to the measurement sensors

(MEG shares this drawback with the EEG), but also because deeper sources become

more quasi-radial. In contrast to EEG, MEG achieves higher SNRs (signal-to-noise-

ratios) for more lateral quasi-tangential sources, also because the measured signals

are nearly not contaminated with mainly quasi-radial biological noise [52]. The signal

topographies of EEG and MEG are almost orthogonal to each other, and because the

low skull conductivity smears out the EEG, the distance between the poles of dipolar
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Figure 2.5: The schematic representation of the sensors of the MEG system used in
this thesis. Each sensor is named with 5 digits and the first is always M for
MEG. The small figure on the upper right corner shows the second and the
third digits and the bigger figure shows the last three digits of the sensor
name. (adapted from the user manual of CTF, VSM MedTech Ltd.).

EEG topographies is in practice greater than for MEG. Therefore, the simultaneous

acquisition of EEG and MEG increases the probability of measuring the important

aspects of the signal topographies by at least one of the two modalities, thus stabilizing

the source reconstructions.

With regard to the detection of epileptic discharges, studies that show patients

with detectable epileptic activity only in EEG or MEG illustrate the importance of

simultaneous measurements for epileptic spike detection [53, 54, 55]. In [54] 19 % of

the epileptic spikes was only detectable with MEG while 2 % was detectable only with

EEG. In a similar study it was found that 13 % of the epileptic spikes was detectable

only with MEG while 2 % was detectable only with EEG [55]. The percentage of spikes

that was detectable with both EEG and MEG was 72 % in [54] and 59 % in [55]. In

frontal lobe epilepsy it was reported that MEG was more successful for screening and

localizing than EEG [56].
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2.3.2 Forward problem of bioelectromagnetism

2.3.2.1 Maxwell’s equations and quasi-static assumption

The forward problem of EEG or MEG is the calculation of the electric potentials

at the head surface or the magnetic fields at a small distance to the head surface

for a given current source in the brain. The Maxwell’s equations form the basis of

electromagnetism and thus the forward problem of bioelectromagnetism:

∇×E = −
∂B

∂t
(2.1)

∇×H = J+
∂D

∂t
(2.2)

∇ ·B = 0 (2.3)

∇ ·D = ρ (2.4)

with:

E: Electric field (volt per meter (V/m))

H: Magnetic field (ampere per meter (A/m))

B: Magnetic flux density (T = kg/(s2A))

D: Electric displacement field (C/m2)

J: Current density (A/m2)

ρ: Volume charge density (C/m3)

with units: V =volt, m =meter, A =ampere, T =tesla, kg =kilogram, s =second,

C =coulomb.

The material equations listed below supplement Maxwell’s equations :

D = ϵE (2.5)

B = µH (2.6)

where ϵ (F/m) is the permittivity and µ (H/m) is the permeability.

The properties at the interfaces of different media are given by the boundary condi-

tions:

n× (E2 − E1) = 0 (2.7)

n× (H2 −H1) = 0 (2.8)
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(D2 −D1) · n = ρs (2.9)

(J2 − J1) · n = −
∂ρs
∂t

(2.10)

with ρs representing the surface charge density at the interface and n being the

normal direction from material 1 to 2. The equations 2.7, 2.8 indicate the continuity

in the tangential direction and 2.9, 2.10 represent the discontinuity in the medium.

For EEG/MEG forward problem the quasi-static approximation of the Maxwell’s

equations are used. Quasi-static approximation refers to treating the electrical and

magnetic fields as in steady-state for any time instant, which means neglecting the

secondary effects of the time variation. In order to use the quasi-static approximation

for Maxwell’s equations, four assumptions should be satisfied (detailed derivations can

be found in [57]):

1. Capacitive effects: The fields are assumed to be in synchrony in the quasi-

static assumptions and this can only be satisfied if the medium is purely resistive.

Considering the electrical properties of biological materials for frequencies below

1 kHz the capacitive effects are very small and thus negligible.

2. Propagation effects: The propagation effects should be in a negligible range to

satisfy the quasi-static approximation because this determines the time required

for the phase changes in the source to be observed in the field point. Since

biological materials are non-magnetic and the frequencies are below 1 kHz, the

phase delay is negligible and thus this condition is satisfied.

3. Inductive effects: The inductive effects are crucial because they represent the

amount of electric field that arises from the magnetic induction. As for the

propagation effects it is shown that due to non-magnetic behavior and frequencies

below 1 kHz for biological materials the inductive effects are also very small and

can be ignored.

4. Boundary conditions: Boundary conditions are satisfied because for frequen-

cies below 1 kHz the displacement currents (∂D/∂t) can be ignored.

After showing that the quasi-static assumption is valid for biological tissues, Maxwell’s
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equations reduce to:

∇×E = 0 (2.11)

∇×H = J (2.12)

∇ ·B = 0 (2.13)

∇ ·D = ρ (2.14)

The electric field can thus be represented by a potential (u):

E = −∇u (2.15)

In the case of the EEG/MEG forward problem, the total current density J can be

assumed to be composed of conduction current density σE and impressed (source)

current density Js

J = σE+ Js (2.16)

and 2.16 becomes the Poisson equation for the electric potential in the head domain

Ω:

∇ · (σ∇u) = −∇Js (2.17)

with boundary condition

n · (σ ·∇u) = 0 on Γ = ∂Ω. (2.18)

The Poisson equation for the magnetic field can be obtained by substituting the

magnetic field (B), which is equal to µH, with the curl of the magnetic potential (A)

in equation 2.12:

∇2A = −µJ (2.19)

This leads to the representation:

A(x) =
µ

4π

∫

Ω

Js(x′)− σ(x′)∇u(x′)

|x− x′|
dx′ (2.20)

A widely used concept in EEG/MEG forward problem is to represent the source with

the mathematical point dipole. The mathematical point dipole can be represented as:

Js(x) = m0δ(x− x0) (2.21)
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where m0 is the dipole moment, x0 is the dipole position and δ is the Dirac delta

distribution.

Using Stokes theorem the magnetic flux Ψ measured with a magnetometer with

surface area S and circumference l can be written as:

Ψ =

∫

S

BdS =

∮

l

A(x)dx (2.22)

Ψ =
µ

4π

∮

l

∫

Ω

Js(x′)

|x− x′|
dx′ · dx

︸ ︷︷ ︸

primary magnetic flux

+
µ

4π

∮

l

∫

Ω

−σ(x′)∇u(x′)

|x− x′|
dx′ · dx

︸ ︷︷ ︸

secondary magnetic flux

(2.23)

2.3.2.2 Literature survey on the tissue sensitivities of EEG and MEG

The existence and uniqueness of the solution for dipole sources can be proven for

the EEG/MEG forward problem [58, 59]. Still in order to solve the forward problem

as formulated above a decent head volume conductor model that specifies different

tissues is needed and its accuracy is very crucial for noninvasive EEG and MEG source

reconstruction. EEG and MEG have different sensitivities to different tissues in the

volume conductor. Since EEG is sensitive to volume currents on the scalp, modeling

all tissues between the measurement electrodes and the sources inside the brain is very

important. In contrast to EEG, MEG is mainly sensitive to the currents inside the

inner skull surface (as long as the skull compartment is closed) that do not reach scalp

thus it is less sensitive to wrong assumptions on skull and scalp compartments. In the

remainder of this section, the sensitivities of EEG and MEG to different tissues in the

volume conductor model will be discussed.

Skull: Skull can be assumed as the most important compartment for EEG source

analysis. Due to its low conductivity, it smoothens and attenuates the EEG signals

before they reach the electrodes on the scalp. Most studies approximate skull as a

closed surface but in reality it has holes which might induce errors especially in the

close vicinity if not modeled [60, 61]. The skull structure of infants differs significantly

from adults, and in these cases, the fontanels should also be included into the model

[62]. Although computed tomography (CT) is a more appropriate method to segment

the skull than MRI, due to radiation risks its usage for only this purpose is not jus-

tified. Even when CT is measured for other purposes (e.g., for localizing the invasive

electrodes) not whole but only parts of the head are measured in order to limit the

radiation exposure of the patient. The human skull has a three-layer structure, where

the relatively high conductive skull spongiosa tissue is found between two layers of low
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conductive skull compacta. In EEG source analysis and tDCS (transcranial direct-

current stimulation) studies this three layer structure is shown to have an influence on

the results [63, 64, 65, 66, 67, 68, 69]. In earlier studies the three layer skull structure

was included into the head models by modeling the skull as anisotropic because of the

difficulties related to the segmentation of these thin layers from low resolution MRI

and because of the limited computational resources that limited the element resolu-

tion in the skull compartment [51, 64, 65, 70]. Nowadays most advanced studies use

T2 weighted images with higher resolutions (∼1 mm) whereby it is possible to differ-

entiate skull spongiosa and compacta. The advancements in MRI technology enabled

researchers to model the anatomy of the skull more accurately, however for an accurate

head model not only the anatomical but also the conductivity information of the tissues

is needed. In addition to that, it has been shown that the skull conductivity values

show a very high inter-individual variation and for EEG source reconstruction mislo-

calizations in centimeter range might occur [68, 71]. Although different approaches

have been suggested to estimate the skull conductivity such as electrical impedance

tomography (EIT) or MR-EIT, the need for injecting current inside the scalp and the

need for additional equipment limited their usage so far. In contrast, the effects of

skull conductivity on magnetic fields are almost negligible. Thus, EEG is shown to be

very sensitive to conductivities of the skull whereas MEG is not very sensitive to it

[42, 50, 51, 62, 63, 64, 72, 73, 74]. In addition to the EEG forward and inverse problem,

correct modeling of the anatomy and the conductivity of the skull is also important

in combined EEG/MEG (EMEG) source analysis.Therefore, inspired by the studies of

[62, 75, 76] the calibration of the conductivity of the skull is performed noninvasively

by benefiting from the sensitivity differences of EEG and MEG in this thesis.

Cerebrospinal fluid (CSF): Most EEG/MEG source reconstruction studies use

three compartment head models that distinguish inner skull, outer skull and the scalp

surfaces. Three compartment head models constructed from individual MRIs are

shown to increase the accuracies in comparison to multi-sphere models especially for

sources located in temporal lobes, where the spherical assumption is far from reality.

However, these models still exclude the significant influence of the highly conductive

CSF compartment inside the skull. Its conductivity does not show high inter-individual

differences and was measured to be 1.79 S/m, averaged over 7 subjects ranging in age

from 4.5 months to 70 years, with a standard deviation of less than 2.4 % between sub-

jects and for frequencies between 10 and 10,000 Hz [77]. The stable conductivity of the

CSF compartment reduces the modeling problem to just segmenting its complicated

geometry. In T1 weighted MRI it is not possible to distinguish CSF from the skull or
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the holes (i.e., sinus cavities) but in order to overcome this problem usually T2 weighted

MRI, in which CSF appears as white, is used. Another important reason for including

the CSF into volume conductor models is the fact that unlike skull, which has far lower

influence on MEG than EEG or EMEG, the changes in CSF compartment have a high

impact on all three methods (EEG, MEG and EMEG) [50, 51, 70, 74, 77, 78, 79]. As

an example in [80] it was shown that when the lying position of the subject is changed

from prone to supine, the CSF thickness decreases by approximately 30 % and this

causes the occipital signal power measured by EEG to increase on average 80 %.

White and Gray Matter: Another simplification of three compartment models

is ignoring the distinction between white and gray matter and representing them and

CSF as a single homogeneous compartment with an isotropic conductivity of 0.33 S/m.

Recent studies using the finite element method (FEM) showed that the distinction of

white and gray matter with their individual conductivities (WM (0.14 S/m) and GM

(0.33 S/m)) is important [50, 81]. Furthermore, the main sources measured with EEG

or MEG are known to reside within the GM but not in the WM and thus the GM can

be used to limit the source space of the model [42, 45].

Conductivity anisotropy of WM and GM: Both gray and white matter have

anisotropic conductivities. This anisotropy can be very high especially at pyramidal

tracts inside the WM. Previous studies investigated the impact of anisotropic conduc-

tivities on EEG/MEG source analysis and found non-negligible effects especially for

deeper sources [51, 65, 82, 83, 84, 85]. Earlier studies used a fixed ratio for parallel

and orthogonal directions to the fibers, but now with the advancements in diffusion

tensor imaging and after the introduction of the relationship between diffusion and

conductivity tensors [86], newer studies use the eigenvalues of the diffusion tensors for

this purpose [70]. The GM anisotropy is considerably lower in comparison to WM and

its measurement with 3T scanners (accurate measurements with 7T scanners were de-

scribed in the literature [87]) might be prone to errors especially due to partial volume

effects of CSF compartments. In this thesis, the gray matter anisotropy was included

to the model described in the Section 3 and based on the findings of performed inves-

tigations it was decided to include only WM anisotropy for other studies described in

this work.

2.3.2.3 Numerical techniques to solve the forward problem of EEG/MEG

Once a decent volume conductor that considers the sensitivity differences explained in

the previous section is constructed, the forward solution can be calculated. Although

analytical solutions exist for certain geometries as in the case of multisphere models
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[88], for realistically shaped head models numerical techniques are needed. The most

widely used techniques in EEG/MEG forward solution are boundary element method

(BEM), finite element method (FEM) and finite difference method (FDM) [59, 89, 90].

In this section FEM and BEM will be compared and information on FDM can be found

in [73] and [89].

In BEM the forward problem is reformulated to a boundary integral equation. This

means that, under the assumption of homogeneous and isotropic tissue compartments,

modeling and triangulation of just the tissue surfaces is sufficient to calculate the so-

lution [91]. In the EEG/MEG forward problem, these surfaces are usually modeled as

scalp, inner skull and outer skull. Since the elements are only placed on the surfaces,

the matrices that need to be solved have smaller dimensions in comparison to FEM.

However, these matrices are not sparse and their inversion is computationally expen-

sive, especially for more complex geometries (the increase of the computational costs

is not linear [90]). The minimum distance of the sources to the boundaries (widely

accepted as at least half the triangle side length) and the resolution of boundary dis-

cretization also need to be selected carefully to avoid numerical instabilities [92].

Unlike in BEM, in FEM 3D elements such as hexahedra or tetrahedra are used to

model the head volume. The advantage of hexahedra is that it is easier and faster

to obtain the mesh out of the labeled MRI. For hexahedral meshes, the voxels in the

labeled volume can be directly converted to mesh elements, in contrast to tetrahedral

meshes, for which this direct conversion is not possible (i.e., hexahedra are divided

into tetrahedra or the non-intersecting surfaces are extracted and used for meshing).

Usage of hexahedral meshes was shown to result in not smooth and less-realistic edges,

which are known as staircase effects. This disadvantage can be largely compensated by

shifting the nodes to the material interfaces [93]. This approach was validated for EEG

source analysis in multi-layer sphere models, leading to significant error reductions

compared to regular hexahedral approaches [94]. It was also shown in this study that

the numerical errors introduced due to the deformed node-shifted elements are smaller

than the improvements due to higher conformance to the real geometry achieved by

geometry adaptation.

Another important decision that has to be made in FEM is choosing a proper method

to treat the singularity introduced by the mathematical dipole. Proposed approaches

are the partial integration direct potential approach, the substraction approach and

the Venant direct approach [59, 90]. In this thesis the Venant approach was used due

to its high accuracy and computational efficiency as shown in [81]. In FEM the need

for modeling the whole volume results in increased number of elements (e.g., 100 times
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more elements than in BEM) but the matrices are sparse and by using this property

the computational costs can be reduced significantly [59, 90]. The computational

costs increase almost linearly with the number of elements and using efficient solvers

like parallel algebraic multigrid solvers [95] and especially fast FEM transfer matrix

approaches [96], it is possible to solve the EEG/MEG forward problem with millions

of elements in a reasonable time as also shown in this thesis.

The FEM was selected for numerical solution of EEG and MEG forward problem

mainly for two reasons.

1. The anisotropic regions like the pyramidal tracts in white matter can be modeled

using FEM.

2. The computational costs of BEM increases significantly when the head model

has more than three compartments. Especially because of the complex geometry

of CSF and the skull spongiosa, it is very computationally expensive to add and

solve these head compartments with BEM.

In the remainder of this section the finite element method formulation will be derived

following [59].

The first step is to obtain the weak formulation. For this purpose equation 2.17 is

multiplied by a piecewise differentiable function h(x) (basis function) and integrated

over the conductor volume V.

∫∫∫

V

(∇ · Js)h(x)dx =

∫∫∫

V

(

∇ · (σ ·∇u)
)

h(x)dx (2.24)

After performing integration by parts on the right hand side and exploiting the

boundary condition given in equation 2.18, equation 2.24 reduces to

∫∫∫

V

(∇ · Js)h(x)dx = −

∫∫∫

V

(σ ·∇u) ·∇h(x)dx (2.25)

Using the approximation:

u(x) ≈
N∑

n=1

unhn(x) (2.26)

in equation 2.25 the problem takes the form in equation 2.27.
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−
N
∑

n=1

un

∫∫∫

V

(

σ∇hn(x)
)

·∇hm(x)dx =

∫∫∫

V

∇ · Jshm(x)dx

for m = 1, ..., N (2.27)

Then this equation is arranged as a matrix equation

Au = b (2.28)

where

Amn = −

∫∫∫

V

(

σ∇hn(x)
)

·∇hm(x)dx (2.29)

bm =

∫∫∫

V

∇ · Jshm(x)dx (2.30)

The flux in MEG sensor i (ψM (xi)) can be written as the sum of primary dipolar

and secondary source fluxes

ψM (xi) = Ψprim(xi) +Ψsec(xi) =

∮

Γi

A∞(x) · dσ −

∫∫∫

Ω

(

σ∇′u(x′)
)

ci(x
′)dx′ (2.31)

where Γi is the loop of the i’th sensor, ci(x′) is

ci(x
′) ≡

µ0

4π

∮

Γi

1

|x− x′|
dσ (2.32)

and A∞(x) (the vector potential in an infinite medium with homogeneous conduc-

tivity) is

A∞(x) =
µ

4π

m0

|x− x0|
(2.33)

For the magnetic field, the primary flux in equation 2.31 can be calculated using

A∞(x) (equation 2.33).

The secondary flux (Ψsec) shown in equation 2.31 is arranged in a matrix-vector

product form as

Ψsec = Su (2.34)
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When IMEG is assumed as the number of sensors, the elements of S are written as

Sin = −

∫∫∫

Ω

(

σ∇′hn(x
′)
)

ci(x
′)dx′ i = 1, ..., IMEG;n = 1, ..., N (2.35)

In this thesis we used the Venant approach, in which the mathematical dipole is

approximated by distribution of monopolar sources and sinks on the FE mesh node

closest to the source position and the C−1 neighboring FE mesh nodes [94]. Therefore,

the right-hand side vector JVenant has only C nonzero entries at the neighboring FE

nodes to the considered dipole location.

JV enant
i =

⎧

⎨

⎩

jlc if ∃c ∈ {1, . . . , C} : i = GLOB(c)

0 otherwise
(2.36)

In equation 2.36 jl is a monopolar source vector with entries jlc at the location xl.

For a source at location xl, the function GLOB determines the global index i to each

of the local indices c.

Since for the inverse solution we are only interested in values of the potential at

the electrode positions, one can compute transfer matrices that map right-hand side

entries b in equation 2.28 directly to EEG or MEG sensor values. This can be done

efficiently by introducing restriction matrices R (IEEG − 1) × N and S (IMEG) × N

with N being the number of nodes used in the inverse solution (source space points)

[96, 97, 98]. This way the transfer matrices for EEG and MEG can be written as

TEEG = RA−1 (2.37)

TMEG = SA−1 (2.38)

Thus the direct mapping of b to the unknows u takes the form in equation 2.37 for

EEG and equation 2.38 for MEG secondary flux.

RA−1b = Ru (2.39)

SA−1b = Su (2.40)

Finally in order to avoid calculating A−1, which will no longer be sparse after inver-

sion, equations 2.37 and 2.38 can be multiplied with A from the right side, transposed

and the resulting sparse problem can be solved with iterative methods.

Due to fast computation times achieved in [95] we used an algebraic multigrid precon-
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ditioned conjugate gradient (AMG-CG) method to solve the linear equation systems

in FEM.

2.3.3 Inverse problem of bioelectromagnetism

Since some decades efforts have been made to reconstruct the electrical activity in the

human brain that is underlying the measured EEG and/or MEG signals. The recon-

struction of the so-called primary currents is called the inverse problem of EEG/MEG.

The solution of this problem usually requires estimating the source parameters, cal-

culating the sensor signals these source estimates can produce (solving the forward

problem), and minimizing the residual between measured and estimated signals. As a

model for the primary current, most of the studies use the mathematical current dipole

model, although multipoles have also been studied [99]. Due to the limited number

of sensors (in this thesis, 275 for MEG and 80 for EEG) and especially because a 3D

reconstruction is aimed from 2D measurements, the inverse problem of EEG/MEG is

non-unique. It means that there is an infinite number of source configurations that

can produce the same EEG/MEG measurements [42]. This non-uniqueness leads to

a variety of inverse reconstruction algorithms that are based on different a priori as-

sumptions. The relationship between EEG and MEG measurements and the sources

inside the brain can be represented by the following equations.

YEEG = LEEG j (2.41)

YMEG = LMEG j (2.42)

If we account for only one time instant, YEEG (YMEG) is the IEEG × 1 (IMEG × 1)

measurement vector, j is the 3N×1 source vector and LEEG (LMEG) is the IEEG×3N

(IMEG × 3N) leadfield matrix. Where IEEG (IMEG) is the number of EEG (MEG)

sensors and N is the number of source space points.

2.3.3.1 Combined EEG/MEG source analysis

EEG and MEG are complementary to each other and it is shown that for a continuously

distributed neuronal current, information missing in EEG is precisely the information

that is available in MEG, and vice versa [100]. The findings on different sensitivity

profiles of EEG and MEG as given in Sections 2.3.1 and 2.3.2.2 encourage researchers to

increase the synergy of these two methods by using and evaluating them simultaneously

[6, 46, 47, 48, 54, 76, 101]. However, EEG and MEG measure different quantities
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so that the units of the measurements are different. Thus, in order to perform a

combined analysis both modalities need to be transferred to a common space. Mainly

two approaches were suggested for this purpose in [102], [46] and [103] the lead field

matrices are normalized by using their norms. In [6], the approach selected here the

SNR based transformation is used. In this method the data was whitened according to

the noise level (calculated from the pretrigger interval where only spontaneous activity

occurs) of each channel so that unitless measures for EEG and MEG were obtained to

be used in a combined procedure as explained in detail in the remainder of this section.

2.3.3.1.1 Calculation of SNRs for whitening

The first step is the calculation of the noise statistics for each channel. In this thesis the

noise is calculated as the standard deviation of the signal over the pre-trigger interval

(time interval preceding evoked responses or spike activity) as given with the formula

below [6]:

NI =

√
∑tn

t=1(YI(t)− ȲI)2

tn − 1
(2.43)

where NI is the noise of channel I between time instants t = 1, ..., tn, YI(t) is the

measurement at channel I for time instant t and ȲI is the mean of the signal at given

time interval t = 1, ..., tn.

The whitened signal for a channel I at a certain time instant t′ (SNRI(t′)) is then

calculated by:

SNRI(t
′) =

Yi(t′)

NI

(2.44)

with this procedure the EEG and MEG signals are represented in the common SNR

space.

2.3.3.1.2 Formulation of combined EEG/MEG (EMEG) problem

Afterward equations 2.41 and 2.42 are combined to obtain the EMEG formulation. For

this purpose the EEG and MEG leadfield matrices and measurements (all converted

to SNR space as explained in Section 2.3.3.1.1) are stacked row wise and the equation

takes the form in equation 2.45.
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⎛

⎜
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⎝

YEEG1

...

YEEGIEEG
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...

YMEGIMEG

⎞

⎟
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⎠

=

⎛
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⎜
⎜
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⎜
⎝

LEEG1

...

LEEGIEEG

LMEG1

...

LMEGIMEG

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎝

j1
...

JN

⎞

⎟
⎟
⎠

→

(

YEEG

YMEG

)

︸ ︷︷ ︸

YEMEG

=

(

LEEG

LMEG

)

︸ ︷︷ ︸

LEMEG

j

(2.45)

In the inverse problem theYEMEG and LEMEG can then be used as the measurement

Y and leadfield L matrices as for EEG or MEG alone.

2.3.3.2 Inverse algorithms

EEG/MEG inverse algorithms are usually divided into two categories known as equiv-

alent dipole approaches and current density approaches. Here only a short description

of the inverse solution approaches will be presented. Detailed reviews with mathe-

matical emphasis can be found in [42, 43], and more practical aspects of the inverse

solution approaches are discussed in the reviews [104, 105]

Beamformer approaches are spatial filters that are on data from a sensor array to

discriminate between signals arriving from a location of interest and those originating

elsewhere.

2.3.3.2.1 Equivalent dipole approaches

In equivalent dipole approaches as the name suggests the sources inside the brain are

represented by a couple of dipoles (usually not more than five). Therefore, activities

investigated with equivalent dipole approaches should satisfy the assumption of focality.

A dipole is represented by three location and three moment parameters, thus only six

parameters need to be estimated for each dipole. In so-called moving dipole, these six

parameters are calculated separately at each time instant. However, it is also possible

to keep the location (rotating dipole) or both location and orientation (fixed dipole)

constant for a certain period of time. In classical dipole fit algorithms, the three

location parameters are calculated using nonlinear optimization techniques and dipole

moments are calculated with a simple linear fit [106, 107]. One problem related to

dipole fit algorithms is that the optimization algorithm might get trapped in a local
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minimum instead of finding the global minimum [104].

In this thesis, single dipole deviation scans (DSs) (also known as goal function scans)

[108] were used for inverse calculations of somatosensory evoked responses and for

estimation of the origins of epileptic spikes as described in Chapters 3 and 4. The

reason for this was because these signals were shown to be arising from relatively

focal sources inside the brain[12, 109]. For auditory evoked responses, two dipole DSs

were used because previous studies [110, 111] and our recent findings with hierarchical

Bayesian methods [112] show that the two focal dipole source model, one dipole in

each hemisphere, is an appropriate model for the rising flank of the N1. Unlike dipole

fit algorithms in which the coordinates of the best fitting dipole is determined via

nonlinear optimization, the DSs are calculated on a predefined source space, which is

also a more natural approach when used in combination with multi-compartment FEM

forward modeling. The residual variance (RV), i.e. the squared deviation, of the best

fitting dipole to the measurement data is calculated for all source space locations. By

this way the risk of trapping in local minimum, as it might be the case for dipole fits, is

avoided and the dipole is located at the global minimum. Furthermore, the calculated

residual map can be used for estimating the confidence of the results. The RV in dipole

scan is calculated with the equation below with proper regularization parameter (λ2),

measurement (Y) and leadfield (L) matrices for EEG (YIEEG×1, LIEEG×3N), MEG

(YIMEG×1, LIMEG×3N) or EMEG (Y(IEEG+IMEG)×1, L(IEEG+IMEG)×3N ) [6, 108]:

RV = ∥(1− L(LTL+ λ2)−1LT )Y∥2 (2.46)

The goodness of fit (GOF) is then calculated as GOF = 1 − RV and, in the up-

coming chapters, both RV and GOF values are given as percentages. The goal of the

DS procedure was to determine the source space location with minimal RV and thus

maximal GOF value.

The obvious drawback of dipole scans is their higher computational costs especially

when the underlying activity is assumed with more than two dipoles. It is also possible

to reduce the unknown parameters by imposing further constraints such as constructing

the source space only in gray matter (as it is performed in this thesis, see Section

3.1.11) and allowing the orientations of the dipoles to be only perpendicular to the

surface of the gray matter. This simplification is justified by the fact that the EEG

and MEG signals are produced by the pyramidal cells that are perpendicular to the

cortex surface [42, 44, 45]. However, possible errors due to inaccurate segmentation of

the gray matter should be considered before imposing these kinds of constraints, This

is why in this thesis, the normal-constraint was not used. The common problem with
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all dipole models is that the number of dipoles has to be determined a priori to avoid

spurious results. An advantage of recently proposed new inverse approaches is that

this number parameter is also estimated from the data [112, 113, 114].

Another method in this direction is the multiple signal classification (MUSIC) which

can be used to locate multiple asynchronous dipolar sources from the measurements[107].

The algorithm scans a single-dipole model in the source space instead of the multiple-

dipole directed search. Furthermore, an eigenvalue decomposition of the data can be

used to identify the orientation which saves considerable time and many modifications

on the original MUSIC algorithm exist in the literature [115, 116].

2.3.3.2.2 Current density approaches

In current density approaches usually first a source space is constructed and then one

(with normal constraint) or three (without normal constraint) dipoles are calculated

per source node. The advantage of these methods is that the user does not have to

specify the number of dipoles a priori and as in DSs the source space can be limited to

gray matter and possibly also with orientation perpendicular to the local surface of the

gray matter if a very accurate surface segmentation is available. However, the system in

current density approaches is underdetermined because the number of sources (usually

about 10,000) is significantly higher than the number of measurements (usually less

than 350). Solutions differ for different a priori assumptions and some of the most used

approaches are listed below:

1. Minimum norm estimates (MNE):Among many solutions with low residuals

the one with the smallest L2 norm of the overall current density is selected [117].

The algorithm punishes deep sources with high amplitudes and favors superficial

sources which causes the so-called depth bias problem [118].

2. Weighted MNE: An additional term to alleviate the depth bias in MNE is

introduced to the formulation [119].

3. Low-resolution electromagnetic tomography (LORETA): Calculates the

solution which minimizes the laplacian of the weighted sources, and thus favors

spatially smooth results [120].

4. Standardized low-resolution brain electromagnetic tomography

(sLORETA): The minimum norm reconstructions are normalized by the pos-

terior covariance and the output is a statistical map [121]. The reconstructions
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are shown to be artificially dispersed (the extent is overestimated) and it does

not perform well for more than one source with small distances between [118].

5. Exact low-resolution brain electromagnetic tomography (eLORETA):

It is similar to sLORETA, but unlike the sLORETA it calculates the current

distribution [122].

6. sLORETA-weighted accurate minimum norm (SWARM): It is designed

to calculate current distribution using sLORETA statistical maps. It is similar

to weighted minimum norm solutions but the weights are calculated from the

sLORETA solution [123].

7. Beamformer approaches: In beamformer approaches the activity in a region

of interest is estimated by minimizing the contributions of other simultaneous

sources [66, 124, 125]. As can be understand from the previous sentence, this

approach is not appropriate to estimate time correlated activity [66, 124, 125].

8. Hierarchical Bayesian approaches: In these methods uncertainties are al-

lowed in the prior model and the data itself is used to approximate the model

by using hyperparameters that are introduced with a priori distributions in a

hierarchical way[113, 118, 126, 127].

