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Abstract 

For accurate EEG/MEG source analysis it is necessary to model the head volume conductor as 

realistic as possible. This includes the distinction of the different conductive compartments in the 

human head. In this study, we investigated the influence of modeling/not modeling the conductive 

compartments skull spongiosa, skull compacta, cerebrospinal fluid (CSF), gray matter, and white 

matter and of the inclusion of white matter anisotropy on the EEG/MEG forward solution. Therefore, 

we created a highly realistic 6-compartment head model with white matter anisotropy and used a 

state-of-the-art finite element approach. Starting from a 3-compartment scenario (skin, skull, and 

brain), we subsequently refined our head model by distinguishing one further of the above-

mentioned compartments. For each of the generated five head models, we measured the effect on 

the signal topography and signal magnitude both in relation to a highly resolved reference model and 

to the model generated in the previous refinement step. We evaluated the results of these 

simulations using a variety of visualization methods, allowing us to gain a general overview of effect 

strength, of the most important source parameters triggering these effects, and of the most affected 

brain regions. Thereby, starting from the 3-compartment approach, we identified the most important 

additional refinement steps in head volume conductor modeling. We were able to show that the 

inclusion of the highly conductive CSF compartment, whose conductivity value is well known, has the 

strongest influence on both signal topography and magnitude in both modalities. We found the 

effect of gray/white matter distinction to be nearly as big as that of the CSF inclusion, and for both of 

these steps we identified a clear pattern in the spatial distribution of effects. In comparison to these 

two steps, the introduction of white matter anisotropy led to a clearly weaker, but still strong, effect. 

Finally, the distinction between skull spongiosa and compacta caused the weakest effects in both 
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modalities when using an optimized conductivity value for the homogenized compartment. We 

conclude that it is highly recommendable to include the CSF and distinguish between gray and white 

matter in head volume conductor modeling. Especially for the MEG, the modeling of skull spongiosa 

and compacta might be neglected due to the weak effects; the simplification of not modeling white 

matter anisotropy is admissible considering the complexity and current limitations of the underlying 

modeling approach.  

Keywords 
EEG, MEG, volume conductor modeling, FEM, forward problem, tissue conductivity anisotropy 

1 Introduction 
Electro- and magnetoencephalography (EEG and MEG) have become important tools in the analysis 

of brain activity in a variety of applications in both science and medicine, e.g., brain research or 

clinical analysis. In many of these applications, the aim is to reconstruct the sources inside the brain 

volume that underlie the measured signal. Therefore, it is necessary to solve an ill-posed inverse 

problem which requires the simulation of the electric/magnetic field caused by a point-like source 

inside the brain volume: the so-called forward problem of EEG/MEG (Brette and Destexhe 2012). The 

achievable accuracy in the inverse problem strongly depends on an accurate forward solution. The 

influence of the head modeling accuracy on the forward solution—and also on the related inverse 

solution—has been subject to several studies: 

Early EEG/MEG source analysis used (multi-layer) sphere models to approximate the human head (de 

Munck and Peters 1993), which may have, of course, led to extreme inaccuracies in the forward 

simulation. As a first step towards more realistic head modeling, the impact of using realistically 

shaped 3-layer head models distinguishing the boundaries between skin, skull, and a homogenized 

brain compartment was demonstrated (Brette and Destexhe 2012). However, such models are still 

based on a variety of simplifications. The introduction of a homogenized brain compartment inside 

the inner skull surface neglects the highly conductive cerebrospinal fluid (CSF) (Ramon et al. 2004; 

Wendel et al. 2008; Lanfer, Paul-Jordanov, et al. 2012), whose conductivity is well known and has a 

negligible inter-individual variability (Baumann et al. 1997). The important effect of modeling the CSF 

compartment has also been shown in EEG experiments (Rice et al. 2013). Furthermore, a 

homogenized brain compartment neglects the conductivity differences between gray and white 

matter as well as the highly anisotropic structure of the white matter (Güllmar, Haueisen, and 

Reichenbach 2010; Ramon et al. 2004). In addition, modeling the skull as a closed shell of isotropic 

conductivity enveloping the brain and the CSF disregards the layered structure of the skull (Akhtari et 
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al. 2002; Sadleir and Argibay 2007; Dannhauer et al. 2011) and the importance of modeling skull 

holes and inhomogeneity accurately (Pohlmeier et al. 1997; Lanfer, Scherg, et al. 2012; Ollikainen et 

al. 1999; Montes-Restrepo et al. 2013). 

Since the MEG is assumed to be less affected by a simplified modeling of the human head, many of 

the above studies concentrated on the effects of realistic head modeling on the EEG, while only few 

of them also incorporated MEG effects. Instead, several papers focused on investigating the different 

sensitivity of the two modalities using realistically shaped 3-layer head models (Ahlfors et al. 2010; 

Goldenholz et al. 2009; Dassios, Fokas, and Hadjiloizi 2007). Nevertheless, scenarios exist where it is 

unclear whether a more detailed simulation of volume conduction effects can still be omitted, e.g., 

when a combined inverse analysis of EEG and MEG is desired. A combined analysis of EEG and MEG is 

highly worthwhile to account for the different sensitivities of the two modalities particularly with 

regard to the reconstruction of source orientation and depth. Here,  the EEG is in many cases helpful 

to recover the radial part of the source orientation. Thus, a combined analysis helps to achieve the 

goal of reliably identifying and localizing sources of arbitrary orientation and depth. Applications 

where this is desirable are, e.g., epilepsy diagnosis (Iwasaki et al. 2005; Salayev et al. 2006; Aydin et 

al. 2014), evoked response analysis, and connectivity studies (Astolfi et al. 2005; Lin et al. 2009). 

The goal of this study was to investigate the influence of modeling/not modeling different conductive 

compartments and features of the human head—skull compacta, skull spongiosa, CSF, gray matter, 

white matter, and white matter anisotropy—in the creation of a volume conductor on both EEG and 

MEG forward solutions and to compare them with respect to their impact. Furthermore, we set 

these effects in relation to the numerical error and to the results of previous studies dealing with the 

influence of volume conductor modeling on the EEG/MEG forward solution. 

By applying a state-of-the-art finite element approach to solve the EEG/MEG forward problem in our 

simulations, we were able to also include head compartments of complicated shape. Accordingly, we 

created highly realistic head models and used realistic sensor configurations. We distributed sources 

with a high, regular density in the gray matter compartment and chose their orientation 

perpendicular to the gray/white matter interface. Following this, we calculated the effects of the 

changed volume conduction on forward solutions caused by neglecting the conductivity differences 

between certain head compartments. Therefore, we used difference measures designed to 

differentiate between topography and magnitude changes. We then visualized the results on an 

inflated brain surface to depict the spatial distribution of these changes for both EEG and MEG. The 

differentiation between topography and magnitude effects is of high importance since they strongly 

differ in their impact on inverse solutions. Additionally, we presented these effects in special 

diagrams, known as heat maps, where we related their strength to parameters characteristic of the 
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source location. These analyses allowed us to estimate the influence of simplifications in head model 

creation on the investigation of activity originating in certain brain regions. Thereby, we were able to 

show the high importance of accurate volume conductor modeling for EEG and, to a lesser degree, 

for MEG forward solutions and worked out a guideline for volume conductor modeling in EEG and 

MEG source analysis. We found the consideration of the highly conductive CSF and the distinction of 

gray/white matter conductivity differences to be the most important modeling steps. 

