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Comparison Study for Whitney (Raviart-Thomas) Type Source
Models in Finite Element Method Based EEG Forward

Modeling
Martin Bauer, Sampsa Pursiainen, Johannes Vorwerk, Harald Köstler, Carsten H.Wolters

Abstract—This study concentrates on finite element method (FEM)
based electroencephalography (EEG) forward simulation in which the
electric potential evoked by neural activity in the brain is to be calculated
at the surface of the head. The main advantage of the FEM is that it allows
realistic modeling of tissue conductivity inhomogeneity. However, it is not
straightforward to apply the classical model of a dipolar source with the
FEM, due to its strong singularity and the resulting irregularity. The focus
of this study is on comparing different methods to cope with this problem.
In particular, we evaluate the accuracy of Whitney (Raviart-Thomas) type
dipole-like source currents compared to two reference dipole modeling
methods: the St. Venant and partial integration approach. Common
to all these methods is that they enable direct approximation of the
potential field utilizing linear basis functions. In the present context,
Whitney elements are particularly interesting, as they provide a simple
means to model a divergence-conforming primary current vector field
satisfying the square integrability condition. Our results show that a
Whitney type source model can provide simulation accuracy comparable
to the present reference methods. It can lead to superior accuracy under
optimized conditions with respect to both source location and orientation
in a tetrahedral mesh. For random source orientations, the St. Venant
approach turns out to be the method of choice over the interpolated
version of the Whitney model. The overall moderate differences obtained
suggest that practical aspects, such as the focality, should be prioritized
when choosing a source model.

I. INTRODUCTION

This study concentrates on finite element method (FEM) based
electroencephalography (EEG) forward simulation in which the elec-
tric potential field evoked by neural activity is to be approximated
given the geometry, conductivity distribution and a primary source
current field of the target domain [1], [2], [3], [4], [5]. With respect to
the current standard in EEG forward simulation, that is, the boundary
element method (BEM) coupled with a compartment-wise isotropic
and homogeneous volume conductor model [5], [6], [7], [8], [9], 3D
approaches such as the FEM or the finite difference method (FDM)
constitute a substantial improvement, as they enable modeling of the
strongly folded outer brain surface [10], [11], detailed structures of
skull compacta and spongiosa [12], [11], and the distinctly anisotropic
conductivity of the white matter [13], [14], [11]. Today, the use of
fully realistic 3D conductivities is accessible even with a standard
laptop or desktop computer, making the FEM attractive regarding any
computational application of EEG. A crucial point in FEM forward
simulation is the source current distribution. Namely, the classical
dipole source cannot be directly applied, since the forward problem
in its weak form necessitates the divergence of the source to be square
integrable [15].
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Several approaches to approximate a dipolar source in the brain
and calculate the resulting potential distribution have been developed
[16], [17], including the reference methods used here: the St. Venant
[18], [19], [20] and partial integration (PI) approaches [21], [22].
The St. Venant method approximates a dipole source via placing
monopolar loads on all nodes neighboring the source position, and
in PI, the right-hand side of the potential field equation is integrated
by parts resulting in a non-singular and solvable form despite the
presence of dipoles. Common to both methods is that they enable
direct approximation of the potential field via linear finite element
basis functions.

Our study focuses on the accuracy of Whitney (Raviart-Thomas)
type finite elements as dipole-like source currents introduced and
previously studied in [23], [24], [25]. Whitney basis functions span
a piecewise linear and divergence-conforming vector field. They
are the simplest ones that are mathematically directly compatible
with the potential equation, meaning that their divergence is square
integrable. One can use them to simulate both highly localized
dipole-like currents and globally supported vector fields, which is
beneficial regarding realistically modeling current distributions with
finite support. Being composed of first order polynomials they are
also easily accessible from the implementation point of view.

The objective of this study is a detailed evaluation of the numerical
accuracy of the Whitney source model and, in particular, to find out
how it performs in comparison to the St. Venant and PI approaches.
Our study includes analysis for both optimized sources with regard
to location and orientation and arbitrary ones to enable unbiased
comparison to the reference models. Performance of a source model
is investigated both within a single element as well as in a global
scope via relative difference and magnitude measure (RDM and
MAG) between a numerical and analytical solution within a four-
layer spherical test domain. The results are evaluated using a sta-
tistical approach [26] in which accuracy and robustness of dipole
approximation is analyzed via box-plots covering a wide range for
the source eccentricity, i.e., relative norm of the dipole position within
the brain compartment.

