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Abstract Expression Templates (ET) are a powerful tool
for development of user-friendly numerical libraries. By this
concept and by operator overloading in C++, numerical algo-
rithms can be implemented in a mathematical notation with-
out decreasing the performance in comparison to optimized
C or FORTRAN codes. In this paper, we present new Expres-
sion Template techniques. First, we explain the concept of
“Easy Expression Templates”, which are easier to implement
than classical ET. Then, we explain “Fast Expression Tem-
plates”. This concept leads to an optimal performance even
on special architectures like vector machines. Furthermore,
concepts for storing expressions and code optimizing are pre-
sented. In order to verify the usability of these programming
techniques in real applications, we discuss a template library
which calculates local stiffness matrices arising from Finite
Element discretizations.

1 Introduction to expression templates

Expression Templates (ET) were invented independently by
Veldhuizen [12] and Vandevoorde [15]. The primary aim of
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this technique is to provide an efficient C++ implementation
of elementary operators like +,−, for long vectors and other
objects. The difficulty is that a simple operator overloading
of such operators leads to cache inefficient codes by allo-
cating unnecessary auxiliary vectors and iteration loops for
large expressions. To avoid this problem, ET implementa-
tions apply operator overloading to build up a type-dependent
expression tree which represents all terms of the expression.
The evaluation of such an expression tree is performed in
the assignment operator by inline functions of the expression
tree. By inlining and template concepts in C++, the compiled
Expression Template code is as efficient as their correspond-
ing C counterparts.

Expression Templates are used in several applications
within the scientific computing community. For instance,
applications of Expression Templates in physics are described
in [3]. Blitz++ [14] and uBLAS [16] are two linear alge-
bra libraries which use ET and reach the performance of
C or FORTRAN implementations. PETE (Portable Expres-
sion Templates Engine) was introduced to support pro-
grammers in coding the ET technique and offered ways
to use ET on STL containers [4]. POOMA [8] supports
users in implementing mathematical algorithms associated
with Finite Difference discretizations of PDEs. Finally, in
[10], it was shown that ET are very helpful for imple-
menting a Finite Element library with a user friendly inter-
face.

However, many C++-programmers still hesitate to imple-
ment the ET technique. One reason is that ET is an unusual
implementation technique for most C++-programmers. But
there is also a fundamental drawback of the classical Expres-
sion Template technique. To explain this, let us consider the
following implementation of the operator+ (addition of
two expressions) of the ET implementation referring to [15]
(see Listing 1).
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60 J. Härdtlein et al.

Listing 1 Part of a traditional expression templates implementation

template < class A, class B >
Expr < Binary_Expr < Expr < A >,Expr < B >,Plus > >
operator + (const Expr < A > & a , const Expr < B > & b) {

typedef Binary_Expr < Expr < A >,Expr < B >,
Plus > Type;

return Expr < Type > (Type(a ,b) ) ;
}

This overloading of the operator+ can only be applied to
add two general expressions. However, additional overload-
ings should be implemented for sum of an expression and a
vector, a vector and an expression and addition of two vectors.
This means that at least four overloaded versions have to be
implemented for every binary operator. Even more variants
of operators are needed when the operands include constant
fundamental data types (e.g. double values).

In the next section, we introduce a simplified mechanism
for implementing ET, decreasing the necessary coding up to
55% of traditional codes. Section 3 presents enhancements
of the ET technique, including Fast ET and automatic return
type generation. To demonstrate the efficiency of these ET
advancements, we discuss Colsamm, a C++ template library
for calculating local stiffness matrices arising from FEM-
discretized PDE operators. Additionally, we outline some
applications of Colsamm.

2 Easy expression templates

In this section, we present a new technique for implement-
ing ET, which simplifies the application of ET in numerical
libraries. The main idea of this new technique is the use of
the curiously recurring template pattern (CRTP) mechanism
in C++. Before explaining the application of this mechanism
in detail, let us describe the concept of a wrapper class in an
expression template implementation.

2.1 Wrapper class and inheritance at compile time

The complexity of common expression template imple-
mentations results from the template interfaces of the
multiple overloaded operators. However, the operator over-
loading in C++ works on general template types as well
(e.g. ... operator+ (const A& a, const B& b)...). Therefore, gen-
eral overloaded versions of one operator often lead to
ambiguous operator versions, especially when mixing
expression template implementations. Thus, a type-secure
operator overloading with ET requires a common interface
which encapsulates all occurring expressions. This common
interface is implemented by a wrapper class, which handles
an object representing an expression and refers all function
calls to this stored expression object. Generally, this wrapper

class serves as an appropriate interface and can be equipped
with further abilities.