2 Materials and Methods 

2.1 Model Generation 

To construct a realistic, high-resolution volume conductor with anisotropic white matter, T1-

weighted (T1w-), T2-weighted (T2w-), and diffusion-tensor (DT-) MRI scans of a healthy 25-year-old 

male subject were acquired with a 3T MR scanner (Magnetom Trio, Siemens, Munich, Germany) 

using a 32-channel head coil. For the T1w-MRI, we used an MP-RAGE pulse sequence (TR/TE/TI/FA = 

2300 ms/3.03 ms/1100 ms/8°, FOV = 256 x 256 x 192 mm, voxel size = 1 x 1 x 1 mm) with fat 

suppression and GRAPPA parallel imaging (acceleration factor = 2). For the T2w image, an SPC pulse 

sequence (TR/TE = 2000 ms/307 ms, FOV = 255 x 255 x 176 mm, voxel size = 0.99 x 1.0 x 1.0 mm 

interpolated to 0.498 x 0.498 x 1.00 mm) was used. MR images were resampled to 1 mm isotropic 

resolution. DT-MRIs (DTI) were acquired with the standard Siemens pulse sequence ep2d_diff (TR/TE 

= 7700 ms/89 ms). Geometry parameters were: FOV 220 x 220 x 141 mm, voxel size =2.2 x 2.2 x 2.2 

mm). Seven volumes were acquired with diffusion sensitivity b = 0 s/mm2 (i.e., flat diffusion gradient) 

and 61 volumes with b = 1000 s/mm2 for diffusion weighting gradients in 61 directions, equally 

distributed on a sphere. Seven additional data sets with only flat diffusion gradients and reversed 

spatial encoding gradients were acquired for distortion correction according to Ruthotto et al. (2012). 

The T2w-MRI was registered onto the T1w-MRI using a rigid registration approach and mutual 

information as cost-function as implemented in the FSL-toolbox 

(http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL). Skin, skull compacta, and skull spongiosa were segmented 

by applying a gray-value based active contour approach (Vese and Chan 2002). Subsequently, the 

segmentation was manually corrected and, because of the importance of modeling skull holes for 

source analysis (van den Broek et al. 1998; Oostenveld and Oostendorp 2002), the foramen magnum 

and the two optic canals were correctly modeled as skull openings. Following the advice of Lanfer, 

Scherg, et al. (2012), the model was not cut off directly below the skull but realistically extended at 

the neck. Curry (http://www.neuroscan.com) was used to extract high-resolution surfaces of skin, 

skull compacta, and skull spongiosa. A Taubin smoothing was applied to remove staircase-like effects 

http://www.neuroscan.com/
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(Taubin 1995). The FreeSurfer-toolbox (https://surfer.nmr.mgh.harvard.edu) was then used to 

segment and extract the cortex surface and the gray/white matter interface. 

In order to be able to apply a constrained Delaunay tetrahedralization (CDT), all obtained surfaces 

were checked for intersections and those found were corrected by flattening the inner surface, 

ensuring a minimal distance between all surfaces. The CDT was executed using TetGen 

(http://www.tetgen.org); the resulting mesh consists of 984,569 nodes and 6,107,561 tetrahedral 

elements (Fig. 1a). Additionally, a mesh with a higher resolution of 2,159,337 nodes and 13,636,249 

elements was constructed using the same surfaces in order to be able to compare numerical errors 

and modeling errors later on. The conductivities used in our study were chosen according to Table 1 

(Baumann et al. 1997; Akhtari et al. 2002; Dannhauer et al. 2011; Ramon et al. 2004). 

Compartment   S/m 3CI 4CI 5CI 6CI 6CA 6CA_hr 

Brain 0.33 I I : : : : 

Brain GM 0.33 - - I I I I 

Brain WM 0.14 - - I I A A 

CSF 1.79 - I I I I I 

Skin 0.43 I I I I I I 

Skull 0.01 I I I : : : 

Skull Comp. 0.008 - - - I I I 

Skull Spong. 0.025 - - - I I I 

Resolution #Nodes 984,569 984,569 984,569 984,569 984,569 2,159,337 

Table 1: Overview of the compartment conductivities, the conductive features of the different head 

models (| is considered, - is disregarded, : is further divided, and A is anisotropic), and their 

resolution. 

To construct anisotropic conductivity tensors in the white matter, after a first affine registration for 

eddy current correction, the DW-MRIs were corrected for susceptibility artifacts using a novel 

reversed gradient approach based on the acquired images with flat diffusion gradient that leads to a 

diffeomorphic, smooth, and thus physically reasonable transformation (Ruthotto et al. 2012). Finally, 

the corrected DW-MRIs were registered to the T2-MRI using a rigid transformation. Following the 

effective medium approach by Tuch et al. (2001) that has been positively validated in a variety of 

studies (Tuch et al. 2001; Oh et al. 2006; Butson et al. 2007; Chaturvedi et al. 2010), we deduced 

conductivity tensors σ from the diffusion tensors D using the linear relationship     . Instead of 

using the theoretically derived scaling factor s as proposed by Tuch et al. (2001), we chose to 

compute s empirically adapting the approach used in Rullmann et al. (2009). We dispensed the 

modeling of gray matter anisotropy due to the severe influence of partial volume effects at the 

http://www.tetgen.org/
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resolutions achieved in a 3T MR scanner and the only weak radial cortical anisotropy (Fig. 4 in 

(Heidemann et al. 2010), Fig. 1b). Thus, the computation of s reduced to: 

      
   (

   
   

)
  

 

dwm is the sum over the product of all diffusion tensor eigenvalues corresponding to voxels classified 

as white matter, and Nwm is the number of these tensors. This approach ensured that the mean 

conductivity of the anisotropic white matter fits that of isotropic white matter. Finally, we assigned 

each element the conductivity tensor corresponding to its barycenter. 

a)  b)  c)  

Fig. 1: a) Sagittal cut through the volume conductor model (white matter shown in light gray, gray 

matter in dark gray, CSF in light blue, skull compacta in dark blue, skull spongiosa in red, and skin in 

yellow) b) Fractional anisotropy visualized on an axial slice of the T1-MRI c) Sources visualized on the 

brain surface. 

2.2 Setup of the Head Models 

To investigate the influence of considering/not considering conductivity differences between the 

different compartments on the accuracy of the forward simulation, we introduced head models with 

a differently detailed discrimination of these compartments. Except for the highly resolved model 

6CA_hr, we did not change the finite element mesh and thus the geometrical structure of the head 

model, i.e., geometrical errors were not examined here. 

We constructed five differently detailed head models based on the finite element mesh with the 

lower resolution (i.e., 984,569 nodes). To follow the steps in which one would usually extend a head 

model to achieve a more realistic representation, we started from the commonly used 3-

compartment head model with homogenized isotropic skull and brain compartments, which in our 

case was extended by the realistic modeling of skull holes that were already included as a necessity 

of our approach not to change the geometrical representation of the volume conductor (model 3CI in 

Table 1). We extended this model by the distinction of further compartments, namely the CSF (model 
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4CI in Table 1), gray and white matter separation (model 5CI in Table 1), skull compacta and 

spongiosa separation (model 6CI in Table 1), and finally by the inclusion of white matter anisotropy 

(model 6CA in Table 1). Head model 6CA_hr was based on the highly resolved mesh (2,159,337 

nodes) and served as a reference to estimate the numerical error. Due to the fact that we assigned 

the anisotropic conductivity tensor according to each element’s barycenter, this error contained not 

only the numerical error caused by the different model resolutions, but also the effect of the possibly 

slightly different subsampling of tensors. Since we expected the numerical error to dominate, we 

simply called it numerical error. 

2.3 Sensor Setup 

We used realistic sensor configurations for both EEG and MEG. The positions of 74 electrodes (10-10 

system) were digitized using a Polhemus device and projected onto the skin surface. A 275-channel 

whole head MEG gradiometer sensor configuration (CTF Omega 2005 MEG by MISL, 

http://www.vsmmedtech.com/hardware.html) was modeled and a rigid transformation to the head 

model was calculated using the positions of head localization coils inside the MEG and the positions 

of fiducials placed at the corresponding positions during the MRI recordings. 

