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Abstract

The topic of this thesis is the evaluation of Discontinuous Galerkin (DG) methods for the
Electroencephalography (EEG) forward problem. We will start out by presenting the basic
physiological, physical and mathematical framework necessary for modelling brain activity
and show how the EEG forward problem can be derived from that. We will then briefly intro-
duce the Subtraction Approach as a means of modelling the singularity occurring in the EEG
forward problem when choosing a dipole source as the term. Afterwards we will introduce the
basic concepts and notations needed to describe Discontinuous Galerkin methods. We will
apply and extend this set of tools while deriving a weak DG formulation of the Subtraction
Approach for the EEG forward problem. A short discussion about general properties of DG
methods and how the Subtraction Approach may benefit from those is followed by a chap-
ter describing the implementation of the discretized problem in the DUNE framework. The
remainder of this thesis will be dedicated to the presentation of numerical results obtained
by the implementation. In this discussion we will present multiple studies comparing DG with
conforming Finite Element Methods (FEM) as a reference in both tetrahedral and hexahedral
sphere models. In addition to the validation of the DG methods using sphere models we will
present some visualizations of simulations performed on a realistic head model. Furthermore
a study evaluating the computational cost of DG methods will be presented. We will conclu-
de this work with a short outlook on possible future applications of Discontinuous Galerkin
methods in the field of source analysis.
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Introduction

In modern brain research as well as in everyday clinical practice Electroencephalography(EEG)
has become an important and powerful tool. It enables scientists and practitioners alike to
perform brain research and clinical diagnoses at a moderate cost. The first EEG was recorded
in 1924 by neurologist Hans Berger and development of the methodology has continued ever
since. The EEG registers potential changes on a subject’s scalp which result from electro-
magnetic fields caused by neural activity in the brain. Visual inspection of the data recorded
by the EEG electrodes can help to diagnose the origin of, for example, epileptic seizures or
investigate the way in which the brain performs certain tasks. Although a great level of ex-
pertise has been achieved at this kind of source analysis, this manual method lacks a sound
theoretical basis. It is relying heavily on the experience and knowledge of the analyst and
it can not fully incorporate the physiological characteristics of the subject’s brain structure,
which in general is very complex with regard to electrical conductivity.
With the advancement of Magnetic Resonance Imaging(MRI) techniques it has become possi-
ble to obtain detailed information about the electrical properties of an individual’s brain. This
data can be incorporated into the EEG forward problem whose solution provides the potential
recorded by an EEG given a certain neural activity within the brain. In source analysis the
forward problem is a corner stone for solving the inverse problem which aims at recovering the
source configuration corresponding to a given potential on the head surface. Many complex
and highly advanced methods for the solution of the inverse problem have been proposed all
of which depend on accurately solving a large number of forward problems.
The concurrent progress in numerical mathematics has produced a wide range of methods
to deal with the forward problem in an adequate fashion. Among the most popular in the
field of source analysis are the Boundary Element Method(BEM) and the conforming Finite
Element Method(FEM), each having their distinct advantages and disadvantages. Progress
has been made concerning the accuracy as well as efficiency but still the case of sources very
close to the brain surface and the incorporation of the brain’s anisotropy remain challenging
tasks with room for improvement. The Discontinuous Galerkin Method(DG) evaluated in this
thesis offers reasons for hope that enhancements can be achieved in these scenarios.
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1. Physiological and Mathematical Basis
of the EEG Forward Problem

In this chapter we will give a short overview of the relevant neurophysiological background
necessary to understand the subsequent physical and mathematical derivations that will result
in the EEG Forward equation. Since an in-depth examination of this matter would go beyond
the scope of this thesis, we will keep the following sections concise. The physiological principles
governing the brain activity which is measurable by the EEG are well researched and details
can be found in [1] or [2].

1.1. The Physiology of Brain Activity

The electric potentials on a subject’s head surface which are registered by the EEG are caused
by electromagnetic fields resulting from ion movement inside the brain. We will now take a
closer look at the neuron as the basic physiological structure in the process of brain activity.
The neuron is an electrically excitable cell that is responsible for transmitting and processing
information inside the whole human body in general and the brain in particular. The human
brain contains approximately up to 1012 neurons which form a complex and interconnected
network.
On a larger scale a neuron can be divided into two parts: the cell body(soma), containing the
nucleus, and one axon, the latter being an elongate projection of the soma (see Figure 1.1).
Dendrites form extensions to the cell body, acting as receivers of information in the form of
electrochemical stimuli, transmitted from other neural cells of the whole body.
In general, the axon acts as a transmitter sending electrical impulses away from the cell

body. It has a special structure that allows for the transmission of electrical stimuli in spite
of the relatively high resistance of the nerve fibres. The axon is connected to the cell body
at a position called the axon hillock and at the other end it branches out, making up the so-
called axon terminals. These extensions are located close to the dendrites of another neuron,
forming a conjunction called a synapse. Synapses form connections between the axon of one
neuron and the dendrites of another neuron (see Figure 1.2). This is the location where the
actual information transmission occurs in a fashion we will now describe.

The basis for information transport and processing on a neural level is the change in ion
concentrations inside and around the neuron. In an inactive neuron the difference in the
extra- and intra-cellular potential ranges from 60 mV up to approximately 100 mV with the
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1. Physiological and Mathematical Basis of the EEG Forward Problem
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Figure 1.1.: Basic Structure of a Neuron. Source: Wikimedia Commons

inside of the cell being negative. This potential equilibrium is maintained by ion pumps which
transport potassium(K+), sodium(Na+) and chlorine(Cl−) ions (among others) through the
membrane of the neuron.
Once a neuron is sufficiently excited it will release neurotransmitters at its axon terminals.
These neurotransmitters lead to a change in the ion permeability of the dendrite of the neuron
to which it is connected through the associated synapse and ultimately to a change in the
potential difference between the inside and the outside of this neuron which is called the
postsynaptic potential. If this potential reaches a certain threshold at the axon hillock, the
neuron will fire, i. e. it will transmit the so-called action potential along its axon and thus
depolarizing the neuron. This, again, will result in the release of neurotransmitters at the
axon terminals.
Since the potential threshold at the axon hillock is not necessarily reached this form of
information transmission can be considered an all-or-nothing type of communication. Also it
should be noted that the change in ion permeability does not have to result in the excitation
of the neuron but also inhibitory changes may occur.

The action potential and the postsynaptic potential differ with respect to their temporal extent
as well as the magnitude of the potential. The action potential exhibits temporal scales of
about 1 ms and potential magnitudes of about 100 mV. Also the occurrence of multiple
action potentials is not very well synchronized, making them unfit for EEG measurement.
The postsynaptic potential on the other hand features time frames in the order of 10 ms and
magnitudes of about 10 mV. Furthermore, this kind of activity is rather well synchronized
between a multitude of neurons. This behaviour makes the postsynaptic potential suitable
for physical modelling as presented in the next section.
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1. Physiological and Mathematical Basis of the EEG Forward Problem

Figure 1.2.: Schematic Illustration of a Synapse. Source: Wikimedia Commons

1.2. Physical Modelling of Neural Activity

As described in the previous section, the EEG registers the potentials caused by electromag-
netic fields resulting from the post-synaptic potentials. We will now derive a physical model
to describe this phenomenon. For a more detailed derivation we refer to [2], [16] or [5].
In order to describe the electromagnetic field we will use Maxwell’s Equations in the following
form

Definition 1.1 (Maxwell’s Equations). With D being the electric displacement field, ρ

the charge density, E the electric field, B the magnetic field, J the the current density
and H the magnetizing field the following holds:

∇ ·D = ρ (1.1)

∇×E =−∂B
∂ t

(1.2)

∇×H = J+
∂D
∂ t

(1.3)

∇ ·B = 0. (1.4)

4



1. Physiological and Mathematical Basis of the EEG Forward Problem

Since biological tissue can be considered to be an electrolyte, we can assume the following
material equations to be true:

D = εε0E (1.5)
B = µµ0H (1.6)

In the above ε and ε0 denote the relative permittivity and the permittivity of free space,
respectively. The same goes for µ and µ0 for the case of permeability. We can neglect
the magnetic properties of biological tissue, i.e. we can set µ = 1 which leaves us with the
permeability of free space µ0 in (1.6). Using the above equations to transform (1.3) we get

∇×B = µ0(J+ εε0
∂E
∂ t

). (1.7)

We utilize Ohm’s Law J = σE, with σ being the conductivity of the material. Furthermore
we apply a Fourier transformation to E with the angular frequency ω :

E = E0 · e−iωt (1.8)

Using the above term for the temporal derivative in (1.7), we get

∇×B = µ0(σE− iεε0E). (1.9)

In source analysis the following assumptions can be made for the human head(see [2]):

σ ≈ 0.3 S/m

εr ≈ 105

f = ω/2π ≈ 100 Hz

Using these premises and the text book value for ε0 we get |εε0ω| � |σ | and accordingly the
temporal derivative can be neglected.
Furthermore we show that the temporal derivative of the magnetic field is negligible. For that
we apply the rotation to (1.2):

∇×∇×E =−∂ (∇×B)
∂ t

(1.10)

Using (1.3) and transforming it in the same fashion as before we get

∇×∇×E =−µ0
∂

∂ t
(σE+ εε0

∂E
∂ t

) = µ0(iσω− εε0ω
2)E. (1.11)

The characteristic wavelengths of this equation have a magnitude of:

λc = |µ0σω(1− εε0ω/σ)|−1/2 ≈ 65m.

This is much larger than the diameter of an average human head which means that the
contribution of E can be neglected in this equation.
All in all we arrive at the following quasi-static approximation of our problem:
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1. Physiological and Mathematical Basis of the EEG Forward Problem

Definition 1.2 (Quasi-static Maxwell’s Equations).

∇ ·E =
ρ

εε0
(1.12)

∇×E = 0 (1.13)
∇×B = µ0J (1.14)

∇ ·B = 0 (1.15)

1.3. Derivation of the EEG Forward Equation

In (1.14) we can split up the current density J into two parts

J = Jp +σE (1.16)

where Jp is the primary current which is a direct result of the neural activity. The return
current σE results from the macroscopic electric field on charge carriers in the conducting
volume, with σ being the conductivity tensor. In contrast to the primary current it is present
in the whole medium.
Since the curl of E is zero (see (1.13)) we can assume E it to be the gradient field of a scalar
potential V:

E =−∇V. (1.17)

Inserting the above into (1.16), we get

J = Jp−σ∇V (1.18)

which can be inserted in the divergence of (1.14) that turns out to be zero:

0 = ∇ ·Jp−∇ · (σ∇V)

or equivalently ∇ · (σ∇V) = ∇ ·Jp (1.19)

From now on we assume that our volume model can be represented as an open and connected
domain Ω with sufficiently regular boundary ∂Ω. Furthermore we make the sound physical
assumption that the current density is continuous across the boundary. Also we take into
account that the conductivity of the medium surrounding the volume, i.e. air, is zero. Thus
we get homogeneous Neumann boundary conditions on the surface,

σ∇V ·~n = 0, (1.20)
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1. Physiological and Mathematical Basis of the EEG Forward Problem

with ~n being the outward normal unit vector on ∂Ω at the corresponding position.
Overall we get the following Poisson-type equation with homogeneous Neumann boundary
conditions:

∇ ·σ(x)∇V(x) = f (= ∇ · Jp) in Ω (1.21)
σ(x)∇V(x) ·~n(x) = 0 on ∂Ω (1.22)

In the above we substituted ∇ ·Jp by the abstract source term f to emphasize the necessity
for the choice of an appropriate method to model the source. We will discuss this in the
following section.
Before we do so, we need to ensure the uniqueness of the solution to the above equations.
Since we are dealing with a pure Neumann problem the solution of the problem is only unique
up to a scalar constant and we need to supplement the above equations by a third condition
which makes the solution to it unique. For this purpose several different approaches are viable.
For now we will use the following condition to ensure uniqueness of the solution:∫

Ω

V(x)dx = 0. (1.23)

Finally, we arrive at the following problem formulation:

Problem 1.1 (EEG Forward Equation).

∇ ·σ(x)∇V(x) = f (= ∇ · Jp) in Ω (1.24)
σ(s)∇V(s) ·~n(s) = 0 on ∂Ω (1.25)∫

Ω

V(x)dx = 0 (1.26)

In the next section we will discuss how the source term f can be chosen and what has
to be taken into consideration in order to make the EEG forward equation suitable for dis-
cretization methods like the conforming Finite Element Method(FEM) and the Discontinuous
Galerkin(DG) method.

1.4. The Dipole Model for the Source Term

For the forward equation which was derived in the previous section we now need to model the
source term f . In order to do so, we introduce the notion of a mathematical dipole. With y
being the source position, the dipole source is defined as

Jp(x) = M ·δy(x). (1.27)

7



1. Physiological and Mathematical Basis of the EEG Forward Problem

The vector M denotes the moment of the dipole and δy denotes the Dirac delta distribution
at point y. The dipole describes the unidirectional primary current that may extend over
several square centimetres of the cortex, thus it represents the current resulting from the
simultaneous activity of a large group of neurons.
In source analysis it is common practice to use the dipole model for the source term and it has
been shown that for distances considered in EEG measurements the assumption of a dipolar
source is realistic (see [2] and [20]).

Remark 1.1. For the following derivations it should be noted that the EEG forward equation
as formulated in Problem 1.1 does not have a solution in the strong sense when we assume the
source term Jp to be a dipole. A classical solution would have to satisfy V ∈C2(Ω)∩C0(Ω̄)
which is not possible for such a singular source term. So whenever we use a strong formulation
as seen above, we will have to assume a stronger regularity to the source term Jp or restrict
ourselves to regarding the equations in a purely symbolical sense. That is why we will switch
to a weak formulation of the problem once we actually use the dipole as a source model in
the following derivations.

Besides those rather formal problems, the introduction of a dipole source term will pose
problems regarding the discretization in a finite element context. The dipole as a source term
constitutes a singularity which is per se not suitable for a finite element approximation of the
problem and results in further mathematical effort to cope with. Multiple approaches have
been proposed to arrive at a problem formulation which is suitable for discretization methods
(see for example [3] or [5]).
Since it has the most valid mathematical foundation, we will concentrate on the Subtraction
Approach in this thesis.

1.5. The Subtraction Approach

Following the concepts presented in [15] we will now describe the basic ideas of the Full
Subtraction Approach for the EEG forward problem. Note that in this context we will use
continuous test functions v. Thus the following derivations are not valid for Discontinuous
Galerkin methods but will only act as a prototype for later reference.

We will consider Problem 1.1 derived in the previous section for a dipole source. To conform
with the literature on the Subtraction Approach and the common notations in a Finite Element
context we will replace V by u.
In the case of anisotropic conductivities σ : R3→R3×R3 maps a point in Ω to a symmetric
positive matrix. For isotropic conductivities this becomes a diagonal matrix and thus can be
regarded as the multiplication with a scalar value. The following derivation of the Subtraction
Approach will be valid for both cases.