The consequence of a wrapper class is that one has to
implement the operator+ several times as explained in
the introduction. To avoid this, we apply the CRTP technique
[13] for the operation classes (e.g. addition or multiplication)
and the underlying data structures (e.g. vectors or monomi-
als). For example, let X be an operation class, i.e. class
sum, or a class representing a vector, i.e. class Vec-
tor. Then, this class X inherits from the templated wrapper
class using X itself as template argument. Then, any wrapped
object can be converted into its encapsulated object and the
corresponding type is determined at compile time using the
template argument of the object. In order to perform these
conversions automatically, we implement a cast operator in
the wrapper class, which yields an object of the derived class
type.

Listing 2 shows a wrapper class (Expr) using the CRTP
technique. Observe that the cast operator in Listing 2 returns
a constant reference (const E&). The internal conversion is
applied to pointers (∗static_cast<const E∗>(this)). Hence, a
recursive calling of the operator itself is avoided. This would
have occurred if we had used references internally.

Listing 2 Implementation of CRTP-based wrapper class

template <class E >
struct Expr {

operator const E & () const {return ∗static_cast<const
E∗ >(this );}

};

2.2 Easy expression templates

Using the class Expr as in Listing 2, we obtain a simple
and type-secure expression template implementation. This
is shown in Listing 3 for a component-wise sum of vectors.

Listing 3 Easy expression templates concerning sums of expressions

template < class L, class R >
class Sum : public Expr < Sum < L,R > > {

const L & l ; const R & r ;
public :

5 Sum(const L & l_ , const R & r_) : l ( l_ ) , r ( r_) {}
double give( int i ) const { return l . give( i )+r .
give( i ) ; }

};
template < class L, class R >

10 inline Sum < L,R >
operator+ (const Expr < L > & l , const Expr < R > & r ) {

return Sum < L,R > ( l , r ) ;
}

class Vector : public Expr < Vector > {
15 int size ;

double ∗data ;
public : / / Constructors , destructor . . .
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Advanced expression templates programming 61

double give ( int i ) const { return data[ i ] ; }
template < class E >

20 void operator= (const Expr< E > & e_) {
const E & e( e_ ) ;
for ( int i=0; i<size ; ++i )

data[ i ] = e . give( i ) ;
}

25 };

The first part of Listing 3 shows the class Sum, which rep-
resents the sum of two expressions. This class is derived
from the wrapper class using CRTP. The constructor initial-
izes the constant data member references, while the func-
tion give(int i) performs addition of the i-th component and
refers further evaluations to the stored operands. Addition-
ally, lines 9 to 13 contain the overloaded plus operator, which
returns an operating object. Since casting of the wrapped
objects to its derived object is automatically applied, the
parameters of the operators fit to the operating class con-
structor (see line 12). Note that the vector class is derived
from the wrapper class as well. Since a Vector class object
can be converted to Expr<Vector>, no further overloading of
the plus operator is required. In Listing 3, we skip the con-
structors and the destructor of the Vec\−tor class and out-
line the give(int i) function, which returns the i-th entry of the
vector data array. Observe that the overloaded assignment
operator requires an argument of type Expr . In the assign-
ment operator, evaluation of the expression is performed
by the function give(int i). To this end, an explicit cast of
the wrapped expression to the derived object is needed (see
line 20).

The ET version explained above is more compact and
shorter. Therefore, it is easier to understand and to implement
compared to the usual codings. Furthermore, today’s com-
piler lead to the same performance for both ET implemen-
tations. Moreover, we observed that older compilers achieve
more efficient codes in case of Easy ET.

Based on the above implementation, vector-like expres-
sions can be implemented in the same way as their mathe-
matical notation (see Listing 4).

Listing 4 Usage of the ET library

int main() {
Vector a , b, c ;
. . .
c = a + b ∗ a;

}

This Easy ET version facilitates programmers to realize
libraries with even more complex data structures than vec-
tors. For instance, expression templates can be applied to
describe polynomials, differential operators, and other math-
ematical objects (see Sect 4).

3 Expression templates advancements

In this section, we explain several advanced expression tem-
plate concepts. The main aim of these concepts is to improve
the efficiency of ET. But, we also present concepts for storing
expressions, such that an expression can be used in different
parts of a code.

