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Abstract

Scalp electric potentials (EEG) and extracranial magnetic fields (MEG) are due
to the primary (impressed) current density distribution that arises from neuronal
post-synaptic processes. A solution to the inverse problem, i.e. the computation of
images of electric neuronal activity based on extracranial measurements, would
provide important information on the time course and localization of brain function.
In general, there is no unique solution to this problem. In particular, an
instantaneous, distributed, discrete, linear solution capable of exact localization of
point sources is of great interest, since the principles of linearity and superposition
would guarantee its trustworthiness as a functional imaging method, given that
brain activity occurs in the form of a finite number of distributed “hot spots”. Despite
all previous efforts, linear solutions at best produced images with systematic non-zero
localization errors. A solution is reported here, which yields images of standardized
current density with zero localization error. The purpose of this paper is to present
the technical details of the method, allowing researchers to test, check, reproduce,
and validate the new method (sSLORETA).

Introduction

This study is strictly limited to EEG/MEG inverse solutions of the type:
instantaneous, distributed, discrete, and linear. The generic form of the inverse
problem follows. There are N, instantaneous extracranial measurements. There are

N,, voxels in the brain. Typically, the voxels are determined by subdividing
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uniformly the solution space, which is usually taken as the cortical grey matter
volume or surface. At each voxel there is a point source, which may be a vector with
three unknown components (i.e., the three dipole moments), or a scalar (unknown
dipole amplitude, known orientation). The cases considered here correspond to

N, > N,.

In 1984, Hamaldinen and Ilmoniemi (1) were the first to report an
instantaneous, distributed, discrete, linear solution to the EEG/MEG inverse
problem: the well known minimum norm solution. However, the minimum norm
solution is notorious for totally misplacing actual deep sources onto the outermost
cortex, as demonstrated in (3), (2), and (8).

The problem of excessively large errors of localization remained unsolved until
the introduction of the method known as LORETA (low resolution brain
electromagnetic tomography) in 1994 (18). LORETA has fairly good accuracy in
localizing test sources even when they are deep. The overall average localization
error is smaller than one grid unit (see e.g. (3), (2), and (8)).

A series of papers published in 1998 and 1999 (see (19)-(23)) introduced for the
first time the method of high time resolution statistical parametric mapping for
tomographic images of electric neuronal activity. The idea was to adopt the methods
of statistical inference for the localization of brain function as used in PET and fMRI
studies. This methodology was applied to high time resolution, time varying LORETA
images.

In the present study a new tomographic method for electric neuronal activity is
introduced, where localization inference is based on images of standardized current
density. The method is denoted as standardized low resolution brain electromagnetic
tomography (SLORETA). Unlike the method recently introduced by Dale et al. (6),
which has systematic non-zero localization error, SLORETA has zero localization
error.

Method

Case 1: EEG with unknown current density vector

The equation of interest takes the form:
F=KJ+cl Eq. 1

In Eq. 1, FT R is a vector containing scalp electric potentials measured at
N, cephalic electrodes, with respect to a common, arbitrary reference electrode

located anywhere on the body.

(3Ny )1

The primary (impressed) current density J1 R is defined as:

J=(37,30,97,...3% ) Eq. 2
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where J,1 R?" for [ =1...N,,. At the Ith voxel, J| = (Jl”,le,Jf) contains the three

unknown dipole moments.

The superscript “I” denotes transpose.

The lead field K1 R ™) hag the following structure:

gakL1 k, .. kLNV 9
K=gk2’l k,, o kyy, : Eq. 3

Cky Ky, o ky oy
with k;,T R"®, for i =1...N,, and for /=1...N,. Note that k,, = (k%

L L,l,kfl) , Where ki’fl
is the scalp electric potential at the ith electrode, due to a unit strength X-oriented

dipole at the Ith voxel; k7, is the scalp electric potential at the ith electrode, due to a
unit strength Y- oriented dipole at the I/*h voxel; and &7, is the scalp electric potential

at the ith electrode, due to a unit strength Z- oriented dipole at the [*h voxel.

In Eq. 1, c is an arbitrary constant which embodies the fact that the electric
potential is determined up to an arbitrary constant; and 17 R"* ! is a vector of ones.
The parameter ¢ allows the use of any reference for the lead field and the
measurements.

Héamalainen, M.S., and Ilmoniemi (1) were the first to publish a particular
solution to the instantaneous, distributed, discrete, linear EEG/MEG inverse
problem. Their solution is known as the minimum norm inverse solution. However,
the minimum norm solution is notorious for totally misplacing actual deep sources
onto the outermost cortex (2).