9. State space models: These approaches use not only the spatial information,

but also temporal information. Among the state space models, Kalman filter

appears as a promising model for solving the inverse problem of bioelectromag-

netism [128, 129, 130].

2.3.3.3 Source analysis in presurgical epilepsy diagnosis

The invasive EEG recordings are widely accepted as the current gold standard in

presurgical epilepsy diagnosis. As compared to non-invasive techniques, invasive EEG

has two key advantages: the electrodes are closer to the sources and the skull layer

between sources and electrodes is eliminated. Nevertheless, invasive EEG suffers from

serious shortcomings such as the risk of harming the patient due to the invasive proce-

dure and the low spatial coverage (can only cover a part of the brain) due to the limited

number of invasive electrodes [1]. Therefore, in addition to invasive EEG, noninvasive

EEG and MEG are considered as important tools for presurgical epilepsy diagnosis,

too. Especially with increasing use of realistic and individual head models, improved

MRI co-registration approaches and high sensor numbers, the accuracy and precision
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of noninvasive source reconstructions have increased notably [14, 131, 132, 133, 134].

Noninvasive EEG and MEG not only detect epileptogenic lesions and point out in-

trinsic epileptogenicity of malformations of cortical development [135, 136], but they

can also guide the placement of invasive electrodes. Moreover, in some cases they can

even supply sufficient information for a surgical intervention without invasive record-

ings [10, 16, 131, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146], and also can identify

epileptogenic temporal subregions [147]. Furthermore, today it is widely accepted that

epilepsy is a network disease, in which different parts of the brain are involved [35, 36],

and thus, understanding the networks causing epilepsy requires the evaluation of the

information from the whole brain, which is only possible with noninvasive methods

like EEG/MEG, EEG/fMRI, etc. It has also been recently shown that there is a

good agreement between noninvasive EEG and MEG source reconstructions and fMRI

responses [135].

2.3.3.3.1 Location and extent of the epileptogenic zone

Determination of the location and the extent of the epileptogenic tissue are of great im-

portance for successful surgery and seizure freedom. Köhling et al. [12] and Speckmann

et al. [15] employed optical imaging to study epileptogenic human neocortical slices

removed during epilepsy surgery, and found that the activated cortical areas during

sharp waves are focal, with diameters as small as 750 µm, and their spatial positions

change in a dynamic manner within the epileptogenic tissue. Based on these findings,

it can be assumed that the single spike localizations are from very focal sources, in

which spatial position changes within the irritative zone in a stochastic way. In line

with these results, many studies used the size of the area producing interictal epileptic

spikes, the so-called irritative zone, as an indication of the focality and for the pre-

diction of the chance of seizure freedom after the surgery [10, 11, 13, 14, 148]. For

this purpose, usually each single spike is localized separately and then the scatter is

calculated from the distances between positions of individual spikes and the centroid

location. Even though not all sharp waves can be detected with extracranial record-

ings [149], this approach is appealing because the spreading of the localizations might

give an estimation of the focality of the irritative zone [150, 151]. While this approach

seems reasonable for high SNRs, the SNRs of single spikes are not always enough to

obtain reliable source reconstructions, especially for deeper sources. Furthermore, it

was shown in Bast et al. [16] that the scatter size depends highly on the SNR for

EEG single spike localizations. Alternatively, it is possible to average the spikes that
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belong to the same class (i.e., they have a sufficiently similar EEG/MEG topography)

in sensor space and then perform source reconstruction to improve SNR and to achieve

more reliable source reconstructions [16, 145]. The latter approach, however, no longer

provides much information on the actual size of the underlying irritative zone, because

it often uses a single dipole that only represents the center of gravity of a larger ac-

tivated cortical patch (it is also possible to get a sense of the volume of the irritative

zone using confidence ellipsoids [10]). Therefore, the sources obtained in this way from

the averaged spikes are a collection of the underlying focal sources and represent a

considerable portion of the irritative zone.

Figure 2.6 is an illustration of the epileptogenic tissue. In this figure, the epilepto-

genic tissue was represented with a black rectangle and the black dots inside this area

represent the origins of epileptic activity. Köhling et al. [12] and Speckmann et al.

[15] showed that the origin of an epileptic signal might be any of these dots and this

origin changes stochastically for each epileptiform signal within the black rectangle (a

different point within the irritative zone). Thus, if the effects of noise on single spike

localizations could be avoided, the single spike localizations should end up as points

inside the epileptogenic tissue (black rectangle), while averaging all spikes would just

give the position illustrated with a magenta star (the center of activity).

At first glance, distributed source models and current density approaches might seem

more appropriate, but the reconstructed extent in commonly used current density ap-

proaches mainly depends on the chosen approach/norm and huge differences in spatial

dispersion have been shown for one and the same underlying source [118]. Still among

current density approaches, hierarchical Bayesian methods [112, 118] and maximum

entropy on the mean method [135, 152] seem promising for future studies.

2.3.3.3.2 Propagation/SNR balance in source reconstruction of epileptic

activity

There is a continuous discussion on the selection of the interval for the localization

of the spikes. On one hand, the peak of the spike indicates the highest degree of

synchrony in the neurons and thus better signal to noise ratios. But on the other

hand, this location might not be the origin of the spikes due to the propagation of

the activity. Many studies use the middle of the rising flank of the averaged spikes

for source localization based on previous studies, which favor it in comparison to the

calculation of the peak of the spike [153, 154, 155]. This is a good compromise between

the low SNR at the beginning of the spike and the propagation, which might be faced at
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Figure 2.6: Illustration of epileptogenic tissue (black rectangle), the origins of different
spikes following the measurements in [12] and [15] (black dots), and the
position that is obtained if all spikes are first averaged and then localized
(magenta star).

the peak of the spike. In this thesis, in Section 3 the middle of the rising flank was used

to investigate the effects of volume conduction with reasonable SNRs. Additionally, in

Section 4 the localizations at different phases of epileptic spikes were tested to broaden

our knowledge on the propagation phenomenon and in order to compare EEG, MEG

and EMEG.

2.4 Magnetic Resonance Imaging

As stated in previous sections accurate modeling of the head and brain is crucial to

solve the forward and inverse problems of bioelectromagnetism. In this thesis magnetic

resonance imaging (MRI) was used to obtain the geometries of different tissue com-

partments inside the head as well as the brain conductivity anisotropy. In this section

a short overview of the principles of MRI is given. This summary is written using

[156, 157, 158] as the main references and detailed explanations on MRI principles can

be found in these books. The details on how the MRIs were used to obtain the head

models are explained in Chapter 3.

MRI benefits from the nuclear magnetic resonance phenomenon (NMR) to construct

the images. NMR theory explains the phenomenon that materials placed in a strong

magnetic field absorb or emit signals at specific frequencies, and the first NMR signals

were measured by Felix Bloch [159] and Edward Purcell [160] independently in 1946.

Each proton and neutron in nucleus has a spin (angular momentum) and normally these
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nuclei are randomly oriented and, thus, achieve zero net spin. However, some materials

have non zero spins due to odd number of protons and neutrons they have, which results

in a nonzero net magnetic moment. These magnetic moments are normally randomly

oriented. However, when a strong external magnetic field is applied (by the main

magnet in MRI), the nuclei align along the direction of the external magnetic field

(parallel or antiparallel). The number of nuclei aligned parallel to the main magnetic

field are slightly more than the antiparallel ones and this creates a magnetic vector

along the main magnetic field (longitudinal axis). These nuclei precess around this

main magnetic field and the rate of this precession is proportional to the strength of

the external magnetic field. This means, if the magnetic field is modified so that its

strength vary with respect to spatial position, also the precessing frequencies of the

protons will differ in this way. In MR scanners the three gradient coils (in x, y and z

directions) are used to induce these spatially varying magnetic fields and this is how

the spatial information is encoded in MRI.

When a proton is aligned along the main magnetic field, it will be in equilibrium

and will not emit any signal unless its orientation is changed by another external field

resulting in an angle with the direction of the main magnetic field. These nuclei are

sensitive to signals with frequencies equal to their precessing frequencies. In MRI

using the radio-frequency (RF) coils these specific signals with matching frequencies

are produced and used to excite nuclei. The excited nuclei then change its orientation

to the transverse plane and emit an RF signal which is later received and processed to

obtain an image.

The excited nuclei are tend to realign themselves by emitting their energy. This

phenomenon is called relaxation and the times associated with this are called relaxation

times. The three important relaxation times are: 1) T1 or longitudinal relaxation time

which is the time needed for the nuclei to return to its equilibrium in longitudinal (along

the main magnetic field) direction; 2) T2 or the transverse relaxation time which is

the time needed for the spinning moments to become out of phase due to the effects

of nearby nuclei (spin-spin interaction); 3) T2* which is due to local inhomogeneities

of the magnetic field.

These relaxation times differ for different tissue types and MRI sequences can be

designed to focus on certain relaxation times when acquiring the data. For example

a T1 weighted image as the name suggests focuses on the differences of T1 relaxation

time of different tissues, and can be obtained using short repetition (TR) and echo (TE)

times (9.2 ms TR and 4.4 ms TE for T1 MRI in Section 3.1.2). In T1 MRI the tissues

from brighter to darker can be sorted as WM (short T1 relaxation time), GM (longer
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T1) and CSF (longest T1). In T2 weighted images the focus is on the differences of T2

relaxation time and for this purpose long TR and TE (2000 ms TR and 378 ms TE for

T2 MRI in Section 3.1.2) are used. In T2 MRI the tissues from brighter to darker are

CSF (long T2 relaxation time), GM (shorter T2) and WM (shortest T2) (see Figure

3.3).

In diffusion weighted MRI the diffusion of the water molecules are measured. For

this purpose, two consecutive gradient pulses are sent; the first one to dephase and the

second one to rephase the spins. This results in almost no attenuation at the received

signals if the spins (protons) do not move between the two pulses. However, if the

spins move after the dephasing pulse then the perfect rephasing cannot occur (because

the rephasing signal differs with spatial position) and measured signals are attenuated.

This is the basic idea behind diffusion weighted imaging. If multiple diffusion weighted

images with varying directions are measured (as it is done in this thesis, see Section

3.1.2) then they can be combined to obtain the diffusion tensors (see Figure 3.7). This

imaging is then called diffusion tensor imaging (see Figure 3.7).

In this thesis as explained in detail in Chapter 3, T1 and T2 MRIs were used to

segment different tissue compartments, and the DTI was used to calculate the wa-

ter diffusion tensors which are later used to calculate conductivity tensors with the

approach suggested in [86].
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3 Study I: Volume Conduction Effects

on EEG, MEG and EMEG in

Presurgical Epilepsy Diagnosis

In this chapter, the volume conduction effects in source reconstruction of the epileptic

activity and somatosensory evoked responses were investigated using the data mea-

sured from an epilepsy patient. In order to assess the impact of including different

tissues and brain conductivity anisotropy to the head model on the outcome of source

reconstruction, a six compartment finite element head model was built with 1 mm

resolution using the individual T1, T2 and DT MRIs. Furthermore, the conductivity

of the skull compartment was calibrated using the measured somatosensory evoked

responses. After explaining this new pipeline in detail, this chapter will mainly focus

on the effects of the skull conductivity and will compare six and three compartment

head models and brain anisotropy. The results and methods explained in this chapter

were recently published in [71].

3.1 Patient and Methods

3.1.1 Patient information

The data used in this study was measured from a 17-year-old female suffering from

pharmaco-resistant focal epilepsy since 11 years. The patient has a history of epilepsy

in her family and her sister also had focal epilepsy. Several 3 Tesla MR acquisitions,

following protocols sensitive to epileptogenic lesions, were negative. An FDG-PET

scan showed a diffuse and extended left fronto-temporal hypometabolism (see Figure

3.1). According to the clinical assessments she had 4 different seizure types:

• Seizures with aura and a strange feeling in the stomach.

• Hypermotor seizure during sleep with sweating, shaking, standing, stark motor

Dissertation Ümit Aydin
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movements and teeth chattering.

• Tonic hypermotoric seizure with hyperventilation, pull of shoulder, tonic con-

tractions of the arms and disorientation.

• Dissociative seizures

Interictal discharges were recorded in EEG and MEG, with most of them over the left

temporal regions and only few over the left frontal region. Resective epilepsy surgery

was refused after the invasive work-up due to multifocal activity and an unfavorable

risk-benefit ratio of any resective surgical intervention.

Figure 3.1: FDG-PET showing left fronto-temporal hypometabolism. Red and white
regions show higher glucose consumption in comparison to blue regions.

3.1.2 MRI measurements

T1-weighted (which will be abbreviated as just T1 in the rest of the thesis), T2-

weighted (T2) and diffusion-tensor (DT) MRI scans were acquired with a 3T scanner

(Gyroscan Intera/Achieva 3.0T, System Release 2.5 (Philips, Best, NL)). The details

of the sequences were as given below:

• 3D-T1 gradient-echo pulse sequence with inversion prepulses, TR/TE/TI/FA

= 9.2 ms/4.4 ms/1014 ms/9◦, with water selective excitation and voxels with

1.04×1.04times1.17 mm.

• 3D-T2 TSE pulse sequence, TR/TE = 2000 ms/378 ms, cubic voxels, 1.17 mm

edge length

• DT-MRIs (DTI) were acquired using a Stejskal-Tanner spin-echo EPI sequence,

TR/TE = 7546 ms/67 ms. Geometry parameters were: FOV 240 × 240 mm for
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70 transverse slices, 1.875 mm thick without gap, square matrix of 128, i.e. cubic

voxels with 1.875 mm edge length. One volume was acquired with diffusion

sensitivity b=0 s/mm2 (i.e. blip-up data with flat diffusion gradient) and 20

volumes with b=1000 s/mm2 for diffusion weighting gradients in 20 directions,

equally distributed on a sphere.

• Geometry distortion due to susceptibility gradients was maximal in phase en-

coding direction (anterior-posterior), bandwidth 20.3 Hz/pixel. An additional

data set with only flat diffusion gradients (blip-down data) and reversed spatial

encoding gradients was acquired for distortion correction according to [161].

• In addition, a T1 dataset with gadolinium markers in nasion, left ear canal and

right ear canal was also acquired. In order to distinguish left and right hemi-

spheres two markers were placed on the right hemisphere as shown in Figure

3.2. These fiducials were later used to coregister EEG and MEG sensors to the

individual MRI.

Figure 3.2: Fiducials on T1 MRI. The sagittal image on the left shows the nasion, the
sagittal view in the middle shows two gadolinium markers on the right ear,
and the coronal view on the right shows one left and one right marker.

3.1.3 Post-processing of structural MRIs

For registration and segmentation purposes mainly the FSL software 1 was used. The

first step in the pipeline was resampling of the water selective T1 MRI to 1 mm3

isotropic voxels with FSL − FLIRT algorithm. This data was used as the reference

space in the rest of the process. Then T1 MRI with the fiducials and the T2 MRI were

1http://www.fmrib.ox.ac.uk/fsl
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registered to the reference water selective T1 with a rigid registration scheme, which

uses mutual information as the cost function and splines for interpolation. Water

selective T1 MRI and T2 MRI were used in FSL−BET to get the estimates of brain,

inner skull, outer skull and extracranial tissues (summarized as scalp in the rest of

the thesis) [162, 163]. The brain extraction process used in this study depends on one

vertex at a time deformation of the triangular tessellation of a sphere surface, in which

the center and diameter (half of the estimated brain diameter) are obtained after a

rough thresholding, until it reaches the borders of the brain [163].

Special attention was given to skull layer, and inner and outer skull masks were

corrected manually using the CURRY 7 software 2. The scalp segmentations produced

with FSL are mainly intended to be used with BEM, and thus its surface was too

smooth, another scalp segmentation was calculated via CURRY and used for the head

model. The skull spongiosa segmentation pipeline started with the erosion/dilation

of the outer/inner skull masks and was followed by masking of the T2 MRI with

the eroded skull. Then, a threshold-based segmentation was used to label the voxels

as skull spongiosa and compacta. The skull was eroded before masking in order to

avoid leakage effects that might happen if elements labeled as skull spongiosa were not

always residing between two skull compacta layers. In practice this might happen due

to limited resolution and segmentation errors.

The segmentation of white matter (WM), gray matter (GM) and cerebrospinal fluid

(CSF) were done using a hidden Markov random field model, which benefits from an

iterative approach along with expectation maximization to estimate the bias field and

to determine the tissue classes and probabilities (FSL− FAST ) [164]. Another gray

matter mask was calculated with Freesurfer 3 and used to correct wrong classification

of dura mater as gray matter.

In this study, dura matter, CSF and meninges were not distinguished and thus

everything inside the subarachnoid region was assigned as CSF. This might have led

to a slight overmodeling of the CSF space but it was decided not to model meninges

explicitly in this study due to its thin structure, which makes it very hard to obtain

an accurate segmentation, and unknown conductivity [165]. Even though the effects

of dura mater for EEG were shown before [166], because of its small average thickness

that is just 0.36 mm [167] (the regions where it is thicker consists of mainly blood),

it was decided not to distinguish the dura mater in this study (a rough dura mater

compartment is included to the head model used in Chapter 5). Thus, meninges

2http://www.neuroscan.com/curry.cfm
3http://surfer.nmr.mgh.harvard.edu
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and dura mater were not included to the head model because they were very thin

in comparison to CSF, which has an average thickness of 3.1 mm [167], and because

unlike CSF [77] their conductivities are not well known and inter-individually stable.

The resulting segmentation is shown in Figure 3.3 along with T1 and T2 images used

for segmentation.

Figure 3.3: T1 (upper row), T2 (middle row) and the segmented (lower row) MRIs.
Sagittal (left column), coronal (middle column) and axial (right column)
slices. The color codes for the tissues are scalp (yellow), skull compacta
(purple), skull spongiosa (black), CSF (green), gray matter (red) and white
matter (blue).
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3.1.4 Generation of the geometry-adapted hexahedral finite

element mesh

A geometry-adapted hexahedral finite element mesh with 1 mm resolution was con-

structed out of the labeled volume. When constructing the geometry-adapted mesh it

was ensured that all interior angles at element vertices are convex and the Jacobian

determinant in the FEM computations remains positive by selecting the node-shift

factor as 0.33. The final geometry adapted hexahedral FE mesh was generated with

SimBio V GRID 4 and had 3,993,881 vertices and 3,895,971 elements (see Figure 3.4

visualized with SCIRun 5). The overall construction of the head model took about

two days, most of the time was used for the manual correction and optimization of the

automatic segmentation results. Figure 3.5 shows the regular and geometry adapted

hexahedral meshes for frontal regions and the staircase effects in the regular mesh.

Figure 3.4: Head model visualized with SCIRun. The color codes for the tissues are
scalp (red), skull compacta (orange), skull spongiosa (yellow), CSF (dark
blue), gray matter (light blue) and white matter (green).

4http://www.rheinahrcampus.de/∼medsim/vgrid
5SCIRun: A Scientific Computing Problem Solving Environment, Scientific Computing and Imaging
Institute (SCI), downloaded from: http://www.scirun.org
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Figure 3.5: Geometry adapted (left) and regular (right) hexahedral meshes (visual-
ized with SCIRun). The color codes for the tissues are scalp (red), skull
compacta (orange), skull spongiosa (yellow), CSF (dark blue), gray matter
(light blue) and white matter (green).

3.1.5 Inclusion of gray and white matter conductivity tensors

The DTI was corrected for eddy current (EC) artifacts by affinely registering direc-

tional images to the image with flat diffusion gradients (blip-up data) using the FSL

routine FLIRT. Subsequently, the gradient directions were reoriented using the rota-

tional part of the transformation matrices obtained during the EC correction scheme.

Then, a diffeomorphic approach was applied for nonlinear correction of susceptibility

artifacts in the DTI dataset according to [161]. For this purpose, first a diffeomor-

phic warp field, which allows transformations only in the phase encoding direction,

was calculated with flat diffusion gradients and reversed spatial encoding gradients

(blip-up and blip-down data) and then it was applied to directional images. For this

patient the observed displacements on the calculated warp field were ranging from -4.4

mm to 6.2 mm. A sample slice of blip-up data, blip-down data and their difference

before (upper row) and after (lower row) susceptibility correction are shown in Figure

3.6. This approach was implemented in the freely-available SPM 6 and FAIR 7 soft-

ware packages. Following susceptibility correction, the DT-MRIs were registered to

the structural MRIs by registering the susceptibility corrected blip-up data with flat

diffusion gradients to the T2 MRI. The rigid transformation matrix obtained in this

6http://www.diffusiontools.com/documentation/hysco.html
7http://www.mic.uni-luebeck.de/people/jan-modersitzki/software/fair.html
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step was then combined with the T2 to T1 transformation matrix and applied to the

directional images. In this step corresponding gradient directions were reoriented once

more to ensure conformance to the directional images [161]. After obtaining diffusion

tensors an effective medium approach was used to estimate electrical conductivity ten-

sors from water diffusion tensors [70, 86] (see Section 3.1.6 for details). The scaling

factor for this dataset was calculated as 0.25 S · sec/mm3 and the resulting mean

conductivity values for GM and WM were 0.24 S/m and 0.20 S/m, respectively.

Figure 3.6: A sample slice from the blip-up data (left column), blip-down data (middle
column) and their difference (right column) before (upper row) and after
(lower row) susceptibility correction.

The artifact corrected and registered DTI data was then used to calculate the dif-

fusion tensors with the FSL routine DTIFIT [168]. In this approach, diffusion tensors

are calculated for each voxel [168] and the parameters of the diffusion tensors are esti-

mated in a probabilistic sense relying on the local probability density functions. The

main fiber directions obtained with this approach are shown in Figure 3.7.
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Figure 3.7: Main fiber directions (largest eigenvalues of diffusion tensors) weighted ac-
cording to the fractional anisotropy (FA) values for sagittal (left), coronal
(middle) and axial (right) slices. The maps are registered and plotted on
the T1-MRI. The colors indicate the main fiber orientations: red is left-
right, green is anterior-posterior and blue is superior-inferior.

3.1.6 Effective medium approach

The water diffusion tensors obtained via diffusion tensor imaging are required to be

converted to conductivity tensors before they are included to the head model. For this

purpose, following the studies in literature [70, 86] an effective medium approach was

used. This approach assumes a linear relationship between the conductivity σ and the

water diffusion tensor D as shown below:

σ =
σe
de

D (3.1)

In this equation the ratio of effective extracellular conductivity (σe ) and diffusivity

(de) can be represented by a scaling factor (s). Instead of using an empirical scaling

like in [84, 86] here it was calculated following [70]. In this approach the assumption is

that the arithmetic mean of the anisotropic conductivity tensor volume is the same as

the tensor volume when the isotropic conductivity is assumed. Thus, s was calculated

with a least squares fit, which ensures the conductivity tensor volumes in the interested

tissue match the volume of the corresponding tensor with isotropic conductivity [70].

4π

3
(σiso

comp)
3 =

∑Ncomp

i=1
4π
3

∏3
j=1 σ

j
i

Ncomp

(3.2)

where σiso
comp is the isotropic conductivity for compartment comp which is assigned

either white matter (wm) or gray matter (gm), andNcomp is the number of conductivity

tensors. By replacing the jth eigenvalue of the ith conductivity tensor σj
i with sdji

(jth eigenvalue of the ith diffusion tensor) and
∑Ncomp

i=1

∏
3

j=1
sd

j
i

Ncomp
with dcomp, equation 3.2
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reduces to:

4π

3
(s · dcomp)

3 (3.3)

Finally s can be calculated with the formula below.

s =
dwmσiso

wm + dgmσiso
gm

d2wm + d2gm
(3.4)

3.1.7 Head models used in this study

The properties of head models used in this work are summarized in Table 3.1.

The most realistic head models contain six compartments (models 6C in Table 3.1)

scalp, skull compacta, skull spongiosa, CSF, and brain gray and white matter. The

conductivity values of 0.43 S/m were used for the scalp compartment [78] and 1.79 S/m

for the highly conductive CSF [77]. Conductivity modeling of gray and white matter

was described in Section 3.1.5. In this study, the main focus was on the effects of

different skull conductivities on EEG, MEG and EMEG source reconstructions due to

high interindividual variance of these values and distinct sensitivities of EEG and MEG

to it. The only varying parameters in the five head models were the skull spongiosa

and compacta conductivities. In order to limit the number of parameters that need

to be estimated, a fixed ratio of spongiosa:compacta of about 3.6:1, which was the

average of the measurement in [68], was used. The naming convention was the number

of compartments followed by an underscore and then the skull compacta conductivity

10−4 S/m. For example for the six compartment head model with skull compacta

conductivity 0.0041 S/m the name of the model was 6C 41. The references from the

literature citing these conductivity values are provided below for each head model.

Model 6C 41 : In [169] current dipoles were introduced via subdural strip electrodes

and they were localized from the scalp potentials for varying brain to skull ratios. This

study concluded that most accurate solutions were obtained for the brain to skull ratio

of 80. This conductivity value is also used as a standard skull conductivity in most

commercial source analysis packages [6] (to be precise 0.0042 S/m was used in[6]).

Model 6C 70 : The values used in this model were the average of the skull spongiosa

and compacta conductivities in [68]. The measurements were from live skull samples

of four patients who underwent intracranial surgery.

Model 6C 132 : Calculated from the simultaneous measurements of intra- and extra-

cranial potentials of five epilepsy patients [170]. In their study, the main focus was
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on the determination of the brain to skull ratio and an intersubject average of 24.8

was found, which corresponds to 0.0132 S/m in three compartment head models. It is

important to mention that all measurements used in this study were from pediatric pa-

tients aged 8 to 12 years and younger age is associated with higher skull conductivities

in the literature[171].

Model 6C 330 : Measured during intracranial surgeries of five epilepsy patients and

all measurements were from the temporal part of the skull [171]. They found skull

conductivity values ranging from 0.0320 to 0.0801 S/m.

The standard low-parametric three compartment (3C ) isotropic volume conductor

model (scalp, skull, brain) is still frequently used in source analysis (see recent review

in [59]). It is, therefore, instructive to compare results obtained with 6C and 3C head

models. For the homogenized brain compartment in the 3C models, a conductivity

value of 0.33 S/m was chosen [6, 169]. The skull conductivity value of 0.01 S/m in

model 3C 100 was found as an optimal choice to approximate the skull’s layeredness

in compacta and spongiosa, in a globally isotropic skull modeling approach (in [67],

average over four subjects). Finally, the skull conductivities used in the calibrated head

models 6C Cal and 3C Cal were calculated using the somatosensory evoked potentials

and fields measured from the patient and this procedure is explained in detail in 3.1.13.

3.1.8 EEG and MEG acquisition and preprocessing

The patient was measured with EEG and MEG simultaneously. The EEG cap had

74 AgCl sintered ring electrodes placed equidistantly according to the 10/10 system

(EASYCAP GmbH, Herrsching, Germany). In addition to those 74 electrodes, six

additional channels were available and were used to detect eye movements. The MEG

system used in this chapter (and throughout the thesis) was a whole head system with

275 axial gradiometers and 29 reference coils (CTF, VSM MedTech Ltd.). The refer-

ence coils were used to calculate 3rd order synthetic gradiometers in order to reduce

the interference of magnetic fields originating from distant locations (i.e., magnetocar-

diogram). These measurements were done in a magnetically shielded room to limit the

magnetic interference from outside the chamber.

The measurements were performed in the supine position, which not only increases

the comfort of the patient but also reduces the movement. Prior measurements showed

that the position of the head inside the MEG dewar tends to get lower towards the end

of the measurements due to changes in the posture caused by fatigue and measuring

in supine position was especially valuable to reduce this movement in superior-inferior
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Table 3.1: Head models used in this chapter. The first column indicates the name of the head model and the remaining
columns show the conductivities for the respective tissue compartments. The compartments that were and were not
distinguished are indicated by a slash (/) and by a dash (.) signs, respectively. Isotropic conductivity values were
taken from the literature [6, 67, 68, 77, 78, 169, 170, 171] or were determined in the SEP/SEF skull conductivity
calibration procedure described in this work (* Cal models; see Sections 3.1.13 and 3.2.1). The sign # indicates that
conductivity tensors were determined as described in Section 3.1.5. In all 6C models, the ratio of skull spongiosa to
compacta was kept constant to the mean of the ratio measured by [68].

.
Head Model Scalp Skull Compacta Skull Spongiosa Skull CSF Gray Matter White Matter Brain

6C Cal 0.43 [78] 0.0024 0.0084 / 1.79 [77] # # /
6C 41 0.43 0.0041 [6, 170] 0.0147 / 1.79 # # /
6C 70 0.43 0.0070 [68] 0.0251 [68] / 1.79 # # /
6C 132 0.43 0.0132 [170] 0.0471 / 1.79 # # /
6C 330 0.43 0.0330 [171] 0.1179 / 1.79 # # /
3C Cal 0.43 - - 0.0024 - - - 0.33 [6, 170]
3C 100 0.43 - - 0.0100 [67] - - - 0.33
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plane. Keeping the same measurement position between the EEG/MEG and MRI mea-

surements also helped to prevent the brain shift. In [80] it was shown that brain shift

results in changes in CSF thickness and even these small changes affect EEG signals

with power differences up to 600 % and on average 80 % due to CSF’s high conductivity

value. A problem related to combined EEG/MEG measurements in supine position

was the additional pressure induced due to lying on occipital electrodes.In order to

avoid possible discomfort of the patients, a cotton wool layer was placed between the

electrodes and the dewar.

Electrode locations were digitized with a Polhemus device (FASTRAK c⃝, Polhemus

Incorporated, Colchester, Vermont, U.S.A.) prior to measurement. During the mea-

surement the position of the head inside the MEG scanner was constantly measured

via three coils that are placed on nasion, left ear and right ear canal. Each coil was

driven by sinusoidal currents with different frequencies and they were used to detect

head movement. By selecting the frequencies as 1425, 1475 and 1525 Hz it was ensured

that they did not interfere with the measurements and were not integer multiples of 50

Hz (line voltage frequency in Germany) [172]. During the measurements, head move-

ment was continuously tracked with three head localization coils and only the runs

with maximum head movement lower than 8 mm were accepted for further analysis.

