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Abstract

This article provides an implementation of our non-parametric diffeomorphic image registration algo-
rithm generalizing Thirion’s demons algorithm. Within the Insight Toolkit (ITK), the demons algorithm
is implemented as part of the finite difference solver framework. We show that this framework can be
extended to handle diffeomorphic transformations. The source code is composed of a set of reusable
ITK filters and classes. In addition to an overview of our implementation, we provide a small example
program that allows the user to compare the different variants of the demons algorithm.
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Forewords

This article is a companion paper to the authors MICCAI 2007 paper [15] entitled “Non-parametric dif-
feomorphic image registration with the demons algorithm”. It is intended to share the source code of our
algorithm. As such it provides only basic information about the theory and does not present an evaluation
of the method. The reader is thus invited to refer to [15] for the theoretical aspects and for an evaluation of
the algorithm.

1 Introduction

Since Thirion’s seminal paper [13], the demons algorithm has become a popular method for the problem of
intra-modality deformable image registration. The demons algorithm has successfully been used by several
teams [16,17] and an open source implementation of it is available in the Insight Toolkit [7]. The success of
this method in the field of biomedical imaging can largely be explained by its efficiency. Thirion introduced
demons that push according to local characteristics of the images in a similar way Maxwell did for solving
the Gibbs paradox. The forces are inspired from the optical flow equations [2] and the method alternates
between computation of the forces and their regularization by a simple Gaussian smoothing.

With the advent of computational anatomy and in the absence of a justified physical model of inter-subject
variability, statistics on diffeomorphisms have become an important topic [1]. Diffeomorphic registration
algorithms are at the core of this research field since they often provide the input data. They usually rely
on the computationally heavy solution of a partial differential equation [3, 6, 8, 11, 12] or use very small
optimization steps [5]. In [15], we proposed an efficient non-parametric diffeomorphic image registration
algorithm based on an extension of the demons algorithm.

To the best of our knowledge, no diffeomorphic registration method has yet been integrated to the Insight
Toolkit. The goal of this work is to introduce the algorithm of [15] into ITK to provide an open source
implementation of an efficient diffeomorphic image registration method.

2 Overview of the Algorithm

2.1 The Demons Algorithm

It has been shown in [4] that the demons algorithm could be seen as an optimization of a global energy. The
main idea is to introduce a hidden variable in the registration process: correspondences. We then consider
the regularization criterion as a prior on the smoothness of the transformation s. Instead of requiring that
point correspondences between image pixels (a vector field c) be exact realizations of the transformation,
one allows some error at each image point.

Given a fixed image F(.) and a moving image M(.), we end-up with the global energy:

E(c,s) = 1
σ2

i
Sim(F,M ◦ c)+ 1

σ2
x

dist(s,c)2 + 1
σ2

T
Reg(s) , (1)

Sim(F,M ◦ s) = 1
2 ‖F−M ◦ s‖2 = 1

2|ΩP| ∑p∈ΩP |F(p)−M(s(p))|2 , (2)

where ΩP is the region of overlap between F and M ◦ s, σi accounts for the noise on the image intensity,
σx accounts for a spatial uncertainty on the correspondences and σT controls the amount of regularization
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we need. We classically have dist(s,c) = ‖c− s‖ and Reg(s) = ‖∇s‖2 but the regularization can also be
modified to handle fluid-like constraints [4].

Within this framework, the demons registration can be explained as an alternate optimization over s and c.
It can conveniently be summarized into the algorithm below:

Algorithm 1 (Demons Algorithm).

• Choose a starting spatial transformation (a vector field) s

• Iterate until convergence:

– Given s, compute a correspondence update field u by minimizing
Ecorr

s (u) = ‖F−M ◦ (s+u)‖2 + σ2
i

σ2
x
‖u‖2 with respect to u

– If a fluid-like regularization is used, let u← Kfluid ? u. The convolution kernel will typically be
Gaussian

– Let c← s+u

– If a diffusion-like regularization is used, let s← Kdiff ?c (else let s← c). The convolution kernel
will also typically be Gaussian

In [14], we showed that a Newton method on Ecorr
s (u) provided us with the folowing optimization step:

u(p) =−F(p)−M ◦ s(p)

‖Jp‖2 + σ2
i (p)
σ2

x

JpT (3)

where we use the local estimation σi(p) = |F(p)−M ◦ c(p)| of the image noise and where Jp =−∇T
p (M◦s)

with a Gauss-Newton method, Jp = −1
2

(
∇T

p F + ∇T
p (M ◦ s)

)
with the efficient second-order minimization

(ESM) method of [10] and Jp = −∇T
p F with Thirion’s rule. Note that σx then controls the maximum step

length: ‖u(p)‖ ≤ σx/2.