In the setting of an unbounded volume conductor Ω =R3 with constant conductivity σ(x)≡

8



1. Physiological and Mathematical Basis of the EEG Forward Problem

σ∞,y for all x ∈Ω the analytical solution to Problem 1.1 is known and it takes the form of:

u∞,y(x) :=
1

4π
√

detσ(y)

M(y) ·σ(y)−1(x− y)
(σ(y)−1(x− y) · (x− y))3/2 (1.28)

In the following u∞,y will be called the singularity potential. We will also need its gradient:

∇u∞,y :=
1

4π
√

detσ(y)
· σ(y)−1M(y)
(σ(y)−1(x− y) · (x− y))3/2 (1.29)

− 1
4π
√

detσ(y)
· (3 ·M(y) ·σ(y)−1(x− y))(σ(y)−1(x− y))

(σ(y)−1(x− y) · (x− y))5/2 (1.30)

The fundamental idea of the Subtraction Approach is to utilize the singularity potential to split
up the potential u into two parts, the singularity potential itself and the correction potential
ucorr,y:

u = u∞,y +ucorr,y

As motivated in Remark 1.1 we will do this using a weak formulation of Problem 1.1. Thus
we will multiply equations (1.24) and (1.25) with a test function v ∈ H1(Ω) and integrate
them over the domain and the boundary of the domain respectively. Inserting the splitting
for u we arrive at the following system of equations:∫

Ω

∇ ·σ(x)∇(ucorr,y(x)+u∞,y(x))v(x)dx =
∫

Ω

f (x)v(x)dx (1.31)∫
∂Ω

σ(s)∇(ucorr,y(s)+u∞,y(s)) ·~n(s)v(s)ds = 0 (1.32)∫
Ω

(ucorr,y(x)+u∞,y(x))dx = 0 (1.33)

Since the singularity potential is known analytically we can move all the terms involving u∞,y

to the right hand side and solve for ucorr,y instead of u:∫
Ω

∇ ·σ(x)∇ucorr,y(x)v(x)dx =
∫

Ω

( f (x)−∇ ·σ(x)∇u∞,y(x))v(x)dx (1.34)∫
∂Ω

σ(s)∇ucorr,y(s) ·~n(s)v(s)ds = −
∫

∂Ω

σ(s)∇u∞,y(s) ·~n(s)v(s)ds (1.35)∫
Ω

ucorr,y(x)dx = −
∫

Ω

u∞,y(x)dx (1.36)

Now we split up σ into σ(x) = σ corr,y(x)+σ∞,y. Knowing that u∞,y as introduced in (1.28)
solves the forward equation in an unbounded conductor with constant conductivity σ∞,y we
see that ∫

Ω

( f (x)−∇ ·σ∞,y
∇u∞,y(x))v(x)dx = 0

9



1. Physiological and Mathematical Basis of the EEG Forward Problem

and we are left with

−
∫

Ω

∇ ·σ corr,y(x)∇u∞,y(x)v(x)dx

on the right hand side of (1.34).
Applying partial integration to both sides of (1.34), substituting the resulting boundary term
on the left hand side with (1.35) and moving it to the right hand side we arrive at:

Definition 1.3 (Subtraction approach conforming weak formulation).

−
∫

Ω

σ(x)∇ucorr,y(x)∇v(x)dx =
∫

Ω

σ
corr,y(x)∇u∞,y(x)∇v(x)dx (1.37a)

+
∫

∂Ω

σ
∞,y

∇u∞,y~n(s)v(s)ds∫
Ω

ucorr,y(x)dx = −
∫

Ω

u∞,y(x)dx (1.37b)

After solving for ucorr,y the potential u is recovered by recombining ucorr,y with u∞,y.

In order for the Subtraction Approach to be valid the following assumption has to be made:

Assumption 1.1 (Homogeneity Condition). Given a source space Y ⊂ Ω there exists ε > 0
for every y ∈ Y such that the conductivity tensor σ(x) is constant in a ball

Ω
y
ε := {x ∈Ω | ‖x− y‖2 < ε}

Assumption 1.1 is reasonable for multisphere studies as presented in this thesis but also for
the case of realistic head models. In the former conductivities are assigned to each element
simulating the conduction properties within different compartments of the brain. In the case
of realistic head models with anisotropy Diffusion Tensor Imaging(DTI) data is obtained from
MRI measurements and each voxel is assigned a specific conductivity value again leading to
element wise constant conductivities. For realistic head models with isotropic conductivities
each voxel is assigned to a certain compartment of the brain and given the corresponding
conductivity. In each of the previous cases the source space Y has to be chosen in such a
manner that it excludes source positions in which no definite statement can be made about
which element the source belongs to (for example source positions on nodes or element faces).
With the above it is obvious that the homogeneity condition holds.
Using the homogeneity condition it can be shown that the right hand side of (1.37b) is in L2(Ω)
and standard methodology for proving uniqueness and existence of a solution ucorr,y ∈H1(Ω)
can be applied. What is more, the problem is now suitable for a finite element discretization.
For more information on that we refer once more to [15].
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2. The Discontinuous Galerkin Method

In this chapter we will introduce the Discontinuous Galerkin(DG) Finite Element Method
and derive a Subtraction DG formulation analogous to the conforming formulation which was
introduced in the previous chapter. We will start out by giving a short historical overview of
the development of DG methods and the origin of its fundamental idea. We will then introduce
some basic notations and definitions which will be used to derive the weak formulation of the
EEG forward problem as modelled by the Subtraction Approach.

2.1. A Short Historical Overview

The fundamental idea for Discontinuous Galerkin methods can be traced back to 1971 when
Nitsche [6] proposed a method for solving problems with Dirichlet boundary conditions by
the use of a penalty term rather than a restriction of the solution space. Consider the elliptic
model problem

−∆u = f in Ω (2.1a)
u = 0 on ∂Ω (2.1b)

with u ∈ C2(Ω)∩C0(Ω̄) on a domain Ω ⊆ Rd . Following the idea of Babuška [7] one can
replace (2.1b) by an approximation of the boundary condition:

u+
1
µ

∇u ·~n = 0 with µ > 0. (2.2)

However, the resulting weak formulation does not solve the strong formulation of the model
problem. In order to fix this lack of consistency Nitsche introduced the following weak
formulation:∫

Ω

∇u ·∇vdx−
∫

∂Ω

∇u ·~nvds−
∫

∂Ω

∇v ·~nuds+µ

∫
∂Ω

uvds =
∫

Ω

f vdx. (2.3)

With u,v ∈ V ⊂ H1(Ω). This formulation arises quite naturally if equation (2.1a) is tested
with v and (2.1b) is tested with v− 1

µ
∇v ·~n. Adding up the resulting equations, multiplying

the second with µ and applying partial integration on the left hand side of the volume term,
one arrives at (2.3).
The additional terms

−
∫

∂Ω

∇v ·~nuds (2.4)

11



2. The Discontinuous Galerkin Method

and

µ

∫
∂Ω

uvds (2.5)

ensure symmetry and coercivity, respectively.
The development of Discontinuous Galerkin Methods began when Babuška and Zlámal [8]
used the above concept to weakly enforce continuity over inter-element boundaries of the
solution for a fourth-order problem in 1973. In the following more methods were developed
for elliptic, parabolic and hyperbolic equations. Suffering from the lack of efficient solvers and
good estimates for the choice of necessary penalty parameters, development of DG methods
slowed down at the beginning of the 1980s. However, in the recent past this changed due
to new applications in which DG methods proved advantageous, enhanced estimates for the
penalty terms arising in the formulation and the publication of a framework that allows for a
unified analysis of all DG methods by Arnold [9].

2.2. Basic Framework

We will now introduce some basic geometric notations and definitions which are essential to
the following discussion of Discontinuous Galerkin methods.

We begin by defining the triangulation T of a domain Ω⊆ Rd :

Definition 2.1 (Triangulation T ).

T = {E0, . . . ,EM−1} with (2.6a)
En ⊆Ω ∀0≤ n < M, En open, (2.6b)

En∩Em = /0 ∀0≤ n < m < M, (2.6c)

Ω =
M−1⋃
n=0

En. (2.6d)

We will also use the notation Th where h is defined as

h :=max{diam(E) | E ∈Th} .

In addition to that we will need the internal and external skeleton of the triangulation Th:

12



2. The Discontinuous Galerkin Method

Definition 2.2 (Internal Skeleton Γint).

Γint =
{

γe, f = ∂Ee∩∂E f | Ee,E f ∈Th , Ee 6= E f ,
∣∣γe, f

∣∣> 0
}

(2.7)

Definition 2.3 (External Skeleton Γext).

Γext = {γe = ∂Ee∩∂Ω | Ee ∈Th , |γe| > 0} (2.8)

Here |·| denotes the codimension one volume. In the case of a three-dimensional triangu-
lation Th this means that nodes or edges are not contained in the internal or the external
skeleton.
Furthermore we define the skeleton of Th as the union of the internal and the external skeleton:

Definition 2.4 (Skeleton Γ).

Γ = Γint ∪Γext (2.9)

Figure 2.1.: Visualization of the triangulation Th (left), the internal skeleton Γint (middle)
and the external skeleton Γext (right) for a 2D-example.

Figures 2.1 and 2.2 exemplify the definitions introduced above.
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2. The Discontinuous Galerkin Method

Figure 2.2.: Visualization of the elements γ3,4 in Γint (left) and the elements γ3 and γ2 in Γext

(right).

Using this geometric framework we can now derive the weak DG formulation for the EEG
forward problem. Further definitions and notations will be added when they are needed in the
process.

2.3. The DG Formulation of the Subtraction Approach for
the EEG Forward Problem

2.3.1. Derivation of a Consistent Weak Formulation

We will start out by restating the original formulation for the EEG forward problem as intro-
duced in Section 1.3:

Problem 2.1 (Original Problem Formulation of the EEG Forward Problem).

∇ ·σ(x)∇u(x) = f
(
= ∇ ·~j

)
in Ω (2.10a)

σ(x)∇u(x) ·~n(x) = 0 on ∂Ω (2.10b)∫
Ω

u(x)dx = 0 (2.10c)

We assume the existence of a triangulation Th of Ω as introduced in the previous section.
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2. The Discontinuous Galerkin Method

Test functions will be taken from broken polynomial spaces, i. e. either from

Vh := Pk
d(Th) (2.11)

or

Vh :=Qk
d(Th). (2.12)

The following derivations will be valid for both cases. For more details on the above function
spaces see Definitions A.2 and A.3 in the Appendix and also the discussion in Section 2.5.
For now it suffices to say that Vh consists of functions that behave like polynomials on each
element of the triangulation but may exhibit discontinuities across inter-element boundaries.

Note that in the case of Dirichlet boundary conditions the function space Vh would not be
modified but the boundary conditions would rather be enforced weakly through a penalty
term, just like the continuity across inter-element boundaries.

Taking the left hand side of equation (2.10a), testing it with v ∈ Vh and integrating over Ω

we get ∫
Ω

∇ ·σ(x)∇u(x)v(x)dx. (2.13)

Splitting up the domain Ω into the elements Ωe of the triangulation Th the above becomes:∫
Ω

∇ ·σ(x)∇u(x)v(x)dx = ∑
Ωe∈Th

∫
Ωe

∇ ·σ(x)∇u(x)v(x)dx. (2.14)

Now, in order to account for inter-element discontinuities, element wise partial integration is
applied to each of the integral terms and (2.14) becomes:

− ∑
Ωe∈Th

∫
Ωe

σ(x)∇u(x) ·∇v(x)dx+ ∑
Ωe∈Th

∫
∂Ωe

σ(s)∇u(s) ·~nv(s)ds (2.15)

Note that functions in Vh are not defined on elements in the skeleton Γ of the triangulation.
Thus appropriate trace operators have to be utilised in order to carry out calculations on
boundary and intersection elements. Here we assumed the existence of a trace operator

·̂ : Ωe→ ∂Ωe

for each Ωe in Th that extends u, v and σ to the boundary of Ωe. For convenience we omit
writing û,v̂ or σ̂ and instead use u, v and σ .
Also note that in general, the outward normal unit vector ~n may be depending on the inte-
gration point s on the boundary ∂Ωe, e.g. in the case of isoparametric elements, but for now
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2. The Discontinuous Galerkin Method

we assume it to be independent.

The first term of (2.15) sums up to be

− ∑
Ωe∈Th

∫
Ωe

σ(x)∇u(x) ·∇v(x)dx =−
∫

Ω

σ(x)∇u(x) ·∇v(x)dx (2.16)

whereas for the second sum two cases have to be distinguished:
On the one hand we sum over all the segments that each Ωe might share with the boundary
of the domain Ω, thus over the external skeleton Γext which adds up to the boundary ∂Ω.
However, this term vanishes due to the homogeneous Neumann boundary conditions (see
(2.10b)).
On the other hand the sum includes two integrals over each γe, f ∈ Γint , one as a boundary
segment of Ωe and the other as a boundary segment of Ω f . These segments will also be called
interfaces in the following. For each of the two integrals the respective local trace operators
have to be used, thus the integrands under the two integrals over γe, f are not necessarily
equal.
Keeping this in mind we can now rewrite the second sum of (2.15) to be:

∑
Ωe∈Th

∫
∂Ωe

σ(s)∇u(s) ·~nv(s)ds

=
∫

∂Ω

σ(s)∇u(s) ·~nv(s)ds︸ ︷︷ ︸
=0, see (2.10b)

+ ∑
γe, f∈Γint

(∫
γe, f∩∂Ωe

σ(s)∇u(s) ·~ne, f v(s)ds+
∫

γe, f∩∂Ω f

σ(s)∇u(s) ·~n f ,ev(s)ds
)

= ∑
γe, f∈Γint

(∫
γe, f∩∂Ωe

σ(s)∇u(s) ·~ne, f v(s)ds+
∫

γe, f∩∂Ω f

σ(s)∇u(s) ·~n f ,ev(s)ds
)

(2.17)

In the above ~ne, f denotes the outward normal unit vector on the boundary of Ωe, pointing
outward from Ωe to Ω f . With this notation it is clear that ~ne, f =−~n f ,e. Accordingly for the
case where the integrands under the interface integrals are continuous across elements the
integrals would cancel each other out.

We introduce some additional notation for the interface terms:
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2. The Discontinuous Galerkin Method

Definition 2.5 (Jump Operator). The jump of a piecewise continuous function x on the
interface between two adjacent elements Ωe and Ω f is denoted by the linear operator

JxKe, f = x|∂Ωe~ne, f + x|∂Ω f~n f ,e

Note that for scalar x the jump operator JxKe, f becomes vector valued and for vector
valued x it becomes a scalar.

Definition 2.6 (Average Operator). The average of a piecewise continuous function x
on the interface is given by the arithmetic mean

〈x〉e, f =
1
2

(
x|∂Ωe + x|∂Ω f

)

Remark 2.1. Note that the choice of the arithmetic mean for the average operator is not
necessarily optimal. In fact Ern showed in [10] that weighted averages depending on the values
of σ on each side of the intersection yield optimal convergence results for heterogeneous
diffusion problems. Weighted averages will be used in this thesis as well but for the sake of
simplicity we will postpone presenting details for now. The following derivations will be valid
for both choices for the average.

The jump and average operator fulfil the following basic identity which will be used shortly:

Theorem 2.1. For two piecewise continuous functions x and y the following equation
holds:

JxyKe, f = JxKe, f 〈y〉e, f + JyKe, f 〈x〉e, f (2.18)

With the notations introduced in Definitions 2.5 and 2.6 the term in (2.17) becomes

∑
γe, f∈Γint

(∫
γe, f∩∂Ωe

σ(s)∇u(s) ·~ne, f v(s)ds+
∫

γe, f∩∂Ω f

σ(s)∇u(s) ·~n f ,ev(s)ds
)

= ∑
γe, f∈Γint

∫
γe, f

Jσ∇uvKe, f (s)ds. (2.19)

Since it should always be clear from the context on which interface the jump/average is
evaluated we will write JxK instead of JxKe, f and 〈x〉 instead of 〈x〉e, f .
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2. The Discontinuous Galerkin Method

Using property (2.18) we can expand (2.19) to be

∑
γe, f∈Γint

∫
γe, f

Jσ∇uvK(s)ds = ∑
γe, f∈Γint

∫
γe, f

Jσ∇uK(s)〈v〉(s)+ 〈σ∇u〉(s)JvK(s)ds. (2.20)

Considering the fact that u is the solution of (2.10a) and making the physically sound assump-
tion that the source term ~j is continuous across element borders, we see that Jσ∇uK= J~jK= 0.
Thus the first summand on the right hand side of (2.20) vanishes and together with (2.16)
we get the following left hand side for the weak formulation:

−
∫

Ω

σ(x)∇u(x) ·∇v(x)dx+ ∑
γe, f∈Γint

∫
γe, f

〈σ∇u〉(s)JvK(s)ds (2.21)

Following the idea of the Subtraction Approach introduced in Section 1.5 we split up

u = ucorr,y +u∞,y and σ = σ
corr,y +σ

∞,y (2.22)

which leaves us at

−
∫

Ω

σ(x)∇ucorr,y(x) ·∇v(x)dx−
∫

Ω

σ(x)∇u∞,y(x) ·∇v(x)dx

+ ∑
γe, f∈Γint

∫
γe, f

〈σ∇ucorr,y〉(s)JvK(s)ds+ ∑
γe, f∈Γint

∫
γe, f

〈σ∇u∞,y〉(s)JvK(s)ds. (2.23)

Since we reformulated the problem using the Subtraction Approach we are now solving for
ucorr,y and the terms involving u∞,y are moved to the right hand side of the problem as they
are not part to the bilinear form.