2.4 Finite Element Forward Approach 

We applied the finite element method (FEM) to solve the forward problem due to its ability to deal 

with complex geometries, e.g., skull holes or the strongly folded cortex surface, and tissue 

conductivity anisotropy without serious influence on computation speed and accuracy. Different 

approaches to modeling the source singularity when using FE methods have been investigated: 

Examples from the literature include the subtraction approach (Drechsler et al. 2009), the partial 

integration direct approach (Schimpf, Ramon, and Haueisen 2002), and the Venant direct approach 

(Buchner et al. 1997; Wolters et al. 2007). In our study, we decided to use the Venant approach 

based on comparisons of the performance of these approaches, which suggest that for sufficiently 

regular meshes, the Venant approach yields suitable accuracy over all realistic source locations 

(Wolters et al. 2007; Lew et al. 2009; Vorwerk et al. 2012). The Venant approach relies on the 

principle that a current dipole can be approximated by a set of electrical monopoles in the vicinity of 

the dipole position that matches its dipole moment (and higher moments) and has overall charge 

zero. The resulting FE approach has a high computational efficiency when used in combination with 

the FE transfer matrix approach (Wolters, Grasedyck, and Hackbusch 2004) and with an Algebraic 

MultiGrid preconditioned Conjugate Gradient (AMG-CG) solver (Lew et al. 2009). We used standard 

piecewise linear basis functions and performed our computations using SimBio 

(https://www.mrt.uni-jena.de/simbio/index.php/Main_Page). 
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2.5 Source Space Construction 

The Venant finite element approach requires special care to be taken in the construction of volume 

conductor and source space mesh. We chose to place sources with a normal constraint in the gray 

matter, as it is physiologically plausible (Brette and Destexhe 2012). Therefore, we had to ensure that 

the vertex closest to the source position was exclusively part of elements belonging to the gray 

matter, the so-called Venant condition. Otherwise, the examined effects of conductivity changes in 

the neighboring compartments, i.e., white matter and CSF, might have been corrupted by numerical 

inaccuracies (Vorwerk 2011). Starting from 129,640 regularly distributed source positions on the 

gray/white matter surface, we calculated a surface normal at each position and fixed it as the source 

orientation (Fig. 1c). Then, all vertices in the gray matter compartment fulfilling the Venant condition 

were computed and the source positions were moved into the direction of the next valid node, until 

this node was the node closest to the source position. Thereby, we ensured that our results were not 

disturbed by numerical inaccuracies. 

2.6 Difference Measures 

Two difference measures were applied in our evaluations, namely the relative difference measure 

(RDM) and the logarithmic magnitude difference measure (lnMAG) (Meijs et al. 1989; Güllmar, 

Haueisen, and Reichenbach 2010): 

   (      )   ‖
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‖    ‖ 
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u and uref denote the vectors of simulated sensor values for test and reference solution, respectively. 

While the RDM is a normalized l2-difference and indicates the topography change compared to a 

reference solution, the lnMAG measures the ratio between the overall magnitudes of two solutions, 

where we defined (signal) magnitude as the l2-norm over all sensor values. The lnMAG is 0 when the 

magnitudes are equal, and a positive value corresponds to an increased magnitude in comparison to 

the reference solution. Thus, a smaller absolute value of the lnMAG correlates to a lower difference 

in signal magnitude. Compared to the commonly used MAG, it has the advantage of being symmetric 

around 0 so that the magnitude of increases and decreases in signal strength can directly be 

compared. The absolute values of the lnMAG are sometimes of less interest, e.g., if one only wants to 

compare the magnitude of reconstructed sources at different locations. In such scenarios, a large 

variance of the lnMAG, i.e., the ratios of signal magnitudes of sources at different positions are 

strongly distorted, might easily lead to misinterpretations. Thus, we also took the width of the 
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distribution of the lnMAG differences into account. The RDM is bounded between 0 and 2, where a 

smaller value corresponds to a lower difference in signal topography. Dannhauer et al. (2011) 

showed that a higher RDM is related to a worse source localization.  

2.7 Effect Evaluation/Visualization 

We used different kinds of diagrams to display the overall distribution of certain quantities (RDM, 

lnMAG, signal magnitude, etc.). To visualize the effect of both single steps of head model refinement 

and the difference in relation to the reference model, we plotted cumulated relative frequencies 

(see, e.g., Fig. 4). These diagrams have the advantage that the shape of the plotted curve is less 

dependent on the choice of the interval length than in common histograms. Furthermore, we used 

2D histograms to show the dependency of the magnitude of the effect measures on a certain model 

parameter and previous to this to analyze the interdependency between the model parameters used 

here. To create these plots, a matrix was calculated where each entry determined the frequency of 

values that are both inside a specific interval on ordinate and abscissa. This distribution was 

visualized using heat maps, and, for the sake of better recognizability, each column was scaled by the 

inverse of its maximum (i.e., normalized to a maximum of 1) (see, e.g., Fig. 7). The heat maps provide 

more information than more common graphical representations, e.g., box plots or floating mean 

plots, since they allow a more detailed overview of the effect distribution and it is also possible to 

recognize weak dependencies that might be overlooked in other modalities. Common graphs were 

created using gnuplot (http://www.gnuplot.info), heat maps were created using MATLAB. 

2.8 Visualization 

a)  b)  c)  
Fig. 2: Inflation of the gray/white matter surface: a) Segmented gray/white matter surface b) after 

half of the inflation steps c) final result on which effect surface plots are presented. 

For visualization purposes, an inflation of the gray/white matter surface was created using BrainVISA 

(http://www.brainvisa.info). On the resulting surface we depicted the values of effect measures or 

parameters (see, e.g., Fig.3). In Fig. 2, the inflation process is presented. This visualization allowed us 

to classify the brain regions that were most affected or not affected by the refinement steps. In 

addition to the color-coded visualization of effects, we calculated the curvature of the original 

surface and displayed it underneath the effect results to allow better identification of brain regions. 

A positive curvature, which roughly corresponds to gyri, is shown in light gray, a negative curvature is 
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shown in dark gray (Fig. 2). The most tangential source orientations were thus roughly achieved 

around the intersection between light and dark gray and the most radial source orientations in the 

middle of the light and dark gray regions. We introduced an increasing transparency for smaller 

values so that the underlying curvature is still visible in the plots (see, e.g., Figs. 8b and d). All 

visualizations were carried out using SCIRun (http://www.sci.utah.edu/cibc-software/scirun.html). 

2.9 Spatial Measures 
We used the quantities signal magnitude, i.e., ‖ ‖ , the distance between a source position x and 

the inner skull surface, i.e.,           ‖   ‖ , which we denote as source depth, and the median 

of the distances between a source position and the sensor positions as an indicator for the sensor 

distance/coverage of a source to quantitatively describe the spatial effect distributions. For each 

refinement step of the head model we then created heat maps with one of these properties on the x-

axis and with one of the difference measures on the y-axis. 

To be able to set up heat maps that allow for a more distinct view on the effects of model 

refinement, we searched for parameters that describe certain characteristics of sources so that the 

diagram depicts the effect as a function of these parameters. A natural candidate to discriminate 

source positions and orientations is the overall signal magnitude. For the EEG it is mainly correlated 

with the depth of the source and its sensor coverage, while it is also strongly dependent on the 

source orientation for the MEG (cf. Sec. 3.1 – EEG and MEG Signal Magnitude). A drawback of using 

the signal magnitude as a parameter is that due to the dependency on both orientation and sensor 

coverage, less insight into the spatial distribution of the effects is gained. A second possible 

parameter we considered was the distance between a source position and the inner skull surface. It 

can be interpreted as an analog to the source depth/eccentricity in sphere models and thus gives a 

good impression of the relation between effect strength and source position. A drawback of this 

measure is that no information about sensor coverage is contained, since, e.g., also sources at the 

base of the frontal lobe may be very close to lower parts of the skull, while sensor coverage is much 

worse there than for sources at the superior parts of the brain. A possible way to circumvent this 

problem is to concentrate on distances relative to the sensor positions instead of those relative to a 

model surface. We chose to take into account the median of the distances between a source position 

and the sensors/coils as a parameter. It can be interpreted as an intermediate between the two 

previously proposed measures, taking both the sensor coverage and the source depth into account. 

Nevertheless, the spatial differentiation by this parameter is less clear than by the distance to the 

inner skull surface, on which we therefore mainly relied. 

3 Results 
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We calculated forward solutions for the models presented in Table 1 and the respective source space 

introduced in the Methods section. RDM and lnMAG differences were computed for each source 

position, both relative to the reference model and between models with one refinement step in 

between. Furthermore, we calculated the signal magnitude for each source position in all models. On 

this basis, we performed a series of different evaluations to achieve a decent overview of effect 

magnitudes. 