3.1 Expression templates performance studies

The most detailed study concerning performance problems
of ET implementations were reported by Bassetti, Davis and
Quinlan [1]. They discovered the effect of register spillage,
which is basically caused by leaks in matching the aliases of
the vector’s data pointers during the evaluation of ET expres-
sions.

In order to motivate the enhancements concerning the ET
implementations presented below, let us consider the expres-
sion

c = a + b ∗ a.

Here, the sum and the multiplication are applied component-
wise. Then, the Easy ET implementation in Section 2 yields
the following implementation of the assignment operator
(after instantiating the template parameters):

c .operator= (const Expr<Add<Vector ,Mult<Vector ,
Vector > > & e_){

const Add<Vector ,Mult<Vector ,Vector> & e (e_) ;
for ( int i=0; i<size ; ++i )

data[ i ] = e . give( i ) ;
}

By inlining the give(i) functions, the right-hand side of the
component-wise evaluation is expanded to

c . data[ i ] = e . give( i ) ;
= e . l . give( i ) + e . r . give( i ) ;
= e . l . give( i ) + e . r . l . give( i ) ∗ e . r . r . give( i ) ;

In this expression, the compiler has to substitute the give(i)

calls by an array access to the underlying arrays, a.data[i] and
b.data[i]. But, due to the conservative restrictions in the alias-
ing concept, the compiler cannot ensure that the first and the
third variable point to the same unchanged data of a.data[i].
Since several loads are started, this aliasing leak creates per-
formance problems, even if the data is already resident in
cache. Such optimization problems mainly affect ET imple-
mentations on high performance platforms, e.g. vector or
shared memory platforms.

To support compilers in optimizing ET programs, we
introduced the Fast ET technique, which was first published
in restricted form in [9]. In [5] this method was studied in
a more implementable manner. It was observed that Fast
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ET lead to performance improvements even in case of usual
workstations with standard compilers. In this paper, we pres-
ent a different implementation technique for Fast ET. This
implementation technique is much easier to implement and
to understand than the old versions in [9] and [5].

3.2 Fast expression templates

An interesting property of ET is that the whole tree structure
of the expression is contained in the type of the expression
template. The idea of Fast ET is to use this type for evaluation
of an expression. To this end, the member function give(i) is
defined to be a static function. Furthermore, all data have to
be defined as static data. This implies that two vectors or two
constants can only be distinguished by the type of the object.
This is obtained by introducing a template parameter which
enumerates objects like vectors or constants. This concept
can be viewed as meta programming. Listing 5 shows the
Fast ET counterpart of the program of Listing 3.

Listing 5 Fast expression templates implementation

template<class E>
struct FastExpr {};

template<class L, class R >
struct FastSum : public FastExpr< FastSum < L,R > > {

static double give( int i ) { return L: : give( i ) +
R: : give( i ) ; }

};
template<class L, class R>
FastSum < L,R >

operator+ (const FastExpr < L > & l , const
FastExpr< R > & r){
return FastSum<L,R>();

}
template<int id>
class FVector : public FastExpr< FVector<id> > {

int size ;
static double∗ data ;

public : / / Constructors , destructor . . .
static double give( int i ) { return data[ i ] ; }
template <class E>
void operator= ( const FastExpr< E > & e_ ) {

for ( int i=0; i < size ; ++i )
data[ i ] = E: : give( i ) ;

}
};

template<int id> double∗ FVector<id >::data = NULL;

This complete meta version of ET has to be applied in a
slightly different way compared to traditional ET implemen-
tations. Since Fast ET have static data pointers, all vectors
have to be enumerated by an unique template integer. The
example of Listing 4 has to be implemented as follows:

Listing 6 Usage of the fast ET library

FVector < 1 > a; FVector < 2 > b; FVector < 3 > c;
. . .
c = a + b ∗ a;

Fast ET require similar implementations for all constant
values like 2.0 or 4.7.

Focusing on the performance of this enhanced ET tech-
nique, we compared some Fast ET implementations (FET)
with their classical ET (CET) and C counterparts (NET),
respectively. Our studies were performed on high perfor-
mance platforms as well as on workstations. First, we recog-
nized, that the enhanced meta ET implementations compiled
up to ten times faster than the classical codings. Neverthe-
less, the compile time of every ET implementation increases
polynomial with respect to the depth of the expression tree.