On the right hand side of (2.10a) we proceed in the same way as on the left hand side by
testing the source term f with a test function v ∈Vh and integrating over Ω. Together with
the terms that were moved from the left hand side we obtain∫

Ω

f vdx+
∫

Ω

σ(x)∇u∞,y(x) ·∇v(x)dx− ∑
γe, f∈Γint

∫
γe, f

〈σ∇u∞,y〉(s)JvK(s)ds

for the right hand side.
Splitting up σ as described in (2.22) the above becomes∫

Ω

f vdx+
∫

Ω

σ
∞,y(x)∇u∞,y(x) ·∇v(x)dx

+
∫

Ω

σ
corr,y(x)∇u∞,y(x) ·∇v(x)dx− ∑

γe, f∈Γint

∫
γe, f

〈σ∇u∞,y〉(s)JvK(s)ds
(2.24)
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A general formula for the element wise partial integration that was used on the left hand side
can be found in A.6. Using this formula in the form (A.7) on the second term of 2.24 gives
us: ∫

Ω

f vdx−
∫

Ω

∇ ·σ∞,y(x)∇u∞,y(x)v(x)dx (2.25)

+
∫

∂Ω

σ
∞,y(s)∇u∞,y(s) ·~nv(s)ds+ ∑

γe, f∈Γint

∫
γe, f

Jσ
∞,y

∇u∞,yvK(s)ds (2.26)

+
∫

Ω

σ
corr,y(x)∇u∞,y(x) ·∇v(x)dx− ∑

γe, f∈Γint

∫
γe, f

〈σ∇u∞,y〉(s)JvK(s)ds (2.27)

The terms in line (2.25) vanish due to the assumptions of the Subtraction Approach(see
Section 1.5).
The skeleton term in line (2.26) can be treated as in (2.20) using property (2.18):

∑
γe, f∈Γint

∫
γe, f

Jσ
∞,y

∇u∞,yvK(s)ds

= ∑
γe, f∈Γint

∫
γe, f

Jσ
∞,y

∇u∞,yK(s)〈v〉(s)+ 〈σ∞,y
∇u∞,y〉(s)JvK(s)ds (2.28)

Using the fact that σ∞,y∇u∞,y fulfils the partial differential equation in a homogeneous volume
and therefore does not jump (i.e. Jσ∞,y∇u∞,yK= 0), the first summand in line (2.28) vanishes.
The remaining term in this line can be combined with the last term in (2.27) using σ∞,y−σ =
−σ corr,y and the linearity of the average operator.
Overall we arrive at the following formulation for the right hand side∫

Ω

σ
corr,y(x)∇u∞,y(x) ·∇v(x)dx+

∫
∂Ω

σ
∞,y(s)∇u∞,y(s) ·~nv(s)ds

− ∑
γe, f∈Γint

∫
γe, f

〈σ corr,y
∇u∞,y〉(s)JvK(s)ds.

Together with the left hand side the problem has the following weak formulation:

Definition 2.7 (Consistent Weak DG Formulation).

−
∫

Ω

σ(x)∇ucorr,y(x) ·∇v(x)dx+ ∑
γe, f∈Γint

∫
γe, f

〈σ∇ucorr,y〉(s)JvK(s)ds

=
∫

Ω

σ
corr,y(x)∇u∞,y(x) ·∇v(x)dx+

∫
∂Ω

σ
∞,y(s)∇u∞,y(s) ·~nv(s)ds

− ∑
γe, f∈Γint

∫
γe, f

〈σ corr,y
∇u∞,y〉(s)JvK(s)ds
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Consistency

It can be shown that the solution ucorr,y ∈H1(Ω) for the weak formulation of the Subtraction
Approach as described in Definition 1.3 fulfils the equation above. As a matter of fact the
derivation of the above formulation was conducted in such a fashion that consistency was
obtained. Since the proof of consistency for the method amounts in large parts to the reversal
of the above shown equalities we forgo the proof at this point and refer to Chapter B of the
Appendix.

2.3.2. Stabilization of the Weak Formulation

As we have just stated, the above formulation is by construction consistent. However the
method is not stable due to its lack of coercivity. For more details on this see for example
[27] or [4]. We will now extend the bilinear form introduced above to obtain a coercive
formulation.

As already discussed in Remark 2.1 we will now revisit the definition of the average operator
and switch to a formulation using weighted averages. Note that this reformulation is not
necessary to obtain coercivity of the method but will be used because it is better suited for
the kind of problem we are dealing with. Following Ern [10] the average operator 〈x〉e, f will
now be defined as

〈x〉e, f := ωe, f x|∂Ωe +ω f ,ex|∂Ω f

where

ωe, f :=
σ f

σe +σ f
, respectively ω f ,e :=

σe

σe +σ f

In the above σi denotes the (constant) conductivity in element i for each element in the
partition Th or rather the scalar value that can be identified with the conductivity in the case
of isotropic diffusion.

Remark 2.2. The following derivations can be made for the case of anisotropic conductivities
in a similar fashion. Obviously adjustments with regard to the dimensionality of the weights
have to be made. For more on that we refer once more to [27].

Using the modified average operator the consistent bilinear form can be supplemented with
the following term to obtain coercivitiy:

−η
κe, f

he, f
∑

γe, f⊂Γint

∫
γe, f

Jucorr,yK(s)JvK(s)ds (2.29)
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In this term he, f denotes the area of γe, f and is actually depending on the intersection γe, f in the
case of non-uniform grids. The term κe, f denotes the harmonic average of the conductivities
on the elements e and f :

κe, f =
2σeσ f
σe +σ f

The value of the penalty parameter η is a positive scalar and has to be chosen large enough
in order to ensure the coercivity of the method. We will derive a lower bound for η for which
coercivity can be ensured later on.

Another term living on the internal skeleton of the triangulation is added:

ε ∑
γe, f∈Γint

∫
γe, f

〈σ∇v〉(s)Jucorr,yK(s)ds (2.30)

For ε ∈ {−1,0,1} this term switches between the Non Symmetric Interior Penalty Galerkin
Method(NIPG), the Incomplete Interior Penalty Galerkin Method(IIPG) and the Symmetric
Interior Penalty Galerkin Method(SIPG) respectively. For an overview of different DG meth-
ods see [9].
In this thesis we will limit ourselves to the SIPG method. In the case of weighted averages
this method is also called Symmetric Weighted Interior Penalty Galerkin Method(SWIPG or
SWIP). Accordingly we will choose ε to be 1 from now on.

Remark 2.3. The addition of the two new terms does not spoil the consistency of the method.
Since Jucorr,yK = 0 for the exact solution of the equation, the additional terms are equal to
zero and consistency is obtained in the same fashion as described in the Appendix.

Adding the terms (2.29) and (2.30) to the left hand side of the formulation in Definition
2.7, we arrive at the final weak formulation of the problem:
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Definition 2.8 (Weak DG Formulation of the Subtraction Approach).

−
∫

Ω

σ(x)∇ucorr,y(x) ·∇v(x)dx+ ∑
γe, f∈Γint

∫
γe, f

〈σ∇ucorr,y〉(s)JvK(s)+ 〈σ∇v〉(s)Jucorr,yK(s)ds

−η
κe, f

he, f
∑

γe, f∈Γint

∫
γe, f

Jucorr,yK(s)JvK(s)ds

=
∫

Ω

σ
corr,y(x)∇u∞,y(x) ·∇v(x)dx+

∫
∂Ω

σ
∞,y(s)∇u∞,y(s) ·~nv(s)ds

− ∑
γe, f∈Γint

∫
γe, f

〈σ corr,y
∇u∞,y〉(s)JvK(s)ds

Defining the left hand side to be the bilinear form α(ucorr,y,v) and the right hand side to
be the linear form λ (v) the problem can be restated in the following way:

α(ucorr,y,v) = λ (v) (2.31)

Remark 2.4. In addition to the above equality another condition must be met in order to
ensure the uniqueness of the solution since we are dealing with a homogeneous Neumann
problem (see Section 1.3). This will especially become relevant when implementing the
problem. We will come back to this issue when discussing the numerical simulations in
Chapter 4.

Coercivity

We will go on to show the coercivity of the weak DG formulation closely following [29]. Then
using the Lax-Milgram Lemma (see A.1 in the Appendix) we obtain the well-posedness of the
problem.
In order to do so we turn to the equivalent problem formulation

−α(ucorr,y,v) =−λ (v)

and show its coercivity, i. e.

∀vh ∈Vh, −α(vh,vh)≥C‖vh‖2
σ (2.32)

with a constant C > 0 and the energy norm ‖vh‖σ defined by

‖v‖σ :=
(
‖σ1/2

∇hv‖2
[L2(Ω)]d + |v|

2
J,σ

)1/2
. (2.33)
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The jump seminorm is defined by

|v|J,σ :=

(
∑

γe, f∈Γint

|v|2J,σ ,(e, f )

)1/2

and |v|J,σ ,(e, f ) :=
(

κe, f

he, f

)1/2

‖JvK‖L2(γe, f ). (2.34)

Here ∇hv denotes the broken gradient of v (see Appendix A for more information on that).
Using this norm we can now show the coercivity of the bilinear form:

−α(vh,vh) =
∫

Ω

σ(x)∇vh(x) ·∇vh(x)dx

− ∑
γe, f∈Γint

∫
γe, f

〈σ∇vh〉(s)JvhK(s)+ 〈σ∇vh〉(s)JvhK(s)ds

+η
κe, f

he, f
∑

γe, f∈Γint

∫
γe, f

JvhK(s)JvhK(s)ds

=‖σ1/2
∇hv‖2

[L2(Ω)]d +η |vh|2J,σ

−2 ∑
γe, f∈Γint

∫
γe, f

〈σ∇vh〉(s)JvhK(s)ds

It can be inferred (see Lemma A.4 in the Appendix) that∣∣∣∣∣ ∑
γe, f∈Γint

∫
γe, f

〈σ∇hvh〉JvhK

∣∣∣∣∣≤ |vh|†,σ ,2|vh|J,σ

with

|v|†,σ ,2 :=

(
∑

E∈Th

∑
γ∈Γint :γ⊂∂E

hγ‖σ1/2
∇v |E ·~nγ‖2

L2(γ)

)1/2

(2.35)

where ~nγ denotes the outward normal unit vector on the interface γ .
Thus we have

−α(vh,vh)≥ ‖σ1/2
∇hv‖2

[L2(Ω)]d +η |vh|2J,σ
−2|vh|†,σ ,2|vh|J,σ

Using the discrete trace inequality A.2 in the Appendix, we can derive the inequality A.3:

|vh|†,σ ,2 ≤CtrN
1/2
∂
‖σ1/2

∇hvh‖[L2(Ω)]d (2.36)

Here Ctr is a positive scalar and N∂ denotes the maximum number of interfaces for all the
elements per element in the triangulation Th.
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Accordingly we get:

−α(vh,vh)≥ ‖σ1/2
∇hv‖2

[L2(Ω)]d +η |vh|2J,σ
−2CtrN

1/2
∂
‖σ1/2

∇hvh‖[L2(Ω)]d |vh|J,σ

For all x,y ∈ R and β > 0 the basic inequality

x2−2βxy+ηy2 ≥ η−β 2

1+η
(x2 + y2)

holds. With x = ‖σ1/2∇hvh‖[L2(Ω)]d , y = |vh|J,σ and β =CtrN
1/2
∂

, we get:

−α(vh,vh)≥
η−β 2

1+η︸ ︷︷ ︸
=:C

(‖σ1/2
∇hvh‖2

[L2(Ω)]d + |vh|2J,σ )︸ ︷︷ ︸
=‖vh‖2

σ

(2.37)

Thus we can now ensure coercivity for the bilinear form −α(u,v) for choices of η >C2
trN∂ .

It should be noted that the value of Ctr only depends on the dimension d of the problem and
the degree k of the basis polynomials. Using this inequality, optimal values for η can be found
heuristically. This is a one-time setup cost. Also the implementation automatically adapts to
the polynomial degree and the dimensionality of the problem. Accordingly the value of η has
to be determined only once and can then be used for every other polynomial degree.

2.4. Convergence Analysis

In Ern [29] it was shown that for the model problem

−∇ · (σ∇u) = f in Ω,

u = 0 on ∂Ω.
(2.38)

with f ∈ L2(Ω), σ ∈ L∞(Ω) and σ bounded, the corresponding bilinear form converges with
optimal algebraic rates in the energy norm if u ∈ H p(Ω) with p ∈ (6/5,2].
In our case the regularity for the solution ucorr,y can not be assumed to be higher than
ucorr,y ∈H1(Ω) without making further assumptions. However, as already discussed in Section
1.5, we can assume the conductivity tensor σ to be constant on each element E ∈ T . In
addition to that we can restrict ourselves to the case in which the elements in our triangulation
Th are open polyhedra. Then, following the argumentation in [30], we can infer the existence
of a p ∈ (1,2] such that

ucorr,y ∈ H p.
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2. The Discontinuous Galerkin Method

For this kind of minimal regularity solutions optimal convergence rates can not be shown,
however in [29] convergence with non-optimal rates is proven for the model problem (2.38).
Due to the Neumann boundary conditions and the non standard right hand side of our
problem the existing proof can not be adapted without further modifications. Especially
finding estimates for the right hand side terms does not seem to be a trivial task.
The proof as presented in [29] is based on the reformulation of the bilinear form using the
lifting operator rl

h,γe, f
: L2(γe, f )→

[
Pl

3(Th)
]3 on all γe, f ∈ Γint such that for all ζ ∈ L2(γe, f )

and all integers l ≥ 0∫
Ω

rl
h,γe, f

(ζ ) · τh dx =
∫

γe, f

ζ 〈τh〉ds ∀τh ∈
[
Pl

3(Th)
]3
, (2.39)

the global lifting

Rl
h(ζ ) := ∑

γe, f∈Γint

rl
h,γe, f

(ζ ). (2.40)

and the discrete gradient

Gl
h(vh) := ∇hvh−Rl

h(JvhK). (2.41)

With these notations the bilinear form can be rewritten as

−α(uh,vh) =
∫

Ω

σGl
h(uh) ·Gl

h(vh)+ jh(uh,vh) (2.42)

where jh(uh,vh) := −
∫

Ω
σRl

h(JuhK) ·Rl
h(JvhK)dx+∑γe, f∈Γint

ηκe, f
he, f

∫
γe, f

JuhKJvhKds. Using certain
properties of the discrete gradient and an estimate for the right hand side, the convergence
of uh→ u strongly in L2(Ω), ∇huh→ ∇u strongly in

[
L2(Ω)

]3 and |uh|J → 0 can be shown,
where

|uh|J :=

(
∑

γe, f∈Γint

h−1
e, f ‖JuhK‖2

L2(γe, f )

)1/2

(2.43)

However the proof relies on estimates for the right hand side. In the case of λ (v) as stated
in Definition 2.8 this does not seems require a different approach. Accordingly, in this thesis
we will have to rely on numerical observations with regard to this aspect.