Dale et al. (6) proposed a method in which localization inference is based on a
standardization of the current density estimates. In particular, they employed the
current density estimate given by the minimum norm solution, and they
standardized it by using its expected standard deviation, which is hypothesized to be
originated exclusively by measurement noise. The method of Dale et al. (6) produces
systematic non-zero localization errors (8), even in the presence of negligible noise.
This fact was not evaluated nor admitted in their original paper.

sLORETA is similar to the Dale et al. (6) method: it employs the current
density estimate given by the minimum norm solution, and localization inference is
based on standardized values of the current density estimates. However,
standardization in sSLORETA takes a completely different route (explained below).
The consequence is that, unlike the Dale et al. (6) method, SLORETA is capable of
exact (zero-error) localization.

The minimum norm inverse solution is harmonic (2), which means that the
Laplacian of the current density is zero, i.e., N*J (r) ° 0, where r denotes volume

coordinates in the brain. Therefore, the minimum norm inverse solution is very
smooth. The concept of smoothness employed here is discussed in greater detail in
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(8), with special emphasis on its electrophysiological interpretation. However, as
previously mentioned, the minimum norm inverse solution is notorious for its
incapability of correct localization of deep point sources (2).

This problem is solved by standardization of the minimum norm inverse
solution, and basing localization inference on these standardized estimates.

The functional of interest here is:
F=|F-KJ- 1 +a|J| Eq. 4
where a 3 0 is a regularization parameter. This functional is to be minimized with

respect to J and ¢, for given K, F, and a. The explicit solution to this minimization
problem is (see e.g. (3)):

J =TF Eq. 5
where:

T =K HEHKK H +a HY Eq. 6
H=I-11"/1"1 Eq. 7

with HT R™ " denoting the centering matrix; IT R"* ™ the identity matrix; and
17 R is a vector of ones.

For any matrix M, M" denotes its Moore-Penrose pseudoinverse (see e.g. (9)).

The centering matrix H in Eq. 7 is the average reference operator.

In what follows, for all EEG cases, the symbols F and K will denote the
average reference transforms of the EEG measurements and the lead field,

respectively. This simplifies the notation. But most important of all, the correct
solution to EEG problems is based on these average reference transforms.

Therefore, when using average reference transforms of F and K, Eq. 1
becomes:

F=KdJ Eq. 8
and the functional in Eq. 4 becomes:

F=|F - Kf +a o] Ea.9
with minimum:

J=TF Eq. 10
where:

T=K"gKK" +aHy Eq. 11

Standardization of the estimate J requires an estimate of its variance.

Note that Eq. 9 can be derived from a Bayesian formulation of the inverse
problem (see e.g. (5), Eq. 1.88 therein). In this view, the actual source variance (prior)

S, 1 REMTBM) ig equal to the identity matrix, i.e.:

S, =1,1T REMIENY) Eq. 12
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In addition, from the Bayesian point of view, the electric potential variance is due to
noisy measurements:

sr;oise — aH Eq. 13
Note that in Eq. 13, the average reference operator H plays the role of the identity
matrix in the subspace spanned by the measurement space.

It is usually assumed that activity of the actual sources and the noise in the
measurements are uncorrelated.

Based on the linear relation in Eq. 8, making use of Egs. 12 and 13, and taking
into account the independence of actual source activity and measurement noise, the
electric potential variance S. T R": "= then is:

S, =KS,K" +S/* =KK" +aH Eq. 14
See e.g. (10), Egs. 1.5.1-1.5.6 therein.

Due to the linear relation in Eq. 10, and making use of Eq. 14, the variance of
the estimated current density is:

S, =TS.T” =T(KK” +aH)T” =K’ gKK" +aH} K Eq. 15
See e.g. (10), Egs. 1.5.1-1.5.6 therein, and (9).
Note that the variance of the estimated current density is equivalent to the

Backus and Gilbert (4) resolution matrix, which is obtained by plugging Eqgs. 8 and
11 into 10:

J=TKJ =K’ KK’ +aHjf KJ=RJ=S.J Eq. 16
with:
S, =R =K’ gKK" +aHj K Eq. 17

where R is the resolution matrix.

Note that the variance of the estimated current density in Egs. 15 and 17 is not
the posterior variance in the Bayesian formulation (see e.g. (5), Eq. 1.94).

In contrast, according to Dale et al. (6), the variance of the estimated current
density is based on the assumption that the only source of variation is measurement
noise. This means that Eq. 14 now is:

sé)ale — Si;oise Eq. 18
and Eq. 15 now is:
S?ale - TSll:)aleTT - TszoiseTT Eq. 19

Note that unlike the approach of Dale et al. (6), SLORETA takes into account
two sources of variation: mainly the variation of the actual sources, and then finally,
if any, the variation due to noisy measurements.