This paper has been organized as follows. Section II describes
the tested source models as well as our experimental setup. Section
III reports the outcome of the numerical experiments followed by the
discussion in Section IV. Finally, the appendix includes some essential
theoretical background regarding the Whitney source model.

II. MATERIALS AND METHODS

A. Forward Model

The goal of the EEG forward problem is to predict the (quasi-
static) electric potential field u on the surface ∂Ω of the domain Ω,
given the symmetric and positive definite distribution of conductivity
tensors σ and the primary current field ~JP in Ω. This corresponds to
solving the Poisson type equation ∇·(σ∇u) = ∇· ~JP in Ω equipped
with the homogeneous Neumann boundary condition (σ∇u) · ~n = 0
on ∂Ω. This equation multiplied by a test function v and integrated
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by parts yields the weak form∫
Ω

∇v · (σ∇u) dV = −
∫

Ω

v(∇ · ~JP ) dV for all v ∈ H1(Ω) (1)

in which H1(Ω) denotes the Sobolev space consisting of functions
with all first-order partial derivatives square integrable, i.e., in L2(Ω).
The weak form has a solution u ∈ H1(Ω) that is unique up to
choosing the zero level of the potential if ∇ · ~JP ∈ L2(Ω) [15],
[27], [3].

Whitney (Raviart-Thomas) basis functions are the simplest piece-
wise first-order polynomials that have this property due to continuous
vector field normal component over the element faces [28], [29], [3].
Consequently, they provide a mathematically rigorous framework for
modeling finitely supported source currents. The reference source
models of this paper do not rely on vector-valued basis functions.
Instead, they approximate the dipolar source by a distribution of
electrical monopoles placed on finite element nodes in its vicinity.
Note that an actual dipole source does not have a square integrable
divergence, meaning that it needs to be modeled asymptotically in a
numerical simulation.

In this paper, the potential distribution is approximated via the
sum uh =

∑N
i=1 ziψi in which ψ1, ψ2, . . . , ψN are linear nodal

basis functions belonging to H1(Ω). The coefficient vector z =
(z1, z2, . . . , zN ) refers to the solution of the linear system Az = f
with Ai,j =

∫
Ω
∇ψj · (σ∇ψi) dV and with f denoting a model-

specific right-hand side vector.

B. Whitney Type Source Model

If the primary current field is a linear sum ~JP =
∑M
k=1 xk ~wk of

Whitney basis functions ~w1, ~w2, . . . , ~wM , the entries of f are of the
form

fi = −
M∑
k=1

xk

∫
Ω

ψi(∇ · ~wk) dV. (2)

Following from (2), one can write f = Gx, where x =
(x1, x2, . . . , xM ) and G is a basis transfer matrix given by Gi,k =
−
∫

Ω
(∇· ~wk) ψi dV. Based on the solution uh, electrode voltages on

the surface ∂Ω can be obtained by restricting uh to those cofficients
that correspond to the targeted points (electrodes), i.e., evaluating
Tf = RA−1f , where R is a restriction matrix. Essential in this
procedure is the so-called transfer matrix T = RA−1 which can be
computed by solving a set of linear systems, one for each electrode
[30].

Fig. 1. Whitney Basis Function supported on two tetrahedra T1 and T2 with
source locations (A)–(D) and resulting synthetic dipole for (D) shown by the
arrow.

1) Whitney Basis Functions for a Tetrahedral Mesh: In a tetrahe-
dral mesh, the face-based Whitney basis function ~w is supported in
two adjacent tetrahedra T1 and T2 (Figure 1) sharing the face F . As
indicated in the appendix, one can write

~w(~r) =


~r4 − ~r

3VT1‖~r4 − ~r1‖
, if ~r ∈ T1

~r − ~r1

3VT2‖~r4 − ~r1‖
, if ~r ∈ T2

0, otherwise

(3)

in which ~r1 and ~r4 are the positions of vertices 1 and 4 in Figure 1
and VT1 and VT2 are the volumes of T1 and T2, respectively. That
is, the restriction of ~w to a single element is a first order polynomial,
equivalent to the position vector field transferred and scaled. The
total vector field is zero at vertices 1 and 4 opposite to the face F .
Its normal component is continuous on F and vanishes on all other
faces [28], [29], [3].