2.5. Choice of Basis Functions

The choice of the element local basis functions for the discretized space impacts the accuracy
and stability of the method. Especially when dealing with higher degree basis functions it
is important to use a basis which does not spoil the condition of the resulting system. To
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2. The Discontinuous Galerkin Method

obtain this property L2-orthonormal basis functions can be used, i. e. basis functions which
are orthonormal with respect to the standard inner product on L2. Furthermore the basis
should be designed in a hierarchical sense, i.e. the basis of degree k should include the basis
functions of degree less than k. In the numerical implementation of the DG method for this
thesis two types of basis functions were used that meet both requirements and correspond to
the broken polynomial spaces introduced in (2.11) and (2.12).
On tetrahedral meshes an orthogonalized Pk basis was used. While there is of course a much
higher number of degrees of freedom and discontinuities are allowed to occur across elements,
this choice can be seen as an emulation of Lagrange basis polynomials on simplices in the
conforming finite element case. In the 2D-case the P1 polynomials would correspond to the
basis {1,x,y} and P2 to

{
1,x,y,xy,x2,y2

}
(which both would still have to be orthogonalized).

Thus the Pk basis can be identified with the monomials whose exponents have 1-norm less
or equal to k.
On hexahedral meshes the orthogonalized Qk basis was used which includes all the monomials
of exponents less or equal to k in the ∞-norm. In the 2D-case P1 would consist of an orthogo-
nalized version of {1,x,y,xy} and for P2 the basis would become

{
1,x,y,xy,x2,y2,xy2,x2y,x2y2

}
.

This choice leads to a much larger number of degrees of freedom in the resulting matrix system
but corresponds much better to the choice of Qk Lagrange basis functions in the conforming
finite element case. See the table below for an overview of the basis and the number of local
basis functions corresponding to it for the case of a three dimensional problem. Also see
Appendix A for a more formal discussion of the broken polynomial spaces.

P3
k Q3

k

k=1 4 8
k=2 10 27
k=3 20 64

Table 2.1.: Overview of the number of local basis functions corresponding to the respective
basis.

2.6. Additional Properties of Discontinuous Galerkin
Methods

We will now touch on some of the most prominent features of DG methods. We will not
discuss many of the analytical properties but restrict ourselves to those features that are of
special relevance to the application in EEG source analysis. For further details on properties
of DG methods we again refer to [9] or [27].
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2. The Discontinuous Galerkin Method

2.6.1. Matrix Structure

Considering the weak formulation introduced in Definition 2.8 discretized on a 3×3×3 hex-
ahedral decomposition of the unit cube using basis functions of polynomial degree one we
would get the matrix structure shown on the left hand side of Figure 2.3.
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Figure 2.3.: Matrix Structure of a DG discretization (left) on a 3x3x3 cubic domain using
polynomial of degree 1 for the local basis functions compared to that of a con-
forming FEM discretization using Lagrange basis functions (right).

As one can see the DG discretization leads to a matrix sparsity pattern that allows for block-
wise storing of the matrix. The block-size is determined by the number of basis functions
on each element. If there are n basis functions per element the block-size of the sparsity
pattern becomes n× n. In the above discretization four basis functions were used on each
element, leading to a sparsity pattern with block size four. For the purpose of a more compact
visualization we used P3

k basis polynomials whereas for the simulations later on a Q3
k basis

will be used on hexahedral meshes. The choice of Q3
k results in an overall larger matrix with

a bigger block size while the block sparsity pattern remains unchanged.

Each diagonal block in the matrix holds the coupling between the local basis functions of
one element. These couplings result from the volume term of the problem’s left hand side
but also from some of the skeleton terms. This can be seen by expanding the average- and
jump-operator terms in the problem’s formulation (see Definition 2.8). If only the volume
terms of the discretized bilinear form were assembled the resulting matrix structure would be
diagonal due to the L2-orthonormality of the basis functions.
The off-diagonal blocks represent the coupling between basis functions of different elements.
These couplings occur if the elements belonging to the respective basis functions share a face.
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2. The Discontinuous Galerkin Method

Then this face is in Γint and the corresponding skeleton term is part of the bilinear form.
Compared to the conforming FEM discretization (see right hand side in Figure 2.3) it can be
seen that the conforming FEM does not allow for a block-wise storage of the matrix entries
(excluding the trivial block size of one) and thus the matrix can not be stored as efficiently
since more effort has to be undertaken to store the sparsity pattern. This is a result of the
node based formulation of conforming FEM with Lagrange basis functions.
What is more the sparsity pattern of the FEM matrix will only get more complex if the
polynomial degree is increased. For Discontinuous Galerkin methods however, the block-
pattern of the matrix remains unchanged, if another local basis is used or the degree of
the basis functions is increased on each element. The sparsity pattern only depends on the
geometric properties of the grid, i.e. which element shares an interface with another element.
The only thing that changes with respect to the matrix structure is the size of the blocks. If
in the above scenario basis functions of polynomial order two were used we would get blocks
of size 10 as shown in Figure 2.4.
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100
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200

250

nz = 13194

Figure 2.4.: Matrix Structure for basis functions of polynomial degree two.
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Figure 2.5.: Skeleton structure of a 2× 2 domain with local refinement in the bottom left
element.

2.6.2. Non-Conforming Meshes

One of the main qualities of the DG formulation introduced in the previous sections is that,
unlike conforming FEM formulations, it is not node-based. Vertices of the mesh are not
associated with degrees of freedom and they are only relevant for the geometric description
of elements and their interfaces.
Therefore DG methods are by design well suited to handle problems on non-conforming
meshes. A non-conforming mesh may be the result of local refinement, e. g. by the em-
ployment of an error estimator, and can be defined as a triangulation for which interfaces
between two elements do not necessarily have to be an entire face of both elements. The
definition of a triangulation in this chapter (see Definition 2.1) did not exclude this kind of
meshes. Accordingly all the previous derivations are valid for non-conforming meshes as well.
Figure 2.5 shows an example of a non-conforming mesh.
In the case of a conforming FEM discretization a lot of effort has to be put into the treat-
ment of the degrees of freedom associated with the hanging nodes and the matrix structure

29



2. The Discontinuous Galerkin Method

0 2 4 6 8 10 12 14 16

0

2

4

6

8

10

12

14

16

nz = 160
0 5 10 15 20 25

0

5

10

15

20

25

nz = 352

Figure 2.6.: Matrix structure of a DG discretization for a 2× 2 domain (left) and the same
domain with one refined element (right).

becomes unfit for standard solver techniques without further optimization. DG methods how-
ever do not suffer from that issue. The additional interfaces that occur when comparing a
refined mesh with an unrefined mesh simply result in additional blocks in the matrix structure
representing the coupling of the basis functions on the respective elements. For a comparison
of matrix structures in that case see Figure 2.6. The matrix stays symmetric and can be
treated in the same way as in the case of a conforming mesh.

2.6.3. More General Approximation Space

As we have mentioned before, the solution space for Discontinuous Galerkin methods in-
cludes functions with discontinuities across element borders. This makes them more suitable
for problems involving discontinuities. Especially in the case of rough coefficients in hetero-
geneous diffusion problems like the EEG forward problem a discontinuous function might be
a better approximation of the solution than a function with a forced continuity. To exemplify
this issue we will present a one-dimensional example similar to that found in [27, p. 152]:
Consider the general diffusion problem

−∇ · (σ∇u) = f in Ω,

u = 0 on ∂Ω,
(2.44)

with f ∈ L2(Ω).
We choose Ω = (−1,1) and the triangulation Th = {Ω1 = (−1,0), Ω2 = (0,1)}. On Ω1 we
set σ |Ω1 = 0.0056 =: σ1 and on Ω2 = σ |Ω2 = 1. This choice of parameters approximately
corresponds to the diffusion heterogeneity that can be observed at the conductivity border of
the skull and the cerebrospinal fluid(CSF) when using isotropic conductivities. It also is the
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2. The Discontinuous Galerkin Method

maximal diffusion heterogeneity that can be expected when using a four layer sphere model
with the usual isotropic conductivities.
The exact solution to the model problem (2.44) can be derived to be:

u(x) =

{
a1(1+ x)2 +b1(1+ x) if x ∈Ω1

a2(x−1)2 +b2(x−1) if x ∈Ω2,
(2.45)

where a1 =− 1
2σ1

, a2 =−1
2 , b1 =

1+3σ1
2σ1(1+σ1)

and b2 =− σ1+3
2(1+σ1)

.
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Figure 2.7.: Exact Solution (blue) of the 1D model problem approximated by linear basis
functions. Solutions obtained by the DG method (left) and by conforming FEM
(right).

The exact solution and its approximation obtained by the DG method and conforming
FEM can be seen in Figure 2.7. In both cases linear basis functions were used. Obviously
both solutions suffer from the fact that the quadratic term in the left element can not be
properly approximated with linear basis functions. In the DG case (left figure) however it is
obvious that the L2-error is greatly reduced when compared to the conforming FEM solution.
This increase in L2 accuracy comes with a lack of continuity and fulfilment of the boundary
condition in the solution. Of course a decision has to be made whether the loss of continuity
is acceptable for the gain in L2 accuracy.
Using a basis of order two, the quadratic term on the left hand side could be solved exactly
making this example a candidate for local p-adaptivity: Increasing the degree of the local basis
functions by one on the left element would produce the exact solution on the left subdomain.
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2.6.4. Higher Order Basis Functions

As mentioned before, the implementation of higher order basis functions for DG methods is
pretty straightforward. The polynomial degree of the basis functions can be chosen quite ar-
bitrarily, limited of course by the computational costs in practical applications. In contrast to
conforming FEM the use of higher order approximations is the norm rather than the exception
and one of the main advantages when using DG methods. Naturally a better approximation
can be expected when using DG methods of higher degree. What is more the polynomial
degree of the local basis functions can, at least in theory, be adapted individually for each
element.
For example in the case of the EEG forward problem the polynomial degree at the conductivity
jumps could be increased in order to better suit the jump in conductivity and the consequently
steep gradients. Combined with the capability for handling locally refined meshes (see Sub-
section 2.6.2) this makes DG methods a natural candidate for hp-adaptivity.

2.6.5. Parallelization

In scientific computing parallelization has become a major focus as a means to efficiently solve
large problems on parallel architectures. The higher computational cost that comes with local
basis functions makes parallelization an appealing feature for DG methods, especially in the
case of higher order basis functions. In this case the memory demand, even on hexahedral
meshes of relatively moderate size, easily surpasses the capacity of average modern desk-
top computers (for more on that see Section 4.5). Parallelization on a distributed memory
architecture could help amend this problem. Although it was not applied in this thesis, par-
allelization of a DG formulated problem should be pretty straightforward:
Based on a matrix structure as shown for example in Figure 2.4, each computational node
would assemble and store the diagonal matrix blocks that correspond to the elements that
were assigned to it by the domain decomposition. Furthermore all the local couplings, i. e.
the off-diagonal blocks that only involve elements contained in the node’s own subdomain
will be stored. Communication is only necessary for the DOFs associated with off-diagonal
blocks that describe couplings between elements in different subdomains of the domain de-
composition. This behaviour only depends on the geometrical information of the mesh and
the domain decomposition respectively. In particular it is independent of the polynomial de-
gree of the basis functions which is another advantage of DG methods over conforming finite
element methods where with the complexity of the sparsity pattern the communication tends
to become more involved. In the DG case the only thing that changes is the number of the
communicated DOFs while the communication structure remains the same.
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2.6.6. Mass Conservation

Mass conservation is a basic physical property and therefore it is a desirable property for a
numerical method as well. Consider a simple Poisson problem:

−∆u = f in Ω and u = 0 on ∂Ω (2.46)

For E ∈Th and v ∈ Pk
d(E) the exact solution fulfils the equality:∫

E
f vdx =−

∫
E

v∆udx =
∫

E
∇u ·∇vdx−

∫
∂E

∇u ·~nvds (2.47)

Choosing v≡ 1 and defining Φ∂E(u) :=−∇u ·~n we obtain∫
E

f dx =−
∫

∂E
∇u ·~nds =

∫
∂E

Φ∂E(u)ds. (2.48)

The term Φ∂E(u) is called the exact numerical flux and the above equality describes the
local conservation property fulfilled by the exact solution u. A similar relationship can be
established for the DG method corresponding to the model problem (2.46) on a discrete level:
The discretized problem in DG formulation reads

Find uh ∈Vh s. t. α
poiss
h (uh,vh) =

∫
Ω

f vh dx for all vh ∈Vh (2.49)

where the bilinear form α
poiss
h is derived in a similar fashion as for the subtraction formulation

and turns out to be

α
poiss
h (uh,vh) =

∫
Ω

∇uh ·∇vh dx− ∑
γe, f∈Γ

∫
γe, f

〈∇uh〉JvhK+ JuhK〈∇vh〉ds

+ ∑
γe, f∈Γ

η

he, f

∫
γe, f

JuhKJvhKds.
(2.50)

Let χE denote the characteristic function of E. Then we can insert the element local basis
function vh = 1χE into the above bilinear form and obtain:

α
poiss
h (uh,1χE) =−

∫
∂E
〈∇uh〉~n+

η

h
JuhK~nds

=
∫

∂E
(−〈∇uh〉+

η

h
JuhK)~n︸ ︷︷ ︸

:=Φnum
∂E

ds (2.51)

The term Φnum
∂E is called the numerical flux. Since the exact solution u is continuous across

element faces we can see that the numerical flux Φnum
∂E (u) of the exact solution u is equal to

the exact flux Φ∂E :

Φ
num
∂E =

∫
∂E
(−〈∇u〉︸︷︷︸

=∇u

+
η

h
JuK︸︷︷︸
=0

)~nds = Φ∂E (2.52)
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The conservation property discussed above is the same that can be derived for Finite Volume
methods. It should be noted, however, that the choice of constant basis functions is only a
special case of a more general conservation property that can be derived for DG methods.
For more details on this we refer to [27, p. 142].
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Figure 3.1.: Design of the DUNE toolbox. Source: DUNE Project Homepage

In the context of this thesis, both a Discontinuous Galerkin(DG) and a conforming Finite
Element Method(FEM) version of the Subtraction Approach were implemented. The imple-
mentation was performed using the Distributed and Unified Numerics Environment(DUNE)1

framework. The goal of this chapter is to give a concise overview of the design of the DUNE
framework and the associated discretization module PDELab2 as well as the implementation
of the Subtraction Approach performed therein.

3.1. The DUNE Framework

The DUNE project is a modular C++ toolbox for solving partial differential equations(PDEs)
using grid-based methods. It is published under the GNU General Public License3 which makes
it free and open-source software. DUNE makes extensive use of advanced object oriented
C++ programming techniques such as template parameters and static polymorphism. This
makes it possible to provide very general and abstract interfaces for added functionality and
maintainability without having the computational overhead of evaluating template parameters
at run-time.