Concerning the performance of the executables, we
restrict ourselves to two graphs resulted from the NEC SX-
6/48M6 at the HLRS Stuttgart, Germany, which is a shared
memory vector system [11]. The samples were executed on
one node (covering 8 CPUs) with automatic vectorization.
The behavior of the performance graphs is similar on further
tested platforms, e.g. the Hitachi SR 8000 supercomputer
(LRZ Munich) or an AMD Opteron Cluster using OpenMP.

Figure 1 depicts the execution time per iteration on NEC
SX-6 with respect to the vector size. The graphs show the
computations of a 2D Poisson (nine-point stencil) and 3D
Poisson (21-point stencil) problem, respectively. In order to
achieve an easy vectorizable solver we implemented the Jaco-
bian-method. The performance results show that Fast ET lead
to the same performance as its C counterpart.

Listing 7 Vectorizable Jacobian solver of the 2D poisson problem

FVector < 0 > x( size ) ; FVector < 1 > dummy ( size ) ;
FVector < 2 > rhs( size ) ; FVector < 3 > exact ( size ) ;

/ / Assign rhs and exact_solution . . .
Const < 1 > const1 = 3. /8 . ; Const < 2 > const2 = 1. /8 . ;
while ( eps < L2_Norm (exact−x) ){

dummy = const1 ∗ rhs + const2 ∗
(N(x) + NW(x) + W(x) + SW(x) + S(x) + SE(x)

+ E(x) + NE(x) ) ;
x = dummy;

}

In addition, Listing 7 displays some excerpts of the coding
used for the 2D problem focusing on the implementation of
the Jacobian solution step. Herein, N,NW,... denote the direc-
tions north, north-west, and so on, respectively. This example
demonstrates the usage of a suitable class, that encapsulates
the constant values within an Fast ET expression.

3.3 Fast expression templates in practice

When using Fast ET in real applications, only slight dif-
ferences arise in comparison to classical ET codings. The
code fragment in Listing 7 demonstrates how the vector and
scalar variables have to be enumerated. Generally, the user
is responsible for the unique enumeration of the vectors and
their application. However, there are ways to support an user
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Fig. 1 Performance results on
the NEC SX-6 vector computer
for Poisson’s problem in 2D and
3D, respectively. The figures
show the execution time per
iteration by increasing vector
size, displayed in logarithmic
scale

by implementing checks for unique initialization and suitable
warnings.

Furthermore, the Fast ET technique has to be used only
for the performance critical parts. For example, the initiali-
zation of the vectors and the computations that do not require
intensive efforts can still be handled by a non-static ET imple-
mentation. In more detail, at the beginning of a Fast ET block,
the enumerated vectors have to be initialized by assigning the
non-static vector arrays to the static data pointers. We empha-
size that this initialization need not be a deep copy. Instead,
only the pointer addresses have to be assigned. Afterwards,
the performance critical calculations can be performed, using
the Fast ET library. Finally, after finishing the computations,
no data pointer reassignment is needed, since the former vari-
ables still point to the corresponding data arrays.

3.4 Return type minimization

This subsection addresses some implementation challenges
arising from ET and operator overloading. Even if this tech-
nique is already used in some ET implementations, we pres-
ent this mechanism to show the flexibility of this approach.
To this end, we explain this approach for the Easy ET imple-
mentation in Listing 3.

The accessing functions give(int i), presented in the previ-
ously listings, have a specific return type. While program-
ming an ET library, we would like to get away from fixing
the base type of our vector class. Moreover, in some appli-
cations it is important to have versions of vectors relying
on, e.g. double and complex<double> base data type and it
is necessary to combine different types of variables within
expressions. The performance would be improved signifi-
cantly, if the evaluation of the expression is performed with
the actual smallest data type (e.g. double) in all parts of the
expression.

Actually, this type information is already known at com-
pile time, and thus we recall a mechanism that is already used
in PETE, see [4]. The partial specialization of template types,
i.e. traits, is used to specify the optimal expression-dependent
return type of a member function. Listing 8 shows an imple-

mentation of a return type minimization according Table 1
for the types double and complex<double>.

Listing 8 Traits accomplishing the return type minimization

template < typename L, typename R >
struct ResultType {

typedef std : :complex < double > Type;
};

template <>
struct ResultType <double ,double > {

typedef double Type;
};

The return type minimization struct ResultType is used in the
ET implementation in Listing 9. Observe the typedef defini-
tion in the public part of the operating classes and the Vector
class. This typedef is used to calculate the minimal return
type of the operation. Obviously, this return type minimiza-
tion via traits is extendable to more than two types. Then,
more types have to be implemented via additional special-
izations.