3.1.8.1 Somatosensory evoked potentials (SEP) and fields (SEF)

In order to measure somatosensory evoked potentials and fields the right and the left

median nerve of the patient were stimulated in a randomized order. Square electrical

pulses with 0.5 ms, produced by an S88 dual output square pulse stimulator (Na-

tus Neurology Incorporated, Middleton, WI, USA), were used for this purpose. The

constant voltage output of the s88 stimulator, which was outside the MEG chamber,

was fed into two battery powered SIU7 stimulus isolation units inside the chamber

to achieve constant current stimulation and photoelectric isolation. The SEP/SEF

measurement run was divided into two parts with equal lengths and the direction of

the current was reversed between the first and the second part to reduce stimulation

artifacts. The stimulus strengths were adjusted to the lowest values, which achieved

clear twitching of the thumb. The values used for this patient were 4.5 mA for the

right and 5.7 mA for the left nerve during the first part, and 6 mA for the right and

6.5 mA for the left nerve during the second part. The total acquisition time required

for both hands was 800 s and 950 events per hand were acquired with a stimulus on-

set asynchrony of 350 to 450 ms to avoid habituation and to avoid any synchronous

activity at the prestimulus interval. The data was acquired with a sampling rate of
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1200 Hz and an online lowpass filter of 300 Hz was applied to avoid aliasing.

After the acquisition, data was filtered with a notch filter for line voltage frequency

(50 Hz and its harmonics) and a 20 to 250 Hz zero phase bandpass filter in order

to increase the signal to noise ratio as suggested in [109]. The continuous run was

divided into epochs that span 100 ms before and 200 ms after stimuli. Following visual

inspection bad channels were deselected and epochs with artifacts in EEG and/or

MEG were detected and excluded with a threshold based semi-automatic approach.

The last step before source reconstruction was averaging the remaining epochs, which

resulted in SNRs of 11.3 for SEP and 14.4 for SEF for the N20 and corresponding

MEG component of the left median nerve stimulation.

3.1.8.2 Spontaneous measurements

Five runs with 480 seconds each were acquired with a 2400 Hz sampling rate and

an online low pass filter of 600 Hz. No specific kind of stimulus was applied during

the measurements and the patient was advised to relax and close her eyes to prevent

blinking and eye movement artifacts.

Afterwards the acquired runs were filtered with the notch filter for the line voltage

frequency and its harmonics. Then data was filtered with a zero phase bandpass filter

from 1 to 100 Hz. Prior to any further evaluation, the runs were subsampled to 300

Hz because investigation of high frequency oscillations is not in the scope of this thesis

and subsampling reduces the computational costs.

All preprocessing steps except the subsampling procedure, which was done with the

CTF software (VSM MedTech Ltd.), were performed with the CURRY software.

3.1.9 Marking and clustering of interictal spikes

The epileptic spikes analyzed in this chapter were marked by three experienced clinical

reviewers using the CURRY 7 software. All reviewers were supplied with health care

records of the patient and with all prior knowledge available on patient’s seizures before

they marked the epileptic spikes according to their best clinical practice. The reviewers

examined and marked the EEG signals recorded during the spontaneous runs and they

were allowed to use different electrode montages as they do in clinical practice. The

reviewers were asked to mark the negative peak of the spike because in the presence of

noise distinguishing of other phases such as spike onset or middle of the rising flank in

single spikes is not feasible. The initial clustering was done by the reviewers and it was

according to the name of the electrode in which the reviewer observed the maximum
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negativity.

Even with this procedure, not all spikes were marked right at the tip and the initial

clustering of some of the spikes was not correct. The main reasons were that reviewers

used different montages investigating the data, especially bipolar electrode montages

that are widely used among epileptologists, and mistakes arose due to decreased at-

tention, especially for data sets from patients who produce hundreds of spikes, as in

this case. It is also important to mention that in usual clinical practice, which does

not include source reconstruction and EEG is only used to obtain a rough estima-

tion (usually on lobar level) of the epileptic region, marking the spikes exactly on the

peak and achieving of a precise clustering are not as crucial. Although in this study

clinical reviewers were marking the spikes very carefully by taking into account the

above mentioned issues, most of the epileptologists do not have much experience on

marking the spikes in a specific manner needed for this and similar studies. Thus, the

corrections are often required. In order to address this issue, a Matlab program that

semi-automatically corrects these errors was written and tested as part of a master

thesis [173]. The program accepts the data after preprocessing and the markings ex-

ported from CURRY in ASCII format, checks all channels, which are direct neighbors

to the channel selected by the reviewer and renames and moves the marker to the

correct time and correct electrode. Details of this procedure and the improvements

are explained in detail in [173]. The resulting spike clusters are given in Table 3.2 for

each reviewer. As can be seen from this table, the number of temporal lobe spikes

(FT9, F9) was much greater than the number of frontal spikes (AFz, Fz) and thus the

temporal lobe spikes were analyzed in details in the rest of this section.

Table 3.2: The number of spikes marked by each reviewer. The spike types were named
and produced by the semi-automatic clustering algorithm.

Spike type Reviewer 1 Reviewer 2 Reviewer 3
FT9 208 10 132
F9 111 50 57
AFz 3 5 1
Fz 11 6 7

3.1.10 Forward approach

As explained in detail in Section 2.3.2.3, a Venant direct approach was used to solve

the forward problem of EEG and MEG. In order to increase the computational effi-

ciency, the FE transfer matrix approach and the Algebraic MultiGrid preconditioned
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Conjugate Gradient (AMG-CG) solver were used along with standard piecewise trilin-

ear basis functions [59]. The SimBio 8 software was used for these calculations. The

calculation of the leadfield matrix for 74 channel EEG and 275 channel MEG took

about one hour and six hours, respectively, on a standard workstation (Intel R⃝ Core

i7-860 Processor, 2.80 GHz and 16 GB RAM).

3.1.11 Construction of the source space

The source space used in this chapter was calculated inside the gray matter without

any orientation constraints. As it was explained in Section 2.3.2.3, the mathematical

dipole was approximated by monopolar sources and sinks on neighboring FE mesh

nodes in Venant approach, which was used in this thesis. This however, leads to

numerical problems and unrealistic results if not all monopolar sources and sinks, used

to model the dipole, reside inside the gray matter [81]. To avoid this problem, a custom

written Matlab code was used that checks for each source space point if the closest

node of the FE mesh belongs only to gray matter elements [113]. The final source

space constructed with this code had 13,468 source space points with 2 mm average

resolution (See Figure 3.8).

3.1.12 Source reconstruction of interictal spikes

The CURRY 7 software was used for source reconstructions after importing the source

space (see Section 3.1.11) and the leadfield matrices (see Section 3.1.10) with ap-

proaches described in this chapter. The inverse approach of choice was the single

dipole deviation scans, which will be abbreviated as DS in the rest of the thesis. As

also explained in Section 2.3.3.2.1 DS result is a function that gives the residual vari-

ance (RV) (or GOF=1-RV) for each source space point and it is called DS map. In

this thesis, the peak of each map was selected and only this peak was represented by a

single dipole. Here a separate DS was calculated for each epileptic spike. This allowed

to analyze the resulting spike clusters with regard to their centroids and focality as

described in the next section. This choice was based on [12, 15], which showed the

activated cortical areas during sharp waves to be very focal with their spatial positions

changing in a dynamic manner. The appeal of the DS was, that the spread of the

localizations might give an estimate on the focality of the irritative zone as also pro-

posed by [150, 151]. The DS map (GOF for each source space point) obtained for an

8please see https://www.mrt.uni-jena.de/simbio and the integration into Fieldtrip:
http://fieldtrip.fcdonders.nl/development/simbio
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Combined EEG and MEG source analysis of epileptiform activity using calibrated

realistic finite element head models
52

Figure 3.8: An example source space with 2 mm resolution limited to gray matter
(top), the dipole scan map obtained for an epileptic spike (bottom left)
and the final dipole when only visualizing the dipole that corresponds to
the peak of the dipole scan map (bottom right). Note that bigger and
brighter squares mean better metrics in these points and the metrics are
shown only for points with GOF higher than 50 %.

epileptic spike (bottom left) and the single dipole at the peak of the DS map (bottom

right) are shown in Figure 3.8. For epileptic spikes, the peak of the EEG spike was

chosen as 0 ms. The time of interest in Figure 3.8 was -13 ms, which corresponds to

the middle of the rising flank, and the noise was calculated using the time samples

spanning from -200 ms to -70 ms.

In this chapter, EEG and EMEG DSs were not regularized, whereas MEG DSs

were regularized according to [6] in order to suppress the influence of spatially high

frequent data noise that might otherwise be strongly amplified in high amplitudes of

reconstructed radial source orientations [174]. In order to perform combined source

reconstruction, EEG and MEG signals were transferred to a unitless common space
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(see Section 2.3.3.1) [6].

Most of the results of this study are provided in terms of centroid dipoles, which

were used to represent and compare the results of groups of DS dipoles calculated from

different spikes. The position of a centroid dipole was calculated as the point, which

minimizes the sum of the Euclidian distances of all included individual DS dipoles.

In addition to the centroid dipole, spread spheres were also calculated to get a rough

estimation on the extent of the spread of DS dipoles that are represented by the centroid

dipole. In Chapter 4 the focus will be more on the extent of the spread and each DS

dipole will be shown separately instead of using a spread sphere. The details of this

procedure are given Algorithm 1.

Algorithm 1 (Computation of centroid dipole and spread sphere):

1. Perform DS for all spikes which satisfy SNR > 3 within one spike cluster in a
predefined head model.

2. Determine DS dipoles with GOF>91 % and use only these in further steps.

3. Calculate the centroid dipole and save the distances of each DS dipole to the
centroid dipole.

4. Using the distances saved in step three calculate the mean mdist and standard
deviation stddist of these distances.

5. Exclude the DS dipoles in step three in which the distance to the centroid dipole
exceeds mdist + 2(stddist).

6. Use the DS dipoles that satisfy the condition in step five to calculate the final
centroid dipole, mdist and stddist.

7. Use the position of the centroid dipole as the center and mdist+stddist as the radius
to calculate spread spheres.

The step by step representation of Algorithm 1 is shown in Figure 3.9.

3.1.13 Skull conductivity calibration procedure using SEP and SEF

data

As indicated in Section 3.1.7, the skull conductivity value, especially due to its high

inter-individual variance, is quite controversial in the literature. However, an appropri-

ate choice of it is crucial for successful source analysis of EEG and combined EEG/MEG

data. While EEG source reconstructions are strongly influenced by changes in skull
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Figure 3.9: Steps of Algorithm 1 : (a) DS dipoles (in blue) for SNR >3 (step 1); (b)
Spikes GOF>91 % (step 2); (c) and (d) Spikes excluded at step five (red
dipoles); (e) Dipoles used to calculate the centroid dipole in step six; (f)
Final centroid dipole and corresponding spread sphere from step seven (red
dipole).

conductivity, the MEG is shown to be far less susceptible to it [42, 51]. In this sec-

tion, a calibration procedure, which benefits from the different sensitivity profiles of

the EEG and MEG, is explained in order to determine skull conductivity individually

using the SEP and SEF data of the patient. Results of computer simulation studies for

validating the approach and the first application to somatosensory evoked responses

from a healthy subject were presented in [175] for single modality EEG and in [176]

for combined EEG and MEG. In this chapter, the peak of the mean global field power

in the SEP/SEF N20(m) component was used for calibrating the skull conductivity of

the individual head model. The SEP/SEF N20 component was chosen for calibration

procedure because of the four important properties listed below:

1. The position of this component, in 3b area of the primary somatosensory cortex

in the postcentral sulcal wall, is well known from the literature [6, 42] and its

central location allows both EEG and MEG to measure both poles. For example,

if the underlying source was in temporal lobe, depending on the orientation of

the source, one of the modalities might not be able to measure both poles, which

would limit the accuracy of the source reconstructions significantly.
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2. It is a relatively focal source and it can be represented with just a single dipole

as also evidenced by hierarchical Bayesian method results which showed only a

single source even though the number of sources was not limited [113]. This

results in simpler EEG and MEG maps and simplifies the source reconstruction.

This makes SEP/SEF more favorable to auditory evoked responses (N100m), in

which the source reconstruction would be more complicated because two dipoles

would be needed, again as also supported by the HBM results [113], to model

the simultaneous activity in left and right planum temporale. Furthermore, for

AEF, MEG can measure all four poles but for AEP in EEG two negative poles

over frontal lobe merge into just one negative pole (due to interaction of the

dipolar sources) and positive poles cannot be measured completely due to limited

coverage of the EEG cap in inferior regions (see the AEP and AEF signals and

topographies measured from a healthy subject in Chapter 6, Figure 6.3).

3. It is a quasi-tangential component so it can be assumed that both EEG and

MEG can measure it well. Otherwise the MEG would not be able to measure

most of the quasi-radial components that EEG measures and this would lead to

errors in the calibration process (see the P14 component in Chapter 6, Figure 6.1.

This component is clearly visible in EEG but not in MEG due to its quasi-radial

orientation and deep location).

4. It is a quite stable component that can be measured in almost all subjects and

patients. It is not influenced by factors such as attention or fatigue and N20 is

even present in anesthesized patients [177].

The 100 ms pre-trigger interval was used for noise estimation for both SEP and SEF

datasets. The calibration procedure used in this work can be summarized by means

of Algorithm 2. In step 2.a) of Algorithm 2, the procedure uses the strength of the

MEG in order to appropriately localize the primary somatosensory cortex even for less

suitable skull conductivity parameters. Step 2.b) is necessary since o1 and m1 might

be spurious in the case when the source is not optimally quasi-tangential. It uses the

strength of the EEG to appropriately determine the source orientation. However, in

case of inappropriate skull conductivity, m2 will be spurious so that the SEF data is

needed to determine the source magnitude in step 2.c).
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Algorithm 2 (Conductivity calibration of the skull using SEP/SEF):

1. Define a discrete set of skull conductivity parameters: Σ = {σ1, σ2, · · · , σn}

2. For each head model with skull conductivity parameter σi, i = 1, · · · , n:

a) Perform DS on SEF, calculate: location x, orientation o1 and magnitude m1 of the
dipole.

b) Keep location x fixed and calculate o2 and m2 using a least squares fit to the SEP
data.

c) Keep x and o2 fixed, calculate m3 using a least squares fit to the SEF data.

d) Calculate the RV of SEP for the dipole with location x, orientation o2 and magnitude
m3.

3.) Output the conductivity in Σ that gives the lowest RV in step 2.d).

3.2 Results

The results section is divided into two subsections. In the first subsection, the skull

conductivity calibration procedure based on the somatosensory evoked responses is

carried out to determine individually optimized head models. The head models are

then used in source analysis scenarios for the somatosensory evoked responses as well

as, in subsection two, for the evaluation of the epileptic activity using single modality

EEG or MEG or combined EEG/MEG source analysis scenarios.

3.2.1 Skull conductivity calibration and source analysis of the

somatosensory evoked responses

Table 3.1 and Figure 3.10 show the results of Algorithm 2 for the six compartment

(head model 6C Cal in Table 3.1) and the three compartment (3C Cal in Table 3.1)

head models. In step 1 of Algorithm 2, a set of 11 different conductivity parameters

were used in the range between 0.0016 S/m [37] and 0.033 S/m [171] (x-axis in Figure

3.10). In Figure 3.10, the differences in source reconstruction to the calibrated head

models (indicated by the bar) when using other skull conductivity parameters are

indicated by boxes with dashed frames. Differences are shown in source location x (top

row, in mm), orientation o2 (middle row, in degree) and strength m2 (bottom row, in

%). As expected, the source location x (from SEF in step 2.a)) and the orientation o2

(from SEP in step 2.b)) of Algorithm 2 are hardly depending on the skull conductivity
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parameter, whereas skull conductivity, RV, and source strength m2 are closely related

to each other.

The value of the calibration procedure presented in this work can be further appre-

ciated by studying the sensitivity of single modality SEP or SEF source analysis to

changes in volume conductor modeling. Therefore the 6C Cal DS results were used as

reference, and they were compared to the reconstructions with other head models from

Table 3.1. First, the data was examined for the 6C 70 head model. As illustrated by

a source localization difference of 7.2 mm (into the depth), an orientation change of 24

degrees and a magnitude reduction by 35 %, SEP source analysis depends significantly

on skull conductivity, whereas SEF reconstructions were hardly affected (differences:

0 mm, 3.7 degrees, 2 %). Using of head model 3C 100 led to source reconstruction

differences of 7.2 mm, 8.9 degrees and a magnitude reduction by 60 % for the SEP, and

to 4.9 mm, 25.3 degrees and a magnitude reduction by 23 % for the SEF. When head

model 3C Cal was used, these differences for the SEP data fell to 0 mm, 6.9 degrees

and 21 % magnitude reduction, while the differences for the SEF data remained at a

similar level with 4.9 mm, 25.8 degrees and 12 % magnitude reduction.

Figure 3.10: RV (in %) obtained from Algorithm 2 in step 2.d. for different skull
conductivity parameters for 6C (red) and 3C (blue) head models. The
differences to the calibrated head models 6C Cal and 3C Cal (indicated
by the black bar, see also Table 3.1) in source reconstruction are indicated
by boxes with dashed frames: difference in source location x (top row, in
mm), orientation o2 (middle row, in degree) and strength m2 (bottom row,
in %).
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3.2.2 Evaluation of interictal epileptic activity

3.2.2.1 Interictal spike marking, clustering and SNR improvement

The following investigations with regard to the evaluation of the epileptic activity

focus on two left temporal spike types, with a maximum negativity at either FT9 or

F9 electrodes, because of their high incidence. The three evaluators marked a total of

568 spikes and the clustering algorithm from Section 3.1.9 determined 350 FT9 and

218 F9 spikes.

A typical FT9 spike and its corresponding topographies for EEG and MEG can be

seen in Figure 3.11. For EEG all electrodes, which were not assigned as bad channels,

were used for source reconstruction. In the case of MEG and EMEG only the MEG

signals measured by the sensors over the left hemisphere (129 channels) were included

to calculations in DSs. This subselection resulted in improvements in SNRs and GOFs

because the spontaneous brain activity, measured by the sensors over the right hemi-

sphere, was no longer included in calculations. In EEG, it was not possible to make

any subselection because the positive pole of the interictal spike was measured by the

electrodes on the right hemisphere. In the case of MEG, both poles were covered by

the chosen subset of sensors due to orthogonality of EEG and MEG poles and more

focal topography in MEG (see Figure 3.11).

3.2.2.2 Effects of varying skull conductivity on source reconstruction for the

epileptic activity

In this section the effects of varying skull conductivity on EEG or MEG source re-

construction of FT9 and F9 spikes were investigated. For this purpose, the Algorithm

1 was used to compute the centroid dipoles and spread spheres for these two spike

clusters using the six compartment head models from Table 3.1. In order to focus on

skull modeling effects, the GOF selection criterion was used (step 2 in Algorithm 1 )

for the reference head model 6C Cal and the same spikes were used for the other head

models.

In Figure 3.12, the resulting centroid dipoles and spread spheres for the FT9 cluster

are plotted on the T1-MRI. Results for the F9 cluster are very similar (see Table 3.3)

and therefore not shown in Figure 3.12. The 6C Cal centroid location was used for

the selection of sagittal, coronal and axial MRI slices and the color-coded results were

projected for the different head models on the chosen slices.

Table 3.3 complements Figure 3.12 in quantifying the differences in FT9 and F9
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Figure 3.11: The waveform and topography of a representative FT9 spike. 71 channel
EEG (left column) and 129 channel MEG (right column) butterfly plots
(upper row, time-point -13 ms marked with a black line) and correspond-
ing topographies from left view at time-point -13 ms plotted on individual
brain and skin (bottom row).

spike cluster centroid results in terms of location, orientation and strength. In Table

3.3, results in head model 6C Cal are used as the reference and they are compared to

the results of the other six compartment head models.

For the EEG, as Figure 3.12 and Table 3.3 show, the clear and systematic trend was

observed: with increasing conductivity, the spike cluster centroids are localized deeper

(here more mesial and superior) in the brain, while their strengths decrease. For the

model with the highest conductivity 6C 330, the centroid locations are deeper by 23.8

mm and 21.1 mm, and the strengths decrease by 66 % and 61 % for the FT9 and F9

spike clusters, respectively. The changes in orientations are moderate. The mean GOF

(higher than 93 %) is similar for all these head models.

For the MEG, the centroid location changes for FT9 and F9 spike clusters are very

moderate compared to the EEG, and the maximal changes in orientation and strength

are 23 degrees and 13 %, respectively (Figure 3.12 and Table 3.3). The MEG results do

not point to any systematic sensitivity of MEG localization to skull conductivity. Even

if with 8 mm maximal location change, model 6C 132 points towards a slightly more
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Figure 3.12: Influence of skull conductivity on EEG and MEG localizations. FT9 cen-
troids and spread spheres plotted on T1-MRI for head models 6C Cal
(red), 6C 41 (green), 6C 70 (blue), 6C 132 (cyan) and 6C 330 (ma-
genta). The centroid dipole locations of 6C Cal were used for the selection
of MRI slices and all results were projected on these slices.

Table 3.3: Sensitivity of EEG and MEG spike source reconstruction with regard to skull
conductivity: Differences in centroid location, orientation and strength for
FT9 and F9 spike clusters for different head models from Table 3.1 when
compared to the results achieved for the reference head model 6C Cal.

Spike Head EEG MEG

Type Model Location
Diff. (mm)

Orientation
Diff. (degree)

Strength
Diff. (%)

Location
Diff. (mm)

Orientation
Diff. (degree)

Strength
Diff. (%)

FT9

6C 41 5.7 2 -33 1.2 2 1

6C 70 10.1 4 -45 2.0 4 0

6C 132 15.5 11 -57 8.0 23 -10

6C 330 23.8 8 -66 6.2 15 -13

F9

6C 41 6.0 3 -20 1.2 5 -4

6C 70 9.9 4 -36 1.6 12 -8

6C 132 14.5 6 -49 5.3 19 -1

6C 330 21.1 5 -61 5.4 15 -3

superior and posterior centroid location, no trend can be observed since the change

reduces to 6.2 mm for the head model with highest conductivity (6C 330 ). Again, no

indicative changes are observed in terms of mean GOF (higher than 94 %) for varying

conductivities.

In both EEG and MEG no clear trend in spread sphere diameters can be reported.

The Euclidian distances between EEG and MEG centroids, as well as the ratio of
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Combined EEG and MEG source analysis of epileptiform activity using calibrated

realistic finite element head models
61

intersection of spread sphere volumes to their union are given in Table 3.4 for the six

compartment head models with varying skull conductivities. For both spike types,

it is clearly visible that the lower the skull conductivity, the smaller the Euclidean

distance between EEG and MEG centroids (from 28.3 mm to 16.6 mm for FT9 and

from 29.4 mm to 24.2 mm for F9) and the larger the ratio of intersecting spread sphere

volume (from 24 % to 44 % for FT9 and from 13 % to 30 % for F9). It can thus be

observed that the calibrated head model 6C Cal not only brings SEP and SEF data

together as presented in Section 3.2.1, but also reduces the gap (especially in depth)

between the EEG and the MEG spike cluster source reconstructions. However, it is also

important to note that even after calibration, the EEG centroid is still considerably

more anterior than the MEG centroid (see Chapter 4 for further explanations with

regard to this important aspect).

Table 3.4: Euclidean distance between the EEG and MEG centroids (in mm) and, in
parenthesis, the ratio of intersecting spread sphere volumes of EEG and
MEG to their union (in percent) for FT9 and F9 spike clusters and for the
different head models.

Spike Head Models

Type 6C Cal 6C 41 6C 70 6C 132 6C 330

FT9 16.6 (44) 17.1 (40) 20.1 (28) 26.1 (19) 28.3 (24)

F9 24.2 (30) 24.2 (31) 26.3 (25) 29.9 (16) 29.4 (13)

In Figure 3.13, the DS dipole reconstructions of single spikes (that passed the GOF

criterion, i.e., step 2 in Algorithm 1 ) (left column) as well as the corresponding cen-

troid and spread spheres (right column) are presented. It is clearly visible that, on

the one hand, the EEG and MEG centroids fall inside the intersecting part of their

spread spheres for the calibrated head model 6C Cal (optimized volume conduction

can thus reduce the distance between the modalities). However, on the other hand,

due to the different sensitivity profiles, a remaining distance between EEG and MEG

reconstructions, especially in anterior-posterior direction, persists (see Chapter 4 for

further explanations in this regard).

3.2.2.3 Effects of six versus three compartment head modeling on EEG and

MEG spike source reconstruction

In this section, the EEG and MEG source reconstructions using the individually cali-

brated six compartment head model 6C Cal are compared to the reconstructions using
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Figure 3.13: Single spike localizations and corresponding centroid and spread sphere.
FT9 spike DS reconstructions for EEG (blue) and MEG (green) using the
calibrated head model 6C Cal at time-point -13ms: DS dipole reconstruc-
tion results of all single spikes that passed step two of Algorithm 1 (left)
and corresponding cluster centroids and spread spheres (right).

three compartment (3C) isotropic head models. Two 3C models, presented in Table

3.1, were considered for this comparison, namely the current standard head model in

source analysis, model 3C 100, as well as the calibrated model 3C Cal as determined

in Section 3.2.1.

Figure 3.14 shows the resulting centroid dipoles and spread spheres for the FT9

cluster plotted on the T1 MRI. Results for the F9 cluster are very similar (see Table

3.5) and are therefore not shown in Figure 3.14. Again the 6C Cal centroid location

was used for the selection of sagittal, coronal and axial MRI slices and the color-coded

results for the different head models were projected on the chosen slices.

Table 3.5 complements Figure 3.14 in quantifying the differences in centroid results

in terms of location, orientation and strength. In Table 3.5, results in head model

6C Cal were used as the reference and were compared to the results of the 3C head

models.

For the EEG, for FT9 and F9 spikes the differences in centroid locations between3C 100

and 6C Cal correspond to 16.2 and 14.6 mm, respectively. Additionally, considerable
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Figure 3.14: Comparison of three and six compartment head models. FT9 centroids
and spread spheres plotted on T1-MRI for head models 6C Cal (red),
3C Cal (green) and 3C 100 (blue). The centroid locations of 6C Cal
were used for the selection of MRI slices and all results were projected on
these slices.

Table 3.5: Sensitivity of EEG and MEG spike source reconstruction with regard to
three compartment (3C) or six compartment (6C) head modeling: Differ-
ences in centroid location, orientation and strength for FT9 and F9 spike
clusters for the two 3C head models from Table 1 when compared to the
results achieved with the reference head model 6C Cal.

Spike Head EEG MEG

Type Model Location
Diff. (mm)

Orientation
Diff. (degree)

Strength
Diff. (%)

Location
Diff. (mm)

Orientation
Diff. (degree)

Strength
Diff. (%)

FT9
3C 100 16.2 13.1 -79 8.7 2.2 43

3C Cal 4.4 3.8 -36 8.6 15.0 67

F9
3C 100 14.6 17.8 -77 8.6 4.1 40

3C Cal 3.2 12.5 -28 9.1 7.0 72

differences in centroid dipole orientations, much reduced strengths, and strongly in-

creased spread spheres can be reported for head model 3C 100. Skull conductivity

calibration (head model 3C Cal) was found to reduce these differences significantly,

for centroid locations to 4.4 and 3.2 mm and orientations to 3.8 and 12.5 degrees

for FT9 and F9 spike clusters, respectively. Even though the differences in centroid

strengths were also reduced by 36 % and 28 % magnitude, differences remain at a

significant level.

The situation is different for the MEG, where skull conductivity calibration had
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hardly any effect on the localization of the sources. Figure 3.14 and Table 3.5 show

that centroids and spread spheres were nearly identical for models 3C 100 and 3C Cal.

However, in comparison to 6C Cal they showed about 9 mm and more than 40 %,

differences in location and strength, respectively, for both FT9 and F9 spike clus-

ters. Please also note for the MEG the higher strength and orientation differences for

3C Cal in comparison to 3C 100. This only shows the weakness of MEG to accurately

reconstruct radial source orientation and strength components in the presence of noise.

Additionally, significantly larger spread sphere diameters in 3C than in 6C models can

be reported here.

3.2.2.4 Comparison of EMEG to single modality EEG or MEG source

reconstruction

In previous sections, a deep insight was gained about the factors that influence EEG

and MEG source analysis with a special focus on volume conduction effects due to

geometry and/or conductivity modeling changes as well as effects, which were mainly

due to limited SNR in measurements. The gained knowledge can now be used to

study combined EEG/MEG source analysis in comparison to single modality EEG or

MEG reconstructions of the epileptic spike activity. In the further analysis, for this

comparison, the most advanced head model 6C Cal from Table 3.1 was used.

Figure 3.15 and Table 3.6 show the results of Algorithm 1 for FT9 and F9 spike

cluster centroid dipole and spread sphere computations for EMEG and for the single

modalities EEG and MEG. In Table 3.6, the EMEG results serve as the reference and

differences in centroid dipole locations, orientations and strengths are presented for

each of the single modalities, EEG and MEG.

Figure 3.15: Differences of EEG, MEG and EMEG localizations. FT9 centroids and
spread spheres plotted on T1-MRI for EMEG (red), MEG (green) and
EEG (blue) using head model 6C Cal. The centroid location of the com-
bined reconstruction was used for the selection of MRI slices and all results
were projected on these slices.
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Table 3.6: Comparison of EEG and MEG spike cluster centroid results with the results
of EMEG using the reference head model 6C Cal : Differences in centroid
dipole location, orientation and strength for FT9 and F9 spike clusters.

Spike
Modality

Difference from EMEG

Type Location
Diff. (mm)

Orientation
Diff. (degree)

Strength
Diff. (%)

FT9
EEG 24.2 26 -7

MEG 9.8 70 -74

F9
EEG 30.9 21 63

MEG 9.2 79 -78

Figure 3.15 and Table 3.6 show that the EMEG centroid dipoles are localized about a

factor of 2.5 (FT9) and even about 3.4 (F9) closer to the MEG than to the EEG centroid

locations. However, with 9.8 mm for FT9 and 9.2 mm for F9, there is still a considerable

distance between the EMEG and the MEG centroid localizations. The localization was

thus not just totally dominated by the MEG, but was rather a complicated interplay

of a main MEG and still a considerable EEG part, pointing to a considerable radial

source component as also clearly visible in Figure 3.15. EMEG source orientation and

strength results are influenced more by the EEG part, as Figure 3.15 and Table 3.6

clearly show, while with orientation differences of 70 degrees and more, it gets clear

that the MEG is mainly missing the radial source component.

As Figure 3.15 shows, the spread sphere diameters of EMEG (29 mm) were slightly

larger than those of EEG (25 mm) and MEG (24 mm).

As a final result, Table 3.7 shows the differences in centroid reconstructions in com-

bined EEG/MEG scenarios, using the six compartment models of Table 3.1 instead

of the reference head model 6C Cal. This table shows a clear trend of increasing

source location differences with increasing skull conductivity. A more detailed analysis

showed that higher skull conductivity led to deeper source localizations, i.e., similar to

the EEG centroid results in Figure 3.12, quasi-radially into the deeper brain regions.