A basis function ~w is given a synthetic dipole moment

~q~w =

∫
Ω

~w dV =
~r4 − ~r1

‖~r4 − ~r1‖
with ‖~q‖ = 1 (4)

and position ~rw =
∑4
i=0 αi~ri, i.e., a linear combination of vertices

~r0, ~r1, . . . , ~r4 (Figure 1). Four different combinations (A)–(D) for
the coefficients α0, α1, . . . , α4 suggested in [24] and listed in Table
I are studied. In Figure 1, the points corresponding to (A)–(D) lie in
a respective order on a single line between the center (A) of the face
F and the midpoint (D) of the line segment between ~r1 and ~r4, i.e.,

~r
(D)
~w =

1

2
(~r1 + ~r4). (5)

Consequently, point (A) is located where the norm of the vector
field basis function ~w is large, whereas (D) approximates the focus
of the divergence distribution ∇ · ~w that is supported by the nodal
basis functions associated with the nodes ~r1 and ~r4 (see [24]). In
applications, relevance of these points can vary whether the source
current distribution is handled directly as a vector field or indirectly
via its divergence.

Location α0 α1 α2 α3 α4

A 1/3 0 1/3 1/3 0
B 1/5 1/5 1/5 1/5 1/5
C 1/9 1/3 1/9 1/9 1/3
D 0 1/2 0 0 1/2

TABLE I
CANDIDATES FOR SOURCE LOCATION [24].

A position based optimization (PBO) strategy developed for this
study is applied for interpolation of the Whitney sources [31]. A
given dipole with moment (a coordinate vector) p = (p1, p2, p3)
and location ~r was approximated via the synthetic parameters q~w`

(coordinate vector form) and ~r~w`
, ` = 1, 2, 3, 4 that can be associated

with the four faces of the tetrahedron containing ~r. In order to
minimize piling of errors, the task was to find a solution for the
optimization problem

min
c

4∑
`=1

c2`ω
2
` subject to Qc = p, (6)

where c = (c1, c2, c3, c4) and ω` = ‖~r~w`
− ~r‖2 is a weighting

coefficient and Q = (q~w1 ,q~w2 ,q~w3 ,q~w4). For the convexity of∑4
`=1 c

2
`ω

2
` , the solution of (6) can be obtained via the method

of Langrangian multipliers, which yields the here uniquely solvable
linear system (

D QT

Q 0

)(
c
d

)
=

(
0
p

)
, (7)

with diagonal matrix D = diag(ω2
1 , ω

2
2 , ω

2
3 , ω

2
4) and an auxiliary

multiplier vector d = (λ1, λ2, λ3). Consequently, the interpolated
Whitney sources were formed using 8 (the four nodes of the tetrahe-
dron that contains ~r and, for each of the four faces of this tetrahedron
the remaining node of the adjacent tetrahedron, i.e., all nodes of
overall 5 tetrahedra) nodal basis functions per dipole approximation in
a tetrahedral mesh (Table III). This minimal symmetric configuration
was used to keep the interpolation as local as possible, which is
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Fig. 2. Left: To approximate a dipole with an arbitrary orientation, the
position based optimization (PBO) method utilizes a minimal symmetric
combination of elements including a given tetrahedron (dark grey) together
with those that share a face with it (light grey). Right: In case that a very
accurate tetrahedralization in the middle of the grey matter compartment
(light grey) has been produced, source locations and radially inwards-pointing
source orientations can be fixed [32], [33].

beneficial when sources need to be placed in a narrow grey or white
matter layer within a brain geometry (Figure 2, right).

Note that in its current context, our Whitney source model can be
generalized to the complete set of piecewise linear tetrahedral H(div)
finite elements: It is valid for all Nédélec’s edge-based face functions
(see formula (15) in the Appendix).

C. Reference Methods

The reference methods give an alternative definition for the right-
hand side of equation (1).

1) Partial Integration: In the partial integration (PI) approach [21],
[22], a dipole moment ~p placed at ~r is approximated by calculating
f via the formula

fi = −
∫

Ω

(∇ · ~Jp)ψidV =

∫
Ω

~Jp · ∇ψidV −
∫
∂Ω

∂n ~J
p · ψidS

=

∫
Ω

~Jp · ∇ψidV =

{
~p · ∇ψi|~r, if ~r in support of ψi,
0, otherwise,

(8)

which follows from the limit formulation of the mathematical dipole
[21], [31]. The boundary term in the above formula vanishes because
the primary currents are limited to the cortical compartment (see
Figure 2). One can see that a dipole located inside a given tetrahedral
element results in precisely four non-zero vector entries, i.e., the
number of nodes on which charges are placed, when the basis
functions are linear (Table III).