Finally, sSLORETA corresponds to the following estimates of standardized
current density power:

jo{SS;,ELZ}_l:IZ Eq. 20
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where J T R¥" is the current density estimate at the /b voxel given by Eqs. 10 and 11
(for average reference transforms); and @ 5 alT R*? is the Ith diagonal block of matrix

Sj in Eqgs. 15 or 17.

Note that the pseudo-statistic in Eq. 20 has the form of an “F” statistic.

Note that Eq. 20 is different in form from the Dale et al. (6) standardization
(see (6), Eq. 7 therein). The Dale et al. (6) standardized estimates are:

ATé . AQ Dale u_ E
J7 €Diag(gst oy Ju  J, Eq. 21

where 57" &ZT R*? is the /th diagonal block of matrix S in Eq. 19; and for any

symmetric matrix M, Diag(M) is the diagonal matrix formed by the diagonal
elements of M.

Case 2: EEG with known current density vector orientation, unknown
amplitude

This case usually corresponds to the inverse problem when the cortical surface
is completely known. Voxels are now distributed along the cortical surface, and the
dipoles at each voxel have known orientation (perpendicular to the cortical surface).
The unknowns correspond to the amplitudes, which may take positive, zero, or
negative values. The dipole orientations (defined as unit length vectors with three
components) can be incorporated into the lead field K in Eq. 8. Details can be found in

(3).

In this case Eq. 8 has the same form, but now J1 R™! since it only contains

one unknown scalar per voxel, and KT R"* ™ since it includes the dipole orientation
at each voxel. Details can be found in (3). All the derivations employed in Eqs. 8-17
remain formally identical.

However, sSLORETA now corresponds to the following estimates of
standardized current density power:

;ﬁj Baz

where the scalar o ; 1s the current density amplitude estimate at the /th voxel; and the

Eq. 22

scalar S, Hﬂ is the Ith diagonal element of matrix SJT RN N

Note that the pseudo-statistic in Eq. 22 has the form of an “F” statistic.
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Case 3: MEG

The equations for the MEG case have identical form to Eqgs. 8-17, 20, and 22,
depending on the case of unknown dipole moments, or only unknown amplitudes.

Note that the average reference does not apply to MEG.

The only change corresponds to the equations for the MEG lead field, which
are different to those for the EEG.

Head models

Simulations were carried out in a three-shell spherical head model registered
to the Talairach human brain atlas (11), available as a digitized MRI from the Brain
Imaging Centre, Montreal Neurological Institute. Registration between spherical and
realistic head geometry used EEG electrode coordinates reported by Towle et al. (12).

In one set of practical, realistic, simulations, the solution space was restricted
to cortical gray matter and hippocampus, as determined by the corresponding
digitized Probability Atlas also available from the Brain Imaging Centre, Montreal
Neurological Institute. A voxel was labeled as gray matter if it met the following
three conditions: its probability of being gray matter was higher than that of being
white matter, its probability of being gray matter was higher than that of being
cerebrospinal fluid, and its probability of being gray matter was higher than 33%.
Only gray matter voxels that belonged to cortical and hippocampal regions were used
for the analysis. A total of 6430 voxels at 5mm spatial resolution were produced
under these neuroanatomical constraints. At each voxel, three unknown values (the
three dipole moments) were estimated, making a total of 6430x3=19290 unknowns.
25 electrodes (in EEG experiments), or 25 magnetometer sensors (in MEG
experiments) were used. In both cases, sensors and electrodes were placed in the
same locations.

In the second set of practical, realistic, simulations, the solution space was
restricted to the cortical surface, represented as 12980 triangles (voxels) (13). This
case corresponded to unknown current density amplitude (but with known
orientation), making a total of 12980 unknowns. 101 electrodes (in EEG
experiments), or 101 magnetometer sensors (in MEG experiments) were used. In both
cases, sensors and electrodes were placed in the same locations.

Comparison of imaging methods

The minimum norm solution, the method of Dale et al. (6), and SLORETA were
compared in terms of localization errors and spatial spread. The methods were tested
with point sources located at the voxels. For the case corresponding to 3 unknowns
per voxel, an arbitrary (random) orientation of the test source was employed. The test
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sources were used to generate the measurements (forward equation (Eq. 8)), which
were then given to the imaging methods. Simulations included “noise free” and
“noisy” measurements.

In the minimum norm solution case, the imaging method is based on Egs. 20
and 22, but without standardization, which is achieved by setting the variance to the
identity matrix, i.e., S; © I.

In the minimum norm solution and in sSLORETA, the regularization parameter
a in the previous equations was estimated by cross-validation. Exact details and
equations for a practical implementation of the cross-validation method can be found
in (14).