However, with maximal differences of 7.8 mm (FT9) and 13.9 mm (F9) for the head

model with highest skull conductivity (6C 330 ), the differences are considerably lower

than for the EEG (23.8 mm for FT9 and 21.1 mm for F9, see Table 3.3). Table 3.7

shows decreasing source strength with increasing skull conductivity, but with 62 %

(FT9) and 52 % (F9) for model 6C 330, the reductions are smaller than for the EEG

(66 % for FT9 and 61 % for F9, see Table 3.3). Interestingly, Table 3.7 now addi-

tionally shows a clear and systematic trend of increasing orientation differences with
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maximums as 17 degrees (FT9) and 13 degrees (F9) for model 6C 330, while such

a trend could not be observed for the EEG in Table 3.3. A more detailed analysis

(using the singular value decomposition of the MEG lead field matrix to determine the

quasi-radial orientation component) revealed a decreasing quasi-radial and a constant

quasi-tangential centroid component with increasing skull conductivity. The GOF for

model 6C Cal for combined EEG/MEG is 95 % (FT9) and 93 % (F9). As Table 3.7

shows, for FT9 spikes, the GOF stays mainly on this high level for all 6C head mod-

els, while for the F9 spike cluster, a trend towards decreasing GOF with increasing

skull conductivity can be noted with a 6 % reduction, i.e., only 87 % GOF, for model

6C 330.

Table 3.7: Sensitivity of EMEG spike source reconstruction with regard to skull con-
ductivity: Differences in centroid location, orientation, strength and GOF
for FT9 and F9 spike clusters for different head models from Table 3.1 when
compared to the results achieved for the reference head model 6C Cal.

Spike Head EMEG

Type Model Location
Diff. (mm)

Orientation
Diff. (degree)

Strength
Diff. (%)

GOF
Diff. (%)

FT9

6C 41 1.8 3 -26 0

6C 70 1.7 8 -55 0

6C 132 3.2 13 -56 0

6C 330 7.8 17 -62 -1

F9

6C 41 3.3 1 -24 0

6C 70 6.1 9 -40 -1

6C 132 11.6 11 -42 -4

6C 330 13.9 13 -52 -6

3.3 Discussion

In this chapter a new analysis pipeline for combined EEG/MEG as well as single modal-

ity EEG or MEG source reconstruction based on a calibrated realistic head model

generated from T1, T2 and DT MRI data was presented. Inspired by [29,30,72,73],

an algorithm (Algorithm 2 in Section 3.1.13) was developed and applied for skull con-

ductivity calibration using simultaneously acquired SEP/SEF data. The measurement
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time, which was divided as one block for EEG/MEG and one for MRI, was easily man-

ageable for the patient. As input, this procedure needs an accurately segmented model

of the head, and in particular, a geometrically correct version of the skull. Whereas

computer tomography provides better definition of hard tissues such as bones due to

high radiation exposure, its use on humans is not justified with the only purpose of

an improved skull modeling for EEG and MEG source analysis [60, 67, 142]. In this

chapter, a combination of T1 MRI, which suits to the identification of soft tissues

(scalp, brain), and T2 MRI, enabling the segmentation of the inner skull surface and

the distinction between skull compacta and spongiosa, was used. The methodology

was then applied in a case study to source analysis of interictal epileptic activity of a

patient suffering from medically-intractable epilepsy, but could as well be used for any

other simultaneous EEG/MEG study in the neuroscientific field (the seven minutes

additional measurement time, which was easily manageable even for the patient of this

study, should not form an obstacle in a group study with healthy subjects). In investi-

gations presented here, a variety of head models were used, which differed in terms of

skull conductivity or in the number of distinguished tissue types (Table 3.1). The most

advanced head model, the six compartment (6C) calibrated model 6C Cal, consists of

the tissues scalp, skull compacta, skull spongiosa, CSF, gray and white matter, uses the

individually-optimized skull conductivity parameters from the calibration procedure,

and accounts for the anisotropy of the brain tissues. The method presented in this

study considers the different sensitivity profiles of the EEG and MEG to properties

of the volume conductor and source components (see also [6, 46]). Therefore, before

investigating combined EEG/MEG scenarios, the important parameters that influence

EEG and/or MEG source reconstruction were studied.

The first investigation focused on a comparison of EEG and MEG with regard to

a parameter to which they have the most distinct sensitivity and which, as shown in

Table 3.1, has considerable interindividual variability: the skull conductivity. For the

same underlying source, due to different sensitivity profiles in volume conduction, the

differences between EEG and MEG source reconstructions could increase in case of an

erroneously modeled skull compartment. Therefore, a multimodal MRI procedure for

skull geometry modeling and Algorithm 2 based on SEP/SEF data to individually es-

timate skull conductivity was proposed. The new methodology was then applied to the

reconstruction of the SEP and SEF N20 component (Section 3.2.1) and to the detection

of spontaneous interictal epileptic activity (Section 3.2.2.2). It was found that for the

MEG, skull conductivity changes had no effect in terms of N20 localization, but had

non-negligible effects on source orientation and strength. This can be explained with
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the well-known instability of MEG in reconstructing quasi-radial source magnitude.

In contrast, EEG results differed significantly in terms of N20 location, orientation

and strength: the higher the skull conductivity, the deeper the localization and the

smaller the source magnitude. Besides the differences (6C versus 3C) discussed further

below, these results are therefore mainly in agreement with former 3C head modeling

approaches [6, 42, 76]. For the epileptic activity, EEG and MEG were compared, and

the effects of varying skull conductivities were investigated in Section 3.2.2.2. For the

EEG, a clear trend of deeper source localizations and reduced source amplitudes can

be reported with increasing skull conductivity. Table 3.3 showed that location differ-

ences of more than 21 mm can result in case of erroneously chosen skull conductivity.

MEG source reconstructions of the epileptic activity did not show a trend similar to

EEG and the reconstruction differences with changing conductivity were significantly

smaller. A closer look at the largest MEG centroid localization change in Table 3.3

(model 6C 132 ) confirmed that this difference is not a consequence of a systematic

sensitivity of MEG to skull conductivity changes, but mainly is due to the interplay of

the high noise in spike data with the chosen procedure of centroid calculation, namely

preselecting single spikes with regard to their SNR and GOF, performing single spike

and single dipole deviation scans (DSs), and averaging the global peak of the result-

ing GOF function for computing spike cluster centroids. Figure 3.16 illustrates this

problem well. In this figure the positions of three source space points with very similar

(best three) GOF values for MEG and head model 6C 132 are shown. The 0.03 %

GOF difference between the red and the blue cubes results in 9.8 mm difference in

the position of the global maximum and thus the resulting dipole. Since the number

of spikes that passed the Algorithm 1 were limited, even one or two spike localiza-

tions like this might result in a considerable shift in the final centroid location (see

change in the MEG centroid for 6C 132 in Table 3.3). This point might be especially

important for advanced head models presented in this work, in which unlike three

compartment BEM the brain is not modeled as a homogeneous compartment but has

a complicated structure that includes WM, GM and even conductivity anisotropy. As

explained above, MEG orientation and strength components should also be interpreted

with caution because of the poor sensitivity of MEG to radial source components.

Regarding the distance between EEG and MEG localizations, Table 3.4 demon-

strates that the skull conductivity calibrated model 6C Cal reduces the distance (es-

pecially the difference in depth) between EEG and MEG localizations and maximizes

the ratio of the intersecting spread spheres. However, localization differences might

still resist like in the case of this study, and these discrepancies can be explained by
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Figure 3.16: Best three DS locations in terms of metrics (cubes with color) for an exem-
plary MEG dipole scan for head model 6C 132 plotted on T1 MRI. The
GOF values for these three locations are very close to each other (95.79
% (red), 95.76 % (blue) and 95.33 % (yellow)) but this small difference of
(0.03 %) results in 9.8 mm difference (distance between the red and blue
cubes) in the final dipole.

the different sensitivity profiles of EEG and MEG, where MEG mainly sees the more

tangential parts of an extended cortical patch (the more posterior localization in re-

sults of this study) and EEG detects more the radial parts (the more anterior polar

localization in results of this study), as discussed further in Chapter 4 and by [178]

and [18].

Another goal of this study was to make a comparison between 6C and 3C head mod-

eling. The 3C 100 head model can be considered as the current standard in source

analysis [59, 67]. For the reconstruction of the N20 component in the SEP and SEF

scenarios in Section 3.2.1, the significant differences between 3C 100 and 6C Cal re-

constructions for both EEG and MEG were found. While skull conductivity calibration

(model 3C Cal) brought no significant change for the MEG (i.e., the MEG differences

between 6C Cal and 3C Cal remained at a significant level), it enabled the reduction

of depth localization differences for EEG considerably, while differences in source ori-

entation and strength persisted. In the case of epileptic activity a similar behavior was

observed (Section 3.2.2.3). For MEG, significant differences can be reported between

6C Cal and 3C 100, which could again not be reduced by means of skull conductivity

calibration. Even if, for the EEG, up to 16 mm differences in centroid locations be-

tween 6C Cal and 3C 100 could be reduced to less than 5 mm between 6C Cal and

3C Cal, considerable differences in centroid orientations and strengths persisted. It

can be therefore summarize that, for EEG localization, skull conductivity is the dom-

inating parameter, while the highly conducting CSF and brain anisotropy contribute
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significantly to EEG and MEG source orientation and strength components (see also

[51, 70, 78, 79, 85, 179]). If the sources have a considerable radial orientation compo-

nent like in case of spike data presented in this study, CSF and brain conductivities

can additionally influence MEG localization (about 9 mm in Table 3.5), but the more

quasi-tangential the source is, the less MEG is influenced by these parameters (less

than 5 mm for the N20 SEF reconstruction). While the modeling of skull inhomo-

geneity by means of a distinction between skull compacta and spongiosa might be

important for EEG in other situations [67], it was not a crucial factor here (see Figure

3.10 and Section 3.2.2.3), because the major spongiosa areas were far from the central

and temporal source space areas for this patient (see coronal slice in Figure 3.3).

The effects of using different head models were found to be significantly higher for

the epileptic activity in the temporal area in comparison to the somatosensory evoked

responses. In the light of the existing literature (see, e.g. [6, 51, 67, 91, 133]), this

is not too astonishing. For example, in [91], the comparison of a spherical with a 3C

realistically-shaped head model clearly showed larger MEG volume conduction effects

for fronto-temporal and deep sources. Huiskamp et al. [133] showed that EEG sources

arising from temporal regions are especially susceptible to geometrically inaccurate

skull models. Possible explanations are: a) the skull in the temporal area has a higher

concavity than in the area of the central sulcus, leading to larger volume conduction

effects; b) the underlying source of the SEP/SEF N20 component is mainly a single

superficial dipole with quasi-tangential orientation where especially MEG is very sen-

sitive to and therefore less prone to errors due to simplifications in volume conduction

(see Figure 3.10). In contrast, both FT9 and F9 temporal spike sources were deeper

and had a considerable radial orientation component, rendering especially the MEG

more susceptible to volume conduction effects; c) the EEG and MEG sensor coverage

is much better above the central sulcus, where both poles are clearly visible in the

SEP/SEF data. For the spikes in temporal lobe, some of the activity, which was sup-

posed to appear at inferior regions, could not be measured due to the limited coverage

of basal brain regions with the used EEG cap.

The results in Sections 3.2.1 and 3.2.2.4 clearly show that the combined EEG/MEG

centroid results profit from the MEG which contains important localizational informa-

tion for the tangential source components, an information which is even not depend-

ing much on the accuracy of skull (and skin) modeling. In contrast, the combined

EEG/MEG centroid results profit from the EEG, which could add the information

that was mainly missing in the MEG, namely the localizational information about the

radial source components, and the full information on source orientation and strength
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components (see also [6, 42, 46, 47, 48, 51, 76]). However, the latter statement has

the constraint of an underlying accurate and individually-calibrated head volume con-

ductor model, since with more than 21 mm localization differences (see Table 3.3) it

was found that EEG localizations highly depend on skull conductivity parameters in

accordance with the literature [67, 180].

Source localization techniques have error margins that are proportional to the inverse

of the SNR. Since single spike activity has a significantly lower SNR than averaged

somatosensory responses, its localization is less reliable and therefore not always suf-

ficient for precise localization of the epileptic tissue. It has, however, been reported

that also the orientation of the dipole possesses localizational information regarding

the epileptic tissue [142, 144]. In [142] the importance of dipole orientation for tem-

poral spikes was stressed, where the authors showed different seizure freedom ratios

for patients with horizontally and vertically oriented dipoles. In [144] all central and

interhemispheric, and 73 % of the temporal spike dipoles (positive part) were observed

to be oriented towards the epileptogenic side. The MEG source orientations in Sec-

tion 3.2.2.4 were almost orthogonal to the combined EEG/MEG orientations, because

MEG could hardly measure the quasi-radial orientation components of the underlying

sources. Combined EEG/MEG thus contains information which is missing in single

modality EEG or MEG and this information can be exploited to achieve improved

source reconstructions not only with regard to localization, but also with regard to

source orientation [142, 144]. However, as it was shown in comparisons in this study,

especially source orientation and strength components are susceptible to simplifica-

tions or modeling errors with regard to the CSF and brain compartments and in many

situations, the distinction between skull spongiosa and compacta might be of high im-

portance [67], too. These arguments underline the need to further validate and evaluate

the accuracy of anisotropic 6C volume conductor modeling in future investigations.

The results of combined EEG/MEG in the presence of erroneously chosen skull con-

ductivity (Table 3.7) can be interpreted in the following way: the MEG part of the

combined EEG/MEG dataset stabilized especially the depth localization. Localiza-

tions quasi-radially into the depth of the brain could be much reduced (e.g., for the

FT9 spike cluster centroid from 23.8 mm for EEG in Table 3.3 down to 7.8 mm for

combined EEG/MEG in Table 3.7). In order to simultaneously achieve a high GOF to

both datasets, the strength of the radial centroid component was reduced for higher

skull conductivities (by means of a significant reduction of overall centroid strength

and an orientation change towards more quasi-tangential orientation). In this way,

high GOF to the EEG data could still be achieved, while keeping the magnitude of
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the tangential source component mainly unchanged in order not to change GOF to

the MEG data (Table 3.7). Because of the distinct quasi-tangential orientation com-

ponent of the FT9 spikes, this procedure worked out nearly without any loss in GOF

to the combined EEG/MEG data, even in case of highly erroneous skull conductivity.

However, GOF reduced by 6 % for the F9 spikes because of their more distinct quasi-

radial orientation component. The comparison of the results presented in Table 3.7

with those in Table 3.3 thus represents an advantage of combined EEG/MEG versus

single modality EEG or MEG in practical situations. In case of a moderate error in

skull conductivity modeling, combined EEG/MEG source analysis can still profit from

the strength of the MEG to accurately localize the tangential source component, while

the EEG can still contribute much to better localize radial source components and

determine source orientation and strength (see also Figure 3.15 and Table 3.6). How-

ever, significant errors in skull modeling will be reflected by a complicated interplay of

errors in location (especially in depth), orientation and strength of EEG sources, and

in the worst case a significantly reduced GOF to the combined EEG/MEG datasets.

Therefore it is highly recommended to calibrate skull conductivity using additionally

acquired SEP/SEF data.

As described in detail in Section 3.2.2.4, in a first step, three epileptologists used

a subset of electrodes to mark the epileptic activity based on the current clinical

agreement. In a second step, and using the complete set of sensors, the spikes were

then clustered according to the electrode where the maximum negativity in referential

montage (common average) occurred. In this way, two different spike types were found,

FT9 and F9, which mainly differed with regard to their orientation components. This

shows that it might not be sufficient to use the subset of sensors in step one also for step

two, the clustering. For example, if the clustering montage did not have an FT9 but

just an F9 electrode, FT9 spikes would have been clustered as F9 because the evaluator

would have seen the maximum negativity at this electrode. Such issues in clustering

process might cause errors in centroid as well as in spread sphere computations. When

using spike averaging, it would lead to smeared peaks and SNR reductions. For the

purpose of this study, the clustering procedure used in this work led to satisfying

results. However, in Section 4.1.1, other concepts such as source montages were also

evaluated[181].

In order to avoid effects that are just due to insufficient SNR, here only the spikes

with minimal SNR of 3 and GOF of 91 % (Algorithm 1 ) were considered. In this

way, still despite low SNR in the single spike data and the resulting lower reliability of

source reconstruction results, the effects of EEG, MEG as well as combined EEG/MEG
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volume conduction on the reconstruction of the spike clusters could be worked out.

These volume conduction effects thus dominate over higher noise and need to be taken

into account even in single spike source analysis, while they should appear in an even

purer form and accordingly be taken into account when working with averaged spike

data. Motivated by the results of [16], in future studies, it would be very interesting to

investigate volume conduction effects in EEG, MEG and combined EEG/MEG studies

using single spike versus averaged spike reconstructions.

A further important choice when reconstructing epileptic spike activity is the selec-

tion of the time-point or time-interval for the localization of the spikes. The peak of

the spike indicates the highest degree of neuronal synchronicity and thus better SNRs,

but this location might already have been subject to propagation. Therefore, here the

middle of the rising flank was selected from the averaged spikes as a time-point for

later single spike reconstructions because it was shown to be favorable when compared

to the reconstruction at the peak of the spike [154]. Due to higher SNR at the peak

of the spike, the presented volume conduction effects could probably be presented in

even a clearer form, e.g., the presented effects on MEG in Table 3.3 and 4 were found

to be at least partly due to the high noise level and not only due to MEG volume

conduction effects. Since reconstructions will be dominated more and more by noise

when approaching the area of low SNR at the beginning of the spike, at such early

time-points, a combination of the here presented methodology with spike averaging

strategies seems to be mandatory and the effects of spike averaging will be deeply

investigated in Chapter 4.

It was shown in this study that by means of using a calibrated six compartment head

model, it was possible to significantly reduce the distance in localization, orientation

and strength between EEG and MEG centroids as well as increasing the intersection

of their spread spheres (see Table 3.4 and Section 3.2.2.4). Reasons for the remain-

ing distance between EEG and MEG reconstructions are the following: none of the

single modality EEG or MEG contains the full information about the sources, MEG

mainly misses the quasi-radial source components and for low SNRs EEG is rather

weak in reconstructing the quasi-tangential ones. A remaining difference thus should

be expected even with the best head modeling. This problem can be reduced when

fusing both modalities in combined EEG/MEG source analysis, as described in Section

3.2.2.4.

Although the results of this study show major effects of skull conductivity calibration

as proposed here, not all institutes have access to MEG. In these cases, for estimating

skull conductivity, it would be suggested either to use a similar procedure based on
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only good quality SEP data as proposed in [175] or to use an electrical impedance

tomography (EIT) based approach as described by [182].
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4 Study II: Comparison of EEG, MEG

and EMEG Localizations of

Epileptic Activity at Different

Propagation Phases via

Sub-Averages

After investigating the effects of volume conduction in the previous chapter, here the

focus was on improving the accuracy of epilepsy source analysis by means of averaging

and combination of EEG and MEG. A special attention was given to the onset phase of

the spike because in later phases the epileptic activity might have already been subject

to propagation. The main difficulty with source reconstruction at the spike onset is

obtaining accurate results at these low SNR time-instants. The obvious solution to this

problem is averaging the spikes with similar topography but unlike evoked responses

epileptic spikes do not origin from exactly the same location [12, 15] and this might

lead to suboptimal results.

The decision between localizing each single epileptic spike separately and averaging

spikes with similar topographies before source reconstruction is a highly disputed issue

in presurgical epilepsy diagnosis, and both approaches have their merits and drawbacks.

Single spike localizations might be used to estimate the size of the irritative zone

[10, 11, 12, 13, 14, 15]. However, these localizations suffer from low SNRs, as also will

be shown in Section 4.2.1. Alternatively, averaging similar spikes might increase the

SNR and thus, the reliability of the localizations remarkably [16], but information on

the extent might get lost. In this thesis, motivated by the findings of Bast et al. [16]

and Wennberg and Cheney [17] for EEG, and Wennberg and Cheney [18] for MEG,

multiple sub-averages were calculated in order to investigate the effects of SNR and

averaging on EEG, MEG and EMEG source reconstructions. This approach allowed

comparing the effects of averaging and the resulting SNR in a step-by-step fashion.
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The results and methods explained in this chapter were recently published in [183].

4.1 Methods

4.1.1 Detection of the epileptic spikes

As a first step the three runs with minimal head movement were filtered with an 80

Hz low pass filter, resampled to 250 Hz, concatenated and corrected for ECG arti-

facts using BESA software (BESA GmbH, Gräfelfing, Germany). For this purpose,

the ECG channel was selected for detection and averaging, and principal component

analysis was used for minimizing the artifacts. The measurements were then examined

and epileptic spikes were marked by three clinical reviewers. From these markings, ten

clear left temporal spikes, which belong to the most frequent spike type, were selected

using source montage (temporal) and averaged. The averaged spike was used in BESA

template search in order to find further spike candidates [181]. Selecting left tempo-

ral polar, basal and lateral channels from the temporal source montage for template

search ensured the detection of spikes with similar location and orientation. After vi-

sual inspection, 200 left temporal spikes without any clear artifacts (e.g., eye-blinks),

were selected for further analysis. The butterfly plots of the grand-averaged (all 200

spikes) EEG and MEG signals, 4 solid vertical lines with different colors indicating the

important instants in time, namely -33, -23, -13 and -3 ms, and the respective topogra-

phies at 0 ms (signal peak in EEG shown with dashed vertical line) after averaging are

visualized in Figure 4.1. The results shown in this figure will be discussed later in this

chapter.

4.1.2 Sub-averaging

Ten sub-average groups each with 200 realizations were constructed from the 200 single

spikes detected in the previous section. Each realization in each sub-average group

was an averaged signal that was calculated using the same number of single spikes

and the name of the sub-average group was determined by this number. For example,

in the Av10 sub-average group there were 200 Av10 realizations, each of them was

obtained by random drawing and averaging of 10 single spikes. The random drawing

was performed with Matlab (The Mathworks, Inc.) and it was ensured that none of

the spikes was chosen more than once in the same realization. The sub-average groups

that were constructed with this procedure were from Av5 to Av50 with increments of
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Figure 4.1: Butterfly plots (left) and topographies (right) of EEG (upper row) and
MEG (lower row) for the grand-average (average over all 200 single epileptic
spikes). The time-points that will be discussed in this chapter, namely -
33 ms (dark blue), -23 ms (light blue), -13 ms (yellow) and -3 ms (orange),
are indicated by solid vertical lines with different colors. Topographies are
shown for the EEG spike peak (time-point 0 ms) as indicated by the dashed
vertical line in the butterfly plots.

five. Additionally, the group containing all 200 single spikes was denoted Av1.

The continuous EEG and MEG data were imported into CURRY, filtered from 1

to 100 Hz and divided into 400 ms long epochs (200 ms before and 200 ms after each

EEG spike peak). The SNRs were calculated by dividing the signal power at a certain

time-point, which was used for the source reconstruction, by the variance of the noise,

determined from the interval from -200 to -70 ms. The SNRs of EEG, MEG and

EMEG signals were calculated separately for each time-instant (from -33ms to 0 ms)

and only the signals with SNRs higher than three in the corresponding modality and

sub-average at the time-point of interest were included in the further analysis.
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4.1.3 Source reconstruction procedure

A cortically-constrained deviation scan (DS) inverse approach was used for source

reconstruction [107, 108]. For this purpose, a source space with 2 mm resolution

was calculated as described in Section 3.1.11. The SimBio software was then used

to calculate EEG and MEG leadfield matrices for the given source space, FE head

model and sensor configurations (See Section 3.1.10). The leadfield matrices were then

imported into CURRY and single dipole DSs were calculated from -33 to 0 ms with

0 corresponding to the peak of the EEG signal. Unlike classical dipole fit algorithms,

the cortically-constraint deviation scan provides goodness-of-fit (GOF) values for all

source space points and the location with the highest GOF was then used as the final

deviation scan result.

As in Section 3.1.12, in MEG source reconstructions regularization was used to

avoid implausible results, which might occur due to MEG’s insensitivity to radial

components, for EEG and EMEG we did not use any regularization. Furthermore,

only the MEG sensors over the left hemisphere were used for MEG and EMEG source

reconstructions to improve SNR and GOF.

In the results section sometimes, instead of spike clusters, so-called centroid dipoles,

defined by the mean location and orientation of all deviation scan result dipoles be-

longing to the corresponding cluster were used (see Section 3.1.12 for details).

4.1.4 Stereo-EEG Measurements

sEEG relying on 14 intracerebral depth electrodes with 167 contacts in total, showed

independent epileptic activity with left frontal and temporal origins from three differ-

ent seizure onset zones: i) left fronto-basal mesial, ii) left temporal and iii) left frontal

parasagittal (see Figure 4.2 which summarizes the sEEG findings in the clinical re-

port). In this figure, contacts were represented with squares and they show either the

interictal (left) or ictal activity (right). The active contacts during interictal activity

were separated into frequent (dark blue) and rare (light blue) and the seizure activity

was divided into seizure onset (red) and early propagation (orange color) with some

contacts showing both and represented with both colors. The inactive contacts were

white. As in the previous chapter the focus was only on the left temporal spikes due

to their high occurrence rate (see F9 and FT9 spikes in Table 3.2). For this purpose,

TA, E, A, HA, and HP sEEG electrodes all of which were marked as measuring ictal

or frequent interictal activity were selected along with TSM, TSP and IM sEEG elec-

trodes, which were non-active at seizure onset or during interictal spikes in Figure 4.2.
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Examples of an averaged spike and a single spike measured simultaneously with sEEG

and low density scalp EEG (ldEEG) (21 electrodes) are shown in Figure 4.3. Based

on the information from the clinical report (Figure 4.2), the sEEG contacts were rep-

resented with three different colors: the green spheres represent the sEEG contacts

that measured only interictal activity, red spheres represent the sEEG contacts active

during the seizure onset and the blue spheres represent the contacts near the left tem-

poral lobe that neither measured the interictal nor seizure onset activity. All contacts

that were active during seizure onset were also measuring interictal spikes and were

thus within the irritative zone (Figure 4.2). The locations of the sEEG contacts were

marked manually using the post-operative T1-MRI and computed tomography im-

ages that had been registered to the pre-operative T1 MRI using an affine registration

scheme.

4.1.5 Square distance index (SDI)

In order to quantify the amount of agreement between noninvasive source reconstruc-

tions and sEEG, a formula, which weights each dipole by the inverse of its square

distance to each active sEEG contact, was used.

SDIi =

∑N
j=1

1
d2j+1

N
× 100

Where i is a specific sEEG contact, e.g., A1, which measures frequent interictal

activity, N is the number of dipoles that passes the SNR criterion (SNR>3) for the

respective modality, and dj is the Euclidian distance between the j’th dipole and

the sEEG contact i. The addition of 1 ensures the appropriate weighting for perfect

localizations (dj = 0). A high value of this index at a certain sEEG contact indicates

concentrated dipole localizations near this contact. Alternatively, high differences in

SDIs for different sEEG contacts indicate that the localizations highlight only a certain

area within the irritative zone and not the whole. Thus, the mean of SDIs over all

sEEG contacts should be high, whereas its standard deviation over different contacts

should be low for an accurate and complete depiction of the irritative zone.

4.2 Results

The result section is divided into two subsections. In the first subsection, the epileptic

spike sub-averaging was investigated with the aim of finding the sub-average number
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Figure 4.2: The summary of the sEEG findings for all contacts. Each rectangle rep-
resents a sEEG electrode (e.g., SM) and these rectangles are divided into
squares that represent the contacts on this electrode. The colors of squares
show the interictal (left) or ictal activity (right). Interictal activity was
divided into frequent (dark blue) and rare (light blue) spikes. The seizure
activity is marked as the seizure onset (red) or early propagation (orange
color) with some contacts showing both and represented with both colors.

that allows both an appropriate reconstruction of the center of gravity and an estima-

tion of the size of the irritative zone. The determined optimal sub-average number is

then used in subsection two to investigate sensitivity differences of EEG and MEG,

and especially to evaluate the contribution of combined EEG/MEG in comparison to

single modality EEG or MEG source analysis of the epileptic activity.
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Figure 4.3: Locations of sEEG contacts inside the brain and epileptic activity measured
with sEEG and ldEEG. Examples for an averaged (top right block) and a
single epileptic spike (bottom right block) measured simultaneously with
sEEG (left column in each block) and 21-electrode low density scalp EEG
(ldEEG) (right column in each block). Maximum of sEEG is at the HP2
contact, as shown by the vertical lines at the peak of this contact. In the
upper two brain figures (left block), only the active (that measures interictal
or ictal signals) sEEG contacts are indicated while the two images at the
bottom indicate the positions of both active and non-active sEEG contacts
close to the left temporal lobe. The union of green and red spheres shows
the sEEG contacts measuring frequent interictal activity, red spheres alone
show the contacts measuring seizure onset and blue contacts do not measure
interictal or seizure activity.

4.2.1 Effects of epileptic spike averaging on source reconstruction

Figure 4.1 (left column) shows butterfly plots of the grand-averaged (all 200 spikes)

signals in EEG (upper row) and MEG (lower row). As the dashed vertical line in this
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figure clearly shows, the MEG signal peak (time-point -7 ms) precedes the EEG signal

peak (time-point 0 ms) by 7 ms. Furthermore, the time-instants that are discussed in

the following sections are indicated in Figure 4.1 by solid vertical lines with different

colors (-33 ms in dark blue, -23 ms in light blue, -13 ms in yellow and -3 ms in orange).

Next, the SNRs of the different modalities, sub-averages and time-points were inves-

tigated. Figure 4.4 shows the SNR results (average values with error bars indicating

the standard deviations) for EEG (blue), MEG (green) and EMEG (red). In this figure

it seems like for EMEG, the standard deviation indicates SNRs below three but this is

only because the error bar was plotted symmetric around the mean and the standard

deviation was influenced by the higher variation of values above three while the SNRs

below three were not allowed. The upper row presents the results for time-point -23ms

at the rising flank of the averaged spike (see light blue vertical line in Figure 4.1) for

different average numbers. It shows only single spikes with a minimal SNR of 3 (Av1)

or sub-averages (Av5 to Av50) made up of spikes with possibly lower SNRs than three,

but which then reach the threshold of three within the averaging procedure. As a re-

sult of this, and because the amplitudes of the single spikes vary, the SNR does not

increase with the square-root of the average number of spikes as it would be expected

for example in an analysis of evoked responses. However, it still clearly increases with

increasing average number and for all three modalities. Figure 4.4 (lower row) shows

the results for sub-averages of 10 (Av10) for different time-points. A different behav-

ior of EEG and MEG over time can be observed in this subfigure. At spike onset

(time-point -33 ms, see dark blue vertical line in Figure 4.1), EEG and MEG SNRs are

almost identical. However, in later instants in time at the rising flank of the epileptic

spike (time-points -30 ms to -3 ms) the SNR of the EEG increases faster than the SNR

of the MEG, which leads to considerable differences in SNRs at the EEG spike peak

(time-point 0 ms). Finally, it is also clearly visible that the standard deviations (error

bars) increase with increasing SNR.