The return type minimization allows to construct ET
implementations, that are independent from an underlying
data type. This means that the same ET implementation can
be used for objects of different type. This is helpful for con-
structions like Vector<Vector<double> > in an ET library.

Listing 9 Usage of return type minimization in the easy ET implemen-
tation

template <class L, class R>
class Sum : public Expr< Sum < L,R > > { . . .
typedef typename ResultType < typename L: :Type,

typename R: :Type >::Type Type;
Type give( int i ) const { return l . give( i ) + r . give( i ) ; }

};

template < typename baseType >
class Vector : public Expr< Vector<baseType> > { . . .

baseType∗ data ;
public :

typedef baseType Type;
/ / Constructors , destructor . . .
Type give( int i ) const { return data[ i ] ; }

};
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Table 1 Possible type combinations of binary expressions basing on dou−ble and com−plex<dou−ble> types

Type of expression L Type of expression R Resulting return type

double double double

double complex<double> complex<double>

complex<double> double complex<double>

complex<double> complex<double> complex<double>

3.5 Expression-dependent specializations

An ET implementation provides mechanisms for handling
and evaluating any expression combinations, which might be
built via the overloaded operators. However, on high perfor-
mance platforms, special cases may occur, where some hand-
crafted implementations still perform significantly faster
than the ET codings. This might be a very efficient imple-
mentation of the matrix-vector multiplication, an optimized
Gauss-Seidel iteration, or an optimized code on a special
hardware. In this case, one can implement an additional
overloading of the assignment operator for that kind of
expression. Then, the compiler chooses this specialized
implementation of the assignment operator instead of the
general template implementation. As a consequence, the
optimal implementation of an expression is automatically
chosen by the compiler.

Within Colsamm, we use the template specialization in
order to handle gradient vectors arising from the first deriv-
atives of basis functions in a different way than arbitrary
vectors containing problem-specific spatial data (see Sec-
tion 4.1).

3.6 Mechanisms for reusing ET objects

Flexible and user-friendly ET libraries require mechanisms
for storing and reusing expressions. This can be obtained by
virtual functions or by type encapsulation for codings based
on Fast ET.

Let us first explain the concept of using virtual functions.
Concerning the Easy ET implementations in Listing 3, the
coding has to be modified such that all member variables
of the ET-operating classes are no longer references but full
variables. To avoid unintended copies of data arrays of vector
object, we introduce a template specialization of the wrapper
class which handles the vector objects as references (end of
Listing 10). Then, we add an abstract base class on top of the
wrapper class that provides the virtual functions giveV(int i).
These are implemented in the wrapper class and refer to he
corresponding functions of the underlying operating classes.
The virtual functions are named differently (giveV instead of
give), in order to facilitate full inlining of the ET function

calls. Finally, Listing 10 sketches a storable version of the
previously presented ET codings.

Listing 10 Code fragment concerning the storage of ET objects

struct Base {
virtual double giveV ( int i ) const = 0;
virtual ~Base(){};

};
/ / the wrapper class
template <class E>

struct Expr : public Base {
operator const E & () const {return ∗static_cast<const
E∗>(this );}

virtual double giveV ( int i ) const {
return ((const E & )(∗ this ) ) . give( i ) ;

}
};
template <class L, class R >

class Sum : public Expr < Sum < L,R > > {
const L l ; const R r ;

public :
Sum (const L & l_ , const R & r_) : l ( l_ ) , r ( r_) {}
double give ( int i ) const ; / / as before

};
/ / special wrapper for vectors
template <class E>

struct Expr <const E & > : public Base {
operator const E & () const {return ∗static_cast<const
E∗>(this );}

virtual double giveV ( int i ) const {
return ((const E & )(∗ this ) ) . give( i ) ;

}
};

class Vector : public Expr<const Vector & > {
. . .

void operator= (const Base∗ expr){
for( int i=0; i< size ; ++i )

data[ i ] = expr−>giveV( i ) ;
}

};

By the above construction, we can store every expression
by assigning it to a Base∗ pointer. However, this implemen-
tation works with deep copies of the occurring ET objects
and can decrease the performance while building the expres-
sion. Indeed, virtual function calls cannot be inlined. But
the nested calls of the underlying ET operating classes
are still optimized in the expected manner. Consequently,
this mechanism for storing ET is applicable with a slightly
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reduced efficiency when it is used in performance critical
parts. An application of this concept of storing expressions
is explained in Sect. 4.1.3. In this application, finite element
basis function are described by expressions and the corre-
sponding expression template is stored using the above con-
cept.