3.1 EEG and MEG Signal Magnitude 

 3CI 6CA 

EEG 

a)  b)  

MEG 

c)  d)  

Fig. 3: Signal magnitude (in V2/fT2) relative to its maximum for the respective model for EEG (upper 

row) and MEG (lower row) computed in models 3CI (left column) and 6CA (right column) 

Fig. 3 shows the distribution of the signal magnitude (relative to the maximum for the respective 

model) plotted on the brain surface for EEG (upper row) and MEG (lower row) computed in models 

3CI (left column) and 6CA (right column). These plots underline the different sensitivities of EEG and 

MEG, an important parameter by which to interpret effect results in our later investigations. The EEG 

signal magnitudes in Figs. 3a and b have their local peaks for superficial sources close to or on the 

gyral crowns, where sources are very close to the electrodes, and decrease continuously when going 

to deeper source positions. We found the weakest EEG signal magnitudes for sources in sulcal 

valleys. The 3CI distribution (Fig. 3a) showed large areas of above 90% relative signal strength and 

hardly any areas below 22%, while the 6CA distribution (Fig. 3b) was less smooth and had a broad 

range with only a few small areas of above 90% relative signal magnitude and large areas of below 
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22%. In contrast, for the MEG (Fig. 3c and d) the signal decay into the depth was stronger than for 

the EEG and the signal magnitude was very weak on a thin line on gyral crowns and a broader line in 

sulcal valleys, where sources are quasi-radial. A small displacement of the source from the thin line at 

the gyral crown caused the orientation to change strongly towards a more tangential direction and 

the signal rapidly increased to its local peak value. As for the EEG, the full 6CA head model (compare 

Fig. 3c and d) led to a more scattered sensitivity profile. Even though the overall properties described 

for the 3CI model were still visible, we could clearly observe the influence of the more detailed 

conductivity distinction on the local distribution of the signal magnitude, which was no longer nearly 

exclusively dominated by source depth and orientation. 

3.2 Topography and Magnitude Differences 

 Effects between two model refinement 

steps 

Effects relative to the reference model 

6CA_hr 

RDM 

a)  b)  

lnMAG 

c)  d)  

Fig. 4: Cumulative relative frequencies for effects induced in EEG. RDM (upper row) and lnMAG 

(lower row) between two refinement steps (left column) and relative to the reference model 6CA_hr 

(right column). The horizontal lines indicate frequencies of 0.05 and 0.95. 

As a first evaluation of topography and magnitude changes, we depicted the cumulative relative 

frequencies of RDM (upper rows) and lnMAG (lower rows) for EEG (Fig. 4) and MEG (Fig. 5), showing 

the effects between single refinement steps (left columns) and the overall effects of the various 

models compared to the reference model 6CA_hr (right columns). This presentation allowed for a 

first, very general, interpretation of the influence of the distinction of certain conductive 

compartments on the forward solution. Second, we investigated the inter-dependencies of the 

different properties, which were used to classify the effects of the model refinement (cf. Sec. 2.2 - 
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Setup of the Head Models) (Figs. 6 and 7). Finally, we used heat maps of RDM and lnMAG as a 

function of these properties as well as surface plots of the effect measures to identify and classify the 

brain regions most affected by the model refinements (Figs. 8–15). 

We found that the introduction of the CSF had the biggest influence on the EEG forward simulation, 

both regarding RDM and lnMAG (dark blue lines in Fig. 4a and c). While for the RDM the plot shows 

that the influence of gray/white matter distinction (red line in Fig. 4a) and white matter anisotropy 

(light blue line in Fig. 4a) was only slightly smaller, the consideration of the CSF led to by far the 

biggest effect regarding the lnMAG in absolute values (dark blue line in Fig. 4c). Looking at the 

variance of the lnMAG effects, we found that for each of these three steps (dark blue, red, and light 

blue lines) about 90% of the sources lay in an interval with a width of about 0.4 in lnMAG (e.g., the 

red line in Fig. 4c reaches a cumulated relative frequency of 0.05 at about -0.3 and of 0.95 at about 

0.1), which would correspond to a misestimation by a factor of up to 1.5 when comparing the 

magnitudes of reconstructed sources. In both modalities, the influence of modeling the different 

skull compartments showed a minor effect (orange lines in Fig. 4a and c), though the effects caused 

were still higher than the numerical error, i.e., the difference between model 6CA and 6CA_hr (green 

lines in Fig. 4). As Fig. 4b and d show, the effects of the different refinement steps mainly added up 

and did not cancel each other out. 

 Effects between two model refinement 

steps 

Effects relative to the reference model 

6CA_hr 

RDM 

a)  b)  

lnMAG 

c)  d)  

Fig. 5 Cumulative relative frequencies for effects induced in MEG. RDM (upper row) and lnMAG 

(lower row) between two refinement steps (left column) and relative to the reference model 6CA_hr 

(right column). 
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The RDM results of the MEG simulations were very similar to those of the EEG simulations. Again, 

distinction of CSF (dark blue line in Fig. 5a) and gray/white matter (red line in Fig. 5a) showed the 

biggest influence. The magnitude of these effects was nearly identical in this case. The influence of 

white matter anisotropy was clearly smaller (light blue line in Fig. 5a), while skull modeling (orange 

line in Fig. 5a) and numerical error (green line in Fig. 5a) were at the same, small, level. Regarding the 

lnMAG, the effect of gray/white matter distinction (red line in Fig. 5c) was even bigger than that of 

CSF modeling in absolute values (blue line in Fig. 5c). These effects had opposite signs — a result in 

line with the increase (CSF added) and decrease (WM added) of the conductivity in large parts of the 

head. As in the EEG case, the width of the distribution of the lnMAG for the distinction of CSF and 

gray/white matter, as well as for the inclusion of anisotropy, was in the same range. For all three of 

these effects, 90% of the sources fell within a range of about 0.5 in lnMAG (e.g., the light blue line in 

Fig. 5c reaches a cumulated relative frequency of 0.05 at about -0.4 and of 0.95 at about 0.1), which 

would correspond to a misestimation by a factor of over 1.6 when comparing source magnitudes. In 

comparison, the numerical error would only lead to a factor of 1.1. 

Comparing the size of the effects for EEG and MEG, we found that they were at a similar level. This 

might be counterintuitive at first glance, since one would expect the MEG to be less influenced by 

conductivity changes, but actually this is a consequence of our approach to choose sources 

perpendicular to the brain surface so that also quasi-radial and very deep sources were included in 

the analysis. This part of the sources led to a weak MEG sensor signal, and, thus, small absolute 

effects directly led to big relative effects. One could have tried to avoid this effect by excluding 

sources with low signal magnitude or a pre-selection of sources with regard to positions and 

directions, but this would have increased the possibility of a biased evaluation result. Instead, we 

chose to include all sources in the analysis, and tried to create visualizations where one can 

particularly identify the effects of quasi-radial and deep sources. 

Finally, we observed that the numerical error in comparison to the highly resolved model 6CA_hr was 

smaller than all observed model effects in both modalities, underlining the high accuracy of the FE 

approach and model used. 

3.3 Evaluation of Spatial Measures 

The plots of the cumulative relative frequency of RDM and lnMAG already gave a valuable overview 

of the importance of the different head tissue properties for the EEG and MEG forward problem. 

However, we wanted to strive for a deeper insight into the relationship of source properties and 

volume conduction effects. As the following investigations show, this relationship can be further 

enlightened using the additional measures and visualization means introduced in the Methods 

section. 
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The important characteristics of the spatial distribution of the signal magnitude for EEG and MEG are 

shown in Fig. 3 and have already been discussed in Section 3.1. 

a)  b)  

Fig. 6: a) Median of the distances between a source position and the electrodes (in mm) b) Distance 

between a source position and the inner skull surface (in mm) 

In Fig. 6, the median of the distances between a source position and the electrodes (left) and the 

distance between a source position and the inner skull surface (right) were visualized on the brain 

surface. In Fig. 6a it can be observed that a high median is mainly given for temporal and frontal 

regions and, in comparison to Fig. 6b, the different focus of this parameter becomes clear. 