Then, the centroid dipoles were calculated for different sub-averages at -23 ms (see

light blue vertical line in Figure 4.1) and the results were visualized in Figure 4.5. This

figure shows large differences in source reconstructions between single and sub-averaged

epileptic spikes. The single spike source reconstructions (Av1) are considerably more

superior and deeper than the sub-averages for EEG, MEG and EMEG indicating a

systematic noise bias of Av1. The noise bias in Av5 has a similar tendency, but it is

already much smaller than for Av1, and no more bias can be observed for sub-averages

with more spikes, especially for MEG and EMEG. Starting from Av10 and further

increasing the number of averaged spikes results in only minor changes to the centroid
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Figure 4.4: Average SNRs (with error bars indicating the standard deviations) for EEG
(blue), MEG (green) and EMEG (red). Only single epileptic spikes (Av1)
or sub-averages (Av5-Av50) with SNRs higher than three were taken into
account in these figures. The upper row shows the results for different
average numbers for time-point -23 ms at the rising flank of the averaged
epileptic spike and the lower row for different time-points from -33ms (spike
onset) to 0ms (spike peak in EEG) for sub-average 10 (Av10).

dipoles. Figure 4.5 thus shows that a minimal average number of 10 should be used

for this patient to avoid a noise bias in the reconstruction of the center of gravity of

the irritative zone.

Figure 4.6, which shows, visualized with blue dipoles, the deviation scan peaks for

Av1, Av5, Av10, Av 25 and Av50 at -23 ms, further strengthens and complements
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Figure 4.5: Centroid dipoles determined from the dipole scan peaks of EEG (upper
row), MEG (middle row) and EMEG (lower row) for different sub-averages
at 23 ms before the EEG spike peak. Each color shows centroids for dif-
ferent sub-averages and Av1 is the centroid for single spike reconstruc-
tions. The centroid dipoles were computed from those random realizations
out of 200 random realizations for each group, which satisfied the SNR>3
criterion.

the results of Figure 4.5. Green and red spheres in Figure 4.6 represent the sEEG

contacts, which measured frequent interictal epileptic activity, thus giving an impres-

sion of the minimal size of the irritative zone, and red spheres are the sEEG contacts

that additionally measured ictal activity. Most of the observations in this figure are

similar for EEG, MEG and EMEG, and as long as the modality name is not explic-

itly mentioned in the following description, these observations are valid for all three

of them. It is clear from Figure 4.6 that very few single spikes (Av1) pass the SNR

criterion (SNR>3) and even among them spurious dipoles (outliers) persist. When the

sub-average number is increased to five, although the localizations become more stable
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and dipole clusters start to emerge, still many outliers can be observed. For Av10

the clusters become more distinguishable with only few outliers. These results thus

support the argumentation from the previous paragraph (Figure 4.5) to use a minimal

average number of 10 for this patient. The following argumentation now delivers the

complementary information that, from the chosen sub-average numbers, Av10 even

seems to be optimal: Av25 results again differ from Av10, especially with regard to a

further decrease in the scatter of dipoles. When increasing the sub-average number to

50 the scatter of the dipoles further decreases and MEG epileptic spikes are localized

more lateral than for Av10 and Av25. Now the dipole scatters can be evaluated with

the information from the sEEG. Figure 4.6 shows that for Av10 the dipole scatter

covers almost all active sEEG contacts, i.e., it covers the minimal size of the irritative

zone. For Av25 the clusters are already too focal, missing the active HA8-10 and all

HP contacts. Av50 is even more focal, missing even more of the active sEEG contacts

(additionally to HA8-10 and all HP, also HA1-5 contacts are outside the estimated

irritative zone) and thus they are strongly underestimating the size of the irritative

zone.

4.2.2 Comparison of EEG, MEG and EMEG source reconstructions

For comparing EEG, MEG and EMEG localizations, based on the results of the pre-

vious subsection, the focus will be on Av10 results. This choice is based on Figures

4.5 and 4.6, which show that a minimal average number of 10 is needed to sufficiently

reduce noise bias and appropriately reconstruct the center of gravity of the irritative

zone and that higher average numbers result in too focal dipole clusters that lead to

an underestimation of the extent of the irritative zone.

The Av10 EEG reconstructions in Figure 4.6 are mainly localized in an area close

to the pole of the temporal lobe and close to sEEG TA contacts (Temporal Ante-

rior, see Figure 4.3). In contrast, no activity is localized near HP1-3 and HA1-5 (the

hippocampus posterior and anterior contacts). In MEG the localizations are more

posterior than in EEG with clusters in the vicinity of HA8-10 (the posterior lateral

neocortical contacts that, in contrast to their label, are not located in the hippocam-

pus anterior, see Figure 4.3), and close to HP contacts although no cluster was formed

around them. Unlike in EEG, there are no localizations in the vicinity of TA in MEG.

In EMEG, noninvasive reconstructions cover all active sEEG contacts. EMEG even

shows localizations near the HP contacts, where neither the sensitivity of EEG (see

EEG side-view in the second column of Av10 in Figure 4.6) nor of MEG (see MEG
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Figure 4.6: Peaks of the deviation scans (illustrated by blue dipoles) of EEG (left two
columns), MEG (middle two columns) and EMEG (right two columns) for
different sub-averages. The figure shows the results at 23 ms before the
peak of the EEG. Both green and red spheres show the sEEG contacts
where frequent interictal activity can be measured, thus giving an impres-
sion of the minimal size of the irritative zone, and red spheres alone show
seizure onset contacts.

bottom-view in the third column of Av10 in Figure 4.6) was sufficient to reconstruct

any activity.

The plots in Figure 4.7 add quantitative information to Av10 source reconstructions

visualized in Figure 4.6. The plots show the SDIs (upper subfigure) and the percent-

age of dipoles that are closer than 10 mm to each sEEG contact measuring frequent

interictal activity (lower subfigure). In these plots, the contacts that are also part of

the seizure onset zone (amygdala contacts A1-3, and hippocampus anterior contacts

HA1-5) are enclosed within rectangles with dotted lines. The upper subfigure clearly

shows that most of the EEG localizations are clustered near the TA contacts and the

lower subfigure shows that there are dipoles within 10 mm at only 6 out of overall

24 interictal and 1 out of 8 ictal contacts. MEG values for the same measures are 10
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out of 24 interictal and 2 out of 8 ictal, and the localizations are clustered especially

near the posterior lateral neocortical contacts HA8-10 and HP contacts. In contrast,

for EMEG 23 out of 24 interictal and 7 out of 8 ictal contacts have at least one non-

invasive localization within 10 mm. In the SDI plot the EEG SDIs for TA contacts

are considerably higher than for other contacts, while for MEG the SDIs at contacts

HA8-10 are larger. For EMEG the SDI index is almost equally distributed over the

sEEG contacts and it does not show a huge variation as in EEG and MEG. The means

and standard deviations of SDIs for EEG, MEG and EMEG demonstrate this behavior

well. The average SDIs for EEG and MEG are 0.22±0.15 and 0.18±0.11, respectively,

and with 0.24 the average SDI for EMEG is higher and, most importantly, with 0.05

its standard deviation is considerably lower than for EEG or MEG.

In Figure 4.6 the signals that passed the SNR criterion were determined separately

for each modality and thus the spikes that satisfy the criterion in EEG might differ

from the ones that satisfy it in MEG or EMEG. This means that by applying the

selection criterion based on the SNR at each modality separately, it was selectively

focused on the signals arising from sources that a certain modality is more sensitive

to. Since EEG and MEG have different sensitivities depending on the source location

and orientation this may increase discrepancy between their localizations. In order to

investigate the influence of this selection in Figure 4.8, the spikes that pass the SNR

criterion in EMEG for Av10 at -23 ms were localized regardless of their SNRs in EEG

or MEG. This procedure reveals some localizations near TA and E electrodes for MEG

in Figure 4.6 for Av10, but they were few and the main clusters were still around

HA and HP contacts. This result also supports the idea that the main reason behind

varying EEG and MEG localizations is their different sensitivity profiles.

As already noted, the MEG signal peak precedes the EEG maximum by approxi-

mately 7 ms (Figure 4.1). In order to investigate which sources are dominating the

EEG and MEG signals, the timings of epileptic spikes in sEEG and the simultaneously

measured ldEEG were compared (Figure 4.9). In this figure, different colors for sEEG

contact groups were used in order to see the peaking times clearly in the butterfly plot.

It was observed that simultaneously with the ldEEG peak, sEEG contact TA4 (green)

is also at its peak value. In contrast, the peak of the HP2 contact (blue), the contact,

which measures the highest amplitude in sEEG, is occurring 7.5 ms before the ldEEG

and TA4 peaks. Moreover, the peaks of A1-3 and HA1-5 (red signals), i.e., the seizure

onset contacts, are also preceding the TA contacts and are almost simultaneous with

the HP contacts (especially contacts A1-3). The peaking times of the E contacts (pink)

were in general earlier than TA but later than HP. The peaks of contacts HA8-10 were
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Combined EEG and MEG source analysis of epileptiform activity using calibrated

realistic finite element head models
88

Figure 4.7: Square distance index and the percentage of dipoles closer than 10 mm for
each sEEG contact. The values are given for EEG, MEG and EMEG for
sub-averages of 10 at -23 ms. The sEEG contacts enclosed by dashed lines
are within the seizure onset zone.

different. While the HA8 peaks almost simultaneous to HP1-2, the HA9 and HA10

contacts were peaking later.

Figure 4.10 shows the pathways from spike onset to late propagation determined

from EEG (upper two rows), MEG (middle two rows) and EMEG (lower two rows).

Av10 deviation scan reconstructions for 4 different time-points are visualized from -

33 ms (spike onset, left column, see also dark blue vertical line in Figure 4.1) to -3 ms
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Combined EEG and MEG source analysis of epileptiform activity using calibrated

realistic finite element head models
89

Figure 4.8: Dipole localizations of EEG, MEG and EMEG for sub-averages of 10. The
figure shows the results at 23 ms before the peak of the EEG. The sig-
nals with SNRs higher than 3 in EMEG were selected and these spikes
were used for calculations in EEG, MEG and EMEG regardless of whether
EEG or MEG SNRs were higher than 3 or not. Blue dipoles illustrate
the noninvasive localizations, the union of green and red spheres shows the
sEEG leads measuring interictal activity, and red spheres show the leads
measuring seizure onset.
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Figure 4.9: Average waveform of the spikes measured simultaneously with sEEG (left
column in channel plot; middle row in butterfly plot) and 21 electrodes low
density scalp EEG (ldEEG) (right column in channel plot; upper row in
butterfly plot). Maximum of sEEG is at the HP2 contact as shown by the
vertical line at the peak of this contact in the channel plot. In butterfly
plot, the vertical line at 0 ms shows the EEG peak and the vertical line at
-7.5 ms shows the sEEG peak. The lower row in butterfly plot shows the
mean global field power. The same color code is used for sEEG in channel
and butterfly plots.
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(late propagation phase close to EEG peak, right column, also see orange vertical

line in Figure 4.1) in steps of 10 ms. The first striking observation in this figure is

the considerably higher stability of EMEG source reconstructions at spike onset, in

comparison to single modality EEG and MEG. The EMEG source reconstructions at

time-point -33 ms are correctly clustered close to the seizure onset zone (red spheres

at A1-3 and HA1-5 contacts). In contrast, EEG is strongly dominated by noise with

source reconstructions spreading over a wide region. Although MEG reconstructions

at spike onset are already better than EEG, they are still too lateral and are spread

over a too large region and the low SNR still leads to many spurious reconstructions.

The results for EEG, MEG and EMEG at the propagation phase also differ. EMEG

source reconstructions show that during the 10 ms period from spike onset to time-

point -23 ms, at the rising flank of the signal, the reconstructed activity spreads from

amygdala and hippocampus to a wider area over the temporal lobe, thus covering all

active sEEG contacts. At time-points -13 ms and -3 ms, the reconstructed EMEG

activity accumulates near the pole of the temporal lobe. The propagation paths shown

by single modality EEG and MEG differ quite much from the one of EMEG and,

when compared to the sEEG findings and the EMEG reconstructions, they are both

incomplete. For EEG, the first stable (by improved SNR) source reconstructions shown

in Figure 4.10 are the ones at -23 ms near the pole of the temporal lobe. EEG alone

completely misses the more posterior activity close to the HA and HP contacts (see

Figure 4.3) in this early propagation phase (see especially the first row and second

column in Figure 4.10). At later instants in time, the EEG is only able to reconstruct

activity at the tip of the temporal pole. With regard to the MEG, at -23 ms, source

reconstructions are at more posterior temporal areas especially covering the HA8-10

contacts (see Figure 4.3 and second row in Figure 4.10) very well. Later on at time-

points -13 ms and -3 ms, the reconstructed MEG activity travels to more anterior and

temporobasal regions. During the whole propagation phase MEG alone completely

misses the temporo-polar activity close to the TA contacts (fourth row in Figure 4.10).

Corresponding to the visualizations of the propagation pathway in Figure 4.10, the

plots in Figure 4.11 add quantitative information on Av10 EMEG source reconstruc-

tions for the four different time-points. The upper subfigure, presenting the SDIs,

shows that at -33 ms (spike onset) the source localizations are mostly clustered near

the A and HA1-5 contacts (seizure onset). At later time-points, i.e., closer to the spike

peak, the reconstructed activity propagates to E and TA contacts. The lower subfigure,

presenting the percentage of dipoles that are closer than 10 mm to each sEEG contact

measuring frequent interictal activity, shows that at -33 ms 7 contacts are covered by
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Figure 4.10: EEG (upper two rows), MEG (middle two rows) and EMEG (lower two
rows) deviation scan peaks (illustrated by blue dipoles) of Av10 for time-
points from -33 ms (spike onset, left column) in steps of 10 ms until
time-point -3 ms (late propagation phase close to EEG peak, right col-
umn). Both green and red spheres show the sEEG contacts where frequent
interictal activity can be measured, thus giving an impression of the min-
imal size of the irritative zone, and red spheres alone show seizure onset
contacts.

the noninvasive EMEG reconstructions. Among them, 6 are ictal contacts (it covers

6 out of 8 ictal contacts) and the other one is the HP1 contact, which peaks earlier
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than the TA contacts, as shown in Figure 4.3. While the EMEG reconstructed activ-

ity continuously decreases over time at the seizure onset amygdala and hippocampal

contacts, it continuously increases at most of the TA and E contacts.

Figure 4.11: Square distance indexes and the percentage of dipoles closer than 10 mm
for each sEEG contact. The values are given for Av10 EMEG sub-averages
at -33, -23, -13 and -3 ms. The sEEG contacts enclosed by dashed lines
were within the seizure onset zone.

In Figures 4.7 and 4.11 the SDI values on active sEEG contacts were compared in

order to study the sensitivity of the noninvasive source reconstruction results. For

studying specificity, in Figure 4.12, the SDI values for EEG, MEG and EMEG at
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-33 ms were plotted, now also including the non-active sEEG contacts. The SDIs were

colored according to the measured activity: seizure onset contacts (red), interictal

contacts (green) and non-active contacts (blue). The figure shows that not only the

sensitivity but also the specificity of EMEG results are superior to EEG and MEG

alone. EMEG SDIs of sEEG contacts are gradually decreasing with distance to the

seizure onset contacts (see HA6 to HA15 and A4 to A9). EEG and MEG source

reconstructions alone not only failed to highlight the seizure onset due to low SNRs

but also their specificities were inferior to the EMEG results presented here.

4.3 Discussion

This section starts with the most important results first, thus the order of the sub-

chapters was inverted in respect to the order used in the section describing results.

4.3.1 Comparison of EEG, MEG and EMEG source reconstructions

4.3.1.1 Propagation phenomenon: Problems and opportunities for noninvasive

source reconstruction

Propagation of interictal epileptic activity is a well-known phenomenon, which might

lead to misinterpretations and spurious diagnosis if not taken into account. In order

to cope with it, many studies suggested reconstructing sources at the middle of the

rising flank instead of the peak of the epileptic spike (see [154] and references therein).

Although this might seem to be a good compromise between low SNRs at the spike

onset and propagation at the spike peak, the activity at the middle of the rising flank

might have already been subject to propagation, e.g., in mesial temporal lobe epilepsy,

as shown in this study. Alternatively, in cases where the propagation pathway is always

identical over different spikes, like in the case discussed here, propagation provides also

a great opportunity: propagation of activity from low SNR locations (in this study, the

deep amygdala and hippocampal structures) to locations with much higher SNRs (in

this study, the pole of the temporal lobe, see Figure 4.4 with regard to the increase in

SNR) enables the examiner to detect spikes and thus supply the necessary triggers for

averaging, which in turn might then enable revealing the preceding activity with lower

SNR. This was shown in the study presented here, where it was possible to accurately

(with regard to the sEEG validation measure, see further discussion below) reconstruct

the complete pathway of the epileptic activity from onset to spike peak using sub-

averaging techniques and combined EEG and MEG source analysis. Similar scenarios
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Figure 4.12: SDI values for EEG, MEG and EMEG at -33 ms. The SDI bars are
colored according to the measured activity: seizure onset contacts (red),
only interictal contacts (green) and non-active contacts (blue).

Dissertation Ümit Aydin
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are discussed in the literature. For example, simultaneous scalp and intracranial EEG

studies showed that, while scalp EEG might not directly be able to distinguish the

activity from deeper structures from the noise, it might be possible to extract the

EEG signal by averaging intracranial epileptic spikes [184, 185].

4.3.1.2 EEG, MEG and EMEG source reconstructions at spike onset

Despite the strategies explained in the previous paragraph, as it was shown in Figures

4.10 and 4.11, at very early instants in time (-33 ms, see dark blue vertical line in

Figure 4.1) single modality EEG or MEG source reconstructions might not be reli-

able enough to draw conclusions on the origin of the epileptic spike. In the results

presented here, EEG was strongly dominated by noise and although MEG source re-

constructions were more stable, they had a lateral bias with still too many spurious

dipole positions. The source reconstructions with single modality EEG or MEG stabi-

lized at later instants in time (see time-point -23 ms in Figure 4.10), but the activity

had already been subject to propagation by then. One of the most important and

clinically relevant findings of this study is thus the ability of EMEG to benefit from

the complementary information of EEG and MEG at especially these very early in-

stants in time, and thereby the ability to stabilize the source reconstructions in cases

of low SNR. As shown in Figures 4.10 and 4.11, at -33 ms the source reconstructions

of EMEG are mainly clustered near amygdala and hippocampus, i.e., regions within

the seizure onset zone as estimated from sEEG.

4.3.1.3 Differences of EEG, MEG and EMEG source reconstructions in

revealing the propagation pathway

The EEG, MEG and EMEG source reconstructions differed not only at spike onset

but also at later instants in time. At -23 ms (see light blue vertical line in Figure 4.1),

although both EEG and MEG source reconstructions were clustered near the spiking

sEEG contacts, they highlighted different contacts. EEG localizations were mainly

clustered near TA contacts, while MEG results were close to the posterior lateral neo-

cortical contacts HA8-10 and, partially, to HP. In agreement with the findings of this

study, in temporal lobe epilepsy, posterior MEG source reconstructions in compari-

son to EEG were also observed in other studies [18, 178]. The main reason for this

difference might be the increased size of the active patch at this time-point due to

propagation. Considering the wide extent of active cortex measured with sEEG in this

study, the proposed hypothesis is that the peak of the EEG deviation scan was found
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at the temporal pole because of its considerable radial source orientation component.

As a result, this activation did not contribute much to the MEG signals. In contrast,

the activity arising from especially the posterior lateral neocortical contacts HA8-10

and from the HP contacts was more tangentially oriented, leading to higher SNRs in

MEG, and thus MEG was mainly focusing on this part of the cortex. Furthermore,

the averaged MEG signal peak was not synchronous with the EEG peak, it preceded

the EEG by approximately 7 ms (see dashed vertical line in Figure 4.1). In order to

determine the sources dominating the EEG and MEG signals, the time relationship be-

tween the peaks of the simultaneously measured sEEG and low-density EEG (ldEEG)

epileptic spikes was investigated. It was observed that the peaks of the ldEEG and

the TA4 contact were simultaneous, and the EEG localizations were clustered around

TA4. Although MEG and sEEG were not measured simultaneously, the results of the

simultaneous ldEEG-sEEG to the simultaneous EEG-MEG measurements might be

extrapolated and commented on the timings of the measured signals. Considering the

fact that the MEG peak is also approximately 7 ms before the EEG it can be stated

that the MEG maximum is concurrent in time with the HP2 contact. This means, the

peaks of the MEG and the HP2 contact are almost simultaneous and might explain

why MEG was also localized closer to HP2. All these results fit well to the proposed

hypotheses that a larger activated cortical patch is underlying the measured activity

and that EEG and MEG focus on only parts and, due to their distinct sensitivities, to

non-identical parts of this activity. Although EEG and MEG source reconstructions

were able to highlight just a subset of spiking sEEG contacts, EMEG results were cov-

ering almost all relevant sEEG contacts with only a few spurious localizations. EMEG

localizations were not simply the union of EEG and MEG results but a rather com-

plicated interplay of both modalities compensating their relative shortcomings. For

example at -23 ms, in Figures 4.7 (especially the lower subfigure) and 4.10, no major

dipole cluster was noticeable neither with EEG nor with MEG around the E contacts

in sEEG, while there were clear clusters around these active contacts in EMEG. This

also supports the idea that combining EEG and MEG can supply important addi-

tional information that cannot be achieved by localizing EEG and MEG alone, and

then comparing their results. Therefore, whenever it is technically feasible to mea-

sure EEG and MEG simultaneously, it might be important to not only analyze single

modality EEG and MEG but also to compare with combined EMEG reconstructions

to obtain accurate localization results. Furthermore, the asynchronous EEG and MEG

peaks along with the more complete overview on the propagation pathways provided

only by EMEG, as shown here, might also help distinguishing between the primary
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and secondary interictal areas as reported by [186].

Close to the spike peak (-3 ms) the source reconstructions were more anterior in

comparison to earlier instants in time and were clustered close to the pole of the

temporal lobe. The SNR values shown in the lower subfigure of Figure 4.4 support

the findings that epileptic activity had started at deeper areas and then propagated to

the pole of the temporal lobe at the spike peak. The SNRs of EEG and MEG at spike

onset were almost identical, but later on, the increase in EEG SNR was higher than

in MEG due to the mainly radial source orientation in the area of the temporal pole.

4.3.2 Effects of epileptic spike averaging on source reconstruction

The results of this study show that the centroid dipoles obtained from epileptic spike

clusters differ considerably between different sub-averages. It was observed that spikes

with lower number of sub-averages and thus lower SNRs were localized more mesial and

superior in comparison to those with higher number of averages (and higher SNRs) at

-23 ms (Figure 4.5). The reason for this localization bias might be due to background

activity, which can be considered as noise in our case. Since at this time-instant the

propagation had already occurred, the noise bias shifted the localizations from lateral

parts of the temporal lobe into deeper regions in the brain. The data of this study

support this hypothesis by showing higher localization differences in the left-right (LR)

and superior-inferior (SI) than in the anterior-posterior (AP) axis. The lateral regions

of the left temporal lobe are situated farther away from the center of the brain in LR

and SI axes, while in AP axis they are close to the center. Therefore, it was expected

that the difference in localizations would be higher for axes’ that were farther away

from the center of the brain. For example, if the patient had frontal spikes then

this shift would have been probably higher in AP axis. In agreement to the results

of this study and the proposed hypothesis, Plummer et al. [187] studied EEG spike

localizations for single and averaged spikes and although they did not explicitly stress it

in their paper, their results for patients with benign focal epilepsy with centro-temporal

spikes showed a similar shift between single and averaged spikes. They obtained more

superficial localizations for averaged spikes in comparison to single spikes in 11 out

of 12 localizations (4 patients, 3 time-points for each). Furthermore, the studies of

Wennberg and Cheney [17, 18] also showed similar shifts to the center of the brain.
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Combined EEG and MEG source analysis of epileptiform activity using calibrated

realistic finite element head models
99

4.3.3 Preselection criteria to improve single and sub-averaged

spike source reconstructions

Different preselection criteria for epileptic spikes have been suggested to avoid errors

in single spike localizations [10, 13, 145]. Following these criteria, only the spikes with

SNR higher than three were localized in this study. This preselection strategy resulted

in more reasonable localizations but the number of single spikes that satisfied this

condition also got smaller. From the 200 measured single spikes, only 20 EMEG spikes

passed the criterion at 0 ms (spike peak with highest SNR). At -23 ms this number was

even reduced to only 7 for EMEG and even among them spurious localizations persisted

(see EMEG results for Av1 in Figure 4.6). Therefore, it is highly recommended (1)

to use sub-averages and (2) to observe the changes in centroid dipoles and scatter size

with increasing averages.

4.3.4 Estimation of the optimal sub-average number

For the estimation of the optimal sub-average number, the following procedure is rec-

ommended: a sub-average should be selected that averages enough spikes (in our case

Av10) so that its centroid dipole no longer differs much from the centroids of the sub-

averages with more spikes (in our case Av25 and Av50). Since even for an extended

source the center of gravity would always result in the same position in noise free

set-up, the changes in the centroid dipole for different sub-averages are mainly due

to insufficient SNR. By selecting Av10 in which the location of the centroid dipole

does not differ much from Av50, the effects of noise on dipole scatter can be reduced

[188, 189]. Averaging more spikes may not be favorable, as this may artificially reduce

the scatter size leading to an underestimation of the extent of the irritative zone. Nev-

ertheless, even for the optimal sub-average number estimated with this procedure, the

effects of spatial averaging on scatter size will persist and possibly lead to a slight un-

derestimation of the size of the irritative zone. However, the negative influence will be

much smaller than localizing single spikes with insufficient SNRs. In this study, Av10

was a good compromise, but this number might surely be different for other patients.

The better performance of Av10 in comparison to Av50 might be surprising since the

higher SNRs of Av50 might be expected to result in better localizations. However,

in the light of the results presented here and the relevant literature, this expectation

can be questioned at least for localization of interictal spikes: in [190], among 19 pa-

tients with Engel I or II outcomes, the resected areas in four cases were concordant

to only single spikes, in two to only averaged spikes, and in five to both single and
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averaged spike localizations. A possible explanation for the latter results can be sought

in the light of the publications of [12] and [15], in which using optical imaging they

showed that the origins of the epileptic activity change in a stochastic way within a

certain region. This questions the assumption that spikes from the same irritative zone

have exactly the same origin and waveform, and can be used as an argument against

averaging.

4.3.5 Topology of the irritative zone

Another important aspect is the topology of the irritative zone. In this study, the

irritative zone had a convex shape so that the center of gravity was part of the zone.

However, in case of a concave shape, this might change. As an example, the center of

gravity of a half-moon-shaped concave topology might be outside the structure (see,

e.g., the half-moon-shaped single spike localizations in Figure 4.13 which was adapted

from Figure 1B in the study of [190]). However, even in the latter case, using the cen-

troid localization change between different sub-averages is still an important measure,

because a centroid shift between single spike and sub-averaged spike localizations will

still indicate a systematic shift of single spike localizations due to noise.

Figure 4.13: An example concave topology for single spike localizations with MEG. Sin-
gle spike dipole localizations (yellow dots) and spike-locked beta/gamma
activity localizations (squares) shown on individual MRI of a patient. Fig-
ure adapted from [190].
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4.3.6 Relationship between size of dipole scatter, SNR and extent

of the irritative zone

Oishi et al. [13] showed in an MEG study that 8 out of 9 patients, in which the spike

cluster coincided entirely with the ictal onset zone determined by subdural EEG (and

resected afterwards), became seizure free, whereas the ratio was just 3 out of 11 for

the cases where spike cluster and ictal onset zone either only coincided partly or did

not coincide at all. In agreement with the studies of [10, 11, 14, 191], this shows the

potential benefit of single spike localizations. In contrast, the results of this study show

that the amount of scatter is highly correlated with the number of sub-averages and

the SNR, especially for relatively low SNRs. Here presented results on scatter size are

mainly in line with Bast et al. [16] and Wennberg and Cheney [17, 18]. However, it

was additionally shown here that the effects of sub-averaging and SNR on scatter size

are valid for all investigated modalities, i.e., EEG, MEG and EMEG. Furthermore,

while the other studies rely on simpler volume conduction modeling such as spherical

shell models used in Bast et al. [16], the high-resolution six-compartment head model

with calibrated skull conductivity and anisotropic representation of the white matter

compartment as proposed in this study does not only enable simultaneous analysis

of EEG and MEG, but also has the potential to improve localization accuracy for

single modality EEG or MEG or in combined EMEG analysis. The latter is especially

important in the temporal lobe, where a sphere approximation of the skull can result

in significant errors for both EEG (e.g., [133]) and MEG (e.g., [91, 192]). The results

of this study are also in a good agreement with EEG simulations of Kobayashi et al.

(2005) showing dipole clusters to become less erroneously distributed with increasing

SNR. However, in summary, the identification of the exact size of the irritative zone

still remains a difficult problem because, as also shown in this study, scatter varies

significantly with SNR, spike selection criterion and sub-average number.

Reconstructing slightly distributed activity using a single dipole model might lead to

a depth-bias (sources that are localized too deep). Here, three measures were taken in

order to alleviate such depth-bias and to accurately (as validated by the sEEG) recon-

struct the center of the underlying activity: 1) a cortically-constrained source space,

which prevents erroneous localizations inside white matter was used. 2) a head model

that distinguishes CSF, gray matter, and anisotropic white matter was constructed

instead of a homogeneous brain, in which the topographies for dipoles with different

depths and locations might have been more similar and homogeneous. 3) a dipole scan

instead of a dipole fit is preferred to ensure the finding of the global optimum of the
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GOF cost function over the cortically-constrained source space.

It is important to state that in this study the aim was not to estimate the extent

of a patch in which all neurons are active simultaneously and always in the same way

but to estimate the extent of a patch in which the origin of the activity is different for

each spike. Using optical imaging on epileptic human neocortical slices removed during

epilepsy surgery, Köhling et al. [12] and Speckmann et al. [15] showed that the acti-

vated cortical areas during epileptic waves are focal and their spatial positions change

in a dynamic manner within the epileptic tissue. This finding was the main reason

why a subaveraging procedure was selected instead of averaging all spikes. Therefore,

in this study the aim with investigating the dipole scatter was not to determine the

extent of a patch that always follows exactly the same activation pattern but to benefit

from the small differences on the activation pattern within the epileptogenic zone due

to the dynamic and stochastic behavior of each spike as shown in [12, 15].