In the Dale et al. (6) method, the parameter a is interpreted as the variance of
the noise in the measurements, and this value was determined by the simulation
design. In the “noise free” case, a very small value of a was used, typically in the
order of 10-10 times the power of the scalp field produced by the test source with
lowest scalp field power.

Localization error was defined as the distance between the actual test source
and the location of the maximum in the imaging method. The spatial spread was
defined identically as in (3), which corresponds to a measure of spatial standard
deviation of the imaging method centered at the actual test source, and not at the
imaging method’s own maximum, since this would unjustifiably favor the method’s
performance.

Results

Figures la-1h summarize localization error, spatial spread, and estimated
activity values for the three imaging methods (minimum norm, Dale, and sSLORETA).

Note that the estimated activity values at test source locations cannot be
compared among the different imaging methods, since these values are in different
units for the different imaging methods. However, this feature is very informative for
comparing the quality of the different methods. For example, from Fig 1a, the ratios
of estimated source activity (maximum to minimum) were 850, 103, and, 30, for
minimum norm, Dale, and sLORETA, respectively. This means that with sSLORETA,
some sources (especially deep ones) will be underestimated. However, sSLORETA out-
performs tremendously the minimum norm and the Dale methods in this aspect.

In all noise free simulations, only sSLORETA has exact, zero error localization.
In all noisy simulations, SLORETA has by far the lowest localization errors. In most
cases, the spatial spread (i.e. “blurring”) of SLORETA is smaller than that of the Dale
method.
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Figure 1a “alid M| Mean | Median | Minimum| Maximum| Lower | Upper | Std.Dev.
“ariable Cluartile | Cuartile
kAME G430 3783832 3275719 000000 1403567 21.79449 453 21825 2217331
bNSSD G430 5219853 4957677 2937124 O5.0995 4322689 5934635 11.85655
PN axALF oint G430 0.00132 0.00072 000002 00170 0.00034 000180 0.00150
DaleE G430 33.49535 30.82207 0.00000 104.0432 21.79449 4301163 15.89592
DaleS5D G430 5525780 54.72793 3751842 BB.7242 4927447 BOB1464  7.97651
DiaxAtPoint B430 073773 064132 004574 479533 0.42049 093426 0.46353
LORE G430 0.00000 0.00000 000000 00000 0.00000 0.00000 0.00000
LORSED B430 5591575 5566131 3746555 791693 52.21046 59.50099 550024
LOFMaxAtFoint 430 0.00109 000092 000015 00045 0.00063 0.00145 0.00060
e 1 Yalid M| Mean bedian | Minimum | Maximum| Lower Upper | Std.Dev.
“ariable Cluartile | Quartile
hMNE B430 539.8857/6 33.54102 0.00000 1446545 22356068 50.459752 25.051583
MNSED B430 54.08530 51.30133 30.05812 1007995 44.34347 B1.70680 12.52109
bR 2 AL P oint G430 0.00124 000068 000002 00117 000033 000171 0.00135
DaleE G430 33.552427 3082207 000000 1040432 21.79449 4301163 16.05035
DaleS30D G430 5578534 5527424 37 20245 837353 4970205 B1.29503 8.08541
DidaxAtPoint G430 24 60599 21340858 1.34483 1588102 14.14819 31.15955 1545803
LORE G430 458595 000000 000000 502494 000000 707107 629306
LORSSD 5430 56.84441 5665639 3648186 785615 53.17038 BOG1004 570991
LORMaxAtFoint G430 0.00104 0.000537 000010 00037 0.00058 0.00140 0.00058
Figure 1c Yalid M| Mean bedian | Minimum | Maximum| Lower Upper | Std.Dev.
“ariable Cluartile | Quartile
hMNE B430 539.045392 32405370 000000 11583216 18.70829 54.058327 24.91432
MNSED B430 51.74000 51.28205 2253735 939795 40.37547 B0.93124 13.588708
bR 2 AL P oint G430 0.00161 000059 000000 00312 000021 0001858 0.00260
DaleE G430 32010965 2692532 000000 1051189 1653312 44 158330 19.78573
DaleS30D G430 5659331 5632726 819129 909237 4552004 B6.AE503 13.19172
DidaxAtPoint G430 085813 047528 000115 149132 019275 1.08431 1.123MNM
LORE G430 0.00000 000000 000000 00000 000000 0.00000 0.00000
LORSSD G430 5507968 54 83463 3232023 852298 51.05409 5379261 B.57732
LORMaxAtFoint G430 0.00102 0.00076 0.00000 00063 0.00044 0.00137 0.00030
Figure 1d Yalid M| Mean bedian | Minimum | Maximum| Lower Upper | Std.Dev.
“ariable Cluartile | Quartile
hMNE B430 4427523 3535534 0.00000 166.2077 20061553 B3.44289 50.57528
MNSED B430 B0.91795 553.75015 2372672 121.0887 4567004 73.79142 18.58118
bR 2 AL P oint G430 0.00133 000040 000000 00313 000012 000152 0.00233
DaleE G430 33.24034 7 38613 000000 1481553 16583312 4527693 21.59595
DaleS30D 5430 59.52341 59 46867 X8.B8393 107 2327 4785251 70.34295 13.95573
DidaxAtPoint G430 1720670 943516 016072 2993573 393560 21.80584 22 43930
LORE G430 1424706 7.07107 000000 147 3092 000000 18.70829 2014731
LORSSD G430 B0.77054 B0.49491 3543527 1024891 56.06658 65 47762 7.50177
LORMaxAtFoint G430 0.00033 0.00056 0.00000 00063 0.00027 0.00118 0.00078
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Figure 1e Yalid M| Mean Median | Minimum | Maximum| Lower Upper | Std.Dev.
“ariable Cluartile | Cuartile