1Homepage of the DUNE project: http://www.dune-project.org
2Homepage of the dune-pdelab module: http://www.dune-project.org/pdelab/index.html
3Version 2, with an andditional runtime exception, for more details see http://dune-project.org/license

35

http://www.dune-project.org
http://www.dune-project.org/pdelab/index.html
http://dune-project.org/license
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The DUNE toolbox is divided into different modules (see Figure 3.1). Each of the core
modules provides a certain set of basic functionality like for instance access to different
kinds of grids through a common interface(dune-grid), implementations of basic geometric
structures(dune-geometry) or access to a whole range of iterative solvers(dune-istl). Built on
top of that are discretization modules like dune-pdelab or dune-fem and other modules, e. g.
external modules or additional grid implementations.
The discretization modules act as the basic framework in which the partial differential equa-
tions are formulated and discretized. They take different approaches as to how this task is
carried out. In this thesis dune-pdelab was used and we will later discuss some of its main
features and design concepts.
Another feature of the DUNE framework is the reuse of already available Finite Element
toolboxes and software. For example, the implementations created for this thesis make use
of the Adaptive, Load-balanced and Unstructured Grid library(ALUGrid, see [17] and [18])
which serves as the grid manager, i. e. it handles the creation and manipulation of the grid.
It is accessed through the common interface of the dune-grid module.
The modular structure of the DUNE project does not only make it easier to maintain and
develop but also is beneficial to the user as any changes or improvements to the core modules,
e. g. the implementation of a new solver in dune-istl, can be implemented by simply updating
the respective core module and adding the new feature with just a few changes to the user’s
implementation.

3.2. The DUNE-PDELab Module

As mentioned above the dune-pdelab module was used for the discretization of the Subtraction
DG Approach as well as for the conforming Finite Element Approach. In the following we
will only describe the implementation of the DG approach as the implementation of the
conforming Finite Element method is in many ways analogous to that of the DG approach
but less relevant for this thesis.

In order to discretize the partial differential equations PDELab utilizes an operator concept:
The user has to construct a class object, the so called local operator which provides an element
local formulation of the PDE it is supposed to discretize. It provides a set of methods each
representing a certain aspect of the problem’s formulation. These methods can be categorized
by the way they contribute to the PDE:

• alpha_-methods, representing contributions of the bilinear form α on the left hand side

• lambda_-methods, representing contributions of the linear form λ on the right hand
side

See the weak formulation of the DG Subtraction Approach in Definition 2.8 for the shape
that α and λ take in our case.
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Both alpha_- and lambda_-methods are again organized into different groups depending on
which kind of grid entity the corresponding integral lives on. Assuming a triangulation of our
domain Ω there are three cases on which the terms in the α and λ forms can be defined:

• _volume, for volume terms

• _boundary, for boundary terms

• _skeleton, for skeleton terms

So for the Subtraction DG Approach as introduced before we have the following relationships
for the alpha_-methods

alpha_volume→ −
∫

Ω

σ(x)∇ucorr,y(x) ·∇v(x)dx

alpha_boundary→ not present in our problem

alpha_skeleton→ ∑
γe, f∈Γint

∫
γe, f

(〈σ∇ucorr,y〉(s)JvK(s)+ ε〈σ∇v〉(s)Jucorr,yK(s)

+
η

h
Jucorr,yK(s)JvK(s))ds,

and for the lambda_-methods

lambda_volume →
∫

Ω

σ
corr,y(x)∇u∞,y(x) ·∇v(x)dx

lambda_boundary →
∫

∂Ω

σ
∞,y(s)∇u∞,y(s) ·~nv(s)ds

lambda_skeleton → − ∑
γe, f∈Γint

∫
γe, f

〈σ corr,y
∇u∞,y〉(s)JvK(s)ds

Remark 3.1. It should be noted here that PDELab utilizes a residual formulation for the
problem, i. e. all the terms are moved to either the right hand side or the left hand side and
the resulting system is solved for zero. Thus we need to change the sign in front of either
all the alpha_-terms or all the lambda_-terms when considering the implementation of the
problem.

Furthermore, the assembly of the matrix for the linear system requires the implementation
of jacobian_-methods. The jacobian_ part in the name of the methods is motivated by
the fact that the matrix can be identified with the jacobian of a discretized version of the
residual itself, that is

∂

∂u
(Au−b) = A.
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As mentioned earlier, all of these methods have to be implemented in the local operator.
With the help of the local operator a global grid operator is constructed which visits all
the entities in the grid and calls the corresponding method:_volume-methods for codim-
0 entities, _boundary-methods for codim-1 entities making up the boundary of the domain
and _skeleton-methods for codim-1 entities forming the internal skeleton of the mesh. Once
the grid operator performed the assembly of the residual and the matrix we are left with a
linear system to be handed over to an appropriate solver. We will discuss the implementation
of the operator again in more detail in the next section.

3.3. Implementation and Work Flow

ALUGrid dune-core modules dune-pdelab module

dg-forward program

Figure 3.2.: Dependency structure of the dg-forward program.

In the following we will have a closer look at how the implementation was carried out and
describe the work flow of the dg-forward application that was implemented to solve the DG
forward problem. Again the implementation of the conforming FEM is very much alike and
accordingly will not be discussed here.

On a macroscopic level the dependency structure between the dg-forward program and the
DUNE core modules can be illustrated by Figure 3.2.
The dashed arrow from the box representing the dune-core modules to the ALUGrid rectangle
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symbolizes an interface relationship. The external ALUGrid module is interfaced through the
dune-grid module. However, this is not a hard dependency of the dune-grid module or the
core modules as a whole but rather a choice between different options for the grid manager
we made for this implementation. The current implementation reads the mesh using the
GmshReader class which allows to import .msh-files4.
The main application dg-forward directly depends on the core modules and on the pdelab
module which is signified by the solid arrows starting from the program’s box going to the
respective rectangles. As illustrated before in Figure 3.1, the pdelab module also depends on
the core modules but we neglected this dependency since it is not specific to the dg-forward
application but a general property of the DUNE framework.

As described in the previous section, a crucial part of the implementation was the formu-
lation of a local operator class. Here the programming effort was significantly reduced by
the presence of a suitable operator called ConvectionDiffusionDG provided for the generic
implementation of standard DG convection diffusion problems in the dune-pdelab module.
This operator needs to be parametrised with a parameter class which provides the lambda_-,
alpha_- and jacobian_-methods with the terms arising in the problem’s formulation. How-
ever, due to the non standard nature of the right hand side for the Subtraction Approach
the lambda_-methods of the ConvectionDiffusionDG class could not be inherited as they
were:

• The standard implementation only allows for v to be used as a test function in the
volume term of the right hand side. As described above we need to test against ∇v.
Thus the lambda_volume method had to be reimplemented.

• lambda_boundary had to be newly implemented since the standard implementation
does not provide this method.

• Furthermore it was necessary to implement lambda_skeleton since it was not present
for the standard convection diffusion problem implemented in ConvectionDiffusionDG.

4The .msh-format is the file format for the 3D Finite Element grid generator Gmsh. For further information
on that see http://geuz.org/gmsh/ and also [22]
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LocalSubtractionDGOperator

ConvectionDiffusionDG

SubtractionDGLambda

ProblemData

ProblemData

ProblemData

Figure 3.3.: Inheritance diagram of the LocalSubtractionDGOperator.

Those modified and new lambda_-methods were implemented in a class called
SubtractionDGLambda. The class that will serve as the local operator was written and
is called LocalSubtractionDGOperator. It does not have any methods implemented by
itself but rather inherits them from ConvectionDiffusionDG and SubtractionDGLambda.
The parameter class ProblemDataSubtractionDG was created which provides all the
relevant terms occurring in the integrals which are needed by the local operator. This
class parametrizes all the other classes, see Figure 3.3 for a visualization. Although the
modifications required to the ConvectionDiffusionDG operator do not make our problem a
text book example for generic programming, it should still be obvious that the implementation
benefited greatly from this basic design principle.

Regarding the overall work flow of the dg-forward program we will give a rough overview in
Figure 3.4, hiding most of the implementation details. Each source file (blue boxes on the left
in the flowchart) corresponds to a specific C++ function performing the tasks explained in the
light grey boxes on the right side. The modularity of this design allows for easy modification
of the work flow. For instance, in order to implement a different dipole model (e. g. the
Venant Approach) the options_interface routine could be extended to make a call to
a newly implemented routine sitting in venant_dg_approach.hh while most of the other
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source files would remain untouched. However the implementation of a new local operator
would have to be carried out which then would be called in the venant_dg_approach.hh
instead of the LocalSubtractionDGOperator. The programming work load for this would
be rather mild compared to that of the Subtraction Approach since the right hand side of
the Venant Approach should be comparably easy to implement. Nevertheless effort has to be
put in adapting the node based formulation of the Venant Approach for conforming Finite
Element methods into a Discontinuous Galerkin context.
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dg_forward.cc

options_interface.hh

subtraction_dg_approach.hh

postprocessing.hh

output.hh

Main Function:

• Import of simulation options and grid
from .msh-file

• Creation and preparation of the grid Ob-
ject

Helper Function:

• Chooses options that have to be im-
plemented as template parameters(like
polynomial degree and grid type)

• Calls the driver for the Subtraction Ap-
proach with the appropriate parameters

Driver for the Subtraction DG Approach:

• Setup of ProblemDataSubtractionDG
and of LocalSubtractionDGOperator

• Assembly of the matrix

• Assembly of the residual for each dipole
and solving of the corresponding matrix
system

Post Processing like

• Combination of the solution with the sin-
gularity potential

• Implementation of the integral condition

Output of

• Error criteria

• Visual representation of the solution

Figure 3.4.: Work flow of the dg-forward program.
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Figure 4.1.: Visualization of the potential obtained from a numerical simulation.

In this chapter we will present numerical results from the implementation described in the
previous chapter.

4.1. Simulation Setup

For our studies we used sphere models, i. e. approximations of the head by nested spheres
with each layer representing a different tissue compartment of the head. While they are
obviously a very rough approximation of a real human head, sphere models are still used in
source analysis due to the existence of an analytical solution. However, when using Finite
Element methods, the goal should certainly be to apply them to real head models generated
by MRI scans. Nevertheless the existence of an analytical solution makes sphere models very
well suited for the validation of numerical methods.

4.1.1. Analytical Solution for Sphere Models

In [21] de Munck showed that an analytical solution for the potential in a layered spherical
volume conductor with compartment wise constant isotropic or anisotropic conductivities can
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be derived. Furthermore, in [19] it was shown by de Munck et al. how the analytical solution
in such multisphere models can be computed in a rapid fashion using an approximating series:

Figure 4.2.: 2D Visualization of a Four Layer Sphere Model for the Head.

Given a multilayer sphere model with S shells (see Figure 4.2), i. e. a collection of S
concentric spheres nested within in each other with radii rS < rS−1 < .. . < r1 and constant
conductivities inside each of those shells, the approximation formula for the analytical solution
becomes:

uana(x0,xe) =
1

4π
〈~M,S0

xe

re
+(S1− cosω0e)

x0

r0
〉

In the above formula ω0e denotes the angular distance between the source’s position x0 and
the electrode’s position xe. The vector ~M denotes the dipole moment, re and r0 denote the
radial coordinate of the electrode and the source respectively. In order for the approximation
to be valid it has to be assumed that the source is located in a more interior layer of the
sphere than the electrode position.
Regarding the terms

S0 =
F0

r0

Λ

(1−2Λcosω0e +Λ2)3/2

+
1
r0

∞

∑
n=1

((2n+1)Rn(r0,re)−F0Λ
n)Pn

′(cosω0e)
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and

S1 =F1
Λcosω0e−Λ2

(1−2Λcosω0e +Λ2)3/2

∞

∑
n=1

((2n+1)Rn
′(r0,re)−F1nΛ

n)Pn(cosω0e)

it suffices to say that the terms in the series tend to become independent of n. The compu-
tation of the series can be stopped when the following criterion is fulfilled:

tk
t0
≤ v, tk := (2k+1)Rk

′−F1kΛ
k

for v chosen to be small enough. For more details on the definitions of the other terms
occurring in the above formulas we refer to [15] and the detailed derivation in [19].
This analytical solution was used as a validation reference for the DG methods and the
conforming FEM in the numerical studies. The source code for the computation of the
analytical solution was adapted from the SimBio toolbox1 and implemented directly into the
work flow of the program.

4.1.2. Electrodes

For the evaluation of the numerical solution a set of 222 electrodes were used in all of the
following studies. The electrodes were distributed equally on the surface of the outermost
sphere and are then mapped onto the closest surface node of the mesh. In the case of
hexahedral meshes an additional constraint was used to make sure that the projected position
did not lie outside of the maximal radius of the analytical sphere. This was done to ensure
the validity of the analytical solution. Figure 4.3 shows a visualization of the electrodes.

4.1.3. Error Criteria

The following error criteria were used for the validation of the method:
The Relative Error(RE) is defined by

RE(uana,unum) :=
‖unum−uana‖2

‖uana‖2
(4.1)

where uana denotes the vector holding the values of the analytical solution at the electrodes
and unum the numerical solution obtained by the numerical methods. Accordingly ‖·‖2 denotes
the l2 vector norm. In the field of source analysis two additional error criteria are used to

1SimBio Development Group homepage: https://www.mrt.uni-jena.de/simbio
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Figure 4.3.: Visualization of the electrodes distributed on the sphere model.

distinguish between the error in magnitude and the error in topography of the solution. The
magnitude error(MAG) is defined by

MAG(uana,unum) :=
‖unum‖2

‖uana‖2
(4.2)

and the relative distance measure(RDM)

RDM(uana,unum) :=
∥∥∥∥ unum

‖unum‖2
− uana

‖uana‖2

∥∥∥∥
2

(4.3)

measures the topography error. Since it only considers the normalized solutions the RDM
does not incorporate the error in magnitude of the solution whereas the MAG only measures
the magnitude error. The optimal value for the MAG is 1.

4.1.4. Integration Order

The integration orders for the alpha_- and jacobian_-methods were automatically chosen
by the preimplemented DG operator according to the degree of the basis polynomials involved
in the terms. For the newly implemented lambda_-methods it was experimentally observed
that convergence could only by guaranteed if the integration order for the lambda_ boundary
method was increased. For the simulations in this thesis the integration order for that method
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was set to ten to eliminate any error that may stem from this particular source. On top of that
all the precomputed integration orders were increased by two to avoid instabilities introduced
by the singularity in our equations.

4.1.5. Choice of Solvers

For solving the matrix system resulting from the DG methods an Algebraic Multigrid(AMG)
solver was utilized. For the conforming FEM a sequential conjugate gradient solver was used.
In both cases Krylov subspace methods were used which preserve the algebraic average of
the initial guess for our solution. This makes it unnecessary to ensure the uniqueness of the
solution using an additional condition as discussed in Remark 2.4. To obtain a solution at the
electrodes which is comparable to the analytical solution both vectors were adapted to have
zero mean.
For all simulations the corresponding matrix systems were solved up to a defect of 10−8.

4.2. Study 1: Tetrahedra Models

4.2.1. Model Properties

For this study two tetrahedral four layer sphere models were used. The first model is made up
of 190060 elements while the second model has approximately 3.16 million elements. Thus
the first model is a much coarser approximation of the multi sphere geometry than the second
one. Both models consist of four layers representing the following compartments of the human
head (from outside to inside): Scalp, Skull, Cerebrospinal Fluid(CSF) and Brain. Isotropic
conductivities for each layer were chosen according to literature (see for example [23], [26] or
[25]). For more details on the properties of the two models see Table 4.1 and 4.2, also see
Figure 4.4 for a graphical comparison.