In performance critical parts one should not apply the con-
cept of storing ET with virtual functions. In this case, we
recommend Fast ET and storing expressions by type encap-
sulation. Then, there is no performance loss.

Using a typedef, an expression template based in Fast ET
can be stored by assigning its type to a new type name.
Since Fast ET work exclusively on types, this new type
name contains all informations about the expression. The
new type name is evaluated using the static functions of
this new type. Since Fast ET implementations operate on
static data within Vec\−tor and Const classes, the evaluation
of the new type name leads to the same performance as
the evaluation of the original Fast ET (see application in
Sect. 4.1.2).

Listing 11 Code fragment concerning the storage of ET objects

FVector < 1 > a; FVector < 2 > b; FVector < 3 > c;
. . .
typedef __typeof__(a + b∗a) Expression1 ;
. . .
/ / in i t ia l i ze Vectors a, b
c = Expression1 ( ) ;

4 Expression templates in action

In this section, we explain how to apply the different ET con-
cepts of the previous section. To this end, we focus on the
numerical solution of PDEs. Obviously, ET can be used in the
linear algebra part of a PDE solver. Here, we explain how to
apply different ET concepts for calculating the local stiffness
matrices of a FE-discretization of a PDE. For demonstrating
the practicability of ET, we implemented the concepts in a
library Colsamm (see [6]).

Colsamm uses different advanced Expression Templates
techniques:

• In Sect 4.1.2, mapping functions from the reference ele-
ment to an arbitrary element are implemented by Fast
ET, since optimal performance is required. These ET are
stored and repeatedly reused ( see Sect. 3.6).

• In Sect. 4.1.3, basis functions of the finite element space
are described with Easy ET based on virtual functions
according to Sect. 3.6. Here, performance issues do not
exist, but the expression objects have to be reused.

• In Sect. 4.1.4, the weak form of a partial differential equa-
tion is described by Easy ET.

4.1 Colsamm - Computing local Stiffness Matrices

4.1.1 Basic goals and ET applications

The FEM is an important discretization technique for partial
differential equations. To implement this method, it is nec-
essary to calculate local stiffness matrices. The aim of the
library Colsamm is to provide a helpful tool for the calcula-
tion of these local stiffness matrices.

To explain the interface of Colsamm, let us recall the basic
definition of a Finite Element according [2]. A Finite Element
is a triple (K , PK , SK ), where

• K represents the geometry of the element, e.g. triangle,
hexahedron, etc.,

• PK defines a space of functions on K , usually polynomi-
als, and,

• � is the set of linear functionals on PK , which represent
the element-specific degrees of freedom.

To calculate the local stiffness matrix of an element, we addi-
tionally need a mapping function

FK : K̂ → K ,

where K̂ is a fixed reference element. This mapping induces
a space of functions PK̂ on the reference element K̂ . Fur-
thermore, let aK : PK × PK → R (or C be the bilinear form
corresponding to the variational formulation of the PDE. Let
us assume that this bilinear form is given in an integral form
such that the integrand I is known. Colsamm contains differ-
ent expression interfaces for the description of the following
three mathematical objects:

• the set of basis functions of PK̂ corresponding to �,

• the mapping FK : K̂ → K , and
• the integrand I of the bilinear form aK within the varia-

tional formulation of the problem.

In the following sections we sketch the ET implementations
within Colsamm. Moreover, we compare the interface of the
library with corresponding mathematical notations. Further
examples and applications of Colsamm can be found in [6].

4.1.2 Mapping definition via fast ET

The implementation of the mapping function is a perfor-
mance critical part, since the mapping function is needed
for the evaluation of the integrand at the Gaussian points
on the reference element. Therefore, Colsamm provides an
interface for describing the mapping function FK : K̂ → K
by using the Fast ET technique. To explain this interface, let
us restrict to the case of a tetrahedron and a linear mapping.
A linear mapping function can be described as follows:
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T (u, v, w) = P0 + (P1 − P0)u + (P2 − P0)v

+(P3 − P0)w .

Here P0, P1, P2, P3 denote the vertices of the tetrahedron K ,
and u, v, w represent the three coordinates on the reference
element K̂ .

Corresponding to the points Pi , Colsamm defines the
objects P_0(), P_1(), P_2(),P_3().