hME 1000 28.96679 25 565807 0.00000 911744 14 34357 39.058500 1936050
hMSSD 100 53.90649 45 95056 2376308 100.3630 41.37335 6595370 18.61531
MMM axALF oint 100 000742 000317 0.00037 0.0666 000124 000961 001051
DaleE 100 4229466 33.0453589 0.00000 1665460 19.135596 | 49.959529 35 54560
Dale==D 1000 71.99552 71.43313 26968512 1109749 5710882 84.82082 18.75077
DM axAtPoint 100 020537 015743 0.01566 06211 009072 032076 0.14919
LORE 100 0.00000 0.00000 000000 0.0000 0.00000 0.00000 000000
LORSSD 100 B2.80766 B2.93061 2710507 950718 52.24510) 7424862 16.19637
LORMaxAtFoint 100 0.00625 0.00454 0.00169 0.0227 ) 0.00310 0.005861 0.00423
Figure 1f Yalid M| Mean bedian | Minimum | Maximum| Lower Upper | Std.Dev.
“ariable Cluartile | Quartile

hNE 100 35959899 31.8363 000000 1671248 206B6EE3 438968 2565805
MMNSED 100 BY9.1564 B/ 4866 40325375 1427591 575730 779292 16.15904
bl axAtF oint 100 00045 00020 000036 00606 00005 00045 000516
DaleE 100 70.0574 5159784 244020 167 3185 24 45963 120 5450 51.44253
Daless0 1000 110.5303 112.2489 7055756 130.1740 104 4996 118.6246 11.71376
DhaxAtPoint 100 20920 1.7073 -1.13414 F009 045953 34344 1.891975
LORE 100 59143 00000 000000 1671248 00000 4455863 1862143
LORSSD 1000 71.6595 715749 4262740 1382016 B2.4085 804276 1343535
LOREMaxAtFoint 100 0.0037 00026 0.00079 00226 00015 00043 0.00354
Figure 1g Yalid M| Mean bedian | Minimum | Maximum| Lower Upper | Std.Dev.
“ariable Cluartile | Quartile

hNE 100 24.1459365 18.00273 000000 749858 8305879 33.12478 2031740
MMNSED 100 51.29657 48.30866 1719826 111.1894 3699503 6250608 19.753759
bl axAtF oint 100 000516 0004420 0.00011 00744 000102 001176 0.01065
DaleE 100 24,7242 18.61624  0.00000 1217062 B8.83806 31.34624 23 32379
Daless0 1000 6319210 67 17276 2047453 11695826 48.07145 76.21105 21.03505
DhaxAtPoint 100 1.01759 084079 0.05285 379250 029971 154114 053204
LORE 100 0.00000 0.00000 0.00000 0.0000 0.00000 000000 000000
LORSSD 100 59.86620 B1.258746 23653058 1012460 4922145 6953170 16.08575
LOREMaxAtFoint 100 0.00665  0.00556 000092 0.0241 0.00251 0.00857 0.00440
Figure 1h Yalid M| Mean bedian | Minimum | Maximum| Lower Upper | Std.Dev.
“ariable Cluartile | Quartile