2) St. Venant Method: The St. Venant approximation [18], [19],
[20] of a dipole moment ~p at ~r was obtained by placing monopolar
loads m0,m1,m2, . . . ,mK at the finite element node closest to the
source position, ~r0, and at nodes ~r1, ~r2, . . . , ~rK sharing an edge with
~r0. The net effect of the monopoles was required to be asymptotically
a dipole field via

0 =

K∑
i=0

mi

1

α
~p =

K∑
i=0

mi

α
(~ri − ~r)

0 =

K∑
i=0

mi

α2
[(~ri − ~r) · ~ej ]2 for j = 1, 2, 3, (9)

where ~ej for j = 1, 2, 3 are the Cartesian unit vectors and
α is a suitably chosen reference distance (here α = 20 mm)
such that α > ‖~ri − ~r0‖2 for all i. From top to bottom, these
equations correspond to conservation of charge, approximation of
the dipole moment and suppression of higher order moments. For
each simulated dipole, the load vector m = (m1,m2, . . . ,mK) was
computed via the standard regularized least-squares procedure given

by m = (PTP + λD)−1PTb, where

b =

b1

b2

b3

 and P =

P1

P2

P3

 , (10)

with bj = (0, α−1pj , 0) and

Pj =

 1 · · · 1
α−1(~r1 − ~r) · ~ej · · · α−1(~rK − ~r) · ~ej
α−2[(~r1 − ~r) · ~ej ]2 · · · α−2[(~rK − ~r) · ~ej ]2

 , (11)

and D = diag(‖~r1 − ~r‖2, ‖~r2 − ~r‖2, . . . , ‖~rK − ~r‖2) is a regular-
ization matrix multiplied by the parameter λ > 0 (here λ = 10−6).
In a tetrahedral mesh the number of incorporated nodes K is usually
around 27 (Table III).

D. Numerical Experiments

Compartment Scalp Skull CSF Brain
Outer shell radius (mm) 92 86 80 78
Conductivity (S/m) 0.33 0.0042 1.79 0.33

TABLE II
PARAMETRIZATION FOR THE ISOTROPIC FOUR-LAYER SPHERE MODEL.

The numerical experiments of this study concern a four-layer head
model composed of concentric spherical origin-centric scalp, skull,
cerebrospinal fluid (CSF) and brain tissue compartments with radii
and isotropic conductivity values given in Table II. For such multi-
compartment sphere models, analytic solutions exist for the potential
of a mathematical point dipole [34] to validate our numerical results.

A tetrahedral mesh was generated utilizing a constrained Delaunay
tetrahedralization (CDT) approach with maximal tetrahedron volume
of 1.12 mm3 using the software Tetgen [35]. The resulting mesh
consists of 801,633 vertices and 4,985,234 elements.

To gather the data, 200 measurement electrodes were distributed
regularly over the outer surface of the model. Evaluation of numerical
versus analytical solutions will be carried out at those electrode
positions.

For the sources, the following eccentricities are studied: 0.2, 0.4,
0.6, 0.8, and 0.99.

E. Evaluation Method

A simulated potential vector usim ∈ R200 is compared to the
corresponding analytic solution uana ∈ R200 in terms of the following
relative difference and magnitude measures that are here given on a
percent scale:

RDM(uana,usim) =
100

2

∥∥∥∥ uana

‖uana‖2
− usim

‖usim‖2

∥∥∥∥
2

, (12)

MAG(uana,usim) = 100

(
‖usim‖2
‖uana‖2

− 1

)
. (13)

The first one of these estimates the difference due to positional
and directional inaccuracies between the analytical and numerical
dipole approximation (i.e., topography changes), whereas the latter
one measures magnitude discrepancy.

Since the quality of the simulation is known to depend on the
local mesh geometry as well as on the intra-element position, it is
analyzed statistically via a sample of sources as suggested in [26],
including results for the different source eccentricities in separate
box-plots. This statistical analysis includes maximum and minimum,
indicated by upper and lower error bars, and thereby the total range
(TR). Furthermore, it includes the interval between upper and lower
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quartile, i.e., the interquartile range (IQR), also knows as the spread,
which is marked by a box with a white dash showing the median (see,
e.g., Figure 3). A sample size of 200 was utilized for each box-plot
bar.