By applying the macro

#define Define_Element_Transformation(A) typedef __
typeof__(A)

the user of Colsamm can store the corresponding Fast ET
into the type called Tetrahedron_Transformation as follows:

Define_Element_Transformation (
P_0() + ( P_1() − P_0()) ∗ _U() +

( P_2() − P_0()) ∗ _V() +
( P_3() − P_0()) ∗ _W() )

Tetrahedron_Transformation;

With the help of the above macro a new type is defined,
which later can be used for further calculations inside the
library Colsamm.

4.1.3 User-defined basis functions

Let (bi )i∈� be the set of nodal basis functions of a finite
element. One can show, that these basis functions have to
be evaluated only one time at each Gaussian point of the
reference element independent of the number of finite ele-
ments. Thus, the description of the nodal basis functions is
not a performance critical part of the code. Furthermore, there
exist applications (e.g. interpolation at certain points), which
require to save the basis functions in order to enable addi-
tional evaluations after the initialization of the basis func-
tions. Therefore, Colsamm applies the concept of Easy ET
with virtual functions for describing and storing the expres-
sion of each basis function bi (see Sect. 3.6). For the defini-
tion of the basis functions, the library provides monomials,
trigonometrical and exponential functions. Additionally, it is
possible to introduce vectorial basis functions.

As an example, let us consider linear finite elements on a
tetrahedral element. The corresponding nodal basis functions
on the reference element are:

λ0(x, y, z) = 1 − x − y − z, λ1(x, y, z) = x,

λ2(x, y, z) = y, λ3(x, y, z) = z.

User-defined finite elements in Colsamm are introduced by
defining special element classes, that derive from a general
element class with appropriate template parameters. Con-
cerning the definition of a tetrahedron, note that

• it has four corners,
• we intend to introduce four basis functions,
• a tetrahedron is a three-dimensional polygon,
• the reference element is the unit tetrahedron, and
• the unit element can be mapped to a general tetrahedron

by applying the previously defined affine linear mapping
Tetrahedron_Transformation.

For defining a tetrahedral element, we put these above data
into template parameters of the class _Simple_Element_ and
derive the class _Tetrahedron_. Additionally, the basis func-
tions have to be implemented in the corresponding con-
structor. Listing 4.1.3 shows the complete definition of the
tetrahedral element using Colsamm.

struct _Tetrahedron_
: public _Simple_Element_<4,4,D3, Unit_Tetrahedron ,

Tetrahedron_Transformation> {
_Tetrahedron_() {

this−>Set ( 1. − X_() − Y_() − Z_() ) ;
this−>Set ( X_() ) ;
this−>Set ( Y_() ) ;
this−>Set ( Z_() ) ;

}
} ;

More complex elements can be built by changing the num-
ber of basis functions and the template parameters. Colsamm
already provides linear finite elements on elementary geome-
tries K . Furthermore, the library includes special construc-
tions for vector finite elements.

4.1.4 Implementing the integrand

Let us assume that the integrand of the bilinear form a(v,w)

is given. Colsamm provides an interfaces to describe the
expression of this integrand using the Easy ET technique.
This interface includes differential operators like grad and
d_dx. The functions v,w are abbreviated by v_() and w_() . The
member function integrate of the user-defined finite element
returns the local stiffness matrix for a given finite element.

Let us explain this in more detail in case of Poisson’s prob-
lem using linear elements on tetrahedra. The local bilinear
form of this problem is

aK (v,w) =
∫

K

∇v · ∇w dµ,

where K is a tetrahedron. Then, the corresponding local stiff-
ness matrix is a 4 × 4 matrix. Using Colsamm, this local
stiffness matrix can be calculated as follows:

_Tetrahedron_ myTetrahedron;
std : : vector<std : : vector<double> > local_matrix ;

/ / loop over the elements
/ / pass the coordinates of the actual element’s vertices
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myTetrahedron( actual_vertices ) ;
. . .

/ / computation of the local st i f fness matrix
local_matrix = myTetrahedron. integrate (grad(v_()) ∗
grad(w_( ) ) ) ;

As a second example, let us consider the variational formu-
lation of Maxwell’s equations. The corresponding bilinear
form is:

aK (v,w) =
∫

K

∇ × v · ∇ × w + εK (x, y, z)vw dµ.

This bilinear form can be described in a natural way by
Colsamm:

local_matrix = myTetrahedron. integrate (
curl (v_vec3D()) ∗ curl (w_vec3D()) +

epsilon∗v_vec3D()∗w_vec3D() ) ;

where, epsilon can either be a constant value or a variable
function.