Signal magnitude (V2, y-axis) vs. median of 

distances to the electrodes (in mm, x-axis) for 

EEG 

Signal magnitude (fT2, y-axis) vs. distance to 

the inner skull surface (in mm, x-axis) for MEG 

a)  b)  

Fig. 7: Signal magnitude (in V2/fT2) computed in model 3CI as a function of a) median of distances 

between the source position and the electrodes for EEG b) distance to the inner skull surface for 

MEG 

Fig. 7 shows the dependency of the signal magnitude computed in model 3CI for EEG (left) and MEG 

(right) on the parameters visualized in Fig. 6. Interestingly, Fig. 7a shows that sources with the 

smallest and with the largest median have the smallest signal magnitude for the EEG, while those 

with an intermediate median have the strongest signal. The surface representation in Fig. 6a shows 
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that the latter correspond to more central and superficial sources, which we expected to have the 

strongest signal. For the MEG, we could identify a set of superficial sources with a weak signal 

corresponding to quasi-radial sources on gyral crowns (Fig. 7b, sources with lowest distance to the 

skull). For both EEG and MEG, Figs. 3a–d and 7b clearly show the decay of the signal magnitude as a 

consequence of source depth/distance to the inner skull surface. We could not distinguish the quasi-

radial sources at sulcal valleys as clearly as those at gyral crowns; they could only be suspected as 

outliers with low signal magnitude at distances between 18 and 30 mm (Fig. 7b). This can be 

explained by the differing distance between the sources in the sulcal valleys and the inner skull 

surface due to the varying sulci depth (causing a blurring in x-direction in Fig. 7b). Furthermore, the 

difference between the signal magnitude of quasi-radial sources in the sulcal valleys and neighboring 

sources at similar depth is much smaller than at gyral crowns (causing a blurring in y-direction). 

3.4 Single Tissue Compartment Sensitivity Investigation 
Finally, further single tissue sensitivity analyses complemented our investigations. For each 

refinement step we created a heat map using one of the above proposed parameters for both RDM 

and lnMAG in addition to the surface plots. In most cases the distance to the inner skull surface was 

found to be the most meaningful parameter.  

3.4.1 Distinction of CSF 
 RDM lnMAG 

EEG 

a)  b)  

MEG 

c)  d)  

Fig. 8: Effect of CSF distinction - Difference between models 4CI and 3CI plotted on brain surface.  
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When evaluating the effect of including the CSF compartment on the EEG, the visual inspection of 

the surface plots (Fig. 8a and b) was in line with the visualization in the heat maps (Fig. 9a and b) for 

both difference measures. The lnMAG in Fig. 8b shows a strong decrease of signal magnitude 

especially for superficial sources (on gyral crowns), which is evident in the diagram in Fig. 9b. We 

observed a negative lnMAG especially for the most superficial sources, while it was constant at a 

smaller but still clearly negative level for deeper sources. Such an effect might lead to significant 

misinterpretations when comparing source magnitudes of superficial and deep reconstructed 

sources. For the used model, a possible decrease/increase by a factor of up to 1.6 was found. The 

RDM distribution in Fig. 8a is less clear; we identified significant effects at the very top of the brain in 

the vicinity of the interhemispheric fissure, in deep areas like the Sylvian fissure, and we found the 

frontal and temporal poles as well as the inferior temporal lobe to be affected, too. Fig. 8a and 

especially Fig. 9a show a trend towards lower RDM effects for deeper sources. Here, we found that a 

lower limit was reached at a depth of about 15 mm below the inner skull surface; for even deeper 

sources the RDM stayed at a constant level. Even though the trend was clearly recognizable, we 

observed a considerable variance of effect sizes at all source depths. 

We saw a clear effect of the CSF distinction on the MEG in the lnMAG, where the optical impression 

of increased signal magnitude for superficial sources in Fig. 8d is visible in the heat map plot in Fig. 

9d. We found a lower limit reached at a depth of 8 mm below the inner skull surface. As for the EEG, 

this is especially problematic when comparing the strength of superficial and deeper lying 

reconstructed sources. The topography of the RDM plot in Fig. 8c is again less clear, but, similar to 

the EEG case, significant effects were found on some gyral crowns, at the top of the brain, in the 

Sylvian fissure, at the frontal and temporal poles, and at the inferior temporal lobe. Furthermore, we 

found a clear correlation of RDM and signal magnitude in Fig. 9c. 
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 RDM vs. distance to the inner skull surface 

(mm) 

lnMAG vs. distance to the inner skull surface 

(mm) 

EEG 

a)  b)  

 
RDM vs. signal magnitude (fT2) lnMAG vs. distance to the inner skull surface 

(mm) 

MEG 

c)  d)  

Fig. 9: Effect of CSF distinction - Difference between models 4CI and 3CI in 2D histogram. 

3.4.2 Effect of the Distinction between Gray and White Matter 
For the EEG, we observed strong effects both regarding RDM and lnMAG for the most superficial 

sources in Figs. 10a and b and 11a and b. The surface plot in Fig. 10b shows a strongly decreased 

magnitude with the lnMAG being partially even below -0.25, and thus exceeding the limit of the color 

bar, mainly on top of gyri; a finding that is also apparent in the heat map visualization in Fig. 11b. For 

deeper sources, we found a weaker decrease of EEG signal magnitude (lnMAG between 0 and -0.2, 

see Fig. 11b). For the few visible areas with an increased magnitude in Fig. 10b, we could find no 

representation in the heat map plot in Fig. 11b. As seen in Fig. 4, the width of the distribution of the 

lnMAG effects was as large as for the CSF distinction. Again, especially the differences between very 

superficial and deeper sources were huge. The spatial distribution of the highest RDM effects was 

very similar to that of the lnMAG (compare Fig. 10a and b). We found RDM effects above 0.2 for very 
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superficial sources. Visually, we could identify these predominantly on the gyral crowns. For the 

remaining deeper source positions we still found non-negligible RDM effects with values mainly 

between 0.05 and 0.1. 

 RDM lnMAG 

EEG 

a)  b)  

MEG 

c)  d)  

Fig. 10: Effect of GM/WM distinction - Difference between models 5CI and 4CI plotted on brain 

surface.  

The RDM surface plot for the MEG in Fig. 10c shows high effects in areas where sources are 

suspected to be quasi-radial, again. We furthermore found a clear correlation of these RDM effects 

to the MEG signal magnitude (similar to Fig. 9c and therefore not shown here). Fig. 11c shows a slight 

decrease of the effects up to a depth of about 6 mm, followed by an increase for even deeper 

sources where both the lower bound of effects as well as the mean effects increase. The visualization 

of the lnMAG in Fig. 10d mainly shows a decrease of MEG signal magnitude, corroborated by the 

systematic plot in Fig. 11d with nearly all magnitude effects being below 0. At values between -0.1 

and -0.3, effects were lowest for superficial sources (as in Fig.11c, the most superficial quasi-radially 

oriented sources show bigger effects), getting stronger towards a RDM of -0.4 at a distance of about 

1 cm to the inner skull surface and remaining constant for even deeper sources.  
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 RDM vs. distance to the inner skull surface 

(mm) 

lnMAG vs. distance to the inner skull surface 

(mm) 

EEG 

a)  b)  

 RDM vs. distance to the inner skull surface 

(mm) 

lnMAG vs. distance to the inner skull surface 

(mm) 

MEG 

c)  d)  

Fig. 11: Effect of GM/WM distinction - Difference between models 5CI and 4CI in 2D histogram. 

3.4.3 Effect of the Distinction between Skull Spongiosa and Skull Compacta 
In Figs. 12 and 13, we found notable RDM effects for the EEG mainly at the temporal lobe and its 

surrounding region, i.e., in a relatively deep area with bad sensor coverage (Fig. 12a). Furthermore, 

we found some notable topography changes at the very top of the brain. The same locations were 

affected when turning to the lnMAG, finding a moderate decrease of signal magnitude (Fig. 12b). 