F. Implementation Aspects

To compute the EEG electrode voltages efficiently, the transfer
matrix approach was applied [30]. Thereby, the large linear equation
system resulting from the finite element discretization of equation
(1) only had to be solved once for each electrode (not including
the reference electrode) instead of being solved once per source.
The forward solution is then obtained by setting up the right-hand
side vector f and a matrix-vector multiplication between the transfer
matrix and f . This can be carried out very fast for all considered
forward approaches, since they all lead to sparse right-hand sides. The

Source orientation Whitney St. Venant PI
free 8 ≈ 27 4
fixed 2 ≈ 27 4

TABLE III
THE NUMBER OF FINITE ELEMENT MESH NODES NEEDED TO MODEL A

SINGLE DIPOLE SOURCE.

number of non-zero entries in f is shown in Table III. Consequently,
the total forward simulation time was very similar for each tested
source model. On an Ubuntu 11.04 Linux PC with Intel Core i7-2600
3.40 GHz CPU and 16 GB RAM, the CPU time for computing T for
each electrode (excluding the reference one) was 8.33 seconds and for
the St. Venant model and a single dipole it was 0.5 milliseconds for
Tf (including first the computation of f and then the multiplication
to T).

G. Synthetic Source Positions for Whitney Approach

The first experiment concerns the accuracy of the Whitney type
source model for tetrahedral elements: Points (A)–(D) (Figure 1)
are tested as synthetic dipole positions under the condition that
the Whitney and analytical test sources are parallel. The latter is
motivated by the fact that sources in the grey matter compartment
are radially inwards-oriented (see [32] and the cat experiments by
Creutzfeldt et al. [33]) as visualized in Figure 2 (right). Here, our aim
is to extend the previously existing knowledge of source positioning
[24] as well as to support the current interpolation experiments in
which the positions of the analytical sources do not coincide with
the synthetic ones.

H. Comparison of Source Modeling Approaches

In the second experiment, the Whitney source model is compared
to the St. Venant and PI reference methods.

1) Fixed Source Positions and Orientations: In the first phase,
the source positions are fine-tuned so that they are optimal for each
model: Given a desired position, the St. Venant method is evaluated
at the next node [26], PI approach at the next tetrahedron barycenter
[26] and the Whitney source model at the closest mesh-based location
of type (D). Dipole orientations are again set to be parallel to the
Whitney sources [32], [33] (Figure 2, right), since the reference
models do not include a mesh-based vector field or special directions.

2) Random Source Positions and Orientations: In the second
phase, the dipole positions and directions are random, i.e., not
specifically adapted to a certain model. As the interpolation method
for the Whitney model, we use the PBO approach (Section II-B1).

RDM

MAG

Fig. 3. Synthetic Source Positions for Whitney Approach: RDM (top) and
MAG (bottom) for points (A)–(D) as synthetic source positions as shown in
Figure 1.

III. RESULTS

A. Synthetic Source Positions for Whitney Approach

Figure 3 presents RDM and MAG for synthetic source positions
(A) to (D) as shown in Figure 1. Independently of the source position
and over all eccentricities, the RDM and MAG errors are below
1.0% and 0.75%, respectively. Errors and their spread get larger with
increasing eccentricity. Overall, the RDM and MAG results suggest
that (D) provides the numerically most stable approximation to the
given dipole.

With regard to RDM (Figure 3, top) and eccentricity 0.99, position
(D) results in an RDM median value of 0.17%. From position (A)
to position (D), the IQR is reduced by about 70%.

With regard to MAG (Figure 3, bottom) and eccentricity 0.99, the
median values for positions (C) and (D) are nearly identical, while
the IQR for (D) is around 30% smaller than for (C).

B. Comparison of Source Modeling Approaches

1) Fixed Source Positions and Orientations: Figure 4 presents the
results for the case of fixed source locations and orientations. RDM
and MAG errors below 1.5% and 1.0%, respectively, indicate that all
three approaches produce numerically accurate results. For all three
methods, errors and their spread increase along with the eccentricity.
The Whitney model shows the overall best results.

With regard to the RDM (Figure 4, top) and 0.99 eccentricity, the
maximal errors for the Whitney model are below 0.4% (St. Venant:
≤ 0.7%; PI: ≤ 1.4%) and the median value is at 0.2% (St. Venant:
0.3%; PI: 0.7%). The Whitney model yields also the smallest IQR
(only 58% and 28% of that of St. Venant and PI, resp.).

With regard to the MAG (Figure 4, bottom) and 0.99 eccentricity,
the maximal errors for the Whitney model are below 0.5% (St.
Venant: ≤ 0.5%; PI: ≤ 0.9%) and the median value is nearly optimal
for all three methods. The St. Venant approach has the smallest IQR
(76% and 39% of that of Whitney and PI, resp.).