Model Number of Elements Number of Vertices Number of Layers
tet190k 190060 31627 4
tet3159k 3159575 518730 4

Table 4.1.: Properties of the tetrahedra models

4.2.2. Simulation Parameters

For all of the following simulations dipoles were placed in the innermost compartment which
represents the brain in our model. To describe its position within this compartment we will
use the eccentricity. For a source position x0 and the center of the model c the eccentric-
ity measures the radial position of the dipole relative to the outer radius r4 of the brain
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Layer Physiological Tissue Outer Radius(in mm) Conductivity(in S/m)
1 Scalp 92.0 0.43
2 Skull 86.0 0.01
3 CSF 80.0 1.79
4 Brain 78.0 0.33

Table 4.2.: Conductivities and radii for the tetrahedra models

Figure 4.4.: Detail view of the tetrahedral sphere models. Left figure shows the coarse mesh,
right figure shows the fine mesh. Visualization done using ParaView. Note that
the conductivity scale is in S/mm.

compartment:

ecc(x0) =
‖x0− c‖2

r4

The eccentricity gives a percentage value describing the proximity of the source to the bound-
ary with the neighbouring compartment and thus to the jump in conductivity. Previous FEM
studies (for example [15]) have shown that the error of the numerical solution remains quite
stable for lower eccentricities and tends to grow exponentially when the conductivity jump is
approached. For the studies in this thesis we chose logarithmic steps towards the conductivity
jump in order to put the focus on the area were the growth in error can be expected and
away from the region where the error is expected to stay more or less constant.
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Eccentricities
0.0100 0.5022 0.7483 0.8714 0.9329 0.9637 0.9790 0.9867 0.9906 0.9925

Table 4.3.: Eccentricities for the coarse tetrahedra model study

For the study on the coarse tetrahedral model the minimal eccentricity was chosen to be
1% and the maximal eccentricity 99.25% corresponding to a minimal distance of about 0.585
mm to the conductivity jump for the most eccentric sources. See Table 4.3 for an overview
of the eccentricities. For each eccentricity 10 dipole positions were randomly generated with
radial orientation and another set of 10 dipoles were generated with tangential moment. For
the total of 200 sources conforming FEM simulations and DG simulations with polynomial
degrees of one, two and three were performed.

For the finer tetrahedra model dipoles were placed on a beam, starting close to the center
of the model with an eccentricity of 0.22%, approaching the inner shell’s radius up to an
eccentricity of 99.5% which corresponds to a proximity of 0.39 mm. Radial dipoles were
distributed along the x-axis and their moments were aligned along the same axis. Tangential
dipoles were placed along the y-axis and oriented in z-direction. Again logarithmic steps were
used while approaching the maximal eccentricity and 12 dipoles were placed for both types of
orientation in order to keep the computational time manageable. Polynomial degrees of one
and two were used.

Eccentricities
0.002 0.498 0.747 0.871 0.933 0.964
0.980 0.987 0.992 0.993 0.994 0.995

Table 4.4.: Eccentricities for the fine tetrahedra model Study

4.2.3. Results for the Coarse Tetrahedral Mesh

For the coarse tetrahedra model an increase in accuracy can be observed for all error measures.
Figures 4.5 to 4.7 show the mean errors per eccentricity obtained by the DG simulations and
the conforming FEM. The conforming Finite Element method will be used as a reference for
the evaluation of the DG methods. The detail plots on the right hand side of the figures
show the averaged errors for the last five eccentricities on a logarithmic scale y-scale (except
for the MAG plots where linear scales were used).

The two plots in the upper row of Figure 4.5 show that the RDM of the conforming FEM
can be reduced by a factor of four when using DG with polynomial order three for radial
sources with maximal eccentricity. While in both cases the absolute values of 0.4136 and
0.105 respectively are probably still too high to be considered acceptable, the eccentricity
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Figure 4.5.: Plot of the mean RDM error over the eccentricities for the radial sources (top)
and the tangential sources (bottom) on the coarse tetrahedra model. The right
hand side figures show the last five eccentricities on a logarithmical y-scale.

threshold for which solutions with RDM of less than 0.05 can be expected is considerably
lower for the DG method of polynomial order three. In this case eccentricities of up to 99.1%
could be chosen whereas the conforming Finite Element method did not obtain RDM values
lower than 0.05 for any of the last five eccentricities. The DG method with polynomial degree
one performed slightly better, yielding errors below five percent for eccentricities lower than
0.9637.
In the case of tangential sources (bottom plots) the RDM values are significantly lower than
for radial sources. The error at the maximal eccentricity is already at 0.0485 for polynomial
degree three and also the eccentricity threshold for sources with acceptable errors is higher
for all methods. Apart from the absolute error being lower the error still seems to grow
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Figure 4.6.: Plot of the mean relative error over the eccentricities for the radial sources (top)
and the tangential sources (bottom) on the coarse tetrahedra model. The right
hand side figures show the last five eccentricities on a logarithmical y-scale.

exponentially as observed in the case of radial sources and shown in previous studies using
conforming FEM.
It also should be noted that the for the eccentricity of 0.9867 which corresponds to sources
roughly 1 mm up to the conductivity jump the errors could be greatly reduced. For radial
sources the FEM solution yields an error of 0.1586 while the third order DG approximation
produces errors of about 0.0114. In the case of the tangential sources the picture looks very
alike where the FEM error could be improved from 0.1143 to just under 0.01 using the DG
scheme with polynomial degree three.

Due to the close relationship between the relative error and the RDM, the plots for the relative

51



4. Numerical Simulations

0 0.2 0.4 0.6 0.8 1
0.95

1

1.05

1.1

1.15

1.2

1.25

Eccentricity

M
A

G

Radial Sources

 

 

mag_fem    

mag_dg1    

mag_dg2    

mag_dg3    

0.9637 0.979 0.9867 0.9925
0.9583

0.9758

1
1.0115
1.0184
1.029

1.0486
1.0649

1.0901

1.155
1.1631

M
A

G

Eccentricity

Radial Sources

 

 

mag_fem    

mag_dg1    

mag_dg2    

mag_dg3   

0 0.2 0.4 0.6 0.8 1
0.99

1

1.01

1.02

1.03

1.04

1.05

1.06

1.07

1.08

1.09

Eccentricity

M
A

G

Tangential Sources

 

 

mag_fem    

mag_dg1    

mag_dg2    

mag_dg3    

0.9637 0.979 0.9867 0.9925

0.9949
1

1.0022

1.0097
1.0131

1.0225

1.0282

1.0746
1.0782

Eccentricity

M
A

G
Tangential Sources

 

 

mag_fem    

mag_dg1    

mag_dg2    

mag_dg3   

Figure 4.7.: Plot of the mean MAG error over the eccentricities for the radial sources (top)
and the tangential sources (bottom) on the coarse tetrahedra model. The right
hand side figures show the last five eccentricities.

error in Figure 4.6 exhibit very similar behaviour when compared to the RDM. As previously
discussed, unlike the RDM, the relative error also incorporates the error in magnitude of the
solution.

The magnitude error (see Figure 4.7) shows some oscillations at higher eccentricities for both
the radial and the tangential sources where again tangential sources overall produce the bet-
ter results. Despite the fact that the oscillations do not allow for a clear growth pattern to
emerge, it can be stated that for the available sample the DG methods on average can improve
the results of the conforming Finite Element solution. Nevertheless it may be worthwhile to
re-examine this phenomenon using a bigger sample size than ten dipoles per eccentricity.
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Figure 4.8.: Boxplot of the RDM error for the radial (top) and tangential (bottom) sources.
Outliers are marked by crosses. For better readability the eccentricities on the x
axis are not drawn to scale.

For a simulation setup as used in this study, where multiple sources are used for each
eccentricity, the evaluation of the method can not be based solely on averaged errors since
they do not visualize the distribution of the errors on a per source basis. In particular for the
MAG on higher eccentricities we could see that the error does not seem to follow a steady
growth pattern but rather oscillates. This may hint at the fact that the errors do not fall into
a close range but are distributed with quite high variance. This is of course an undesirable
property since we are looking for a method that gives us low errors with little variance. In
order to assess this quality of the methods we use boxplots as presented in Figure 4.8 for the
RDM and in Figure 4.9 for the MAG. The boxes represent the area in which the middle 50%
of the values can be found. The horizontal bar within each box represents the median. The
whiskers are limited to 1.5 times the interquartile range. Outliers, i. e. values that lie outside
the whiskers, are marked by crosses. Additional boxplots can be found in Appendix C.
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Figure 4.9.: Boxplot of the MAG error for the radial (top) and tangential (bottom) sources.
Outliers are marked by crosses. For better readability the eccentricities on the x
axis are not drawn to scale.

From the boxplots it can be seen that for both radial and tangential source orientations the
DG method of degree three produces the best result, i. e. the smallest error variance in a low
range. Also it produces very few outliers, all of which still assume tolerable absolute values.
The error range for the DG method of degree two always lies under that of the FEM and the
DG method of degree one but seems to produce a larger scattering than the former two in
some cases. With respect to variance of the error it is hard to tell whether the DG method
with linear basis functions or the conforming FEM does a better job for this particular sample.
For the MAG boxplots as shown in Figure 4.9 it becomes obvious again that the DG method of
degree three performs best, although it has to be noted that, especially for the most eccentric
tangential sources, a lot of outliers are produced. Also the variance for the second order DG
method in the tangential case seems very high which might call for a bigger sample size.
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4.2.4. Results for the Fine Tetrahedral Mesh

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Eccentricity

R
D

M

Radial Sources

 

 

rdm_fem   

rdm_dg1   

rdm_dg2   

0.98772 0.99161 0.99355 0.995

0.0015

0.0064

0.0097

0.0267

0.0557

0.0847

R
D

M

Eccentricity

Radial Sources

0 0.2 0.4 0.6 0.8 1
0

0.005

0.01

0.015

0.02

0.025

Eccentricity

R
D

M

Tangential Sources

 

 

rdm_fem   

rdm_dg1   

rdm_dg2   

0.98772 0.99161 0.99355 0.995
0.0011

0.0025

0.0045

0.008
0.0096
0.0122

0.0162

0.025

R
D

M

Eccentricity

Tangential Sources

Figure 4.10.: Plot of the RDM over the eccentricities for the radial sources (top) and the
tangential sources (bottom) for the fine tetrahedra model. The right hand side
figures show the last five eccentricities on a logarithmical y-scale.

On the fine tetrahedral mesh, similarly to the previous results on the coarser tetrahedral
mesh, an improvement in all error measures could be observed for the DG methods over
the conforming FEM solutions. Figures 4.10 through 4.12 show plots of the errors over the
eccentricities. Conforming FEM and DG with polynomial degree one again perform quite
similar to each other while the DG method almost always has slightly better errors, the
exception being some radial sources with lower eccentricity. Due to the much finer resolution
of the mesh the RDM for all the methods never exceeds 10%. Nevertheless the DG methods
can offer improvement, especially in the case of second order basis functions. The tangential
sources offer much better results, yielding maximal RDM values of below 1% for the second
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Figure 4.11.: Plot of the relative error over the eccentricities for the radial sources (top) and
the tangential sources (bottom) for the fine tetrahedra model. The right hand
side figures show the last five eccentricities on a logarithmical y-scale.

order DG method. The error still seems to grow exponentially although the semilogarithmic
plot for the tangential sources indicates a slowdown for DG of order one and the conforming
FEM method.

The relative error as shown in Figure 4.11 shows a behaviour similar to that of the RDM,
again owing to their close relationship.

With respect to the MAG the fine tetrahedra study shows a much clearer picture when
compared to the coarse tetrahedra results. This is most likely a result of the choice of sources
along a straight line instead of randomly choosing them for each eccentricity but might also

56



4. Numerical Simulations

0 0.2 0.4 0.6 0.8 1
0.95

0.96

0.97

0.98

0.99

1

1.01

Eccentricity

M
A

G

Radial Sources

 

 

mag_fem    

mag_dg1    

mag_dg2    

0.987722 0.991605 0.993547 0.995003
0.951

0.9596

0.9719
0.9731

0.9807

0.989

0.9955

0.99921

M
A

G

Eccentricity

Radial Sources

0 0.2 0.4 0.6 0.8 1
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

Eccentricity

M
A

G

Tangential Sources

 

 

mag_fem    

mag_dg1    

mag_dg2    

0.987722 0.991605 0.993547 0.995003
11.0026

1.0073
1.0129

1.0249
1.0303

1.0448

1.0554

1.0642

1.083

1.0933
1.1007

1.1123

M
A

G

Eccentricity

Tangential Sources

Figure 4.12.: Plot of the MAG error over the eccentricities for the radial sources (top) and
the tangential sources (bottom) for the fine tetrahedra model. The right hand
side figures show the last five eccentricities.

result from the better approximation properties of the model. The DG method of order two
only deviates about 1.93% from the optimal MAG value of 1 for radial sources and about
5.54% for the tangential sources, while the FEM method shows a divergence of approximately
4.9% for radial and 11.23% for tangential sources. The DG method of order one is slightly
better than the FEM method in both cases.

As computational cost had to be limited third order basis functions were not evaluated.
Furthermore this rather small sample with dipoles placed along a straight line through the
model can only give a first estimate of the errors that can be expected on this type of mesh.
Another evaluation with randomized sources, possibly using parallelized computations, might
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be necessary to obtain more reliable results.

4.3. Study 2: Hexahedra Models

Figure 4.13.: Detail view of the hexahedral sphere model. Visualization done using ParaView.
Note that the conductivity scale is in S/mm.

4.3.1. Model Properties

Model Number of Elements Number of Vertices Number of Layers
hex3262k 3262312 3342701 4

Table 4.5.: Properties of the hexahedra Model

For this study a mesh with regular hexahedral elements consisting of four layers was used.
As can be seen in Figure 4.13 the surface of the hexahedra model does not approximate
the surfaces of the nested shells nearly as well as the tetrahedral models do. Nevertheless
hexahedral meshes hold a very big relevance in practical applications since the generation of
high quality tetrahedra meshes is a very involved and time consuming task. The edge lengths
of the hexahedra are chosen to be 1 mm corresponding to the voxel size which is obtained
from high-resolution MRI measurements.
Partly due to our choice of basis functions the computational effort for hexahedral meshes of
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this size is enormous, which is why we will limit ourselves to a smaller amount of dipoles and
will not increase the polynomial degree of the basis functions. Since the models used for this
study were not geometry-adapted it is questionable whether an increase in polynomial order
would have produced better results or whether they would be limited by the bad geometrical
approximation. The properties of the mesh can be seen in Table 4.5. The conductivities
chosen for this simulation were the same as for the tetrahedra study in Table 4.2.

Remark 4.1. Although computational cost is a big factor when using DG methods it should
be noted that it is not a general obstacle for using fine hexahedral meshes. Parallelization on
a distributed memory architecture could both handle the huge memory demand and decrease
the solving and assembly time for the matrix system. This thesis, however, will be limited to
sequential computations.

4.3.2. Simulation Parameters

Eccentricities
0.0124 0.5030 0.7500 0.8735 0.9353 0.9661 0.9816 0.9893 0.9931 0.9951

Table 4.6.: Eccentricities for the hexahedra model study

For this study ten dipoles were distributed along a beam close to the center along the x-axis
using the eccentricities shown in Table 4.6. Radial dipoles were given the unit vector in x
direction as moments and tangential dipoles were oriented along the z axis, both using the
same positions.

4.3.3. Results for the Hexahedral Mesh

The results for the hexahedral mesh are quite similar to those on the tetrahedral meshes
although some unexpected behaviour especially for the MAG was observed.
The RDM for the highest eccentricities could be brought down using the DG method of

polynomial degree one, see Figure 4.14. In the case of radial sources the value for the FEM
result could be reduced from 0.0905 to 0.0383 for the outermost source. For all of the five
sources with highest eccentricity an improvement could be observed although the behaviour
for the DG method of the third but last source seems somewhat contradictory to formerly
produced results, not exhibiting the usual exponential growth. For the lower eccentricities
the FEM seems to produce the better results but it should be mentioned that the absolute
error values in this case are still acceptable and in practice sources with higher eccentricity
are more relevant. The tangential sources show comparable results for the RDM although in
this case only for the last source position an improvement could be made.

The relative error in Figure 4.15 again shows a slight improvement for the outermost source in
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Figure 4.14.: Plot of the RDM over the eccentricities for the radial sources (top) and the
tangential sources (bottom) for the hexahedral model. The right hand side
figures show the last five eccentricities.

the radial case where the FEM error could be improved from 0.1039 to 0.0843 using the DG
method. For the tangential sources the overall behaviour again is not quite as expected from
previous simulations but it shows a clearer advantage of the DG method over the conforming
FEM. Except for sources of relatively low eccentricity the DG method produces better results
and can bring down the error by approximately 26% for the outermost source.