With regard to the chosen inverse approach, besides the cortically-constrained de-

viation scan as employed here (see, e.g., [70, 107, 108]), promising results were also

achieved with current density approaches [70], with hierarchical Bayesian modeling

frameworks [112, 113, 118] and with spatio-temporal current density approaches [130,

193] in non-invasively reconstructing networks of (epileptic) activity from EEG and/or

MEG. However, also those methods need to embed correct prior knowledge in some

form into the inverse approach and it still needs to be shown that the methodology

is stable even in the presence of low SNR in realistic epilepsy datasets [112, 193].

Furthermore, in Bouet et al. [194], using frequency domain beamformers, the deter-

mination of the spiking volume was possible in 16 out of 21 patients with sensitivity

(76%) and specificity (67%), as also validated through sEEG measurements. How-

ever, [66] showed that beamformer approaches are sensitive to head volume conductor

properties. Therefore, in a future study, it will be interesting to combine other inverse

methods with the sub-averaging, the head modeling and the combined EEG/MEG

procedure as presented here and to evaluate their quality by means of the intracranial

EEG recordings.
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5 Study III: A Three Step

MRI-EMEG-MRI Pipeline in

Presurgical Epilepsy Diagnosis.

In this section, the EEG/MEG and MRI data measured from a 49-years-old female

patient was used to study the importance of the whole head coverage of EEG/MEG

for detection of epileptogenic zone. The patient signed the written consent forms and

all procedures were approved by the ethics committee of the University of Erlangen,

Faculty of Medicine on 10.05.2011 (Ref. No. 4453). Furthermore, in this work, a new

pipeline that uses noninvasive source reconstructions and special MRI acquisitions in a

three step approach (MRI then EMEG then again MRI) to find the epileptogenic zone

was established. The case studied here will show that a focal cortical dysplasia (FCD)

found in MRI does not always point to the epileptogenic zone even though it might be

coinciding with the results of source localization. Thus, localization of earlier activity

and performing of advanced MRI sequences might sometimes be crucial to reveal FCDs

that cannot be detected with a standard resolution MRI, but which might be the main

trigger responsible for the activation of other FCDs.

5.1 Methods

In this study, the same methods as described in Chapter 3 were used with small

modifications, which are explained below. The steps of the pipeline used in this study

are the following:

1. Simultaneous measurement of EEG/MEG.

2. Acquisition of a first set of MRI data (T1, T2 and DTI) that was used to construct

head models and to check for lesions and cortical malformations using FLAIR

MRI.
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3. Source analysis of the EEG/MEG signals and comparison of the obtained results

with other available sources of information such as seizure semiology and MRI

findings.

4. Acquisition of a second set of MRI, which uses the ZOOMit (see Section 5.1.5)

in order to obtain high resolution images (cubic voxels with 0.5 mm edge length)

of a small region of interest.

5. Evaluation of the ZOOMit MRIs for lesions or cortical malformations that might

not be visible in lower resolution whole brain MRIs.

5.1.1 Simultaneous measurement of EEG/MEG

The simultaneous measurements of spontaneous EEG/MEG and somatosensory evoked

potentials and fields using electric median nerve stimulation were obtained and pre-

processed using the procedure explained in Chapter 3.

5.1.2 Acquisition of the first set of MRI data

The first set of data included T1, T2, DT MRIs as explained in Section 3.1.2 and it was

used to construct the FE head model. During this measurement also a 3D-FLAIR with

TR/TE 7000 ms/322 ms and inversion time of 2400 ms was measured (cubic voxels

with edge length of 1.17 mm). In radiological examinations, a right frontal FCD was

detected.

5.1.3 Segmentation, head model construction, conductivity

calibration and calculation of leadfield matrix

The head modeling pipeline was the same as described in Chapter 3 except that dura

mater was segmented and included to the head model as the seventh compartment.

The segmentation of the dura mater was performed using Seg3D 1 and involved man-

ual segmentation as well as basic image processing techniques. Note that because of

limited MRI resolution, only the thickest parts of the dura mater were segmented.

The conductivity of dura mater was modeled as 0.1 S/m [195]. Other steps in head

model construction were the same as described in Chapter 3 and the skull compacta

and spongiosa conductivities were estimated to be 0.0033 and 0.0116 S/m, respectively,

1Seg3D: Volumetric Image Segmentation and Visualization. Scientific Computing and Imaging
Institute (SCI), Download from: http://www.seg3d.org
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with the skull conductivity calibration procedure described previously in this work (see

Section 3.1.13 for the procedure). The leadfield matrices were calculated for a source

space with 2 mm resolution (see Section 3.1.11) as explained in Section 3.1.10. The

head model and the source space are shown in Figure 5.1.

Figure 5.1: Segmented MRI (upper row), T1 MRI (middle row) and the source space
points (blue points) shown on T1 (lower row) MRI. Sagittal (left col-
umn), coronal (middle column) and axial (right column) slices. Please
note that the slices selected in the lower row are different from the top two
rows in order to better visualize the source space points. The color codes
for the tissues are scalp (green), skull compacta (brown), skull spongiosa
(beige), dura mater (dark turquoise), CSF (light turquoise), gray matter
(burgundy) and white matter (red).

5.1.4 Marking of the epileptic spikes and source reconstruction

procedure

Ten epileptic spikes (maximum negativity at F6 in EEG), marked by a clinical re-

viewer, were averaged and used for source reconstruction. A current density approach

sLORETA was used as the inverse approach [121]. The sLORETA current density ap-

proach was used because it is known to perform well in situations where a network of
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sources are temporally disentangled so that at each time-point, only a single activation

center or multiple activation centers whose leadfields are sufficiently uncorrelated need

to be accurately localized [118, 121] The inverse solutions were calculated using the

CURRY 7 software after importing the leadfield matrices calculated with the SimBio

(see Chapter 3).

5.1.5 Acquisition of a second set of MRI data

The second set of MRI scans were acquired with another 3T scanner (MAGNETOM

Prisma 3.0T, (Siemens Medical Solutions, Erlangen, Germany)). In this set an MRI

sequence that benefits from the new advancements in parallel transmission in MRI

[19] was used to acquire high resolution images in a restricted area (rectangular prism

with a volume 160× 82 × 28 mm3 spanned with cubic voxels with edge length of 0.5

mm). A 3D sequence with TR/TE 2320 ms/198 ms was used with four averages and

the total acquisition time was approximately 12 minutes. This ZOOMit feature was

used to acquire detailed MRIs from two restricted regions. The first region was the

right frontal FCD, which was also visible in the first set of MRI data, and the second

area was the left fronto central region, selected based on the results of EMEG source

reconstructions, as as explained in the following Section 5.2.

5.1.6 DTI tractography

After performing eddy current and susceptibility correction as explained in Section

3.1.5, the FSL-BEDPOSTX routine was used to calculate the distribution of diffusion

parameters at each voxel using Markov Chain Monte Carlo sampling. Afterwards, the

FSL-PROBTRACKX routine was used to perform probabilistic tractography between

two regions of interest [196]. These two regions were the same as used in ZOOMit

MRIs, selected based on the results of EEG/MEG source reconstructions.

5.2 Results and Discussion

All figures presented here were obtained using the CURRY-Simbio and FSL software

and, unless it is stated otherwise, the shown localizations were obtained with combined

EEG/MEG.

The butterfly plots of the averaged signals for EEG and MEG are shown at the

upper left corner in Figure 5.2 with two vertical dashed lines indicating the spike peak

(at 0 ms) and a preceding peak (at -23 ms). In the Figure 5.2, the EEG and MEG

Dissertation Ümit Aydin
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topographies from 0 to -33 ms are shown, too. In these topographies, near the spike

peak (from 0 to -7 ms) a clear dipolar pattern over the right frontal lobe is visible.

In addition, when the signals were traced back in time other dipolar patterns were

present at -23 ms (the preceding peak in butterfly plots).

In Figure 5.3 the sLORETA localizations projected on the FLAIR MRI slices at -7

ms are shown. In the left column of this figure, the localizations point to the right

frontal region, where the FCD was detected in the FLAIR MRI (shown in the middle

column). The results of ZOOMit MRI are shown in the right column of this figure,

where the boundaries of the FCD can be clearly seen. In most cases, these findings

would have been sufficient to decide on the resection of the right frontal FCD. In this

study, the interictal spikes showed right frontal activity near the peak and a clear FCD

was detected with MRI, but the seizure semiology (tingling feeling at the right anterior

torso, ascending feeling of nausea, then loss of consciousness, hypermotor movement,

tongue bite, enuresis) of the patient was pointing to the left fronto-central regions.

In order to investigate if the mismatch between sLORETA localizations, MRI and

seizure semiology was due to propagated activity, the time points prior to the spike peak

were investigated. At -23 ms, at the time of the preceding MEG peak in the butterfly

plot in Figure 5.2, two main sLORETA source localization clusters were detected: in

left fronto-central (see Figure 5.4) and right central (see Figure 5.5) regions. The

cluster in the left fronto-central region was especially intriguing, since it was in a good

agreement with the seizure semiology and the results of FLAIR MRI at the place of this

localization were suspicious (see the middle column in Figure 5.4). When the patient

was measured with ZOOMit MRI a small FCD at the place of the left fronto-central

localization was found (see the right column in Figure 5.4).

The case studies describing a superior to inferior propagation of the epileptic spikes

in frontal gyrus in just 14 ms were recently described in the literature [197]. The propa-

gation of the epileptic activity could also explain the results of the current study. Thus,

it was decided to search for an anatomical pathway that might support the hypoth-

esis of propagation. For this purpose, DTI tractography was performed. As shown

in Figure 5.6 illustrating the results of DTI tractography, fiber connections (green

paths) between the two FCDs (blue spheres) might explain the very fast propagation

of epileptic activity from the left fronto-central FCD to the right frontal FCD.

The localizations described in this chapter up to this point, were all obtained with

EMEG (Figures 5.3, 5.4, 5.5). In Figure 5.7 the source localizations obtained with

EEG, MEG and EMEG were compared. The source localizations at -23 ms (left col-

umn) and at -7 ms (right column) are shown on 3D volume rendering of the individual
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Figure 5.2: Butterfly plots (top left) for MEG (green) and EEG (blue), and topogra-
phies of MEG (upper topography) and EEG (bottom topography) for the
averaged spike at 11 different time instances. The time points at 0 ms
(peak of the spike) and -23 ms (the preceding peak on MEG) are indicated
by dashed vertical lines in butterfly plots (top left). The MEG and EEG
topographies are shown for every ∼3.3 ms starting from 0 ms and going
backwards until -33 ms. In MEG and EEG topographies, the blue (red)
isopotential lines indicate negativity (positivity). The increments between
contour lines for each map are shown on upper left corners and the units
for EEG and MEG are µV and fT respectively. Letters in topographies
indicate the orientation (L: Left, R: Right, A: Anterior, P: Posterior).

Dissertation Ümit Aydin
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Figure 5.3: Source localizations at -7 ms. In the left column the sLORETA results pro-
jected to the FLAIR MRI are shown (only results obtained with a threshold
of 85 % for the maximum F-value are shown). In the middle column, the
FLAIR image without the localizations is shown. The right column shows
the results of ZOOMit MRI. The green arrows indicate the FCD and the
white letters on MRIs show the orientation (L: Left, R: Right, A: Anterior,
P: Posterior).

brain and the positions of FCDs detected with MRI are indicated with blue spheres.

In EMEG (top 2 rows) the localizations were coinciding well with the FCD positions

at both time instances. At -7 ms in EEG and MEG the localizations were not as close

to the FCDs as in case of EMEG, however, they were still within the close proximity of

the FCD. In contrast, at -23 ms both EEG and MEG localizations were far away from

the left fronto-central FCD. These results are in a good agreement with the findings

described in Chapter 4 indicating that EMEG benefits from the complementary infor-

mation of EEG and MEG to stabilize the source reconstructions, especially in case of

low SNR.

In Chapter 4 it was shown that by using EMEG the epileptic activity and its propa-

gation can be distinguished in a sub-lobal level within the temporal lobe. In that study,

the intracranial stereo-EEG (sEEG), which is widely accepted as the ”gold standard”,

was used for the validation purposes. However, intracranial recordings suffer from low

spatial sampling due to limited number of invasive electrodes, and the tunnel view

effect due to limited coverage [1]. For example, if in this study the intracranial elec-
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Figure 5.4: Source localizations at -23 ms, slices selected according to the left hemi-
spheric activity. In the left column, the sLORETA results registered to the
FLAIR MRI are shown (only results obtained with a threshold of 85 % for
the maximum F-value are shown). In the middle column, the FLAIR image
without localizations is shown. The right column shows the ZOOMit MRI
for the localization cluster (detected with sLORETA) at the left fronto-
central region. The green arrows show the FCD and the white letters on
MRIs indicate the orientation (L: Left, R: Right, A: Anterior, P: Posterior).

trodes would have been placed near the right frontal FCD they would not have been

able to measure the epileptic activity in the left fronto-central FCD. Therefore, it is

very important to find the right location for the invasive electrodes by combining the

information obtained from noninvasive EEG/MEG, MRI and the seizure semiology.

It is important to note that sLORETA might suffer from artificially dispersed local-

izations, and it does not perform well in situations with multiple sources and a limited

distance between sources [118]. Thus methods that do not have these problems, like

hierarchical Bayesian methods [112, 118] and maximum entropy on the mean method

[135, 152] might be a better choice for the future studies. A second important point

is that the dura mater segmentation used here was not optimal. However, it is still

expected that the constructed head model, which includes dura mater as a seventh

compartment, to perform better than a head model in which the dura mater is mod-
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Figure 5.5: Source localizations at -23 ms, slices selected according to the right hemi-
spheric activity. The sLORETA results registered to the FLAIR MRI are
shown in the left column (only results obtained with a threshold of 85 % for
the maximum F-value are shown). In the right column, the FLAIR image
without the localizations is shown. The white letters on MRIs indicate the
orientation (L: Left, R: Right, A: Anterior, P: Posterior).

eled as part of the CSF.

To summarize, a short study, which was used to test the feasibility of a pipeline that

employs the recent advancements in MRI technology and noninvasive source analysis

in presurgical epilepsy diagnostics, was presented in this section. The re-investigation

of MRIs using findings of source analysis is not a new idea [198], but the main novelty

of the pipeline described in this work is the usage of ZOOMit MRI to obtain high

resolution images from a small region of interest, which to the best of the author’s

knowledge was not reported before. Based on the findings presented in this study, the

patient was operated on the left fronto-central FCD and she is seizure free for 4 months
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Figure 5.6: The results of DTI tractography. The green paths show the tracts that
were found between the two FCDs indicated by blue spheres.

now. Thus, the three step MRI-EMEG source analysis-MRI procedure presented here

can be used as a very promising tool to detect small lesions or cortical malformations

and in some cases this might help invasive recordings.
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Figure 5.7: The EMEG (top two rows), EEG (third row from the top) and MEG
(bottom row) localizations at -23 ms (left column) and -7 ms (right column).
Only the results that passed 85 % threshold of the maximum F-value are
shown. The FCDs detected with MRI are indicated by the blue spheres.
Left and top views of the brain are shown for EMEG and only top view of
the brain is shown for EEG and MEG.
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6 Study IV: EMEG Source Analysis of

Evoked Responses with Finite

Element Head Models

Before the EEG/MEG/MRI data from patients with pharmaco-resistant epilepsy was

investigated, the performance of EEG, MEG and EMEG in analyzing evoked responses

was compared. In this study, the focus was on two kinds of evoked responses: so-

matosensory evoked responses (SER) and auditory evoked responses (AER).

The post-processing of the signals and construction and calibration of the FE head

model was done with the same processing pipeline as described in Chapter 3, thus

these methods are not explained here.

The data presented in this section was measured from two different healthy subjects.

The subjects, 45 and 25 years old males, signed the written consent forms and all pro-

cedures were approved by the ethics committee of the University of Erlangen, Faculty

of Medicine on 10.05.2011 (Ref. No. 4453).

In this section, a general convention is used to name evoked potential (in EEG) and

evoked field (in MEG) components. In this context if the name N20 is used for the

component measured in EEG, then N20m will be used for the MEG counterpart, and

N20(m) will be used when both EEG and MEG components are discussed.

6.1 Subject I: General Properties of Somatosensory

and Auditory Evoked Responses

6.1.1 Head model

A six-compartment finite element head model with anisotropic brain compartment

was constructed and used in this study. The head model was constructed from the

individual MRIs as explained in Chapter 3. After performing conductivity calibration,

Dissertation Ümit Aydin
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conductivities for skull compacta (0.0033 S/m) and spongiosa (0.01155 S/m) tissues

were obtained. The conductivity values for the other compartments were the same as

in those in Section 3.1.7.

6.1.2 Somatosensory evoked potentials and fields

Somatosensory evoked responses were measured for two main purposes. First, the data

was required to calibrate the skull conductivity as explained in Section 3.1.13. Sec-

ondly, it was aimed to use it for evaluation of the proposed methods, namely EMEG

with conductivity calibrated FE head models, since the brain areas for the process-

ing of primary-sensory stimuli are relatively well known. The main interest was the

N20(m) component because (as already explained in previous sections) the underly-

ing sources behind this component can be explained with single mainly tangentially

oriented dipole. This dipole represents the activation in the primary sensory cortex

SI (postcentral sulcal wall, Brodmann area 3b), contralateral to the stimulation side

[6, 42, 109].

6.1.2.1 Stimulus properties, signals and topographies

In this study, the stimulation and source reconstruction procedures were identical to

the ones used for the patients (see Section 3.1.8.1). The somatosensory evoked poten-

tials (SEP) and fields (SEF) of the subject due to electrical stimulation of the median

nerve of the right hand is shown in Figure 6.1. In this figure the MEG (green) and

EEG (blue) butterfly plots are given. The first peaks visible in these plots are around

4 ms and they are due to the artifact caused by the electrical stimulation. The extent

of this artifact is related to the strength and the duration of the stimulating electric

current. In test measurements (data not shown here), it was found that this artifact is

observed mainly on the side where the EEG amplifiers are situated, and the strength

of this stimulation drops considerably when the cables for the electric stimulation are

twisted to avoid possible magnetic induction due to currents they carry. Tactile so-

matosensory stimulation using an air-pressure driven membrane was also tested for

comparison with electric stimulation. The responses generated by the air-puff stimula-

tion were no longer as sharp as in the case of electrical stimulation and their amplitudes

were smaller. Similar results were also observed in a previous study [199]. Another

interesting characteristic of this stimulation artifact is its sinc style fading, which gives

the impression that there is stimulation even before 0 ms. This is mainly due to the

two way (backward-forward) filters used to achieve a zero phase difference.
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The first real component in Figure 6.1 is the so-called P14 component in the EEG

butterfly plot. This component is important because it clearly shows the sensitivity

differences between EEG and MEG. In contrast to EEG, this component is not observed

in the butterfly plot of MEG. The P14(m) component is thought to occur at the

brain-stem [109] and because of the deep location and mainly quasi-radial orientation

of the source, the P14m component is hard to detect with MEG (see corresponding

topographies in Figure 6.1).

The first component that is visible in both EEG and MEG is the N20(m). As

expected, both EEG and MEG topographies have clear dipolar patterns with almost

90 degree shift between the poles. Furthermore, the EEG poles are further away from

each other in comparison to the MEG due to effects of low conductive skull (see N20(m)

topographies in Figure 6.1).

6.1.2.2 EEG, MEG and EMEG source reconstructions for SER

Figure 6.2 shows the source reconstructions for the N20(m) component based on EEG

(blue), MEG (no regularization) (green) and EMEG (red) on the MRI (upper figures)

and on a volume rendering of the brain (lower figures). The Broadmann area 3 (de-

picted in purple in Figure 6.2) was calculated by registering the Talairach atlas to the

individual MRI using CURRY7. As can be seen from the Figure 6.2, the positions of

the EEG and MEG sources are very close to each other. This supports our hypothesis

of a quasi-tangential focal source. In line with the results in Section 3.2.2.4 the EMEG

dipole was not located simply between the EEG and MEG dipoles. Furthermore, its

location fitted very well to the estimated Broadmann area 3. In terms of orientation,

the MEG dipole indicates a quasi-radial direction while the EEG and EMEG shows a

quasi-tangential orientation, which is in a good agreement with the findings of other

studies [109]. This difference in orientation is observed mainly because MEG is in-

sensitive to quasi-radial components. As also explained in [6] the radial orientation

of the MEG dipole is due to low gain components in the MEG leadfield matrix that

correspond to quasi-radial components. In order to avoid this, all MEG source recon-

structions, except those described in this section, were performed with regularization.

The user thus decides with his choice of the regularization parameter about the contri-

bution of the quai-radial source component to the estimated source orientation. In this

section, the results of MEG are shown without regularization in order to emphasize

this important point. Another key finding, which is obvious from Figure 6.2 is that the

depths of EEG and MEG dipoles fit very well to each other. This is important because

it shows that a proper conductivity calibration strategy (described in Section 3.1.13)
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Figure 6.1: Healthy subject SEP(EEG)/SEF(MEG) butterfly plots and topographies
for P14(m) and N20(m) components.
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was selected.

Figure 6.2: Source reconstructions for the N20(m) component for a healthy subject
based on EEG (blue), MEG (no regularization) (green) and EMEG (red)
shown on the MRI (upper figures) and on a volume rendering of the brain
(lower figures). Left and right sides are depicted with L and R, respectively,
in the top figures. The Broadmann 3 area is highlighted with purple in
MRIs.

6.1.3 Auditory evoked potentials and fields

It is known that human auditory cortex has a tonotopic organization, i.e., different fre-

quencies are processed in different locations in the auditory cortex [200]. The N100(m)

component, a component with latency around 100 ms, is a stable and high magnitude

component in both auditory evoked potentials (AEP) and auditory evoked fields (AEF)

[200]. In previous studies it was shown that the N100(m) response could be used to

investigate the tonotopy, and that the tonotopic distance is rather small (8 mm depth

difference for stimuli with frequencies between 500 Hz and 4,000 Hz) [201]. Thus, even

the smallest errors in the forward or inverse model used for non-invasive source recon-

struction might prevent the observation of the tonotopic behavior and this motivates

to use realistic FE head models with calibrated skull conductivities to investigate the

tonotopic behavior.
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6.1.3.1 Stimulus properties, signals and topographies

Pure sinusoidal tones with 500 ms duration and frequencies of 250, 1000 and 4000 Hz

(always two octaves in between) were presented bilaterally. The hearing thresholds for

each frequency were measured separately inside the MEG chamber, and 55 dB above

this level was used for stimulation. Each AER run was eight minutes long, and a total

of six runs (each frequency twice) were measured in a session. In each run, only one

tone frequency was presented, and the order of the frequencies used in each run was

1000, 4000, 250, 4000, 250 and 1000 Hz. Each run had ∼110 events with randomized

stimulus onset asynchrony (SOA) from 3.5 to 4.5 s. A relatively long SOA was used

because according to our initial tests, the mean global field power of the responses can

increased up to 60 % when an SOA of 3.5-4.5 s is used instead of 1.7-2.2 s. Similar

findings were also reported in the literature [111, 202].

In order to compensate for the delay between the trigger, send from the computer,

and the actual time the signal reaches the ear of the subject, a cosine shaped pulse

signal was added to the stimulus signal, and a second trigger was created when this

signal was detected in the chamber. The used cosine shaped pulse signal had a carrier

frequency of 18 kHz, peak to peak amplitude of 20 % of the peak amplitude of the

stimulus signal, and a total duration of 2 ms. The acoustic sound was transmitted

through a rubber tube with a length of 90 cm and an inner diameter of 3 mm. The

frequency transfer characteristics of the system and the tubes (which are almost linear

in a frequency range from 125 Hz up to 6 kHz) ensure sufficient damping of this high

frequency trigger, so that it is not audible.

The signals measured for three frequencies (250, 1000 and 4000 Hz) and the topogra-

phies at the rising flank of the N100(m) component are shown for EEG (butterfly plot

with blue lines and the topography map next to it) and MEG (butterfly plot with

green lines and the topography map next to it) in Figure 6.3. As can be seen from

the Figure 6.3, in the butterfly plots the highest components were at around 100 ms in

all measurements. In MEG topography maps four poles are clearly visible, supporting

the two-dipolar structure of the rising flank of the N100m component. Furthermore,

hierarchical Bayesian modeling has shown that the two dipole model is an appropri-

ate model for the rising flank of the N100(m) [113]. In contrast, in EEG topography

maps the two poles at frontal regions appear as one and the other two poles on the

right and left posterior regions are visible only partly, most likely because we used a

standard 10-10-system electrode cap that contains deeper electrodes, but still not deep

enough for the two positive auditory poles. While it might be possible to measure
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these partly visible poles completely with other EEG caps (by sacrificing SNR due

to muscle artifacts measured by the electrodes on the neck), the two melted negative

poles over the frontal lobe can not be disentangled with any EEG cap. Thus, consid-

ering the measured topographies, in this case MEG seems to be the stronger modality

to study AER N100(m) component for adults with regard to stable localization, but

MEG is still weak with regard to an appropriate reconstruction of source orientations

and magnitudes.

6.1.3.2 EEG, MEG and EMEG source reconstructions for AER

EEG and MEG leadfield matrices were calculated with SimBio, the source spaces were

constructed as explained in Section 3.1.11 and imported to Curry 7. The signals were

filtered with a zero phase bandpass filter (1-20 Hz) [110] and a semi automatic artifact

rejection procedure based on the amplitudes was applied.

A two dipole solution was obtained for the rising flank of the N100 signal with a

two-step dipole scan approach. First, a source space with a resolution of 4 mm was

constructed within the gray matter volume (see Section 3.1.11). Then, a scan was

performed for both MEG and EMEG for the measurement results of all frequencies

and head models in order to get a rough estimation of the source positions. In the

second step, a 1 mm source space was constructed within 8 mm distance of the initial

localization results and a new scan was performed using this source space.

The EEG (blue), MEG (green) and EMEG (red) source reconstructions for the ris-

ing flank of the N100(m) component for the stimulation with 1000 Hz are shown on

the MRI (upper figures) and on a volume rendering of the brain (lower figures) in

Figure 6.4. The results for the AER differ from the results for SER, presented in Sec-

tion 6.1.2.2. The main difference is the distance between EEG and MEG localizations,

which is as high as 24 mm for AER. It is assumed that this difference is caused by

EEGs inability to measure all poles for the N100(m) as explained in Section 6.1.3.1.

In line with the results presented in Table 3.6, in the case of EMEG, the locations

are mainly determined by MEG and EEG information mostly contributes to the ori-

entation of the sources (Table 6.1 and Figure 6.4). However, especially for the left

hemisphere there is still a considerable distance (8.2 mm) between the EMEG and the

MEG centroid localizations (Table 6.1).
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Figure 6.3: AEP/AEF signals and topographies for 250 Hz (upper two rows), 1000
Hz (middle two rows), 4000 Hz (lower two rows) sinusoidal tones. The
topographies at the rising flank of the N100(m) component are shown for
EEG (butterfly plot with blue lines and the topography map next to it)
and MEG (butterfly plot with green lines and the topography map next to
it). The dashed vertical lines in butterfly plots indicate the time points for
which the topographies are shown.

6.1.3.3 Source reconstructions for AERs for different stimulus frequencies

In Figure 6.5 the EMEG source reconstructions for 250 (red), 1000 (blue) and 4000

(green) Hz stimulus frequencies are shown on the MRI (upper figures) and on a volume
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Table 6.1: Comparison of EEG and MEG source reconstructions of the auditory
N100(m) with the results of EMEG for the left and right hemisphere: differ-
ences in dipole locations and orientations for the left and right hemisphere
obtained with 1000 Hz stimulus.

Hemisphere Modality
Difference from EMEG

Location Diff.
(mm)

Orientation
Diff. (degree)

Right
EEG 9.2 21

MEG 2.6 45

Left
EEG 19.7 17

MEG 8.2 36

Figure 6.4: The EEG (blue dipoles), MEG (green dipoles) and EMEG (red dipoles)
source reconstructions for the rising flank of the N100(m) component for
the stimulation with 1000 Hz are are shown on the MRI (upper figures)
and on a volume rendering of the brain (lower figures).

rendering of the brain (lower figures). In line with the literature, the dipoles in the

right hemisphere are localized deeper for higher frequencies [201]. In Table 6.2 the

positions of the EMEG dipoles are given for the tested frequencies on the left and right

hemisphere. The results in this table are given in the PAN coordinate system, thus, the
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coordinates are determined using the left preauricular (PAL), the right preauricular

(PAR) and the nasion (NAS) fiducials. With the x-axis from PAL to PAR (lateral-

medial direction), y-axis goes through NAS (posterior-anterior direction) and z-axis

(inferior-posterior direction) points up from the intersection of x- and y- axes. As

expected, the main difference for different frequencies is observed on the lateral-medial

(x-axis) direction and the difference between 250 and 1000 Hz is almost the same as

the one between 1000 and 4000 Hz. In the left hemisphere the dipole for 250 Hz

is localized more lateral than for 1000 and 4000 Hz, however, there is only 0.1 mm

difference, which is below the uncertainty level of non-invasive source reconstruction

methods. Therefore, between 1000 and 4000 Hz the results are not sufficient to claim

the tonotopic scheme for this hemisphere. Small anatomical differences between the

right and the left auditory cortices as well as differences on the achieved SNRs [203]

could explain these results. Nevertheless, these findings are in a good agreement with

the results of [204], which showed that the dipoles are spanning a larger area in right

hemisphere for N100m component in comparison to the left hemisphere. As stated in

Section 6.1.3.2, in contrast to EEG, the contributions of MEG to the source location

are more important for the AER, thus the small changes in the anatomy that lead to

more quasi-radial sources might disturb the results.

Table 6.2: The positions of the EMEG dipoles are given for the tested frequencies in the
left and right hemisphere. The x coordinates correspond to lateral-medial
direction (higher absolute values correspond to more lateral locations), y cor-
responds to posterior-anterior direction (higher values correspond to more
anterior locations) and z corresponds to inferior superior direction (higher
values correspond to more superior locations).