Since the areas with a larger median in Fig. 6a strongly correlate to the affected areas in Fig. 12a and 

b, we used this as a parameter for computing meaningful heat maps. We found that the magnitude 

of the RDM and lnMAG effects clearly increased with the median of the distances to the electrodes 

(Fig. 13a and b), showing that the spatial measure used was able to resolve the effects in the visually 

identified areas as desired. As we found lnMAG effects of up to -0.15 in temporal areas (Fig.12b), we 

conclude that using a head model that does not include the distinction between skull spongiosa and 

compacta might lead to an underestimation of source strength up to a factor of 1.17 when 
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comparing reconstructed sources in temporal areas to those in brain areas with negligible lnMAG 

effects. 

Figs. 12c and d and 13c and d clearly show that the impact of skull spongiosa/compacta distinction 

was by far weaker for the MEG, which was an expected result. We found a weak influence on the 

topography for deep sulcal sources (Fig. 12c) in combination with a positive lnMAG (Fig. 12d). This 

was more pronounced in sulci at the pole of the temporal lobe, in the Sylvian fissure, and in some 

areas at the base of the frontal lobe. The only parameters that correlated with these small effects 

were the median of the distances between the source position and the MEG sensors (RDM increases 

with median in Fig. 13c) and the MEG signal magnitude (Fig. 13d showing a tendency towards a 

slightly negative lnMAG for weak sources).  

 RDM lnMAG 

EEG 

a)  b)  

MEG 

c)  d)  

Fig. 12: Effect of spongiosa/compacta distinction - Difference between models 6CI and 5CI plotted on 

brain surface 
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 RDM vs. median of distances to the 

electrodes (mm) 

lnMAG vs. median of distances to the 

electrodes (mm) 

EEG 

a)  b)  

 RDM vs. median of distances to the coils 

(mm) 

lnMAG vs. signal magnitude (fT2) 

MEG 

c)  d)  

Fig. 13: Effect of spongiosa/compacta distinction - Difference between models 6CI and 5CI in 2D 

histogram.  

3.4.4 Effect of White Matter Anisotropy 
Figs. 14a and c (surface plots) and 15a and c (heat maps) show the RDM changes due to white matter 

anisotropy. For both EEG (Figs. 14a and 15a) and MEG (Figs. 14c and 15c), we found the most 

significant topography changes for sources in sulcal valleys and on gyral crowns. The heat map for 

the EEG results in Fig. 15a shows RDM effects mainly between 0.02 and 0.1 at all source depths. A 

slight trend towards higher effects for deeper sources could be observed, but this was not as distinct 

as for the other refinement steps. The RDM heat map for the MEG in Fig. 15c shows a clear 

correlation between signal magnitude and topography effect, underlining the visual finding of 

strongest effects for quasi-radial sources.  

For both EEG and MEG we found very similar effects with regard to the lnMAG, where the visual 

impression obtained from Fig. 14b and d was in line with the heat maps in Fig. 15b and d. Minor 
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effects could be reported for the most superficial sources with an lnMAG varying between -0.1 and 

0.1 in both modalities. For deeper sources, we found a continuous decrease of signal magnitude in 

comparison to the 6CI model, an effect which was less strong for the EEG than for the MEG (Fig. 15b 

and d).  

 RDM lnMAG 

EEG 

a)  b)  

MEG 

c)  d)  

Fig. 14: Effect of white matter anisotropy - Difference between models 6CA and 6CI plotted on brain 

surface. 
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 RDM vs. distance to the inner skull surface 

(mm) 

lnMAG vs. distance to the inner skull surface 

(mm) 

EEG 

a)  b)  

 
RDM vs. signal magnitude (fT2) lnMAG vs. distance to the inner skull surface 

(mm) 

MEG 

c)  d)  

Fig. 15: Effect of white matter anisotropy - Difference between models 6CA and 6CI in 2D histogram.  

4 Discussion 

In this study we evaluated the influence of modeling/not modeling different conductive head 

compartments on the finite element forward solution for both EEG and MEG. Our results helped to 

formulate a guideline for EEG and MEG forward modeling. 

We showed that the CSF is one of the most important compartments to be modeled. Especially for 

superficial sources, modeling the CSF compartment had a large influence on the signal topography 

for the EEG (Figs. 4a, 8a, 9a) and for the MEG (Figs. 5a, 8c, 9c), while it had a much larger influence 

on the signal magnitude in EEG (Figs. 4c, 8b, 9b) than in MEG (Figs. 5c, 8d, 9d). In both modalities the 

distribution of the lnMAG had a large width. The huge effect for the EEG can easily be explained by 

the strong increase of conductivity between sources and sensors causing a shunting effect, while the 

effect for the MEG is probably due to the strong volume currents in the now highly conductive CSF 
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compartment. These were visualized by Wolters et al. (2006), underlining the need for an accurate 

modeling of this volume. 

While our work is a computer simulation sensitivity study and we did not validate effects in real 

experiments, first validation studies investigating the effects of CSF modeling can be found in the 

literature and are in line with our results. Rice et al. (2013) showed in EEG experiments that brain 

shift and the resulting small changes in CSF layer thickness, induced by changing the subject's 

position from prone to supine, have a significant effect on the EEG in several standard visual 

paradigms. They describe a local increase of signal magnitude when decreasing the thickness of the 

CSF by changing the subject’s position. This effect is consistent with our finding of a decreased signal 

magnitude due to the distinction of the CSF. Bijsterbosch et al. (2013) investigated the effect of head 

orientation on subarachnoid CSF distribution and conclude that minor differences in local CSF 

thickness are likely to significantly affect the accuracy of EEG source localization techniques. In a 

further experimental validation study, Bangera et al. (2010) found that the inclusion of CSF as well as 

brain anisotropy in the forward model is necessary for an accurate description of the electric field 

inside the skull. 

The conductivity of human CSF at body temperature is well known, it was measured to be 1.79 S/m 

with a low inter-individual variance (Baumann et al. 1997; average over 7 subjects, ranging in age 

from 4.5 months to 70 years, with a standard deviation of less than 1.4 % between subjects and for 

frequencies between 10 and 10,000 Hz). Thus, the CSF conductivity is one of the best-known 

parameters in the modeling process giving a further reason for modeling the CSF. The influence of 

modeling the CSF on forward solutions was also investigated in other computer simulation studies 

(Ramon et al. 2004; Wendel et al. 2008; Vallaghe and Clerc 2009), even though the models used, as 

well as the evaluation methods, differ strongly. In this work we investigated both the influence on 

EEG and MEG for realistic multi-sensor caps and added a more systematic evaluation of the CSF 

effect. The examination of the CSF effects in this study confirms and elaborates upon the previous 

studies, which also observed the decrease of signal amplitudes for the EEG. 

Furthermore, we showed that the effect of the gray/white matter distinction is nearly as strong as 

that of the CSF inclusion in both modalities (Figs. 4a and c, 5a and c), especially with regard to signal 

magnitude (Figs. 4c, 5c). This stresses the strong effect of conductivity changes in the vicinity of the 

source (Haueisen et al. 2000). While the EEG was most affected for superficial sources both with 

regard to topography and magnitude (Figs. 10a and b, 11a and b), we found a stronger decrease of 

signal amplitude for deep sources than for superficial ones for the MEG (Figs. 10d, 11d). Here, 

strongest topography effects were found for the most superficial sources and for deeper sources 

(Figs. 10c, 11c). For the MEG, Figs. 8d and 10d show that the areas most affected by the magnitude 

effects of these two steps do not overlap, but are mainly disjoint. This was underlined by the 
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distribution of the magnitude effects in relation to the distance to the inner skull (Fig. 9d, 11d), 

showing the clearly different depth dependency for adding the CSF and gray/white matter 

distinction. As for the CSF compartment, the gray/white matter distinction induced a conductivity 

change for a large volume, explaining the strong effect on the signal magnitude. 

