Motivation:
- Cardiac and respiratory motion cause artifacts and spatial blurring
- Non-linear cardiac motion → PVE induced intensity modulations

Contribution:
- Given: Mass-Preserving (MP) transformation model VAMPIRE [1]
- Evaluation of different motion models
 - displacement field (DF), compute an individual displacement for each voxel
 - spline transformation (ST), i.e., free-form deformation
- Focus on parametrization of ST
 1. Number of spline coefficients
 2. Regularization type and parameter

Materials and Methods

XCAT Software Phantom Data
- Generation of two gates (Processing: simulation of PVE (Gaussian blurring), forward projection, Poisson noise, EM reconstruction [2])
- Multi-level strategy along with a Gauss-Newton optimization
- Find optimal transformation \(y \) by minimizing the following functional:
 \[
 \min_y D_{SSD} ([T \circ y] \text{det}(\nabla y)) + \alpha S(y)
 \]
 \(D_{SSD} \): SSD distance functional, \(S \): Regularization functional, \(\alpha \): scalar value

Displacement Field (DF) Regularization
- Hyperelastic \(\alpha \) (parameter search by minimizing the error measure \(\epsilon \) below)

Spline Transformation (ST) Regularization
- Hyperelastic (same values as estimated for the hyperelastic DF registration)
- Internal FaIR regularization of the spline coefficients’ norm
- Evaluation of different scalar values \(\alpha \in \{5 \cdot 10^{-6}, 10^{-6}, 5 \cdot 10^{-6}\} \)

Spline coefficients
- Optimization of spline coefficient factor \(s \in \{2, 4, 6, 8, 10, 12, 14, 16, 18\} \)
- Image size is divided by \(s \) to define the number of spline coefficients; given an image size of \(80 \times 80 \times 44 \), the number of spline coefficients ranges between \(40 \times 40 \times 22 \) (\(s = 2 \)) and \(4 \times 4 \times 2 \) (\(s = 18 \))

Evaluation
1. Error measure \(\epsilon(y, y_{GT}) = \frac{1}{|\Omega|} \int_{\Omega} |y(x) - y_{GT}(x)| \, dx \)
2. Total processing time \(t \)

Results: DF vs. ST

![image](a) Template image \(T \)

![image](b) Reference image \(R \)

Fig. 1: The template image \(T \) (a) is registered to the reference image \(R \) (b).

Discussion and Conclusion

- ST model is superior to DF strategy in terms of processing time and accuracy
- Optimal number of spline coefficients: \(8 \times 8 \times 4 \) (\(s = 10 \)) → comparable results for all regularizations with subvoxel accuracy for \(s = 10 \) (voxel size: \(3.375 \) mm)
- Optimal regularization for ST:
 - Hyperelastic regularization (highest accuracy; guaranteed diffeomorphism)
 - Fair regularization with \(\alpha = 5 \cdot 10^{-6} \) (good accuracy; short processing time)

References