4.2 Applications of Colsamm

The library Colsamm is used for calculating local stiffness
matrices in different applications like laser simulation, sim-
ulation of optical flows, simulation of melting furnaces, and
computations for dipole modeling. Let us explain two of these
applications in more detail:

Electroencephalography (EEG) dipole source analysis In
[17], Colsamm was applied to Electroencephalography (EEG)
dipole source analysis. In this application, software devel-
opers in Münster, Germany, used Colsamm as a module.

However, the developers of Colsamm work in Erlangen,
Germany. Usually, the collaboration of different research
groups on a common software project is not an easy task.
Here, expression template were very helpful for describing a
clear interface between the library Colsamm and the applica-
tion
code.

Now, we briefly describe the application itself. In EEG
dipole source analysis, it is necessary to solve a Poisson-
type equation with different anisotropies and a dipole source
on the right hand side. Colsamm assembles the local stiff-
ness matrices and the right hand side of the problem. By
user-friendly interface of Colsamm, this only requires a few
lines of code. Figure 2 shows a numerical result obtained
by the EEG dipole source analysis using the Colsamm
module.
Laser simulation In laser simulation, different kind of phys-
ical effects have to be simulated. These effects range from
thermal lensing effects to optical effects caused by the con-
struction of the laser resonator. For the simulation of these
effects, we use a finite element library based on expression
templates. This finite element library BlockUG provides dif-
ferential operators on block structured grids using trilinear
elements. These differential operators can be defined by the
user of the library. The application of expression templates
allows a user friendly description of differential equations.
For the calculation of the local stiffness matrices BlockUG
calls Colsamm. Therefore, the expression template library
BlockUG applies Colsamm as a module.

These examples show that expression templates are very
useful for the development of user friendly libraries. Nev-
ertheless, we would like to mention that there exist other
projects which provide highly efficient libraries for the cal-
culation of local stiffness matrices (see [7]).

Fig. 2 Left Sliced tetrahedral finite element head model with EEG
(Electroencephalography) electrodes (international 10/20 system). The
surfaces of inner and outer skull are indicated in the figure. Right Elec-
tric potential distribution of a quasi-radial dipole source in the primary

somatosensory cortex (area SI) computed in a three compartment (skin,
skull, brain) realistically-shaped geometry-adapted hexahedra finite ele-
ment head model with an anisotropic skull compartment
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5 Conclusions and perspectives

In this paper, we reviewed different advanced ET techniques,
which could spark new interest in this C++ programming
technique. Generally, ET libraries enable readable applica-
tion code on a high level of abstraction combined with high
performance of the executed code. But, programming ET
libraries is often viewed as difficult, and optimal performance
is not always assured. The presented ET techniques lead to
codes of optimal performance and allow an easier and more
reliable coding of ET libraries.

The concept of Easy ET, presented in Sect. 2, improves
classical ET by means of readability and maintainability (see
[13]). Also, the compile-time of Easy ET implementations is
sometimes reduced in comparison to classical implementa-
tions.

The Fast ET technique, presented in Sect. 3, is a technique
to avoid some performance problems of classical and Easy
ET implementations. Here, the use of Fast ET implementa-
tions yields C++ code with optimal performance in compar-
ison to C implementations. Since Fast ET need a quite crude
handling by the programmer, we recommend this technique
only for the performance relevant parts of a software, when
optimal performance is not obtained by Easy ET. However,
by the optimization facilities of modern C++ compilers, this
is very seldom the case. Nevertheless, Fast ET make clear
where performance problems of ET implementations may
result from.

Further, we introduced some ET related programming
techniques, which are useful in scientific computing. “Return
Type Minimization” assures optimal performances when dif-
ferent types are used together in a single expression, e.g. dou-
ble and complex. “Expression-dependent Specializations”
allow to use optimized software code for special expressions
like a matrix-vector multiplication, without loosing the read-
ability of ET application code. “Mechanisms for Reusing ET
Objects” allow to save ET Objects and to reuse them later.

Last but not least, we introduced the FEM library
Colsamm, which extensively uses the proposed advanced
ET techniques. Colsamm allows user-friendly and highly
performing computation of local stiffness matrices in finite
element discretizations of partial differential equations. It
demonstrates that ET techniques in scientific computing are
not limited to linear algebra computations, but can support the
development of complex, reliable and efficient mathematical
libraries on a much higher level of mathematical abstraction.
Therefore, Colsamm is used with great success for teaching

the finite element method in a Bachelor program of Computa-
tional Engineering at the University of Erlangen-Nuremberg.
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