To the best of our knowledge, only relatively few publications have investigated the effect of the 

(isotropic) distinction between gray and white matter, even though Haueisen et al. (2000) 

demonstrated the significant effect of local conductivity changes around the source. The results of 

Haueisen et al. (1997) suggest a strong change of the signal topography and magnitude for both EEG 

and MEG when the white matter conductivity is chosen in the range of the gray matter conductivity. 

From the results presented, it can be concluded that the strength of this effect is slightly lower than 

the effect of the CSF modeling in 4CI vs. 3CI comparisons, which is supported by our findings. Here, 

our systematic evaluation adds important information about the locations of the most affected 

sources compared to the single source scenario evaluated by Haueisen et al. (1997), as described 

previously. Ramon et al. (2004) also found a decrease of the scalp potentials, i.e., the EEG signal, due 

to the introduction of gray and white matter compartments of differing conductivities, even though 

the magnitude of the decrease was not further classified. Van Uitert, Johnson, and Zhukov (2004) 

found the conductivity of white and gray matter to appear especially influential in determining the 

magnetic field and showed that using a too high white matter conductivity, as it is of course done 

when not distinguishing between gray and white matter, leads to both high forward and inverse 

errors. 

Compared to the previous two steps, the distinction of skull compartments of different conductivity 

only showed comparatively weak effects on the EEG (Figs. 4a and c) and nearly no effect on the MEG 

(Figs. 5a and c). We mainly found the temporal lobe and its surrounding area affected in the EEG 

both with respect to topography and magnitude (Figs. 12a and b), which might be due to bad sensor 

coverage. The effect on the MEG was even weaker; it could almost exclusively be seen for deep 

sources in sulcal valleys (Figs. 12c and d). The relatively small impact of skull spongiosa and compacta 

distinction was probably partly due to the use of an already optimized conductivity value for the 

homogenized skull compartment that represents the best fit to the realistic spongiosa/compacta 

scenario (Dannhauer et al. 2011; Stenroos, Hunold, and Haueisen 2014). 

Surely, these results do not imply that the skull plays a minor role in forward modeling. In contrast, 

much research was done with regard to skull modeling and it is now well known that the EEG is very 

sensitive to it, while the MEG is assumed to be mainly not affected as long as the inner skull surface 

is represented appropriately (Hämäläinen et al. 1993; Fuchs et al. 1998; van den Broek et al. 1998; 

Marin et al. 1998; Lew et al. 2013). However, Stenroos, Hunold, and Haueisen (2014) have recently 

shown that assuming the skull to be fully insulating leads to errors that are larger than geometrical 
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errors in a three-shell model and especially larger than those that are induced by assuming a 

homogeneous skull compartment. Skull conductivity parameters might vary across individuals and 

within the same individual due to variations in age, disease state, and environmental factors (Akhtari 

et al. 2002). The huge sensitivity of the EEG signal to these changes has been shown (Vallaghe and 

Clerc 2009). The use of a suboptimal value for skull conductivity and skull conductivity uncertainties 

strongly influence the EEG as shown in various studies (Montes-Restrepo et al. 2013; Lew et al. 2013; 

Dannhauer et al. 2011; Huang et al. 2007; Fuchs et al. 1998). Recent studies have proposed ways to 

individually estimate parameters such as the skull conductivity (Aydin et al. 2014; Gonçalves, de 

Munck, and Verbunt 2001; Gonçalves et al. 2003; Huang et al. 2007; Wolters et al. 2010) that are 

important not only in EEG but also in combined EEG and MEG source analysis. It was furthermore 

shown that skull holes, included in all of our models, play an important role for EEG, but are less 

important for MEG (van den Broek et al. 1998; Lanfer, Scherg, et al. 2012; Lew et al. 2013). Ollikainen 

et al. (1999), Akhtari et al. (2002), Sadleir and Argibay (2007), and Dannhauer et al. (2011) studied 

the importance of skull inhomogeneity and of distinguishing skull compacta and spongiosa. However, 

Dannhauer et al. (2011) and Stenroos, Hunold, and Haueisen (2014) have shown that differences 

between EEG and MEG forward solutions computed in models with skull spongiosa and compacta 

and those with homogenized isotropic skull can be kept at a rather small level compared to other 

effects by using an optimized isotropic skull conductivity parameter, as was done in this study. Our 

results are in line with the results of the MEG study by Stenroos, Hunold, and Haueisen (2014), who 

found only small effects of neglecting the fine structure of the skull when using an optimized 

isotropic conductivity. The EEG study of Dannhauer et al. (2011) reported the strongest changes in 

motor areas, occipital and frontal lobe, while we found notable effects of skull spongiosa/compacta 

distinction for the EEG mainly in the temporal lobe as well as at the base of the frontal lobe and in 

some spots at the very top of the brain. Possible reasons for these differences might be found in the 

differing model setup. The head model used by Dannhauer et al. (2011) neglected the CSF 

compartment and thereby the here observed strong smearing effect was not present. This might 

have changed the influence of variations in the skull compartment to the forward simulation. 

Furthermore, Dannhauer et al. (2011) used a conductivity of 0.0042 S/m for the isotropic skull 

compartment, while we already used their proposed optimized value of 0.01 S/m, which minimizes 

the differences between isotropic and multi compartment skull models. 

The influence of modeling white matter anisotropy was also found to be strong, but less influential 

than that of CSF or brain compartment distinction (Figs. 4a and c, 5a and c), and the spatial 

distribution of the induced changes was difficult to interpret (Figs. 14, 15). We observed a decrease 

of signal magnitude with increasing source depth in both modalities (Fig. 15b and d), while the 
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distribution of the topography effects was scattered with a trend towards higher effects for deeper 

sources (Fig. 14a and b, 15a and b). 

Bangera et al. (2010) have experimentally shown that an anisotropic model leads to an improved 

performance when compared to isotropic models for the calculation of intracranial EEG forward 

solutions. Butson et al. (2007) and Chaturvedi et al. (2010) demonstrated in patient studies that the 

tissue activated by deep brain stimulation (DBS) can be reliably predicted by finite element 

simulations using realistic head models incorporating tissue anisotropy calculated following the 

approach of Tuch et al. (2001). These studies can be seen as an experimental validation of this 

approach also for EEG/MEG simulations, since the underlying mechanisms of volume conduction are 

identical. As further experimental evidence for the importance of modeling white matter anisotropy, 

Liehr and Haueisen (2008) presented phantom studies and demonstrated that anisotropic 

compartments influence directions, amplitudes, and shapes of potentials and fields at different 

degrees and conclude that anisotropic structures should be considered in volume conductor 

modeling when source orientation, strength, and extent are of interest. 

Additionally, several simulation studies investigated the influence of white matter anisotropy on EEG 

and MEG source analysis. Haueisen et al. (2002) and Güllmar, Haueisen, and Reichenbach (2010) 

investigated effects of white matter anisotropy on topography and magnitude measures in EEG and 

MEG source analysis. While these studies provide a comprehensive evaluation of white matter 

anisotropy effects, our study adds a more detailed investigation of the spatial distribution of these 

effects and the comparison of effect strengths in relation to other important modeling effects. Even 

though Güllmar, Haueisen, and Reichenbach (2010) visualized the effects for a fixed anisotropy of 

1:10, the depicted effect distribution appears very similar to the one presented here. Their so-called 

directv approach showed the same tendency towards a negative lnMAG for both EEG and MEG when 

the cumulative relative frequency was plotted as it is visible in our Figs. 14 and 15. Of all their 

approaches it is the one that is most similar to the one used here, since it is also based on the model 

of Tuch et al. (2001). A more detailed comparison of the RDM effects is hardly possible, since the 

results were depicted as histograms by Güllmar, Haueisen, and Reichenbach (2010) in contrast to the 

cumulative relative frequencies plotted here. For most sources they reported an RDM below 0.1, 

while we found slightly higher overall effects in our work. This might be explained by the different 

approaches used to scale the conductivity tensors. In the directv approach the tensors for each 

element are scaled so that they fit best to the isotropic conductivity. This results in a closer 

approximation to the isotropic model than our approach and thus leads to smaller relative effects. 