As already mentioned the MAG showed some surprising behaviour as can be seen in Figure
4.16. First of all it should be noted that the DG method does not improve the magnitude
error in the case of radial sources but shows worse results than for the FEM simulations. The
MAG for the last source position lies around 1.074 for the DG method and 1.047 for the FEM.
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Figure 4.15.: Plot of the relative error over the eccentricities for the radial sources (top) and
the tangential sources (bottom) for the hexahedral model. The right hand side
figures show the last five eccentricities.

What is more the FEM results show a drop in error for the last two eccentricities which clearly
should not be expected. For the case of tangential sources the DG method could once again
improve the results of the conforming Finite Element method for the last six eccentricities.

It should be kept in mind that the evaluation for hexahedral meshes in this thesis can only
give a first glimpse at the behaviour of DG methods on this type of meshes. In particular
regarding the somewhat strange error plots for the MAG it seems necessary to perform further
simulations, possibly using parallelized computations. Furthermore the DG methods seem to
suffer from the very rough approximation of the spheres’ surfaces brought on by the use of
hexahedral elements. Simulations using geometry adapted-meshes should help to clear things
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Figure 4.16.: Plot of the MAG error over the eccentricities for the radial sources (top) and
the tangential sources (bottom) for the hexahedral model. The right hand side
figures show the last five eccentricities.

up and might make the use of higher order basis functions more rewarding. We will come
back to this issue in the conclusion in Chapter 5.
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4.4. Study 3: Real Head Model

In this section we will present visualizations of results obtained by simulations performed on
a realistic approximation of a human head.
Since there is no analytic solution available for this type of simulation, we are not able to
conduct an error analysis employing the error measures used in the previous sections. Al-
though it would be possible to compare the Discontinuous Galerkin solution to a conforming
FEM result on a heavily refined mesh we will not do so because the effort needed to compute
the refined FEM solution would probably be disproportionate. The results from the previous
sections should suffice to back the hypothesis that Discontinuous Galerkin methods can pro-
duce results superior to that of the conforming Finite Element method. Therefore we will
limit ourselves to present visualizations of the simulation results. All the visualizations in this
section were performed using the SCIRun2 environment.

Model Number of Elements Number of Vertices Number of Compartments
Real Head Model 6107561 984569 10

Table 4.7.: Properties of the real head model.

Physiological Tissue Conductivity(in S/m)
Skin 0.43
Eye 0.43
Skull Compacta 0.008
Skull Spongiosa 0.025
Brain Stem 0.14
Cerebellum Gray Matter 0.33
Cerebellum White Matter 0.14
Gray Matter 0.33
White Matter 0.14
CSF 1.79

Table 4.8.: Physiological tissues of the real head model and the corresponding isotropic
conductivities.

2A Problem Solving Environment(PSE) for modelling, simulation and visualization of scientific problems.
See: http://www.sci.utah.edu/cibc-software/scirun.html
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Source Configuration
Position 154.405 114.846 178.102
Moment -0.3365 0.9126 0.2323

Table 4.9.: Source position and moment for the real head model simulation.

The head model used in this study was obtained by MRI measurements from a healthy 25
year old male subject. The voxel size for the MRI scans was 1 mm and constrained Delaunay
tetrahedralization(CDT) was applied to the image data resulting in a tetrahedral mesh with
the properties presented in Table 4.7. Ten different compartments were distinguished and
assigned the conductivities shown in Table 4.8. In the following visual results of the simulation
will be presented.

Figure 4.17.: Visualization of the norm of the current density σ∇u using a coronal slice at
position y=114. Figure provided by Sven Wagner.
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Figure 4.18.: Visualization of the current density σ∇u using a coronal slice at position y=114.
Figure provided by Sven Wagner.
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Figure 4.19.: Visualization of the current density σ∇u using a coronal slice at position y=114
zoomed in around the source position. Figure provided by Sven Wagner.
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Figure 4.20.: Mapping of the current density σ∇u on a regular 4 mm cube grid. Saggital slice
through x=154. Figure provided by Sven Wagner.
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Figure 4.21.: Mapping of the current density σ∇u on a regular 4 mm cube grid, excluding
the CSF compartment. Saggital slice through x=154. Figure provided by Sven
Wagner.
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4.5. Study 4: Performance Analysis

The previous studies on tetrahedral and hexahedral multi sphere models have shown that
Discontinuous Galerkin methods can indeed improve upon the results obtained by FEM simu-
lations. As described before the gain in accuracy obtained by DG methods stems in great part
from the introduction of local basis functions which, especially for the case of basis orders
larger than one, results in a much higher number of degrees of freedoms and thus a much
bigger matrix system. Although the storage of the matrix can benefit from the matrix struc-
ture of the DG method by using blockwise storage patterns (see Section 2.6.1), the higher
number of degrees of freedom still results in a much larger memory consumption and higher
solving time.

In this section we will finish our analysis of Discontinuous Galerkin methods by presenting a
few figures concerning the memory consumption and solving time which is to be expected for
the different methods on the various meshes. The objective of this section is not to give a
detailed analysis of this matter but to provide an estimate of the hardware requirements for
the use of DG methods in source analysis applications.

All the simulations in the previous section and measurements in this section were carried out
on a machine running the Linux distribution Ubuntu 12.04 with 96685.63 Megabytes of RAM
and an Intel Xeon X5660 CPU running at 2.8 Ghz.

Solving Time

In order to solve the matrix systems resulting from the DG discretizations a highly optimized
algebraic multigrid solver was used in the previously presented numerical simulations, see [34]
for more details. For the comparisons in this section, additional simulations were carried out
using a conjugate gradient solver with incomplete LU decomposition as a preconditioner. This
way both the DG and the FEM methods could be evaluated using the same type of solver
and a more accurate estimate of the total effort needed can be given. We will however also
plot the solving time for the AMG since it can give us a more realistic idea of solving times
that can be expected. The solving times presented in this section are the averaged solving
times obtained from simulations for five dipoles with different eccentricities and orientations.
For each source the system was solved up to a total defect of 10−8.
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Figure 4.22.: Bar graph of the computational time per dipole on the coarse tetrahedral mesh.

The computational times on the coarse tetrahedral mesh have been visualized in Figure
4.22 using bar graphs. The total time in this figure includes the assembly time for the residual,
the solving of the system and all of the post processing like the calculation and output of
the error criteria. The FEM computations have an average computation time of roughly 4
seconds where the solving time takes up only 0.3376 seconds making it very hard to improve
upon in terms of speed. Obviously that is an unrealistic endeavour since we are dealing with
a much larger number of degrees of freedom when using DG methods. In the case of the
conforming FEM there is one DOF for each vertex in the grid while the number of DOFs in
the DG case can be calculated as #(local basis functions)×#elements. Using the values for
the number of basis functions for the P3

k basis in Table 2.1 and the geometric properties of
the coarse tetrahedral mesh as shown in Table 4.1 the number of DOFs turn out to be as
shown in Table 4.10.

No. of DOFs
tet190k tet3159k hex3262k realhead

FEM 31.627 518.730 3.342.701 984.569
DG1 760.240 12.638.300 26.098.496 24.430.244
DG2 1.900.600 31.595.750 88.082.424 61.075.610
DG3 3.801.200 63.191.500 208.787.968 122.151.220

Table 4.10.: Number of DOFs for each method on the tetrahedral meshes, the hexahedral
meshes and the real head model.
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Keeping these numbers in mind it is obvious that a comparison between computational
times for DG methods and the conforming Finite Element method is not very helpful. Also
the increase in accuracy observed for the DG methods which comes with a much larger number
of DOFs can not be expected to come without any drawbacks with regard to computational
cost.
The absolute values for the computational time on the coarse tetrahedral mesh still seem to be
practical. Especially when considering the fact that for the calculation of the inverse problem
transfer matrices will be used which only require the computation of #electrodes right hand
sides. What is more the AMG solver can greatly improve the performance, especially for the
case of higher degree basis functions. In the case of polynomial order three the solving time can
be reduced by 34.2% and for the second order approximation by about 47.4%. Parallelization
should further speed up not only the solving time but also the remaining portion of the total
time as the assembly of the residual would also be done in parallel.

For the fine tetrahedral mesh the computational time turned out to be as shown in Figure
4.23.
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Figure 4.23.: Bar graph of the computational time per dipole on the fine tetrahedral mesh.

Once more the comparison between FEM and the DG methods does not make much sense
with regard to the computational time. From the figure it becomes obvious that the solving
time takes up a big portion of the total computational time. With the CG solver taking about
8557.4 seconds to solve one right hand side for the DG method of polynomial order two it
is certainly questionable whether this method is applicable for everyday applications using
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this specific solver. Nevertheless the AMG solver shows potential to make this method more
handleable with respect to computational cost bringing down the solving time by roughly
71%. Again parallelization may increase this gain in speed even more.

The values obtained for the hexahedral mesh are very similar as can be seen in Figure 4.24.
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Figure 4.24.: Bar graph of the computational time per dipole on the hexahedral meshes.

For the simulation on the real head model the total computation time was 3028.98 seconds
of which 2346.69 seconds were spent solving the system using the AMG solver.

Memory Usage

To obtain the measurements presented in this section, the Linux system tool htop was used.
All the observations were made during the solving of the matrix system which should give a
good estimate of the total memory demand as this is the time where the both the matrix and
the right hand side vector have to be stored.
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Figure 4.25.: Bar graph of the memory cost on the tetrahedral coarse tetrahedral mesh (left
figure) and the fine tetrahedral mesh (right figure).

Figure 4.25 shows the memory demand for the different methods used on the coarse tetra-
hedral mesh. While all methods still have a quite moderate memory demand due to the
comparably small number of elements in the mesh it still becomes clear that the demand in
memory grows in a rapid fashion. As presented in Definition A.2 the number of basis func-
tions for a local Pd

k basis is equal to
(k+d

k

)
and thus for fixed dimension d = 3 this becomes

(k+3)(k+2)(k+1)/6 meaning that the number of DOFs will follow a cubic growth pattern
when increasing the polynomial degree. The memory demand can be expected to grow ac-
cordingly. The issue becomes more pressing when looking at the memory consumption on the
fine tetrahedral mesh. Even DG of polynomial degree one exceeds the capabilities of average
desktop computers with a demand of 8.66 Gigabytes of memory.
For the real head model a memory demand of approximately 16.4 Gigabytes was observed.
The hexahedral mesh shows comparably high values as shown in Figure 4.26 making it clear
that DG simulations will in practice have to be run on machines with high memory capacities.
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Figure 4.26.: Bar graph of the memory cost on the hexahedral.

Still it remains to say that the DG method can handle a large number of DOFs much
more efficient than conforming Finite Element methods with respect to memory consumption.
When neglecting any other source on memory cost for our implementation the ratio of memory
per DOF on the coarse tetrahedral mesh becomes 0.01385 Megabytes/DOF for the conforming
FEM while the DG methods handle the degrees of freedom with 0.000847, 0.000711 and
0.00094817 for the DG methods of polynomial degree one, two and three respectively. Similar
values can be obtained for the other geometries. This fact is a result of the block sparsity
pattern of the matrix as described in Section 2.6.1.
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In this thesis we have presented a method for dealing with the EEG Forward Problem that
to the best of our knowledge has not been used in the field of source analysis as of yet. We
have discussed the general properties of the EEG Forward Problem and the difficulties that
arise by the introduction of a dipole model into this formulation. As a means to deal with this
complication we presented the Subtraction Approach for conforming FEM. The basic frame-
work for Discontinuous Galerkin methods was discussed and we used it to transfer the ideas
of the Subtraction approach to a DG context. As a result the weak Discontinuous Galerkin
formulation of the Subtraction Approach was presented. We analysed some basic qualities of
this formulation and DG methods in general and motivated their application to the field of
source analysis.
We presented the implementation of the DG method for the Subtraction Approach that was
carried out in the context of this thesis using the DUNE framework. The main design features
and work flow of the program were explained and we pointed out how the program can be
extended.
Using the implementation we carried out a number of simulations on tetrahedral and hexahe-
dral sphere models which were presented and discussed. We showed how the results obtained
by a state of the art method like conforming FEM can be improved upon by the use of
Discontinuous Galerkin methods with differing polynomial degrees. Especially in the case of
sources on high eccentricities a big improvement could be observed when using higher order
DG methods on tetrahedral meshes. Although not as conclusive as the results on the tetra-
hedra models and limited to polynomial order one the simulations on the hexahedral mesh
showed some promising results which may have to be studied in more depth.
We concluded the evaluation of the numerical studies by discussing the computational cost
of the DG methods giving an estimate for hardware requirements for practical applications.

With regard to further applications of Discontinuous Galerkin methods in the field of source
analysis a number of possibilities are feasible:

As discussed in the derivation of the Subtraction DG Approach the method still lacks a proper
proof of convergence. The work done by Ern [29] for heterogeneous diffusion problems with
low-regularity solutions might serve as a blueprint for further efforts in this direction but will
probably require some modifications and extensions due to the nature of our right hand side.

Since computational cost is still a big factor for the DG methods it would be advantageous to
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make the implementation capable of parallel computations on a memory distributed architec-
ture. This way both the high computational time and memory demand could be addressed.
Initial work has already been put into this but still some more effort has to be made.

As already mentioned, one of the main applications of the EEG forward simulation is its key
role in the solution of the inverse problem. If Discontinuous Galerkin simulations are to be
used in this context it seems unavoidable to implement the generation of transfer matrices
for rapid computations of the Forward Problem [35]. The standard methodology for the con-
forming FEM case will have to be adapted in order to compute transfer matrices using DG
forward simulations.

With further regard to computational cost it should be said that compared to different dipole
models for the EEG Forward Problem the Subtraction Approach requires the most effort due
to its fully populated right hand side vector. Other dipole models, among the most popular
the Venant Approach and the Partial Integration Approach [3], only produce sparse right hand
side vectors resulting in greatly reduced computational effort. Also these methods are strong
competitors with respect to the accuracy of the produced numerical results [5]. However,
the methods as described in existing literature are only described for a node based formula-
tion such as conforming FEM making some adaptations for the application of Discontinuous
Galerkin methods necessary. Given a valid DG formulation of the approaches the task of
implementing these methods in DUNE should prove rather straightforward using the imple-
mentation of the Subtraction Approach as a basis.

Another topic of growing interest within the field of brain research is that of brain stimulation
using techniques like transcranial direct current stimulation(tDCS) and transcranial alternat-
ing current stimulation(tACS). Those are non-invasive, easy-to-use and inexpensive techniques
which have shown potential for the treating neurological conditions like Alzheimer’s disease,
Parkinson’s disease and epilepsy. Further applications include the enhancement of cognitive
functions and support of rehabilitation of motor functions after strokes. Finite Element sim-
ulations on very complex and detailed models have been performed [37] and produced more
insight into this matter. Since methods like tDCS are performed by delivering a low elec-
tric current through the brain it may be beneficial to carry out numerical simulations using
Discontinuous Galerkin methods due to their flux formulation and numerical conservation
properties.

For practical applications the use of real head models with anisotropic conductivities is of
course much more relevant than the study of rather artificial sphere models. The implemen-
tation of the local operator class of the Subtraction DG Approach is capable of handling
anisotropic conductivities but some modifications would have to be made to the surrounding
infrastructure in the program, e.g. the import of the conductivities for each element.
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Real head models will most likely be present in the form of hexahedral meshes generated from
MRI measurements as the generation of high quality tetrahedral models is a very sophisticated
process. Since hexahedral models were only discussed briefly in this thesis and the results
obtained in the simulations seem to leave room for improvement it might be necessary to
carry out further simulations on hexahedra models first. The DG methods seems to suffer
much more from the rough approximation of the sphere’s surface than the conforming FEM.
Accordingly it would be interesting to see if this issue can be improved when using geometry-
adapted meshes [36]. The beneficial effects when using geometry-adapted hexahedral meshes
for FEM based source analysis were studied in [39]. The current implementation will probably
have to be modified slightly in order to be able to handle this kind of meshes.