2.2 Newton Methods for Lie Groups

The most straightforward way to adapt the demons algorithm to make it diffeomorphic is to optimize (1)
over a space of diffeomorphisms. This can be done as in [9, 10] by using an intrinsic update step

s← s◦ exp(u), (4)

on the Lie group of diffeomorphisms. This approach obviously requires an algorithm to compute the expo-
nential for the Lie group of interest. Thanks to the scaling and squaring approach of [1], this exponential
can efficiently be computed for diffeomorphisms with just a few compositions:

Algorithm 2 (Fast Computation of Vector Field Exponentials).

• Choose N such that 2−Nu is close enough to 0, e.g. max
∥∥2−Nu(p)

∥∥≤ 0.5

• Perform an explicit first order integration: v(p)← 2−Nu(p) for all pixels

• Do N (not 2N!) recursive squarings of v: v← v◦ v
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2.3 Diffeomorphic Demons

By plugging the above Newton method tools for Lie groups within the alternate optimization framework of
the demons, we proposed in [15] the following non-parametric diffeomorphic image registration algorithm:

Algorithm 3 (Diffeomorphic Demons Iteration).

• Compute the correspondence update field u using (3)

• If a fluid-like regularization is used, let u← Kfluid ?u.

• Let c← s◦ exp(u), whereexp(u) is computed using Algorithm 2

• If a diffusion-like regularization is used, let s← Kdiff ? c (else let s← c).

3 Brief Note on the Implementation

Our implementation tries to follow the style and design of the Insight Toolkit. All our filter are N-
dimensional and are templated over the important types such as the pixel types. In most cases we tried
to divide the algorithm into meaningfull and reusable classes.

As shown in Algorithm 3, several blocks can be distinguished. We can first see that a method is re-
quired to compute the Lie group exponential of Algorithm 2. This algorithm takes a speed vector field
on input and provides on output a diffeomorphic deformation represented as a standard displacement
vector field. A natural choice was thus to implemented this exponential as an ITK image filter: the
ExponentialDeformationFieldImageFilter class. This filter can easily be reused in a different setting
such as to compute statistics on diffeomorphisms.

In order to ease the creation of the ExponentialDeformationFieldImageFilter class, several usefull
and reusable filter such as the DivideByConstantImageFilter are also provided.

Within the Insight Toolkit, the demons algorithm is implemented as part of the finite difference
solver (FDS) framework. Our implementation of the diffeomorphic demons is also built on top of
this framework by implementing a specialized version of a PDEDeformableRegistrationFilter: the
DiffeomorphicDemonsRegistrationFilter class. The most important modification we did to the
FDS pipeline, is to include this exponentiation step within the ApplyUpdate function of our specialized
PDEDeformableRegistrationFilter class.

In addition to these main classes, our submission also includes a set of filters that are not fully part of the
algorithm (e.g. WarpJacobianDeterminantFilter). These filters are meant to provide some statistics on
the output of the algorithms. They should ease a quantitative comparison of the different variants of the
demons algorithm.