2) Random Source Positions and Orientations: In Figure 5, RDM
and MAG errors for random source locations and orientations are
shown. With RDMs and MAGs below 2.0% and 1.3%, respectively,
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RDM

MAG

Fig. 4. Fixed Source Positions and Orientations: RDM (top) and MAG
(bottom).

RDM

MAG

Fig. 5. Random Source Positions and Orientations: RDM (top) and MAG
(bottom).

all three approaches produce again low errors. In this comparison, the
St. Venant model shows the overall best results. Comparing Figures 4
and 5, one can see that the accuracy of the Whitney model deteriorates
significantly in the case of randomized orientations, when multiple
basis functions are utilized to represent a single dipole via the PBO
interpolation strategy. This is particularly obvious for sources with
high eccentricity.

The RDM median (Figure 5, top) increases along with the eccen-
tricity for all three models. At 0.99 eccentricity, the maximal error of
the St. Venant model is below 1.6% (Whitney: ≤ 1.9%; PI: ≤ 2.0%)
and the median value is at 0.6% (Whitney: 0.8%; PI: 0.9%). St.
Venant and Whitney yield 0.4 % and PI 0.5 % IQR.

With regard to the MAG (Figure 5, bottom) and 0.99 eccentricity,
the maximal and median error for St. Venant are 1.1 % (Whitney
and PI: 1.3%) and 0.1% (Whitney: 0.3%; PI: 0.2%), respectively.
St. Venant also yields the smallest IQR (85% and 59% of that of
Whitney and PI, resp.).

IV. DISCUSSION

In this paper, the Whitney (Raviart-Thomas) type source model
for finite element method (FEM) based EEG forward modeling was
validated utilizing a four-layered spherical head model. A given
dipole was approximated as a combination of synthetic positions
and dipole moments associated with faces of a single tetrahedron.
The results were compared to two widely used direct FEM dipole
modeling techniques: the St. Venant [18], [19], [20], [16] and the
partial integration (PI) approach [21], [22], [16].

The results in Figure 3 indicate that point (D) out of the tested
four positions (A)–(D) performs best as a synthetic source position
in terms of both modeling accuracy and reliability. This suggests
that a Whitney basis function can be associated with a dipole placed
at the midpoint (D) of the two nodes ~r1 and ~r4 (see Figure 1
and equation (5)) that also determine the synthetic dipole moment
(see equation (4)). Hence, a Whitney source corresponds to two
monopolar loads with opposite sign at locations ~r1 and ~r4, i.e.,
the simplest possible combination to approximate a dipole with
monopolar loads. Moreover, all points (A)–(D) yielded an appropriate
modeling accuracy which is important knowledge if the superposition
of the Whitney basis functions is treated as a vector field rather than a
set of dipoles, that is, if the location of a source is estimated, instead
of (D), based on where the actual vector field is strong (see Section
II-B1).

Further experiments (see Figure 4) showed that, in approximation
of a dipole with fixed location and orientation given by (5) and (4),
the Whitney model was overall superior compared to the references.
Besides numerical accuracy, another important aspect is the focality
of the source model. Also here, the Whitney is the superior one
(2 nodes, see Table III), followed by PI (4 nodes) and St. Venant
(≈ 27 nodes). From our experience, numerical accuracy is spoiled
if monopoles are positioned closer than one element layer from the
next conductivity discontinuity. Therefore, if an optimal segmentation
and tetrahedralization of the grey matter compartment following the
normal constraint can be produced, i.e., sources are only allowed to
point radially into the cortex [32], [33] (see Figure 2, right), then the
Whitney model seems the currently preferable one.

To produce a cortical segmentation and tetrahedralization as shown
in Figure 2 (right) is currently still a challenging task and the normal-
constraint can thus not always be recommended. Therefore, further
experiments with random locations and orientations were performed
(see Figure 5). In this case, the numerical accuracy of the St. Venant
approach was slightly superior. However, maximal RDM and MAG
errors for all three approaches were smaller than 2%, indicating that
other aspects, e.g., with regard to practical applicability such as the
focality, should be prioritized. In this aspect, the PI is the best (4
nodes, see Table III), followed by Whitney (8 nodes) and St. Venant
(≈ 27 nodes).