hNE 100 24.455886 18.66037 227264 1120305 742037 3535709 21.15045
MMNSED 1000 51.35619 4754100 2134614 1137560 37.58425 ) B3.7877 19.053778
bl axAtF oint 100 000643 0.00365 0.00004 0.0361 0.00085 00095 000759
DaleE 100 26.01610 16.77787 0.00000 1405733 761179 28.2769 27 BE495
Daless0 1000 63.01346 56.41083 27 18238 118.5519 45899483 797158 2279567
DhaxAtPoint 1000 9585396 77 37389 374402 3998579 2772483 1458574 5556523
LORE 100 086365 0.00000 000000 243531 0000000 00000 373665
LORSSD 100 55.05502 57.12851 30.12392 1056518 46.63195 B7 9525 14.95321
LOREMaxAtFoint 100 000574 0.00516  0.00037 00165 0.00234  0.0034 0.00552
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Figure 1: “a-h” summarize in tabular form localization error, spatial spread,
and estimated activity values for the three imaging methods (minimum norm, Dale,
and sLORETA). (a) EEG, 6430 voxels, 3 unknowns per voxel, 25 electrodes, 6430 test
sources with random orientation, no noise. (b) Same as (a), but with additive random
noise (noise scalp field standard deviation equal to 0.12 times the test source with
lowest scalp field standard deviation). (c) MEG, 6430 voxels, 3 unknowns per voxel,
25 sensors, 6430 test sources with random orientation, no noise. (d) Same as (c), but
with additive random noise (noise scalp field standard deviation equal to 7.21 times
the test source with lowest scalp field standard deviation). (e) EEG, 12980 voxels, 1
unknown per voxel, 101 electrodes, 100 randomly selected test sources, no noise. (f)
Same as (e), but with additive random noise (noise scalp field standard deviation
equal to 0.082 times the test source with lowest scalp field standard deviation). (g)
MEG, 12980 voxels, 1 unknown per voxel, 101 sensors, 100 randomly selected test
sources, no noise. (h) Same as (g), but with additive random noise (noise scalp field
standard deviation equal to 8.49 times the test source with lowest scalp field
standard deviation). MNE: minimum norm localization error (mm); MNSSD:
minimum norm spatial standard deviation (mm); MNMaxAbs: estimated minimum
norm activity value at test source location (arbitrary units); DaleE: Dale localization
error (mm); DaleSSD: Dale spatial standard deviation (mm); DMaxAbs: estimated
Dale activity value at test source location (arbitrary units); LORE: sSLORETA
localization error (mm); LORSSD: sLORETA spatial standard deviation (mm);
LORMaxAbs: estimated sLORETA activity value at test source location (arbitrary
units). Note that the estimated activity values at test source locations cannot be
compared among the different imaging methods (see text for explanation).
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Discussion

Properties of sSLORETA for EEG and MEG with unknown current
density vector

The main properties of SLORETA, for both EEG and MEG, based on estimates
of activity given by Eq. 20 are:
1. Exact, zero error, localization for test dipoles located at voxel positions, in the
absence of noisy measurements.
2. Exact, zero error, localization of test dipoles with arbitrary orientation, located at
voxel positions, in the absence of noisy measurements.
3. Exact, zero error, localization of test dipoles with arbitrary orientation, located at
voxel positions, in the absence of noisy measurements, even under regularization
(a>0).
4. Exact, zero error, localization even for dipoles corresponding to a non-connected
grid. For example, cortical and non-connected subcortical grey matter can now be
modeled as the solution space. The error remains zero.

Properties of sSLORETA for EEG and MEG with known current density
vector orientation, unknown amplitude

The main properties of SLORETA based on estimates of activity given by Eq.
22 are:
1. Exact, zero error, localization of test dipoles located at voxel positions, in the
absence of noisy measurements.
3. Exact, zero error, localization of test dipoles located at voxel positions, in the
absence of noisy measurements, even under regularization (a > O) .

4. Exact, zero error, localization even for dipoles corresponding to non-connected
grids. For example, cortical and non-connected subcortical grey matter can now be
modeled as the solution space. The error remains zero.

5. These results mean that the distribution of voxels can be quite arbitrary. For
example, voxels do not have to be uniformly distributed from the geometrical point of
view, although they should be uniformly distributed from the “grey matter density”
point of view. Furthermore, different types of voxels may exist, some with unknown
current density vector, and some with known current density orientation but
unknown amplitude.

A Generalization

Suppose there exist reasons to believe that the actual (prior) current density
variance 1s the diagonal, positive definite matrix W. This situation arises for
example, in some approaches that force fMRI hot spot locations onto the EEG/MEG
mverse solution (see for example (6)). In this case, Eq. 8 can be rewritten as:
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F = (KW"2)(W-2) Eq. 23
where the new unknown variable (W 2y ) has been “pre-standardized” to have the

identity matrix as its variance. This transformed variable plays the role of J in all
equations above, and (KWl/ 2) plays the role of the lead field in all equations above.

All else proceeds identically with these new formal substitutions.