Hemisphere Stimulus
Coordinates

Frequency x y z

Right
250 Hz 54.1 24.5 65.9

1000 Hz 47.0 22.8 59.1

4000 Hz 40.2 17.6 62.5

Left
250 Hz -47.6 15.9 62.6

1000 Hz -45.3 17.1 62.1

4000 Hz -45.4 22.3 62.6
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Figure 6.5: EMEG source reconstructions for auditory stimulation with sinusoidal
tones with 250 (red), 1000 (blue) and 4000 (green) Hz are shown on the
MRI (upper figures) and on a volume rendering of the brain (lower figures)

6.2 Subject II: Comparison Between the Primary and

the Secondary Auditory Cortices

In the previous section, data measured from a subject with common auditory evoked

responses was investigated. In this section, the special 1 AERs from another healthy

subject, whose audiogram, clinical examination and radiologic examination showed no

pathology, were analyzed. The first measurements were done using the same stimuli

as described in Section 6.1.3.1 and it was observed that although the subject can hear

normally with both ears as evidenced by the audiogram, in the topography maps the

N100(m) component mainly only appears over one (the right) hemisphere. In order to

investigate the reasons for this unusual observation, two additional experiments were

performed and the findings are presented here. The key results point to the importance

and extent of the individual variance of the brain activities.

1Special in the sense that the measured AERs differ from the mean of the AERs of the general
population.
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6.2.1 Experiment 1: Investigation of the long latency components

6.2.1.1 Properties of the stimulus and pre-processing

In the first experiment a paradigm that is designed to investigate the long latency

components, i.e., the N100(m), was used. The conditions of the experiment are listed

below:

• Stimulation type: In contrast to the experiment described in Section 6.1.3.1,

monaural stimulation was studied in order to better investigate the hemispheric

differences.

• Tone duration: 800 ms with 10 ms rise and fall time.

• Tone frequency: 1400 Hz to ensure good SNR.

• Inter stimulus interval (ISI): randomized between 3.5 to 4.5 seconds to ensure

high SNR and to avoid habituation.

• Number of epochs: ∼350.

• Strength of the stimulus: 60 dB above hearing level.

• Measurement duration: In total ∼56 minutes, 28 minutes for each ear.

Prior to source reconstruction, the baseline of the data was corrected using the pre-

stimulus interval (from -200 to 0 ms) and filtered with zero-phase bandpass (1-100 Hz)

and notch (50 Hz) filters. After visual inspection TP9, F2 and FC3 were selected as

bad channels. Following the amplitude based semi-automatic artifact rejection process,

320 epochs were averaged for the left ear and 329 for the right ear stimulation.

6.2.1.2 Results

6.2.1.2.1 Signals and topographies

The butterfly plots of the AERs for the left ear stimulation (LES) are shown in Figure

6.6. For MEG (green) the sensor signals over the LH and over the RH are plotted

separately. For EEG (blue) only the signals on three electrodes over the LH (T7, FT7,

FT9) and over the RH (T8, FT8, FT10) are plotted to enhance comprehension (to

minimize the effects of the activity on the other hemisphere). In this figure P50m,

N100m and later components, measured with MEG sensors over the right hemisphere,

are clearly visible. In contrast, over the left hemisphere, there is little or no signal for
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the P50m and the N100m and only the later components components (> 175 ms) are

clearly visible. In EEG (in the selected electrodes) also, the N100 component over the

RH is significantly higher than over the LH. With the selected electrodes it is hard to

comment on the P50 component (in EEG), thus, the hemispheric differences of P50

component will be discussed later in this section with the help of the topography maps.

Figure 6.6: Left ear stimulation: Auditory evoked responses for 800 ms long sine tones.
For MEG (green) the sensor signals over the LH and over the RH are plotted
separately. For EEG (blue) only the signals on three electrodes over the LH
(T7, FT7, FT9) and over the RH (T8, FT8, FT10) are plotted to enhance
comprehension.

The butterfly plots of the AERs for the right ear stimulation (RES) are shown

in Figure 6.7. Again for MEG (green) the sensor signals over the LH and over the

RH are plotted separately. For EEG (blue) only the signals on three electrodes over

the LH (T7, FT7, FT9) and over the RH (T8, FT8, FT10) are plotted to enhance

comprehension. For RES the P50m and N100m are visible over the RH but with

smaller amplitudes (especially for N100m) in comparison to LES (see MEG signals in

Figures 6.6 and 6.7). Unlike for the LES, very weak P50m and N100m components are

detectable also over the LH. The EEG signals for the RES also show higher amplitudes

for electrodes over the RH but the hemispheric difference is lower than for LES. With

the selected electrodes it is hard to comment on the P50 component (in EEG), thus,
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the hemispheric differences of P50 component will be discussed later in this section

with the help of the topography maps.

Figure 6.7: Right ear stimulation: Auditory evoked responses for 800 ms long sine
tones. For MEG (green) the sensor signals over the LH and the RH are
plotted separately. For EEG (blue) only the signals on three electrodes
over the LH (T7, FT7, FT9) and over the RH (T8, FT8, FT10) are plotted
to enhance comprehension.

The mean global field power (MGFP) values in Table 6.3 indicate higher signals over

the RH for both P50(m) and N100(m) with the exception of the P50m in case of RES

and MEG. The hemispheric differences are higher for the N100(m) in comparison to

the P50(m) and for RES in comparison to LES.

Table 6.3: Mean global field powers of sensors for P50(m) and N100(m) components.
(800 ms sine tones)

Components Hemisphere Left ear stimulation (LES) Right ear stimulation (RES)

EEG MEG EEG MEG

P50(m)
Left 0.365 14.7 0.206 22

Right 0.661 36.7 0.336 20.6

N100(m)
Left 1.71 21.4 1.44 24

Right 2.91 108 1.9 62.9

The topography maps for the LES (Figure 6.8) and the RES (Figure 6.9) at the
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peak of the N100(m) component as measured by MEG (first row) and EEG (second

row) are shown in upper two rows of Figures 6.8 and 6.9. These maps are in a good

agreement with the butterfly plots presented in Figures 6.6 and 6.7. For both RES

and LES, there is a clear dipolar pattern on RH, especially in MEG. In Figure 6.9

for RES, over the LH, a dipole like pattern can be seen in MEG, but it is very weak

in comparison to the RH. For LES and MEG, it is even weaker and, with the chosen

number of isopotential lines, only the peaks of the two poles are visible. In the case

of EEG, there is almost no dipolar pattern visible for both LES and RES. Table 6.3

show also high EEG signals over the LH. However, the topography maps show that

the observed high amplitudes are mainly due to the orientation of the dipole in the

RH (the negative pole (blue lines) in the frontal region in the Figure 6.8). This is also

the reason why, only three electrodes (in each hemisphere) are selected and plotted in

Figures 6.6 and 6.7.

6.2.1.2.2 Source reconstructions

In order to study the hemispheric differences in detail, the source reconstructions for

the P50(m) and the N100(m) components were calculated and examined. Two-dipole

scan and SWARM (sLORETA-weighted accurate minimum norm) [123] were used for

the inverse solutions. The two-dipole scan was selected because it explains auditory

long latency components of the general population very well, as it was demonstrated

in the previous section (Section 6.1.3.2) and in [113] (Chapter 5.4.5, Figure 5.35). In

order to obtain meaningful dipole solutions, the auditory cortices in the right and left

hemispheres were selected from the MRI and the source dipole scan was performed

only within 25 mm distance to these locations. This was necessary because in many

cases dipole reconstruction for the unusual AERs, measured from the subject, did

not produce any dipoles in the LH. In the case of SWARM, this constraint was not

used and the source reconstructions were calculated for the whole source space (2

mm resolution), but only the upper 50 % of the currents were visualized. In order

to investigate the activity that might arise from regions other than auditory cortex

(which would not be detected with the two-dipole scan that is restricted to the area

around the auditory cortices), a current density approach (SWARM) was used.

The dipole strengths in the LH and RH of EEG, MEG and EMEG for the left and

right ear stimulations are presented in Table 6.4 along with SNRs and GOF values. For

P50(m) LES the dipole strength in RH was found to be ∼2.7 (∼3.2) times higher than

the dipole strength in LH for MEG (EMEG) with GOF > 93 % and SNR > 3.1. In the
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Figure 6.8: Left ear stimulation: MEG (first row from the top) and EEG (second
row from the top) topographies along with the segmented cortex and skin
recorded for 102 ms after 800 ms sine tones. The dipole scan results
for EMEG at this time instant are shown in the third row. Turquoise
(blue) dipole indicates the source localization in the contralateral (ipsilat-
eral) hemisphere with respect to the stimulus. Fourth row from the top
shows the EMEG SWARM solution and the individual cortex obtained
from MRI. The upper view uses the transparent cortex and only the right
view is shown because no activity was visible on the left side.

case of EEG, the dipole strength ratio was considerably lower with just ∼1.3. However,

it should be noted that it was possible to obtain localizations in both hemispheres

only after increasing the regularization coefficient to the value that was three times

higher than the value estimated from the pre-stimulus interval. Even in this case, the

localization in the Table 6.4 only shows insular cortex for LH with a GOF of just 87

%. For RES all three methods (EEG, MEG or EMEG) were not able to localize any
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Figure 6.9: Right ear stimulation: MEG (first upper row) and EEG (second upper row)
topographies along with the segmented cortex and skin recorded at 107 ms
after 800 ms sine tones. The dipole scan results for EMEG at this time
instant are shown in the third row. Turquoise (blue) dipole indicates the
source localization in the contralateral (ipsilateral) hemisphere with respect
to the stimulus. Fourth row shows the EMEG SWARM solution and the
individual cortex obtained from MRI. The upper view uses the transparent
cortex and only the right view is shown because no activity was visible on
the left side.

dipole in the LH. Both dipoles were reconstructed in the RH with GOF values above

93 %.

In case of the N100(m) LES, again the localization in the LH with EEG was only

possible with high regularization. As calculated from Table 6.4, the ratios of the RH to

LH dipole strengths were ∼5.6, ∼9.1 and∼4.9 for EEG, MEG and EMEG, respectively,

with GOF > 95 %. The SNR of EEG (12.4) was considerably higher than MEG (8).
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The LH dipole reconstruction for RES with EEG was also only possible after high

regularization. In this case higher dipole strengths for RH was indicated for the MEG

(∼2.3 times higher) and the EMEG (∼2 times higher). The LH dipole strength for

EEG was higher than for the RH. The SNRs were similar for all modalities for RES

but the GOF values for MEG (97 %) and EMEG (96 %) were considerably higher than

for the EEG (89 %). The localized dipoles for the peak of the N100(m) for EMEG are

shown in the third rows of Figure 6.8 for LES and Figure 6.9 for RES.

The SWARM results for LES and RES N100(m) EMEG can be found at the bottom

row in Figures 6.8 and 6.9. When using SWARM, the activity was localized only in

the RH with a threshold of 50% for LES and RES. As can be seen from both figures,

significant current density was reconstructed over the RH in the auditory cortex, while

no activity was reconstructed in the LH.

Table 6.4: Source localization results for N100(m) and P50(m) components. Dipole
strengths (µAmm), signal to noise ratio (SNR) and goodness of fit (GOF
%) are given for EEG, MEG and EMEG two dipole deviation scan (800 ms
sine tones). RH and LH stand for right and left hemisphere, respectively.
JRH (just right hemisphere) indicates that both dipoles ended up in the right
hemisphere. ∗ indicates localization in insular cortex, which was achieved
after increasing the regularization coefficient to a value that was three times
its normal value (as explained above) and, thus, these results are not very
reliable.

Components Attribute LES RES

EEG MEG EMEG EEG MEG EMEG

P50(m)
Dipole LH ∗6.83 3.42 1.89 - JRH JRH

Strength RH 8.51 9.05 6.11 - JRH JRH

SNR 2.6 3.2 3.1 - 3.7 3.5

GOF 87 94 93 - 94 93

N100(m)
Dipole LH ∗9.73 6.48 10.4 ∗31.2 10.9 10.6

Strength RH 54.7 58.8 51 25.5 25.5 20.8

SNR 12.4 8 9.1 7.1 7.3 7.3

GOF 95 96 95 89 97 96
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6.2.2 Experiment 2: Investigation of the middle latency

components

6.2.2.1 Properties of the stimulus and pre-processing

A paradigm that is designed to investigate middle latency components, i.e., P30(m)

and Pb(m), was used in the second experiment. It was aimed to find a step of the

auditory processing in which the uncommon responses start. In this section, the P50 is

called Pb complex because, due to convention, P50 or P1 is used to study long latency

responses and Pb is used to analyze middle latency responses [205]. Furthermore, the

Pb component was divided into Pb1 (latency ∼52 ms) and Pb2 (latency ∼76 ms) [205].

The conditions of the experiment were as follows:

• Stimulation type: Monaural.

• Tone duration: 20 ms with 3 ms rise and fall time.

• Tone frequency: 1400 Hz.

• Inter stimulus interval (ISI): randomized between 200 and 400 ms.

• Number of epochs: ∼5000.

• Strength of the stimulus: 60 dB above hearing level.

• Duration of the measurement: In total ∼54 minutes, 27 minutes for each ear.

Prior to source reconstruction, baseline correction was performed using the pre-

stimulus interval (-50 to 0 ms) and then data was filtered with zero-phase bandpass

(3-150 Hz) and notch (50 Hz) filters [205]. After visual inspection, P7, P5, Pz and

F4 were discarded as bad channels. Following the amplitude based semi-automatic

artifact rejection process, 4792 and 4779 epochs were averaged for the left and right

ear stimulation, respectively.

6.2.2.2 Results

6.2.2.2.1 Signals and topographies

The butterfly plots of the AERs for the LES are shown in Figure 6.10. For MEG

(green) the sensor signals over the LH and over the RH are plotted separately. For

EEG (blue) only the signals on four electrodes over the LH (FC3, FC5, C5, F5) and

Dissertation Ümit Aydin



Combined EEG and MEG source analysis of epileptiform activity using calibrated

realistic finite element head models
133

over the RH (FC4, FC6, C6, F6) are plotted to enhance comprehension (to minimize

the effects of the activity on the other hemisphere). Since these components have a

smaller magnitude than the long latency responses, it is harder to evaluate them just

by visual inspection. For the P30m, unlike RH, MEG sensors over the LH showed

no signal detectable by the visual inspection (see Figure 6.10). In addition, the MEG

MGFP over RH sensors was ∼ 4.4 times higher than the MGFP over LH sensors (Table

6.5). The Pb1m was visible over both LH and RH (Figure 6.10), but the signals over

the RH were higher than over the LH by ∼ 3 times. In EEG the Pb1 (over the selected

electrodes) was clearly visible over the RH, but it was very weak over the LH. With

the selected electrodes it is hard to comment on the P30 component (in EEG), the

hemispheric differences of the P30 component will be discussed later in Section 6.2.2.2.2

using the source reconstructions.

For RES, the P30m was hard to detect over any of the hemispheres (please note

that the peak in LH before the Pb1m is at 40 ms in Figure 6.11), but the topography

at this time-instant showed a dipolar pattern over the RH (data not shown here). The

differences between P30 and Pb1 for EEG were not as high as for MEG but still the

signals over the RH were higher than over the LH (Table 6.5). In general, the MGFP

values of LES and RES shown in Table 6.5 indicate higher signals over the RH for

both P30(m) and Pb1(m), except the P30m for RES (please note with an MGFP of

just 3.15, the LH signals for RES are still low).

Table 6.5: Mean global field powers of sensors for P30(m) and Pb1(m) components (20
ms sine tones)

Components Hemisphere LES RES

EEG MEG EEG MEG

P30(m)
Left 0.178 2.18 0.079 3.15

Right 0.216 9.54 0.131 2.81

Pb1(m)
Left 0.278 5.72 0.163 3.08

Right 0.397 17.4 0.228 11.9

Figure 6.12 (6.13) shows the topography maps for LES (RES) at the peak of the

Pb1(m) component at 57 ms (59 ms) as measured by MEG (first row) and EEG (second

row). For both LES and RES, there was a clear dipolar pattern over the RH in both

EEG and MEG. As Figure 6.13 shows, for RES, although it was weaker in comparison

to the RH, a dipolar pattern was also observed by MEG over the LH. In Figure 6.12

for LES, a negative pole is visible in the MEG topography over the LH, which might

belong to a dipole, but the positive counterpart pole for such a hypothetical dipole is

not visible. In EEG, no pole is visible over the LH for both LES (Figure 6.12) and
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Combined EEG and MEG source analysis of epileptiform activity using calibrated

realistic finite element head models
134

Figure 6.10: Left ear stimulation: Auditory evoked responses for 20 ms long sine tones.
For MEG (green) the sensor signals over the LH and the RH are plotted
separately. For EEG (blue) only the signals on four electrodes over the
LH (FC3, FC5, C5, F5) and over the RH (FC4, FC6, C6, F6) are plotted
to enhance comprehension.

RES (Figure 6.13), but the negativity over temporal areas points to a dipole in inferior

regions whose poles could not be fully measured due to the limited coverage of the

EEG cap.

6.2.2.2.2 Source reconstructions

In this section source reconstructions for P30(m) and Pb1(m) components were in-

vestigated. The same procedure as explained in Section 6.2.1.2.2 was used for source

reconstruction.

Regarding the P30(m) reconstruction results (upper row in Table 6.6). No two-

dipole scan result for EEG had GOF higher than 70 %, as indicated by the empty

EEG cells. For LES and for MEG (EMEG), the dipole strength in the RH was ∼2.9

(∼2.4) times higher than the dipole strength in LH with GOF > 86 % and SNR > 4.6.

For RES neither EEG nor MEG were able to localize any dipole in the LH and also

the source reconstructions in the RH were not very stable due to low SNR (<2.1) and
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Figure 6.11: Right ear stimulation: Auditory evoked responses for 20 ms long sine
tones. For MEG (green) the sensor signals over the LH and the RH are
plotted separately. For EEG (blue) only the signals on four electrodes
over the LH (FC3, FC5, C5, F5) and over the RH (FC4, FC6, C6, F6)
are plotted to enhance comprehension.

GOF (<55 %).

In the case of Pb1(m) (second row in Table 6.6), due to increased SNRs in com-

parison to P30(m), better GOF values were achieved. For EEG again there was no

localization with GOF higher than 70 %. However, for LES, MEG and EMEG source

reconstructions showed GOF values of 96 %. For LES, the ratios of the RH to LH

dipole strengths were ∼2.1 and ∼2.4 for MEG and EMEG, respectively. For RES with

MEG, both dipoles were localized in the RH with a GOF of 91 %. The EMEG result

for RES achieved 94 % GOF and the ratio of RH to LH dipole strength was 1.83. The

localized dipoles at the peak of the Pb1(m) component for EMEG LES and RES are

presented in the third row in Figures 6.12 and 6.13, respectively. For LES (Figure

6.12), while the orientation of the dipoles is nearly parallel, the LH dipole seems to be

deeper localized than the RH dipole. For RES (Figure 6.13), while the orientation of

the dipoles is nearly parallel, the LH dipole seems to be localized slightly more anterior

and inferior to the RH dipole.

Similar to N100(m) component, the EMEG SWARM results for Pb1(m) revealed

activity only in the RH with a threshold of 50 % for LES and RES as shown at the

bottom rows in the Figures 6.12 and 6.13.
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Figure 6.12: Left ear stimulation for 20 ms sine tones: MEG (first row) and EEG
(second row) topographies along with the segmented cortex and skin at
the peak of the P1b(m) component at 57ms. The dipole scan results for
EMEG at this time instant are shown in the third row. Turquoise dipole
(blue) indicates the source localization in the contralateral (ipsilateral)
hemisphere with respect to the stimulus. Fourth row shows the EMEG
SWARM solution and the individual cortex obtained from MRI. The up-
per view uses the transparent cortex and only the right view is shown
because no activity was visible on the left side.

6.2.3 Discussion

The signals, topography maps and source reconstructions presented in this section

revealed that in the brain of the subject of this study the LH produces very small if

any auditory evoked responses and the RH clearly dominates for both LES and RES.

However, the audiogram showed no significant difference between left and right ear

and all values were within the normal range.
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Figure 6.13: Right ear stimulation for 20 ms sine tones: MEG (first row) and EEG
(second row) topographies along with the segmented cortex and skin at
the peak of the P1b(m) component at 59 ms. The dipole scan results for
EMEG at this time instant are shown in the third row. Turquoise dipole
(blue) indicates the source localization in the contralateral (ipsilateral)
hemisphere with respect to the stimulus. Fourth row shows the EMEG
SWARM solution and the individual cortex obtained from MRI. The up-
per view uses the transparent cortex and only the right view is shown
because no activity was visible on the left side.

In the first experiment long latency responses were analyzed and results showed

uncommon responses for P50(m) and N100(m). It was previously shown that, the

monaural stimulation results in activation of both hemispheres for N100(m) compo-

nent [111, 206]. In [206] and [111], dipole strengths in the contralateral side were found

to be stronger than in the ipsilateral side. In this study, the dipole strength in the RH

was found to be significantly higher than in the LH for both LES and RES. Despite
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Table 6.6: Source localization results for P30(m) and Pb1(m) components. Dipole
strengths (µAmm), signal to noise ratio (SNR) and goodness of if (GOF
%) are given for EEG, MEG and EMEG two-dipole scan. (20 ms Sine
tones). For the empty cells, no localization with GOF higher than 70 %
was achieved. RH and LH stand for right and left hemisphere, respectively.
JRH indicates that the both dipoles ended up in the right hemisphere.

Components Attribute LES RES

EEG MEG EMEG EEG MEG EMEG

P30(m)
Dipole LH - 1.88 1.83 - JRH JRH

Strength RH - 5.5 4.47 - JRH JRH

SNR - 4.6 4.9 - 1.5 2.1

GOF - 88 86 - 48 55

Pb1(m)
Dipole LH - 2.71 2.75 - JRH 1.15

Strength RH - 5.63 6.7 - JRH 2.11

SNR - 8.3 8.6 - 5.2 5

GOF - 96 96 - 91 94

that there was a significant difference of dipole strength in RH between LES and RES,

smaller dipole strength in the RH for the ipsilateral stimulation (the strength of EMEG

dipole in RH for RES was 41 % of the LES in Table 6.4). In contrast, the LH dipole

strength was barely changing for ipsilateral and contralateral sides. In [206] authors

found this ratio to be 72 % for both LH and RH. Therefore, the activity in the LH is

not only weaker, but also its strength does not vary between ipsilateral and contralat-

eral sources. This is also in line with the results of [207], in which it was found that

for patients with chronic unilateral ischemic lesions of the auditory cortex, the N100m

responses in contralesional side are similar to healthy subjects. It is known that con-

tralateral N100m sources are slightly anterior in comparison to ipsilateral ones [206].

The results of this study also point to a more anterior contralateral dipole (turquoise

dipole in Figure 6.8) for LES and the dominant RH in agreement with [206]. However,

for RES the ipsilateral source (blue dipole in Figure 6.9) was slightly more anterior,

which also points to a special hemispheric asymmetry. The P50(m) component was

clearly visible over the RH sensors for LES but over the LH it was either not distin-

guishable (in EEG) or very weak (in MEG) (Figure 6.6). Source reconstruction results

were also showing a RH dominance. These results suggest that the uncommon re-

sponses are not only restricted to N100(m) component but also present in earlier time

points. However, it should also be considered that the P50(m) component is not as

stable as the N100(m) and it cannot observed in all subjects [208]. Even if it was shown
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that, e.g., arousal and attention have an influence on the P50(m) and the N100(m)

[209], these phenomena can not explain the absence of the LH response as presented

here. In a lesion study, it was shown that large temporo-parietal lesions might cause

the disappearance of the N100m from the damaged hemisphere [210]. Furthermore,

large but less deep fronto-temporal lesions can cause smaller amplitudes on the dam-

aged hemisphere [210]. For the subject of this study, the MRIs were investigated by

a radiologist and no brain lesion was detected. Moreover, frontal lesions and small

lesions in supra-temporal plane was shown to not affect the N100(m) component in

[210]. Overall, it thus seems very unlikely that the observed absence of LH response

could be due to a lesion.

In Section 6.2.2 auditory middle latency responses were investigated to determine if

the difference between RH and LH can also be observed in those earlier components,

where at least the P30(m) can be assigned to the primary auditory cortex. The ex-

perimental set-up with short tone duration and short ISI allowed to collect far more

trials (∼5000 trials in comparison to ∼350 collected for long latency responses), so that

still reasonable SNRs could be obtained. Because there is less synchronization in the

primary auditory cortex, many more trials are required for middle latency responses

[205, 211]. Due to the middle latency stimulus type, the P50(m) component consists of

two distinct peaks, the Pb1(m) and the Pb2(m) [205]. The results for Pb1(m) showed

that the RH is dominant for both LES and RES although this dominance is weaker

in comparison to the P50(m) results obtained with longer tone stimuli. Although it

is still controversial, some studies localize the Pb1(m) component in or around the

primary auditory cortex. Therefore, the results presented in this study might support

the hypothesis that differences already occur in the primary auditory cortex [208]. The

P30(m) component is known to have a bi-hemispheric distribution [208] and this study

showed similar hemispheric differences (dominant RH) as in case of Pb1(m). Previous

studies that used depth electrodes, localized this component in primary auditory cor-

tex [212]. Therefore, there is strong evidence that the hemispheric differences in our

subject, which might be due to deeper source location and/or a weaker synchronization

in the LH, is already present in primary auditory cortex.

In order to rule out any uncommon processing at the brainstem level prior to the

activation of the primary auditory cortex, a clinical evaluation of the early latency (or

brainstem) auditory responses in the first 10 ms after stimulus was performed and a

healthy auditory pathway was determined.

It is important to note that since SWARM uses the sLORETA weighting, it might

not perform well in situations with multiple sources and a limited distance between
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sources, as shown for sLORETA in [118]. In order to confirm the findings, the minimum

norm estimates were also obtained and the findings were in agreement with the ones

presented here.

In conclusion, based on the findings in this chapter, there is strong evidence that

the hemispheric differences in our subject might be due to deeper sources (the EMEG

P30(m) source was ∼1 cm deeper in the LH in comparison to the RH) and/or due to

lower levels of synchronicity in the LH. The lower synchronicity probably starts in the

primary auditory cortex (P30(m) and Pb1(m) components) and carried to the later

components (N100(m)). These findings are an important demonstration of the high

variance of the brain activities, even within the healthy population.
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7 Other Studies: Simulation of

Noninvasive Brain Stimulation

Techniques with High Resolution

Finite Element Head Models

The EEG/MEG forward problem is closely coupled to brain stimulation techniques

such as tDCS (transcranial direct current stimulation) and TMS (transcranial magnetic

stimulation) via Helmholtz reciprocity [213, 214]. Therefore, it is possible to use the

finite element head models, which are constructed in this work employing the same

pipeline as described in Chapter 3, for also in tDCS and TMS simulations. TMS

has recently received National Food and Drug Agency approval in US, as a treatment

against migraine 1 and depression [215]. In addition, there is a wide interest in using

brain stimulation techniques for the treatment of a broad range of mental diseases and

even as a tool for enhancement of cognitive abilities. The use of brain stimulation was

described for the treatment of diseases like epilepsy, Alzheimer and Parkinson, and for

the recovery of stroke patients (see citations in [216]). tDCS has the potential not only

to increase the effects of other therapies but also, as stated by Brunoni et al., it can

be used as a safe and cheap option to reduce the risk of pharmacological interaction

of different drugs and to treat patients with poor drug tolerance [217].

The current standard in tDCS studies is the injection of 0.5 to 2 mA current via two

large patch electrodes at the skin, and investigation of the excitation or the inhibition

effects depending on the positions of the cathode and the anode. It is known that the

cortical excitability of the area close to the anode increases, whereas stimulation via

cathode has an opposite effect [217].

Although there are many different hypotheses for the functioning of tDCS, the pro-

cess is still not well understood in detail. Most likely the effects are due to the interplay

of several mechanisms some of which are listed below (please see [217] for details and

1http://www.fda.gov/NewsEvents/Newsroom/PressAnnouncements/ucm378608.htm
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further references therein):

• Induction of changes in the resting membrane potentials.

• Induction of prolonged neurochemical changes.

• Modification of synaptic microenvironment (e.g., synaptic strength of N-methyl-

D-aspartate (NMDA) receptor, γ-Aminobutyric acid (GABA)ergic activity).

• Modulation of intracortical and corticospinal neurons.

• Stimulation/repression of the non-neuronal components of the central nervous

system.

• Induction of indirect effects via the connectivity between the stimulated area and

more distant structures.

In contrast to tDCS, where weak currents (0.5 to 2 mA) are introduced to the surface

of the head via electrodes, in TMS, a time varying magnetic field is produced by large

(∼5 kA) and abrupt (less than 1 ms) currents and this way an electric field inside the

brain is induced. TMS is shown to be more precise than tDCS or tACS (transcranial

alternating current stimulation) and in contrast to tDCS and tACS, it can directly

excite neurons [218].

One important question is how large the electrical field should be in order to influence

the firing of the neurons. Recent studies performed with rats revealed that an electrical

field of ∼1 mV/m is sufficient to synchronize neural firing for a sinusoidal signal [219].

In the context of this work, contributions were made to three studies [216, 220, 221]

that investigated simulation of brain stimulation techniques. The main findings of these

three studies are shortly summarized in the following sections (Sections 7.1, 7.2 and

7.3) with a focus on the contributions of the author of this thesis. In the first study the

effects of modeling different compartments in tDCS simulations were investigated [216].

In the second study the precision of some of the most widely used tDCS electrode setups

in stimulating the target areas was analyzed [220]. In the last study, the influence of

sulcus width on the simulated electric fields in TMS was investigated [221].

7.1 Study I: Investigation of tDCS Volume Conduction

Effects in a Highly Realistic Head Model

In this section, the effects of head modeling on tDCS simulations were investigated

[216]. For the purpose of this study, five different head models were constructed.
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Four of these head models were named according to the number of compartments

in the model 3C , 4C , 5C, 6C and the fifth was named as 6CA to emphasize the

modeled anisotropic white matter conductivity. The properties of these head models

are described in Table 7.1.

Table 7.1: Head models used in this study: The first row indicates the name of the head
model and the conductivities for the respective tissue compartments were
given in the remaining columns. The compartments that were (were not)
distinguished are indicated by a slash (dash) sign. Isotropic conductivity
values were taken from the literature (see references in Table 3.1). The
# sign indicates that conductivity tensors were determined as described in
section 3.1.5.

Compartment 3C 4C 5C 6C 6CA

Electrodes 1.4 1.4 1.4 1.4 1.4
Scalp 0.43 0.43 0.43 0.43 0.43
Skull Compacta - 0.007 0.007 0.007 0.007
Skull Spongiosa - 0.025 0.025 0.025 0.025
Skull 0.01 / / / /
CSF - - 1.79 1.79 1.79
Gray Matter - - - 0.33 0.33
White Matter - - - 0.14 #
Brain 0.33 0.33 0.33 / /

In this study, the same head modeling pipeline as described in Chapter 3 was used

except that skull conductivity was not calibrated. Instead the conductivity values

of 0.007 S/m for skull compacta and 0.025 S/m for skull spongiosa were used [68].