For approximation of arbitrary dipoles in a tetrahedral mesh, we
used the quadratic element-wise position based optimization (PBO)
interpolation of the synthetic dipole moments [31]. The PBO method
is an improvement to the pseudoinverse interpolation [25], which
guarantees a stable approximation of the dipole moment with a
minimal symmetric configuration of four basis functions to allow
sources to be positioned in narrow grey or white matter layers.
The more accurate PBO strategy takes, in addition to the source
orientations, also the positions into account [31], as it tries to find
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a matching dipole as close as possible to the given position. Since
the PBO algorithm is rather heuristic than implied by the theory of
interpolation, it can be a suboptimal one and accuracies above the
currently already high level in the percent range might be strived for.

We could, e.g., think of using higher order St. Venant conditions
within the Whitney model. Producing a significant improvement to
PBO is, however, likely to be difficult, since due to the lack of
degrees of freedom, St. Venant type conditions cannot be filled,
other than the one for the dipole moment. Consequently, it seems
that the current vector sources can be improved by including a
larger set of basis functions in approximation of a single dipole, so
that additional conditions can be satisfied. Furthermore, the question
arises: What would be an optimal number of basis functions in
approximation of a single dipole for a realistic head model in which
conductivity discontinuities affect the source modeling accuracy?
Finding an answer necessitates improvement of the current analysis
technique relying on analytic solution that exists for a spherical
layered head model. An obvious solution would be to produce an
extremely high-resolution reference FEM solution corresponding to
a realistic head model, which one can use for evaluation of different
interpolation techniques. In addition to these aspects, also the order
of interpolation, e.g., quadratic vs. cubic, is a central factor affecting
the quality of the results.

Better results can be obtained also by extending the polynomial
basis utilized in dipole approximation. This could mean, for instance,
complementing the current Whitney type sources with higher-order
Nédélec elements [29], [28], which would require also increasing
the polynomial order of the potential field [36] to avoid mapping
of the added degrees of freedom to zero right-hand side vector
entries. In such a context, the cost of the assembly procedure will be
significantly larger, such as in the case of the subtraction approach
[37], [16], [15]. The source modeling methods of this paper can, in
contrast, be considered computationally fast as the right-hand side
vectors of the forward problem are sparse due to the linearity of the
applied finite element basis. Moreover, implementation of higher-
order elements would require not only technical but also theoretical
work, since it is not immediately obvious, for example, whether and
how the additional degrees of freedom can be associated with dipoles
or multipoles: the current case of linear basis functions is special
in the sense that it allows a direct (synthetic) dipole interpretation.
The same reasoning further motivates development of techniques for
handling a vector field independently of the mathematical interpre-
tation of the vector basis, that is here a set of dipoles. An obvious
argument supporting such a future direction is also that real neural
sources have a finite support. Hence, more crucial than approximation
of a single point-wise source can be that of a complete field under a
priori knowledge on the neural fiber structure such as the previously
discussed normal constraint.

The Whitney (Raviart-Thomas) model can potentially be used in
any application context where a highly focal source placement is
needed, e.g., in a narrow part of the grey matter regarding both non-
interpolated and interpolated modalities. Of these, the preferable one
depends on several factors, such as the applied inverse methodology.
Non-interpolated Whitney type sources have been applied to EEG
inversion previously in [38]. The use of a tetrahedral mesh is not
necessary for the validity of the Whitney approach. The final section
of the appendix shows how Whitney sources can be defined also
for a hexahedral mesh. Based on our preliminary experiments in a
regular hexahedral grid, the differences to the reference approaches
are, however, minor to the tetrahedral case.

Summarizing the above ideas, directions of the future work can
include further development of the divergence conforming basis
functions in the context of EEG source modeling, e.g., regarding

higher polynomial or interpolation orders. Important topics related
to the interpolation quality include also investigation of the effect of
the conductivity jumps within the brain as well as St. Venant type
conditions applied to vector basis functions. Additionally, developing
methodology for handling finitely-supported divergence conforming
source currents as vector fields, e.g., for advanced inversion purposes
[38], [39], is an attractive future objective.

APPENDIX

Linear Nédélec’s edge-based face functions span the piecewise
linear subspace of H(div) = {~w |∇ · ~w ∈ L2(Ω)} for a tetrahedral
mesh [29], [28]. Given face F and edge E ⊂ F , a single basis
function restricted to a tetrahedron T (Figure 6) is of the form

~w{E,F,T} = c{E,F} ψ{E,F,T}
~̀{E,T}
VT

(14)

where VT is the volume of T , the vector ~̀E,T is the edge opposite to
E, oriented according to the right hand rule with respect to E, and
ψ{E,F,T} is the basis function for the node on F not belonging to E,
restricted to a single tetrahedron. Denoting the three edges of face
F by E1, E2 and E3 a Whitney (Raviart-Thomas) basis function
associated with F can be expressed in T as the mean

~w{F,T} =
1

3
(~w{E1,F,T} + ~w{E2,F,T} + ~w{E3,F,T}). (15)

Hence, Whitney basis functions form a subspace inside the space
of linear edge-based face functions: the former has one degree of
freedom per face whereas the latter has three. In the current context,
both function bases, however, result in the same dipole model, which
is shown below.