Note that the final SLORETA image corresponds to standardized estimates of
activity (Egs. 20 or 22) for the pre-standardized current density (W'l/ ZJ )

Note that this approach can be applied to any actual (prior) current density
variance W, as long as it is positive definite, and there exists a meaningful
decomposition:

w=(w2)" (W) Eq. 24
for the square root matrix W"?. For example, this is the case of the classical

LORETA method (2), where W 2 embodies a discrete spatial Laplacian operator
that achieves smoothness between neighboring voxels.

Estimating the regularization parameter a

The regularization parameter a cannot be estimated from the functional in Eq.
8. However, it can be estimated via the cross-validation functional. This has been
published in (14), in a reply to comments made to the paper in (2), which includes the
detailed derivation of the method, and a set of equations that can be used efficiently
in practice.

sLORETA in experimental designs (statistical analysis of tomographic
images)

Although sLORETA calculations produce pseudo-statistics, it is highly
recommended to not use these values as actual statistics in testing of hypotheses in
experimental designs.

Unlike the approach of Dale et al. (6), which makes use of their statistics for
hypothesis testing, it is recommended to use sSLORETA pseudo-statistic values as
estimates of activity, and to apply standard techniques such as in statistical non-
parametric mapping (SnPM) (7) for the analysis of experimental designs.

sLORETA in testing for absolute activation

Note that tests for absolute activation with SLORETA can be performed by

using the modified pseudo-statistics:
“1/2

{s.8) 9 Eq. 25
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or:

_ Eq. 26

VSSJEL

which correspond to Eqs. 20 and 22, respectively.

These pseudo-statistics should be used in an experimental design where there
are N independent sSLORETA images. For example, in a visual event related potential
study with N =10 subjects, consider the 10 SLORETA images at the P100 latency.

ey o~ )12 . .. .
In Eq. 25, {§ 5 Hﬂ} denotes the unique symmetric inverse square root matrix

of gSj al. The pseudo-statistic in Eq. 26 has the form of a univariate Student’s ¢-

statistic, and the pseudo-statistic in Eq. 25 has the form of a Mahalanobis transform
(10).

In the case of unknown amplitudes only, significant absolute activation is
based on testing for zero mean of the pseudo-statistic in Eq. 26. SnPM can be used to
correct for multiple comparisons and to bypass assumptions of Gaussianity.

In the case of unknown current density vector, significant absolute activation
1s based on testing for zero mean of the “max-statistic” of the pseudo-statistic in Eq.
25. This corresponds to the maximum of the absolute value among the three
components. The “max-statistic’ reduces three numbers per voxel to a single number
per voxel. This is then used in SnPM to correct for multiple comparisons and to
bypass assumptions of Gaussianity.

Conclusions

1. Localization error can not be improved beyond the present result. It is zero. Up to
the present, no other instantaneous, distributed, discrete, imaging method for
EEG/MEG has been published (to the best of the author’s knowledge) that achieved
perfect localization. All other previously published methods at best produced
systematic non-zero localization errors (see (2), (6), (15), (16), (17)).

2. If the aim 1s localization, this new method, denoted as sSLORETA, at least has
perfect first order localization.

3. A distributed imaging method capable of exact localization of point sources is of
great interest, since the principles of linearity and superposition would guarantee its
trustworthiness as a functional imaging method, given that brain activity occurs in
the form of a finite number of distributed “hot spots”.

4. The detailed information provided here allows the reader to reproduce, check, test,
and validate the previous claims.

Page 14 of 16




R.D. Pascual-Marqui. sSLORETA. In press at: Methods & Findings in Experimental & Clinical Pharmacology
(http://www.prous.com/journals/advpubmf.html) (SCI=0.644) (in Medline, etc.) 2002-November. Author’s version.

1)

2)

3)

4)
5)

6)

7

8)

9)
10)
11)

12)

13)

14)

15)

16)

References

Héamalainen, M.S., and Ilmoniemi, R.J. Interpreting measured magnetic fields
of the brain: estimates of current distributions. Tech. Rep. TKK-F-A559,
Helsinki University of Technology, Espoo, 1984.

Pascual-Marqui RD. Review of methods for solving the EEG inverse problem.
International Journal of Bioelectromagnetism 1999, 1: 75-86.

Pascual-Marqui RD. Reply to comments by Haméldinen, Ilmoniemi and Nunez.
In Source Localization: Continuing Discussion of the Inverse Problem (W.
Skrandies, Ed.), ISBET Newsletter, 1995, No. 6, pp:16-28 (ISSN 0947-5133).
Backus G and Gilbert F. The resolving power of gross earth data. Geophys. J. R.
Astr. Soc. 1968, 16:169-205.

A. Tarantola. Inverse problem theory: methods for data fitting and model
parameter estimation. Elsevier, Amsterdam, 1987.