Below is the list of classes, with brief descriptions, that we provide and use within our method:

• itk::DiffeomorphicDemonsRegistrationFilter < TFixedImage, TMovingImage, TDeformation-
Field >: Deformably register two images using a diffeomorphic demons algorithm

• itk::DivideByConstantImageFilter < TInputImage, TConstant, TOutputImage >: Divide in-
put pixels by a constant
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• itk::ESMDemonsRegistrationFunction < TFixedImage, TMovingImage, TDeformationField
>: Fast implementation of the symmetric demons registration force

• itk::ExponentialDeformationFieldImageFilter < TInputImage, TOutputImage >: Compute
a diffeomorphic deformation field as the Lie group exponential of a vector field

• itk::FastSymmetricForcesDemonsRegistrationFilter < TFixedImage, TMovingImage, TDefor-
mationField >: Deformably register two images using a symmetric forces demons algorithm

• itk::GridForwardWarpImageFilter < TDeformationField, TOutputImage >: Warp a grid us-
ing an input deformation field

• itk::MultiplyByConstantImageFilter < TInputImage, TConstant, TOutputImage >: Multi-
ply input pixels by a constant

• itk::MultiResolutionPDEDeformableRegistration2 < TFixedImage, TMovingImage, TDefor-
mationField, TRealType >: Framework for performing multi-resolution PDE deformable reg-
istration

• itk::VectorCentralDifferenceImageFunction < TInputImage, TCoordRep >: Calculate the
derivative by central differencing

• itk::VectorLinearInterpolateNearestNeighborExtrapolateImageFunction < TInputImage,
TCoordRep >: Linearly interpolate or NN extrapolate a vector image at specified positions

• itk::WarpJacobianDeterminantFilter < TInputImage, TOutputImage >: Compute a scalar
image from a vector image (e.g., deformation field) input, where each output scalar at each pixel is
the Jacobian determinant of the warping at that location

• itk::WarpHarmonicEnergyCalculator < TInputImage >: Compute the harmonic energy of a
deformation field

4 Users’ Guide

From a user’s point of view the most important file of our submission is the example application provided
in DemonsRegistration.cxx. The goal of this example is to provide a command-line tool to perform an
intra-modality deformable registration with a chosen variant of the demons. This tool works in both 2D and
3D and can trivially be extended to other dimensions.

The user can choose the input images, the variant of the demons that should be used and the type of output
that should be stored. The image IO operations use standard ITK filters meaning that all file formats suported
by ITK can be used.

Below is the list of options of the command-line tool:

• -f/–fixed-image=STRING: Fixed image filename - mandatory argument

• -m/–moving-image=STRING: Moving image filename - mandatory argument

• -b/–input-field=STRING: Input field filename - default: empty

• -o/–output-image=STRING: Output image filename - default: output.mha
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• -O/–output-field(=STRING): Output field filename, optional argument - default:
OUTPUTIMAGENAME-field.mha

• -r/–true-field=STRING: True field filename, this is for controlled experiments only where we
want to compare the results of the algorithm with a known true field - default: not used

• -n/–num-levels=UINT: Number of multiresolution levels - default: 3

• -i/–num-iterations=UINTx...xUINT: Number of demons iterations per level - default: [10 10 10]

• -s/–def-field-sigma=FLOAT: Smoothing sigma for the deformation field at each iteration - default:
3

• -g/–up-field-sigma=FLOAT: Smoothing sigma for the update field at each iteration - default: 0

• -l/–max-step-length=FLOAT: Maximum length of an update vector (0: no restriction) - default: 2

• -a/–update-rule: Type of update rule. ( 0: s← s◦exp(u) (diffeomorphic), 1: s← s+u (ITK basic),
2: s← s◦ (Id+u) (Thirion) )

• -t/–gradient-type=UINT: Type of gradient used for computing the demons force (0 is sym-
metrized, 1 is fixed image, 2 is warped moving image, 3 is mapped moving image) - default: 0

• -e/–use-histogram-matching: Use histogram matching (e.g. for different MRs)

• -v/–verbose(=UINT): Verbosity, if a verbose mode is used, the application will compute a set of
statistics and write them to a text file - default: 0; without argument: 1

• -h/–help: Display an help message and exit

This command-line tool is used within a unit test triggered by CMake.

5 Conclusion

We have proposed an ITK implementation of our efficient non-parametric diffeomorphic registration al-
gorithm. To the best of our knowledge, this is the first open-source implementation of a diffeomorphic
registration tool within the Insight Toolkit. The design of our implementation tries to follow the design of
ITK and thus provides templated N-dimensional filters. The code should be easily integrated to ITK and
provide reusable blocks.
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