A wholly different approach with regard to the use of meshes could be taken by using the Un-
fitted Discontinuous Galerkin Method [4]. This method combines the Unfitted Finite Element
Method with Discontinuous Galerkin methods resulting in a setting where the computational
mesh does not have to resolve the geometry of the domain. The information necessary for
the approximation of the domain is taken directly from a source like MRI data and is subse-
quently evaluated during the matrix assembly using local triangulation techniques. By doing
so the UDG method produces a high quality approximation of the domain’s geometry even
on relatively coarse computational meshes. The application of the Unfitted Discontinuous
Galerkin method in the field of source analysis may not only alter the standard work flow of
practical applications but may also help to avoid the high effort necessary to obtain high high
quality tetrahedra meshes.

Regarding the accuracy of the DG methods of higher polynomial order than one the use of
conforming Finite Element methods of degree one as a reference can only serve as a first
orientation point. A more extensive study would include the comparison of Discontinuous
Galerkin methods of a fixed polynomial degree with Finite Element methods of corresponding
degree. The implementation of the FEM program used in this thesis allows for higher degree
basis functions on tetrahedral meshes but including results from such simulation would have
gone beyond the scope of this thesis.

We pointed out the qualities of DG methods for simulations on locally refined meshes and
local p-adaptivity which might be another area in which applications in source analysis might
be able to profit from Discontinuous Galerkin methods. The effects of an adaptive Finite
Element method on the Subtraction Approach have been studied in [38] and might be a
possible starting point. The combination of the grid refinement with local adaptation of the
degree for the polynomial basis functions may prove fruitful as well.
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A. Functional Analysis for Discontinuous
Galerkin Methods

Here we will collect some general results from functional analysis and the theory of partial
differential equations and also some notations and results that are important when analysing
DG methods. In this we closely follow [27]. For proofs and more background we refer to [28]
and [27].

In the following X and Y are Hilbert spaces and L (X ,Y ) denotes the vector space spanned
by bounded linear operators from X to Y equipped with the norm

‖A‖L (X ,Y ) := sup
v∈X\0

‖Av‖Y
‖v‖X

∀A ∈L (X ,Y ).

Furthermore X ′ denotes the duality space of X .

Definition A.1 (Coercivity). Let X be a Hilbert space and let a ∈L (X ×X ,R). The
bilinear form a is called coercive on X if there is a Csta > 0 such that

∀v ∈ X Csta‖v‖2
X ≤ a(v,v).

Using coercivity, the well-posedness of the problem

Find u ∈ X s. t. a(u,w) = 〈 f ,w〉X ′,X f. a. w ∈ X (A.1)

where 〈·, ·〉X ′,X denotes the duality pairing between X ′ and X , can be shown:

Lemma A.1 (Lax-Milgram Lemma). For a∈L (X×X ,R) and f ∈ X ′ the problem (A.1)
is well-posed if the bilinear form a is coercive on X. Furthermore it can be shown that:

‖u‖X ≤
1

Csta
‖ f‖X ′
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Definition A.2 (Polynomial Space Pk
d). Let k ≥ 0 be an integer, Ak

d :={
α ∈ Nd | |α|l1 ≤ k

}
and | · |lp the p-norm. Then the polynomial space Pk

d of polyno-
mials of d variables, of total degree at most k, is defined as

Pk
d :=

p : Rd 3 x 7→ p(x) ∈ R | ∃(γα)α∈Ak
d
∈ Rcard(Ak

d) s. t. p(x) = ∑
α∈Ak

d

γαxα

 (A.2)

The dimension of Pd
k is equal to card(Ak

d) =
(k+d

k

)
.

Definition A.3 (Polynomial Space Qk
d). Let k ≥ 0 be an integer and Bk

d :={
α ∈ Nd | |α|l∞ ≤ k

}
. Then the polynomial space Qk

d of polynomials of degree at most k
in each variable is defined as

Qk
d :=

p : Rd 3 x 7→ p(x) ∈ R | ∃(γα)α∈Bk
d
∈ Rcard(Bk

d) s. t. p(x) = ∑
α∈Bk

d

γαxα

 (A.3)

The dimension of Qd
k is equal to card(Bk

d) = (k+1)d .

Definition A.4 (Broken Polynomial Space). Given a triangulation Th and using Defini-
tions A.2 and A.3 we define the broken polynomial spaces as

Pk
d(Th) :=

{
v ∈ L2(Ω) | ∀T ∈Th, v|T ∈ Pk

d(T )
}

and

Qk
d(Th) :=

{
v ∈ L2(Ω) | ∀T ∈Th, v|T ∈Qk

d(T )
}
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Definition A.5 (Sobolev Space W m,p(Ω)). Let Ω be a domain, m ≥ 0 an integer, 1 ≤
p≤ ∞ a real number and Lp(Ω) the Lebesgue Space. Then the Sobolev Space W m,p(Ω)
is defined by

W m,p(Ω) := {v ∈ Lp(Ω) | ∀α ∈ Am
d , ∂

αv ∈ Lp(Ω)} , (A.4)

where Am
d defined as in Definition A.2 and ∂ α the distributional derivative.

For p = 2 we write Hm := W m,2. Hm becomes a Hilbert space when equipped with the
scalar product

(v,w)Hm(Ω) := ∑
α∈Am

d

(∂ αv,∂ αw)L2(Ω). (A.5)

Definition A.6 (Element Wise Partial Integration Formula). For ψ,φ ∈Pk
d(Th)(or ψ,φ ∈

Qk
d(Th)) the following holds:∫

Ω

∇ ·∇ψφ dx =−
∫

Ω

∇ψ ·∇φ dx+
∫

∂Ω

∇ψ ·~nφ ds

+ ∑
γe, f∈Γint

∫
γe, f

J∇ψφKds
(A.6)

Or equivalently ∫
Ω

∇ψ ·∇φ dx =−
∫

Ω

∇ ·∇ψφ dx+
∫

∂Ω

∇ψ ·~nφ ds

+ ∑
γe, f∈Γint

∫
γe, f

J∇ψK〈φ〉+ 〈∇ψ〉JφKds
(A.7)
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A. Functional Analysis for Discontinuous Galerkin Methods

Definition A.7 (Broken Sobolev Space W m,p(Th)). Given a triangulation Th of the
domain Ω, an integer m≥ 0 and a real number 1≤ p≤∞, we define the broken Sobolev
space

W m,p(Th) := {v ∈ Lp(Ω) | ∀T ∈Th, v|T ∈W m,p(T )}

and

Hm :=
{

v ∈ L2(Ω) | ∀T ∈Th, v|T ∈ Hm(T )
}
.

Here W m,p(T ) and Hm(T ) denote the Sobolev spaces as introduced by Definition A.5.

Definition A.8 (Broken Gradient). On the broken Sobolev space W 1,p(Th) we define
the broken gradient ∇h : W 1,p(Th)→ [Lp(Ω)]d such that for all v ∈W 1,p(Th),

∀T ∈Th, (∇hv)|T := ∇(v|T ).

The normal Sobolev spaces are subspaces of the broken Sobolev spaces and on them broken
gradient is equal to the distributional gradient. Furthermore the subscript h can be left out
when the broken gradient appears inside an integral over a fixed mesh element T ∈ Th(see
[27] for details).

Lemma A.2 (Discrete Trace Inequality). For all yh ∈Vh, γ ∈ Γ and γ ⊂ ∂E for an E ∈Th
we have

h1/2
γ ‖yh‖Lq(γ) ≤Ctr‖yh‖L2(E) (A.8)

where Ctr only depends on the dimension d, the polynomial degree k of the functions in
Vh and mesh regularity.

Proof. See for example [33] or [32].
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Lemma A.3. For vh ∈Vh and σ bounded we have

|vh|†,σ ,2 ≤CtrN
1/2
∂
‖σ1/2

∇hvh‖[L2(Ω)]
d (A.9)

with |vh|†,σ ,2 defined as in (2.35) and Ctr from Lemma A.2.

Proof.

|vh|†,σ ,2 =

 ∑
E∈Th

∑
γ∈Γint :γ⊂∂E

hγ‖σ1/2
∇vh |E ·~nγ‖2

L2(γ)︸ ︷︷ ︸
≤C2

tr‖σ1/2∇hvh‖2

[L2(E)]d


1/2

≤Ctr

 ∑
E∈Th

∑
γ∈Γint :γ⊂∂E

‖σ1/2
∇hvh‖2

[L2(E)]d︸ ︷︷ ︸
≤N∂ ‖σ1/2∇hvh‖2

[L2(E)]d



1/2

≤CtrN
1/2
∂

(
∑

E∈Th

‖σ1/2
∇hvh‖2

[L2(E)]d

)1/2

=CtrN
1/2
∂
‖σ1/2

∇hvh‖[L2(Ω)]
d

Lemma A.4. For vh ∈Vh and w ∈V†h we have∣∣∣∣∣ ∑
γe, f∈Γint

∫
γe, f

〈σ∇hvh〉JwhK

∣∣∣∣∣≤ |vh|†,σ ,2|w|J,σ . (A.10)

Proof. Using the Cauchy-Schwarz inequality, see [29].
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B. Discontinuous Galerkin Subtraction
Approach

Consistency of the Weak DG Formulation for the Subtraction Approach

Taking the weak DG formulation of the subtraction approach as described in definition 2.7
we need to show that

α
cons
DG (ucorr,y,v) = λ (v)

for the solution ucorr,y ∈H1(Ω) of the subtraction approach as described in definition 1.3 with

α
cons
DG (u,v) :=−

∫
Ω

σ(x)∇u(x) ·∇v(x)dx+ ∑
γe, f∈Γint

∫
γe, f

〈σ∇u〉(s)JvK(s)ds

and

λ (v) :=
∫

Ω

σ
corr,y(x)∇u∞,y(x) ·∇v(x)dx+

∫
∂Ω

σ
∞,y(x)∇u∞,y(s) ·~nv(s)ds

− ∑
γe, f∈Γint

∫
γe, f

〈σ corr,y
∇u∞,y〉(s)JvK(s)ds

Taking ucorr,y as described above and inserting it into αcons
DG (u,v) we get:

α
cons
DG (u,v) =−

∫
Ω

σ(x)∇ucorr,y(x) ·∇v(x)dx+ ∑
γe, f∈Γint

∫
γe, f

〈σ∇ucorr,y〉(s)JvK(s)ds

=
∫

Ω

∇ ·σ(x)∇ucorr,yv(x)dx−
∫

∂Ω

σ∇ucorr,y(s)~nv(s)ds

− ∑
γe, f∈Γint

∫
γe, f

Jσ∇ucorr,yK(s)〈v〉(s)+ 〈σ∇ucorr,y〉(s)JvK(s)ds+ ∑
γ∈Γint

∫
γe, f

〈σ∇ucorr,y〉(s)JvK(s)ds

=
∫

Ω

∇ ·σ(x)∇ucorr,y(x)v(x)dx−
∫

∂Ω

σ∇ucorr,y(s)~nv(s)ds− ∑
γe, f∈Γint

∫
γe, f

Jσ∇ucorr,yK(s)〈v〉(s)ds

In the above the partial integration formula was used for the second equality.
Using the Neumann boundary condition the boundary term can be substituted by

−
∫

∂Ω

σ∇ucorr,y(s)~nv(s)ds =
∫

∂Ω

σ∇u∞,y(s) ·~nv(s)ds
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B. Discontinuous Galerkin Subtraction Approach

and split up into∫
∂Ω

σ(s)∇u∞,y(s) ·~nv(s)ds =
∫

∂Ω

σ
corr,y(s)∇u∞,y(s) ·~nv(s)ds+

∫
∂Ω

σ
∞,y(s)∇u∞,y(s) ·~nv(s)ds

arriving at ∫
Ω

∇ ·σ(x)∇ucorr,y(x)v(x)dx+
∫

∂Ω

σ
corr,y(s)∇u∞,y(s) ·~nv(s)ds

+
∫

∂Ω

σ
∞,y(s)∇u∞,y(s) ·~nv(s)ds− ∑

γe, f∈Γint

∫
γe, f

Jσ∇ucorr,yK(s)〈v〉(s)ds

The partial integration formula is applied to the second term giving us∫
Ω

∇ ·σ(x)∇ucorr,y(x)v(x)dx+
∫

Ω

∇ ·σ corr,y(x)∇u∞,y(x)dx+
∫

Ω

σ
corr,y(x)∇u∞,y(x) ·∇v(x)dx

− ∑
γe, f∈Γint

∫
γe, f

Jσ
corr,y

∇u∞,yK(s)〈v〉(s)+ 〈σ corr,y
∇u∞,y〉(s)JvK(s)ds

+
∫

∂Ω

σ
∞,y

∇u∞,y(s) ·~nv(s)ds− ∑
γe, f∈Γint

∫
γe, f

Jσ∇ucorr,yK(s)〈v〉(s)ds

The first two terms add up to zero since∫
Ω

∇ ·σ(x)∇ucorr,y(x)v(x)dx+
∫

Ω

∇ ·σ corr,y︸ ︷︷ ︸
σ corr,y=σ−σ∞,y

(x)∇u∞,y(x)dx

=
∫

Ω

∇ ·σ(x)∇ucorr,y(x)v(x)dx+
∫

Ω

∇ ·σ(x)∇u∞,y(x)dx−
∫

Ω

∇ ·σ∞,y(x)∇u∞,y(x)dx

=
∫

Ω

∇ ·σ(x)∇u(x)v(x)dx︸ ︷︷ ︸∫
Ω

f (x)v(x)dx

−
∫

Ω

∇ ·σ∞,y(x)∇u∞,y(x)dx = 0

where in the last step the property of the singularity potential u∞,y was used(see section 1.5).
In order to show the consistency it remains to show that

∑
γe, f∈Γint

∫
γe, f

Jσ
corr,y

∇u∞,yK(s)〈v〉(s)+ Jσ∇ucorr,yK(s)〈v〉(s)ds = 0

This holds true since using σ corr,y = σ −σ∞,y on the first term yields

∑
γe, f∈Γint

∫
γe, f

Jσ∇u∞,yK(s)〈v〉(s)+ Jσ∇ucorr,yK(s)〈v〉(s)− Jσ
∞,y

∇u∞,yK(s)〈v〉(s)ds

= ∑
γe, f∈Γint

∫
γe, f

Jσ∇uK︸ ︷︷ ︸
=0

(s)〈v〉(s)− Jσ
∞,y

∇u∞,yK︸ ︷︷ ︸
=0

(s)〈v〉(s)ds = 0

and consistency has been shown.
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C. Additional Plots and Figures

Study 1: Coarse Tetrahedra Model
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Figure C.1.: Boxplot for the RDM of the radial sources on the coarse tetrahedral model.

85



C. Additional Plots and Figures

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

0.01 0.5022 0.7483 0.8714 0.9329 0.9637 0.9790 0.9867 0.9906 0.9925

mag_fem

mag_dg1

mag_dg2

mag_dg3

Figure C.2.: Boxplot for the MAG of the radial sources on the coarse tetrahedral model.
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Figure C.3.: Boxplot for the relative error of the radial sources on the coarse tetrahedral
model.
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Figure C.4.: Boxplot for the RDM of the tangential sources on the coarse tetrahedral model.
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Figure C.5.: Boxplot for the MAG of the tangential sources on the coarse tetrahedral model.
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Figure C.6.: Boxplot for the relative error of the tangential sources on the coarse tetrahedral
model.
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