Dale AM, Liu AK, Fischl BR, Buckner RL, Belliveau JW, Lewine JD, Halgren E.
Dynamic statistical parametric mapping: combining fMRI and MEG for high-
resolution imaging of cortical activity. Neuron 2000, 26: 55-67.

Nichols TE, Holmes AP. Nonparametric permutation tests for functional
neuroimaging: a primer with examples. Human Brain Mapping 2001, 15: 1-25.
Pascual-Marqui RD, Esslen M, Kochi K, Lehmann D. Functional imaging with
low resolution brain electromagnetic tomography (LORETA): review, new
comparisons, and new validation. Japanese Journal of Clinical Neurophysiology
2002, 30:81-94.

C.R. Rao and S.K. Mitra. Theory and application of constrained inverse of
matrices. SIAM J. Appl. Math., 1973, 24: 473-488.

K.V. Mardia, J.T. Kent, and J.M. Bibby. Multivariate Analysis. Academic Press,
London, 1979.

Talairach J and Tournoux P. Co-Planar Stereotaxic Atlas of the Human Brain.
Thieme, Stuttgart. 1988.

Towle VL, Bolanos J, Suarez D, Tan K, Grzeszczuk R, Levin DN, Cakmur R,
Frank SA, and Spire JP. The spatial location of EEG electrodes: locating the
best-fitting sphere relative to cortical anatomy. Electroencephalography and
Clinical Neurophysiology 1993, 86, 1-6.

Dickson J, Drury H., Van Essen DC. ‘The surface management system’ (SuMS)
database: a surface-based database to aid cortical surface reconstruction,
visualization and analysis. Philosophical Transactions of the Royal Society,
London, B 2001, 356: 1277-1292. Cortices downloadable at: http://stp.wustl.edu
Pascual-Marqui RD. Reply to Comments Made by R. Grave De Peralta
Menendez and S.I. Gozalez Andino. International Journal of
Bioelectromagnetism 1999, Vol. 1, No. 2, at:
http://www.ee.tut.fi/rgi/ijbem/volumel/number2/html/pascual.htm.

Menendez RGD, Andino SG, Lantz G, Michel CM, Landis T. Noninvasive
localization of electromagnetic epileptic activity. I. Method descriptions and
simulations. Brain Topography. 2001, 14:131-137.

Phillips C, Rugg MD, Friston KdJ. Systematic regularization of linear inverse
solutions of the EEG source localization problem. Neuroimage. 2002, 17:287-301.

Page 15 of 16




R.D. Pascual-Marqui. sSLORETA. In press at: Methods & Findings in Experimental & Clinical Pharmacology
(http://www.prous.com/journals/advpubmf.html) (SCI=0.644) (in Medline, etc.) 2002-November. Author’s version.

17)

18)

19)

20)

21)

22)

23)

Phillips C, Rugg MD, Friston KdJ. Anatomically informed basis functions for
EEG source localization: Combining functional and anatomical constraints.
Neuroimage. 2002, 16:678-695.

Pascual-Marqui RD, Michel CM, Lehmann D. Low resolution electromagnetic
tomography: a new method for localizing electrical activity in the brain.
International Journal of Psychophysiology. 1994, 18:49-65.

Strik WK, Fallgatter AJ, Brandeis D, Pascual-Marqui RD. Three-dimensional
tomography of event-related potentials during response inhibition: evidence for
phasic frontal lobe activation. Evoked Potentials-Electroencephalography and
Clinical Neurophysiology 1998, 108:406-413.

Anderer P, Pascual-Marqui RD, Semlitsch HV, Saletu B. Electrical sources of
P300 event-related brain potentials revealed by low resolution electromagnetic
tomography .1. Effects of normal aging. Neuropsychobiology 1998, 37:20-27.
Anderer P, Saletu B, Semlitsch HV, Pascual-Marqui RD. Electrical sources of
P300 event-related brain potentials revealed by low resolution electromagnetic
tomography .2. Effects of nootropic therapy in age-associated memory
impairment. Neuropsychobiology 1998, 37:28-35.

Anderer P, Pascual-Marqui RD, Semlitsch HV, Saletu B. Differential effects of
normal aging on sources of standard N1, target N1 and target P300 auditory
event-related brain potentials revealed by low resolution electromagnetic
tomography (LORETA). Evoked Potentials-Electroencephalography and Clinical
Neurophysiology 1998, 108:160-174.

Pascual-Marqui RD, Lehmann D, Koenig T, Kochi K, Merlo MCG, Hell D,
Koukkou M. Low resolution brain electromagnetic tomography (LORETA)
functional imaging in acute, neuroleptic-naive, first-episode, productive
schizophrenia. Psychiatry Research-Neuroimaging 1999, 90:169-179.

Page 16 of 16