Fig. 6. Two views of a linear Nédélec’s edge-based face function restricted to
a single tetrahedron T . The face F and edge E ⊂ F determining the function
have been visualized with light blue and red (bold line) color, respectively.

Each linear edge-based face function is supported on two tetrahedra
T1 and T2 sharing the face F as shown in Figure 1. Defining

c{E,F} :=
4

‖~̀{E,T1} + ~̀{E,T2}‖
(16)

the synthetic dipole moment is a unit vector given by

~q~w =

∫
Ω

~w{E,F} dV

= c{E,F}
~̀{E,T1}

VT1

∫
T1

ψ{E,F,T1} dV

+ c{E,F}
~̀{E,T2}

VT2

∫
T2

ψ{E,F,T2} dV

= c{E,F}
~̀{E,T1}

VT1

VT1

4
+ c{E,F}

~̀{E,T2}

VT2

VT2

4

=
~̀{E,T1} + ~̀{E,T2}

‖~̀{E,T1} + ~̀{E,T2}‖
. (17)

Here, the fact that
∫
T
ψ dV = VT /4, i.e., any linear nodal basis

function ψ integrated over T equals VT /4, has been used. Assuming
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that the vector flux is inbound in T1 and outbound in T2, it holds that
∇ψ{E,F,T1} · ~̀{E,T1} = −∇ψ{E,F,T2} · ~̀{E,T2} = 1, since the linear
function ψ{E,F,T} grows from zero to one on a path corresponding
to (positive or negative) vector ~̀{E,T1}. Consequently, it follows that
the entry of matrix G corresponding to (global) basis functions ψ
and ~w is of the form

Gψ,~w = −
∫

Ω

(∇ · ~w) ψ dV

= −c{E,F} ∇ψ{E,F,T1} ·
~̀{E,T1}

VT1

∫
T1

ψ dV

−c{E,F} ∇ψ{E,F,T2} ·
~̀{E,T2}

VT2

∫
T2

ψ dV

=
s{ψ,T1}−s{ψ,T2}

‖~̀{E,T1} + ~̀{E,T2}‖
(18)

in which s{ψ,T} = 1, if ψ is supported on T , and otherwise
s{ψ,T} = 0. Using the node indices of Figure 1, one can write

~q~w =
~r4 − ~r1

‖~r4 − ~r1‖

Gψ,~w =
s{ψ,T1} − s{ψ,T2}

‖~r4 − ~r1‖
. (19)

Consequently, the Whitney source model of this paper is, in fact, a
general one in the current context of divergence conforming H(div)
vector fields, piecewise linear basis functions and a tetrahedral mesh.
Notice also that Equation (3) follows from the formulae above, and
that the formulation for ~q~w given in [25] simplifies to the current one
due to similarity under scaling.

1) Whitney Elements for a Hexahedral Mesh: A Whitney basis
function of a hexahedral mesh is supported on two adjacent hexahedra
Q1 and Q2 (Figure 7) sharing a face and aligned with coordinate axes.
For x-direction, it can be defined as follows:

~wk(x, y, z) =



2

(a1 − a2)bc

(
1− x

a1

)
~e1, if (x, y, z) ∈ Q1

2

(a1 − a2)bc

(
1 +

x

a2

)
~e1, if (x, y, z) ∈ Q2

0, otherwise,
(20)

where constants a1 > 0, a2 < 0, b > 0 and c > 0 are as in Figure
7. The basis function is a piecewise first order polynomial with the
normal component continuous on the shared face and zero on all
other faces. As dipole position x0, we chose the midpoint of S with
coordinates (0, b

2
, c

2
) in the reference element (Figure 7). Note that

the synthetic dipole moment for (20) is given by ~q =
∫

Ω
~w dV = ~e1.

The other coordinate directions follow analogously. In a hexahedral
mesh, 20 Whitney basis functions are needed to approximate a dipole.

Fig. 7. Two reference hexahedrons
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