Furthermore, the step with the Freesurfer gray matter mask described in Section 3.1.3

was not performed. Instead, the gray matter segmentation obtained with FSL-FAST

was used. Different from the head models used for source reconstruction in previous

chapters, two rectangular tDCS patch electrodes (7 cm x 5 cm) were included to the

FE model [222]. The thicknesses of these patches were 4 mm and their conductivities

were set to 1.4 S/m [223]. The sponges were created by dilating the skin by 4 mm and

then by carving the patches from them.

The target at the auditory cortex of the subject was determined by localizing the

N100m component of the auditory evoked fields measured from the same subject. For

this purpose 800 ms long pure sinusoidal tones were presented binaurally (see Chapter 6

for details). The motor cortex was determined by first localizing the N20m component

of the somatosensory evoked fields to determine the posterior wall of the central sulcus

and then, by defining the motor cortex at the nearby anterior wall of the central sulcus.
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The right median nerve of the subject was stimulated with square electric pulses in

order to measure the somatosensory evoked fields (similar to the paradigm explained

in Section 3.1.8.1). The positions of the electrode patches were then selected based on

these localizations. The stimulation paradigms and details on the source reconstruction

process can be found in Chapter 6.

The simulated volume currents for different head models were investigated both

visually and quantitatively. For quantitative comparisons Ang (orientation change in

degrees) and Amp (magnitude change) metrics were calculated with the formulas given

below. By using the Ang instead of other commonly used metrics such as the relative

difference measurement star (RDM∗), first the emphasis was put on the orientation,

and secondly not only the mean but also the the maximum and minimum orientation

changes were calculated to detect regional changes.

Ang(i) = arccos
< j⃗1(i), j⃗2(i) >

∥⃗j1(i)∥∥⃗j2(i)∥
(7.1)

Amp(i) =
∥⃗j1(i)∥

∥⃗j2(i)∥
(7.2)

In the equations above j⃗1 and j⃗2 represent the current densities in the compared

head models and i is the element in which this comparison was made.

For construction of different head models, a step by step approach was followed by

including one tissue compartment or anisotropy at each stage. For the sake of clarity,

the parts of the figures (see, e.g., Figure 7.1) illustrating different head models are

named in a systematic order. The numbers and letters before the underscore sign

indicate the number of compartments (e.g., 3C stands for a three compartment head

model) and the letters following the underscore depict the visualized attribute in the

figure. These attributes are CD for current density and Ang or Amp for orientation

and magnitude change in comparison to the previous model. The main figures are not

visualized in full resolution in order to avoid overcrowded current density vector fields

that reduce the comprehensibility. For this purpose, only the center vector of a 4 by

4 FE block is shown in these figures. The exceptions are the figures labeled as CDz,

where a zoom of a small area of a brain in a full resolution is shown.

7.1.1 Effects on currents in scalp, skull and CSF

In this section, the current density differences in scalp, skull and CSF were investi-

gated for three, four and five compartment head models. The changes for WM/GM
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distinction and WM anisotropy were not covered in this part because they had limited

to no effects on currents in scalp, skull and CSF.

Three compartment head model:

For the three compartment head model (3C CD) shown in Figure 7.1 the highest

currents are seen at the edges of the patches with 1.2 A/m2. Most of the currents are

channeled through the scalp due to its relatively high conductivity in comparison to

the skull and air. These currents are tangential to the skull and only a small fraction

of them penetrate inside the skull, where they become radially oriented. Therefore,

the current density inside the brain is homogeneous and very small in comparison to

skin.

Four compartment head model:

The resulting current density vector field after including the skull spongiosa/compacta

distinction is shown in Figure 7.1, 4C CD. The orientation changes in comparison to

the 3C model are very small in brain and skin compartments, whereas differences up

to 63.5 degree can be seen in the skull compartment (4C Ang in Figure 7.1). The

slightly more tangential current density vector field in skull spongiosa tissue become

clearer in the figure with zoomed full resolution (4C CDz in Figure 7.1). This is due

to the higher conductivity of spongiosa in comparison to compacta. Also, as expected,

considerable amplitude reductions and increases at skull compacta and spongiosa re-

gion, respectively, and a small amplitude decrease in the whole brain is observed for

the current densities in 4C Amp.

Five compartment head model:

The last head model that was investigated in this section is 5C, which additionally

models the CSF compartment. Due to the high conductivity value of the CSF, clear

tunneling effects are visible in Figure 7.1, 5C CD. The current density vectors in this

compartment are mainly tangentially oriented and the current is channeled under-

neath the anode to more distant areas, as can be seen in detail in the magnified figures

5C CDz1 and 5C CDz2 in Figure 7.1. The high orientation (up to 75◦) and ampli-

tude (up to 6.1 times) changes indicate the importance of the CSF compartment in

simulation studies (see 5C Amp and 5C Ang in Figure 7.1).
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Figure 7.1: Current densities for three, four and five compartment models for a sam-
ple slice near auditory cortex. For 4C (5C ) head model the differences
relative to 3C (4C ) head model are given in terms of orientation 4C Ang
(5C Ang) and magnitude 4C Amp (5C Amp) change. 4C CDz, 5C CDz1
and 5C CDz2 zooms into the areas outlined with red squares in full reso-
lution. The electrode patches (red anode, blue cathode) are shown on the
skin surface. (Adapted from [216])
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Figure 7.2: Current densities inside WM and GM. Current densities *C CD and
changes in orientation (*C Ang) and amplitude (*C Amp) for the head
models used in this study for a sample slice near auditory cortex. The
differences are calculated with respect to the adjoint model in terms of
complexity, e.g., 4C against 3C. The current density in the cortex is shown
at the upper right corner. (Adapted from [216])

7.1.2 Effects on currents inside the brain

Different from the previous section, here mainly the currents in WM and GM were

investigated. Unless stated otherwise, the interpretations are based on Figure 7.2. In
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Figure 7.1 the values are scaled for the whole head and since the currents penetrating

the skull are very low in comparison to scalp currents, and the currents in CSF are

very high in comparison to those in WM/GM, a comprehensive analysis of the effects

of currents in the brain is difficult to study with just one figure. To overcome this,

in Figure 7.2, the currents in scalp, skull and CSF are not shown and the scales are

adjusted accordingly so that the currents inside the brain are better visible and easier

to analyze.

Three compartment head model:

For the three compartment model, the currents inside the brain are very homogenous

and their amplitudes are decreasing gradually as the distance to the tDCS electrodes

increases. The highest values are observed just under the tDCS electrodes with a

maximum of 0.11 A/m2 (see 3C CD in Figure 7.2).

Four compartment head model:

Adding the spongiosa/compacta distinction results in amplitude and orientation changes

(see 4C CD, 4C Amp and 4C Ang in Figure 7.2). Although these orientation changes

are up to 9.2◦, they are focal and mainly visible in areas underneath the spongiosa tis-

sue, thus, they are not in the target area for auditory cortex stimulation. In contrast,

for other target regions these changes might be more important (up to 12◦ changes

within the motor cortex target area in [216]). In terms of amplitude, a general decrease

(MAG<1) is observed over the whole brain with some increase in regions underneath

large patches of spongiosa. The location with the highest cortical current density is

identical to the one in the 3C model.

Five compartment head model:

Including the CSF compartment renders the current density distribution considerably

more complicated in 5C CD in comparison to 4C CD, mainly due to the tunneling

effects of the CSF. The orientation changes inside the brain are up to 44◦ and these

changes are observed in almost the whole cortex that is neighboring the CSF. The

current densities decrease in WM and most of the GM in 5C Amp. The general

trend of decreasing current densities with increasing distance to the electrode patches

is still obvious, but no longer true for all regions. This is due to the paths from

the cortical crown to the bottom of sulci underneath the electrodes supplied by the

highly conductive CSF (see also [224]). In the proximity of the electrodes, the current
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densities decrease by about a factor of two, whereas the currents in more distant regions

(surrounded by the CSF) increased significantly.

Six compartment head model:

Most of the orientation changes due to the modeling of WM and GM separately occur

at the WM/GM boundary. These changes are up to 28◦ and usually the current

vectors near the WM/GM border are oriented towards the GM. In general, increased

(decreased) current densities are observed in CSF (WM). In GM the amplitudes of

current densities close to the electrodes slightly decreased while they increased in more

distant regions.

Six compartment head model with anisotropic white matter:

Including the WM anisotropy via DTI causes orientation changes up to 62◦ in WM

and 15◦ in GM (see 6CA Ang). These changes in GM are mainly at deeper regions

and they are considerably smaller in superficial areas. The magnitude changes are also

similar to orientation changes with the largest effects in WM, some effects in deep GM

and small effects in superficial GM (see 6CA Amp). In 6CA CD the current density

vectors in especially the pyramidal tracts are oriented along the main fiber direction

and, thus, they are no longer homogeneous (see 6C CD in Figure 7.2).

7.1.3 Conclusion

The results presented here demonstrate the importance of using an accurate volume

conductor model for tDCS simulation. By starting with the three compartment head

model and increasing the complexity gradually, it was possible to provide guidelines

for tDCS modeling and to investigate how the inclusion of the different compartments

and WM anisotropy into the head model affects the outcome of tDCS simulations. The

most important addition to the 3C head model was the CSF compartment because

it significantly changed the magnitudes and the orientations of currents all over the

brain in an inhomogeneous way. This investigation also showed that just as the CSF

compartment, but to a less extent, inclusion of WM/GM distinction is important

for an accurate tDCS or tACS simulation. The effects of skull spongiosa/compacta

distinction were mainly limited to regions close to thick skull spongiosa plates, e.g.,

motor cortex. The effects of white matter anisotropy also depend heavily upon the

target area: if the target is deep, it is highly recommended to model theWM anisotropy,

but for superficial targets, the effects of white matter anisotropy are less significant.
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Therefore, it can be summarized that the degree of complexity needed for an accurate

simulation is mainly based on the tissues between the tDCS electrodes and the target

area.

7.2 Study II: Assessing the Efficiency of Six Electrode

Setups for Transcranial Direct Current Stimulation

Finding the optimal positions for the stimulating electrodes is crucial to achieve the

highest currents in and around target areas in tDCS. In many studies, however, the

electrode patches are positioned heuristically, and actual stimulation area might be

suboptimal with regard to the target site due to suboptimal electrode placement and

volume conduction effects. In this section, the electric fields are simulated for six

electrode setups, which are often used in clinical and cognitive research [220]. These

electrode setups are targeting the primary motor cortex (M1), dorsolateral prefrontal

cortex (DLPFC), inferior frontal gyrus (IFG), occipital cortex (Oz), and cerebellum.

The electric fields are calculated for the whole brain and for the target area, and the

electric field is analyzed in terms of strength and direction. Taking into account the

effects of volume conduction, as also described in Section 7.1, a detailed finite element

head model with white matter anisotropy is used.

The anisotropic volume conduction model of the head was constructed based on

MRIs of a healthy 25-year-old male subject. The T1- and T2-weighted images were

used to reconstruct realistic geometries of the scalp, skull compacta, skull spongiosa,

CSF, cerebral gray matter (GM),cerebral white matter (WM), cerebellar gray matter

(cGM), cerebellar white matter (cWM), brainstem, eyes, and neck muscles (see Table

7.2). The triangular surface meshes for each tissue type were then combined into

one tetrahedral volume mesh consisting of 672 thousand nodes and 4.12 million linear

tetrahedral elements with an element size restricted to 1 mm in brain. Anisotropic

conductivities obtained from DTI were included for all GM, WM, cGM and cWM. The

head model construction pipeline was different from the one explained in Chapter 3 due

to higher number of segmented compartments and the requirements of the tetrahedral

mesh. The details of the pipeline used in this study can be found in [220]. The electrode

patches had 3 mm thickness and their sizes were 7 cm x 5 cm and 5 cm x 5 cm for

cerebral and cerebellar targets, respectively.

When the effects of electric field strengths on the GM surface are investigated, as it

can be partly seen in Figure 7.3, for cerebral targets, the maximums are in between
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Table 7.2: Conductivities used in this section. The symbol (#) indicates that conduc-
tivity tensors were determined as described in Section 3.1.5 and the symbol
(*) indicates that the conductivity of the brainstem is assigned the mean of
the conductivities of WM and GM.

Compartment Conductivity (S/m)

Electrodes 1.4
Scalp 0.465
Skull spongiosa 0.007
Skull compacta 0.025
CSF 1.65
GM, cGM #
WM, cWM #
brainstem *
eyes 1.5
muscle 0.4

the electrodes and 20 to 40 mm away from the targets. Therefore, the here presented

simulations point to a sub-optimal electrode setup in terms of obtaining the highest

electric fields in the target regions. For the two setups for the stimulation of the

dorsolateral PFC (see left and dual DLPFC in Figure 7.3), the strengths of the electric

fields are very similar and the only difference is the less focal stimulation achieved by

dual-DLPFC in comparison to the left-DLPFC setup.

Unlike the setups for cerebral stimulation, the setup used for cerebellum (shown

in Figure 7.3) achieves almost optimal stimulation in our simulations. However, the

maximum electric field strength is just 1.1 mV/cm and is considerably smaller than

the maximums obtained with configurations for cerebral stimulation (2.4-3.2 mV/cm).

This decrease in the strength of electric field might be due to the currents, which do

not enter the skull and bypass it by traveling through the scalp.

In addition to the strength, the orientation of the electric field is also very im-

portant for the evaluation of the effectiveness of an electrode configuration, i.e., in-

hibitory/exhibitory effects for cathodal/anodal stimulation [217]. In terms of orienta-

tion, it is found that the perpendicular (with respect to GM surface) field strengths

are higher under the electrodes than in the areas with overall highest strengths (see

the red regions in the volume rendered brain in Figure 7.3). This might explain why

no undesirable effects have been reported in studies that use the experimental setups

investigated here. This supports the idea that not only the strength, but also the

direction of the electric field is very important, and must be investigated carefully in
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Figure 7.3: Investigation of the efficiencies of six electrode setups for tDSC. The posi-
tioning of the electrodes for the six different tDCS setups used are shown
in the first and the third rows (volume rendering of the scalp), where the
anode and cathode patches are depicted in red and blue color, respectively.
The simulated electric field strengths for the stimulation setups are shown
on the surface of the GM in the second and forth rows (volume rendering
of the brain), where the electrode-skin interface is outlined with black lines
and the target of stimulation is depicted with a black dot. Different scales
are used for the cerebral targets (second row) and the cerebellar targets
(fourth row). The figure is adapted from [220]
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order to find the optimal electrode configurations.

General findings of this study are in a good agreement with the findings described in

the first study in this chapter, and thus, they are not explained here in detail and only

summarized shortly below (see [220] for details). The general findings of this study

are:

• For the scalp, the highest electric field values are found at the rim of the electrodes

and especially at the corners closer to the other electrode.

• For the skull, the highest electric field values are more dispersed but still lie under

the electrodes.

• Most of the currents are channeled through the skin and, thus, they do not enter

the brain.

• The channeling effect of highly conductive CSF carries currents to a wider area.

After showing that in five of the six configurations tested here, the maximum of elec-

tric field is far away from the target, two new electrode configurations are designed and

tested. These electrode configurations are designed based on the findings of this study

that the maximum electric field is approximately in the midway between the stimulat-

ing electrodes (Figure 7.4). Using these configurations, the electric field strengths at

the target areas, motor and occipital cortex, are increased by 88 and 94 %, respectively.

7.3 Study III: The Influence of Sulcus Width on

Simulated Electric Fields Induced by Transcranial

Magnetic Stimulation

In recent years, the interest in TMS for noninvasive brain stimulation has dramatically

increased. Unlike tDCS and tACS, in which only sub-threshold electric fields can be

induced to neurons, with TMS it is possible to create a much stronger electric field that

can excite the neuron clusters inside the brain [218]. Simulation studies performed with

realistic high resolution finite element head models are very important in TMS because

these studies can be used not only to analyze different effects, but also to investigate

the biophysical mechanisms underlying these effects [221]. In this study, the effects of

the errors in cortical surface geometry modeling on TMS induced brain electric fields

are investigated using the high resolution head model described in Section 7.2. Here
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Figure 7.4: The electric field strengths on the surface of the GM for motor (M1) and
occipital (Oz) cortex stimulation simulations with different electrode con-
figurations. The common electrode configurations, widely used in other
studies, are shown on the left, whereas the new electrode configurations
are shown on the right. The target is shown by a black dot. The electrode-
skin interface is outlined with black lines. The figure is adapted from [220].

only the main findings of the study are summarized and the details can be found in

[221].

In this study, the main interest is on the cortical surface geometry because the GM

surfaces obtained with widely used MR post-processing programs show considerable

variability when analyzed with different methods (e.g., the specificities (probability

that a not GM voxel is classified as not GM) of GM segmentation for Freesurfer, FSL

and SPM are found as 0.82, 0.87 and 0.90, respectively in [225]). The differences

on the geometry of the cortical surface are introduced by changing the width of the

sulcus. In this way, it was possible to keep the coil-target distance constant, which
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allows investigating the effects of cortical surface geometry changes while avoiding

alterations caused by different coil-target distances. Additionally, changing the sulcus

width allows simulating the effects of the CSF close to sulci and this might have

important implications on the resulting electric fields due to the high conductivity of

the CSF.

The main findings of this study are shortly summarized below:

• The highest electric fields occur at the top and the lips of the gyri, mainly close

to thin CSF passages between the gyri and the skull.

• High sulcus width increases the electric field at neighboring gyri and it might

change the position, where the maximum electric field occurs.

• Alterations up to 3 mm in sulcus width cause only slight and local differences in

the calculated electric fields, thus deeper regions are not affected.

Based on these results, it is suggested that for a global approximation of the electric

field potentials, errors that might occur due to wrong estimation of the sulcus width

up to 3 mm are not very crucial. However, more attention should be paid in studies,

in which the aim is to determine the exact location of the maximum of the electric

field or in studies that couples the results with neuron models (see Section 4.2 in [221]

for more on this issue).

7.4 Contributions of the Author to the Presented

Brain Stimulation Studies

The main contribution of the author of this thesis to the studies described in this

chapter was the construction of different head models as specified below:

• The acquisition of the MRI and EEG/MEG data (along with the medical tech-

nical assistants) in [216] (see Section 3.1.2).

• All steps required to construct the FE head model from the acquired MRIs in

[216] (see Sections 3.1.3, 3.1.4, 3.1.5).

• Processing of the DTI data to model WM/GM anisotropy in [221] and [220].

• Processing and localization of the auditory N100m and somatosensory N20m

evoked responses to determine individual target areas in [216] (same processing

steps as in Chapter 6).
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• Interpretation of the results and writing the related sections in [216, 220, 221].
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8 Summary and Outlook

8.1 Summary

The main aim of this work was to evaluate and increase the accuracy of source re-

construction in presurgical epilepsy diagnosis by means of using combined EEG/MEG

(EMEG) and advanced finite element head models.

In this work, a new experimental and methodological source analysis pipeline that

combines the complementary information in EEG and MEG was introduced and ap-

plied to study a patient, suffering from refractory focal epilepsy. The results of this

study were published in [71]. In this study, a six compartment finite element head

model with brain anisotropy was constructed from individual MRI data and skull con-

ductivity parameters were estimated in a calibration procedure using somatosensory

evoked potentials (SEPs) and fields (SEFs). These data were measured in a single run

before acquisition of further runs of spontaneous epileptic activity. This study showed

that even for single interictal spikes EEG and MEG volume conduction effects domi-

nate over noise and need to be taken into account for an accurate source analysis. EEG

and MEG contain complementary information and a simultaneous acquirement of both

datasets is highly recommended in order to increase reliability of results not only in

presurgical epilepsy diagnosis, but also in other neuroscientific applications. The time

needed to acquire the additional data is easily manageable by the patient and should

not form an obstacle for the proposed procedure even in clinical group studies. In this

work, a proof of concept was presented that skull conductivity calibration in realistic

six and three compartment head models is needed to combine EEG and MEG source

analysis accurately.

In the second study, described in Chapter 4 and published in [183] a high-resolution

realistic six-compartment finite element head model with anisotropic white matter and

calibrated skull conductivity was used to evaluate the performances of EEG, MEG and

EMEG for different signal-to-noise-ratios (SNRs). In this study, source reconstructions

in different phases of the epileptic activity and with different subaverages were investi-

gated. The results were compared with the stereo-EEG (sEEG), which is the current
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gold standard in presurgical epilepsy diagnosis. The results of this study revealed that

EMEG source analysis can increase accuracy and confidence in source reconstructions

significantly, which might have important clinical implications, especially for localizing

at spike onset and for depicting propagation pathways as complete as possible. Fur-

thermore, as shown by this study, sub-averaging might provide important and accurate

information that neither single nor grand-averaged spike reconstructions can supply.

However, the extent of dipole scatter is still correlated to the number of sub-averages

and to the SNR.

In Chapters 3 and 4 an advanced head model, which might improve the accuracy of

source reconstructions, was used. The significant differences that are found between

the three and the six compartment head models in this thesis support the use of highly

realistic head models for source modeling and brain stimulation. As concluded in

these studies, also the use of more homogenized ways of forward modeling such as the

classical three compartment (skin, skull, brain) approach might still benefit from the

sub-averaging pipeline and the calibration procedure for combining EEG and MEG.

In the third study on epilepsy (Chapter 5), non-invasive source reconstructions were

coupled with new advancements in parallel transmission in MRI [19] to obtain high

resolution images within a small predefined region to detect small lesions that otherwise

could not be detected. The pipeline was used to investigate the measurements from a

patient with a known right frontal focal cortical dysplasia (FCD) and EMEG source

analysis was performed. Then, high resolution MRI was acquired within the limited

region pointed by the EMEG. In the end, a second FCD, which was not detected with

normal MRI sequences was found in the high resolution MRI. The patient was operated

from this second FCD (pointed by the EMEG) and became seizure free.

In Chapter 6 the head modeling pipeline explained in Chapter 3 was used to inves-

tigate auditory (AER) and somatosensory (SER) evoked responses. In the first part,

the AERs and SERs from a subject with common responses were evaluated. The sig-

nals and source reconstructions were in line with the literature and, for the calibrated

head model, the differences between EMEG and EEG and MEG alone were small for

SER (as shown, this changes strongly if the head model is not calibrated), while they

were significant for AER even in the calibrated head model. As found in that study,

in EMEG, MEG was mainly contributing to the location and EEG was providing the

information on orientation because of its ability to measure quasi-radial sources. The

AERs measured from a second subject presented an uncommon case in which one

hemisphere was mainly silent for components up to 100 ms. Despite this, the audio-

gram was normal for both ears, and clinical and radiologic examination showed no
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pathology. The results obtained in this study are an important demonstration of the

high variance of the brain activities even within the healthy population.

In Chapter 7 the focus was on the effects of volume conduction in non-invasive brain

stimulation. The chapter shortly demonstrates the results of three published studies

[216, 220, 221], for which the author of this thesis provided the whole [216] or parts

[220, 221] of the used finite element head models and contributed to the writing of the

papers and the work on the revisions. The results showed that, apart from the scalp

and the skull, the most important compartments for an accurate simulation of transcra-

nial direct current stimulation are CSF followed by white/gray matter distinction. The

influences of other modeling aspects such as distinguishing skull spongiosa/compacta

and including brain anisotropy depend on the placement of the electrode patches and

target regions. Furthermore, the results of the study with transcranial magnetic stim-

ulation revealed that the highest electric fields occur at the top and the lips of the

gyri, mainly close to thin CSF passages between the gyri and the skull, and moderate

changes in sulcus width have only local influences in calculated electric fields.

8.2 Outlook

In this thesis, it was shown that EMEG coupled with conductivity calibrated and

anisotropic finite element head models can improve source reconstruction of interictal

spikes considerably. However, this thesis mainly consists of proof of principle studies

with single cases. Therefore, there is a need for further evaluation of the proposed

approaches in a group study to determine in a statistical way the improvements through

the proposed methodology.

Another important step is the further validation of the procedures in a group study.

In Chapter 4, sEEG measurements were used for validation purposes because sEEG is

widely accepted as the ”gold standard” in presurgical epilepsy diagnosis. However, in

that study, EEG/MEG/sEEG were not measured simultaneously. For future studies,

simultaneous acquisition of EEG/MEG/sEEG data might be very useful to investigate

if epileptic spikes that are visible in sEEG are also visible at the head surface with EEG

and MEG. In addition to intracranial recordings, investigation of the measurements

from patients with focal cortical dysplasia (especially type IIB) could also be used for

validation purposes.

On the inverse problem side, future directions might be hierarchical Bayesian model-

ing [112, 113, 118] and the maximum entropy on the mean method [135, 152] following

the promising results shown in these studies for focal and distributed sources.
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In this thesis, interictal spikes are used for estimating the irritative zone. However,

EEG data offer other ways of analysis. In [226], e.g., the epileptogenic zone was

localized noninvasively from resting state EEG and promising results were achieved.

This analysis might be used in patients without any distinguishable seizure or epileptic

spike during the time of the measurement.

Another important direction for future studies is the improvement of the Polhemus-

procedure for EEG sensor registration. The procedure based on the fiducials for mor-

phing EEG and MEG onto the MRI as well as patient movement during EEG/MEG

and MRI data acquisition cause artifacts, which are reflected in persisting differences

of EEG and MEG reconstructions and even in some cases resulting in reductions in

signal-to-noise-ratios [227]. In this thesis, following [80], as in MRI, all subjects were

measured in supine position in EMEG and the space between the MEG dewar and the

EEG cap was filled with filter cotton. As the head position measurements showed, on

this way, head movements could be reduced to acceptably low rates of a few millime-

ters. Furthermore, in [228] and [229, 230], new tools were developed for improving MRI

and MEG co-registration using optimized point-clouds of the head surface. Finally,

a new method for rapid and accurate localization of electrode positions was designed

and implemented, based on the ”FlyTri” method, developed at the Institute of Op-

tics, Information and Photonics, University of Erlangen-Nuremberg, Germany [231].

In [227], it was shown that the method is more accurate than the frequently applied

electromagnetic digitizer technique and that this increased accuracy results in better

reconstruction of weak neuronal activity. This method is currently being developed

further to support head position localization and tracking for use in MEG. A MEG-

compatible prototype has been implemented as part of a master’s thesis [232] and is

currently being optimized.

In terms of volume conductor model, the next steps should be the modeling of

the dura matter and skull holes. Although in Chapter 5 dura mater was modeled

in regions where it was the thickest, the thinner regions were not modeled due to

the complexity of segmentation and appropriate numerical modeling. However, [166]

reported about significant reductions in EEG potentials when ignoring the modeling

of dura mater, showing the necessity of more accurately modeling this compartment

in future investigations. Skull hole modeling is another difficult aspect. On one hand

it was shown that skull holes have significant effects on both EEG [60] and on MEG

[61]. However, on the other hand, these studies also showed that for small holes the

errors tend to be limited to the close vicinity of the hole. In case of craniotomy, where

the hole is near the brain region of interest, it should be modeled for a reliable source
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reconstruction [233]. Therefore, larger skull holes definitely need to be modeled, while

the modeling or neglect of smaller skull holes might be decided from case to case.
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[42] M. Hämäläinen, R. Hari, R. J. Ilmoniemi, J. Knuutila, and O. V. Lounasmaa,

“Magnetoencephalography-theory, instrumentation, and applications to noninva-

sive studies of the working human brain,” Reviews of Modern Physics, vol. 65,

pp. 413–497, Apr. 1993.

[43] S. Baillet, J. C. Mosher, and R. M. Leahy, “Electromagnetic brain mapping,”

Signal Processing Magazine, IEEE, vol. 18, no. 6, pp. 14–30, 2001.

[44] R. Llinas and C. Nicholson, “Analysis of field potentials in the central nervous

system,”Handbook of electroencephalography and clinical neurophysiology, vol. 2,

no. Part B, pp. 61–85, 1974.

[45] S. Murakami and Y. Okada, “Contributions of principal neocortical neurons

to magnetoencephalography and electroencephalography signals,” J Physiol,

vol. 575, pp. 925–36, Sep 2006.

[46] S. Baillet, L. Garnero, G. Marin, and J. P. Hugonin, “Combined MEG and EEG

source imaging by minimization of mutual information,” IEEE Trans Biomed

Eng, vol. 46, pp. 522–34, May 1999.

[47] D. Cohen and B. N. Cuffin, “A method for combining MEG and EEG to deter-

mine the sources,” Phys Med Biol, vol. 32, pp. 85–9, Jan 1987.

[48] A. K. Liu, A. M. Dale, and J. W. Belliveau, “Monte carlo simulation studies

of EEG and MEG localization accuracy,” Hum Brain Mapp, vol. 16, pp. 47–62,

May 2002.

[49] J. Sarvas, “Basic mathematical and electromagnetic concepts of the biomagnetic

inverse problem,” Phys Med Biol, vol. 32, pp. 11–22, Jan 1987.

[50] J. Vorwerk, J.-H. Cho, S. Rampp, H. Hamer, T. R. Knösche, and C. H. Wolters,
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[52] J. Haueisen, M. Funke, D. Güllmar, and R. Eichardt, “Tangential and radial

epileptic spike activity: different sensitivity in EEG and MEG,” J Clin Neuro-

physiol, vol. 29, pp. 327–32, Aug 2012.

[53] G. L. Barkley and C. Baumgartner, “MEG and EEG in epilepsy,” J Clin Neuro-

physiol, vol. 20, no. 3, pp. 163–78, 2003.

[54] M. Iwasaki, E. Pestana, R. C. Burgess, H. O. Lüders, H. Shamoto, and
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[173] P. Küpper, “Combined EEG and MEG for improving source analysis in patients

with focal epilepsy,”Master’s thesis, Beuth Hochschule für Technik Berlin, 2012.

[174] C. H. Wolters, R. F. Beckmann, A. Rienäcker, and H. Buchner, “Comparing reg-
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[233] B. Lanfer, C. Röer, M. Scherg, S. Rampp, C. Kellinghaus, and C. Wolters,

“Influence of a silastic ECoG grid on EEG/ECoG based source analysis,” Brain

Topogr, vol. 26, pp. 212–28, Apr 2013.

Dissertation Ümit Aydin
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Scientific Contributions 188
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3. Aydin Ü., Vorwerk J., Lucka F., Rampp S., Heers M., Kellinghaus C., Wellmer

J., Stefan H. Wolters C.H. Combined EEG and MEG Source Analysis of Epileptic

Activity. 18th Int. Conf. on Biomagnetism (BIOMAG), Paris, France (2012).
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Dissertation Ümit Aydin
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