However, this does not allow for a conclusion which approach is more realistic, but only which is 

closer to the isotropic model. Haueisen et al. (2002) used the theoretically derived scaling factor from 

Tuch et al. (2001) to compute anisotropic conductivity tensors for both gray and white matter and 



 

29 
 

also found a decrease of signal magnitude for deeper, dipolar sources in both EEG and MEG due to 

the introduction of anisotropic conductivity. The change in topography correlation between isotropic 

and anisotropic model was less clear. While the correlation in the MEG was still high and a—even 

though weak—depth dependency could be found, the EEG was more strongly affected, but the 

behavior was rather unsteady. Hallez et al. (2008) showed that particularly the omission of 

conductivity anisotropy leads to a large displacement of reconstructed sources that are oriented 

parallel to the fiber structure in the main direction of anisotropy, while it was considerably smaller 

for sources oriented perpendicular to the local fiber structure. Observed localization errors were up 

to 10 mm. 

Wolters et al. (2006) could show that white matter anisotropy causes volume currents to flow in 

directions more parallel to the white matter fiber tracts, with a clearly increased influence of white 

matter anisotropy on a deep source compared to superficial sources. However, they only 

investigated the effect of prolate anisotropy at fixed ratios on the forward solution for three sources; 

one deep in the thalamus and one radial and one tangential source in the somatosensory cortex. 

In order to show the influence of changes in the forward solution on the inverse solution, Dannhauer 

et al. (2011) investigated the relationship between RDM and localization error for the EEG using 

scatter plots and correlation analysis. Although they did not find a unique relation, an undeniable 

correlation between these measures was observed. Upper and lower limits for the localization error 

were found to exist as linear functions of the RDM; a RDM of 0.025 predicted, for example, maximal 

localization errors between 8 and 10 mm and an RDM of 0.25 predicted minimal localization errors of 

about 2 mm. Therefore, even though our study focused on the forward problem, the conclusions 

derived for volume conductor modeling are directly related to the accuracy in the EEG and MEG 

inverse problem. 

For the MEG on its own, the importance of the changing volume currents seems to be rather low, 

since the main results were changes in signal magnitude, while the topography was strongly affected 

only for sources with a weak sensor signal. Indirectly, we were able to confirm the results of Ahlfors 

et al. (2010), who showed that—similar to spherical head models—also in the classic 3-compartment 

isotropic head model a source orientation to which the MEG is nearly insensitive exists. In our more 

realistic 6-compartment anisotropic head model scenario, we showed that the measured sensor 

signal in the MEG is still strongly influenced by source orientation and depth; namely, being weak for 

quasi-radial and deep sources, while the dependency of the EEG on these parameters is much 

weaker. This shows the benefits of EEG for source analysis in a variety of scenarios despite the 

stronger interference of volume conduction effects. 

Nevertheless, all of these results, including those from this study, were gained under the assumption 

of point-like dipole sources. Since sources in practice might most often have an extent of at least 
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some mm, not many purely quasi-radial sources at gyral crowns might exist in realistic scenarios. 

Hillebrand and Barnes (2002), e.g., conclude that source depth and not orientation is the main factor 

that compromises the sensitivity of MEG to activity in the adult human cortex. They argue that even 

if there are thin (approximately 2 mm wide) strips of poor MEG resolvability at the crests of gyri, 

these strips account for only a relatively small proportion of the cortical area and are abutted by 

elements with nominal tangential component and thus high resolvability due to their proximity to 

the sensor array. Our study clearly showed that also in a 6-compartment anisotropic head model the 

strips of poor MEG resolvability are rather thin (see, e.g., Fig. 14). The presented effects for the weak 

quasi-radial sources at gyral crowns might therefore not be relevant in practice. But, when aiming to 

evaluate EEG and MEG data simultaneously, these effects become much more important in order to 

be able to explain the multimodal measurement.  

A very important result of our study is that the comparison with the high resolution FE model 

showed the high numerical accuracy achieved with the FE approach. Several studies comparing the 

accuracy of different numerical approaches were carried out. As mentioned in the Methods section, 

Lew et al. (2009) and Wolters et al. (2007) compared the accuracy of the different FE approaches—

namely, the Venant, partial integration, and subtraction approach—using tetrahedral and hexahedral 

models, respectively. Both studies found that all of these approaches perform very well, with only 

small differences regarding accuracy, whereas the biggest differences were given regarding 

computation speed. Vorwerk et al. (2012) expanded on these comparisons by also evaluating 

numerical approaches using the boundary element method (BEM). Furthermore, in addition to 

sphere models, also realistically shaped 3-compartment head models (with compartments brain, 

skull and skin) were used as evaluation platform. Again, all numerical approaches achieved a good 

accuracy and the comparison to a realistically shaped 4-compartment head model including a CSF 

compartment already showed that the effect of model simplifications can be much larger than the 

accuracy differences between the examined numerical approaches. In this study, we demonstrated 

that not only the effect of CSF distinction, but also the effect of gray/white matter distinction or of 

modeling the white matter anisotropy, is clearly bigger than possible accuracy differences. Even the 

least influential modeling effect investigated in this study, the distinction of skull 

spongiosa/compacta, was still in the range of the numerical error between models 6CA and 6CA_hr. 

Thus, taking care to ensure the highly accurate generation of realistic head models to reduce the 

errors made by an insufficiently exact head modeling should not be forgotten over the development 

of new numerical approaches that might lead to a further improvement in -the already very good- 

numerical accuracy. 
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In order to achieve a high practical relevance of our results, we did not adjust the number of sensors 

between modalities. Instead, we used realistic sensor configurations as currently used in our lab, e.g., 

in epilepsy diagnosis (Aydin et al. 2014), since it can be assumed that these provide sufficient spatial 

sampling (Ahonen et al. 1993; Grieve et al. 2004; Lantz et al. 2003) so that the different number of 

sensors did not significantly influence our results. Additionally, we investigated the influence of 

sensor coverage on the observed effects. In Section 3.4.3 we found a relation between weak sensor 

coverage and an increased topography error, especially for the EEG. In practice, this issue can be 

addressed by using sensor caps reaching further downwards, thereby better covering the temporal 

lobe and the base of the frontal lobe. 

5 Conclusion 
We showed that a realistic modeling of the volume conductor has strong effects on both EEG and 

MEG that should be taken into account. Especially for superficial sources, which were often assumed 

to be less affected by volume conduction effects than deep sources, we found the strongest changes 

with regard to signal topography and magnitude. We conclude the following guideline for an 

accurate EEG/MEG forward simulation: 

a) CSF: Our study systematically showed the importance of including the highly conductive CSF 

into the volume conductor for both EEG and MEG. This step only requires moderate 

additional effort in the segmentation procedure. 

b) Gray/white matter distinction: The same conclusions as for the CSF hold true for the 

gray/white matter distinction. We found strong effects for this modeling step, while the 

additional amount of work for including gray/white matter distinction into a volume 

conductor model is at a reasonable level. 

c) White matter anisotropy: The inclusion of white matter anisotropy showed smaller (but still 

significant) effects than a) and b). However, the complexity of modeling anisotropy and the 

limitations of the underlying model have to be taken into account. Therefore, we would 

conclude that not modeling white matter anisotropy is admissible until the last doubts in a 

realistic modeling of white matter anisotropy (sufficient DTI resolution, appropriate scaling 

between diffusion and conductivity tensors) have been eliminated. 

d) Skull: The distinction between skull compacta and spongiosa showed weak effects especially 

for the MEG. Thus, it might in most cases be disregarded for the MEG. For the EEG, 

distinguishing different skull compartments is clearly less important than the previously 

mentioned modeling steps, especially when using an optimized conductivity value for the 

homogenized skull. However, the otherwise high importance of an accurate modeling of the 
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skull was shown in a variety of studies and was therefore not the focus of this study. The 

influence of the uncertainty in the skull conductivity values found in the literature should not 

be underestimated and a conductivity calibration should be considered. 

In summary, this study shows the most reasonable steps one should take to expand the 

commonly used 3-layer head model by additional compartments. Furthermore, this study 

demonstrates that the numerical inaccuracies of the finite element approach used appear 

negligible compared to these modeling effects. 
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