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Abstract 
 
Scalp electric potentials (EEG) and extracranial magnetic fields (MEG) are due 

to the primary (impressed) current density distribution that arises from neuronal 
post-synaptic processes. A solution to the inverse problem, i.e. the computation of 
images of electric neuronal activity based on extracranial measurements, would 
provide important information on the time course and localization of brain function. 
In general, there is no unique solution to this problem. In particular, an 
instantaneous, distributed, discrete, linear solution capable of exact localization of 
point sources is of great interest, since the principles of linearity and superposition 
would guarantee its trustworthiness as a functional imaging method, given that 
brain activity occurs in the form of a finite number of distributed “hot spots”. Despite 
all previous efforts, linear solutions at best produced images with systematic non-zero 
localization errors. A solution is reported here, which yields images of standardized 
current density with zero localization error. The purpose of this paper is to present 
the technical details of the method, allowing researchers to test, check, reproduce, 
and validate the new method (sLORETA). 

 
 

Introduction 
 
This study is strictly limited to EEG/MEG inverse solutions of the type: 

instantaneous, distributed, discrete, and linear. The generic form of the inverse 
problem follows. There are EN  instantaneous extracranial measurements. There are 

VN  voxels in the brain. Typically, the voxels are determined by subdividing 
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uniformly the solution space, which is usually taken as the cortical grey matter 
volume or surface. At each voxel there is a point source, which may be a vector with 
three unknown components (i.e., the three dipole moments), or a scalar (unknown 
dipole amplitude, known orientation). The cases considered here correspond to 

V EN N? . 
 
In 1984, Hämäläinen and Ilmoniemi (1) were the first to report an 

instantaneous, distributed, discrete, linear solution to the EEG/MEG inverse 
problem: the well known minimum norm solution. However, the minimum norm 
solution is notorious for totally misplacing actual deep sources onto the outermost 
cortex, as demonstrated in (3), (2), and (8). 

 
The problem of excessively large errors of localization remained unsolved until 

the introduction of the method known as LORETA (low resolution brain 
electromagnetic tomography) in 1994 (18). LORETA has fairly good accuracy in 
localizing test sources even when they are deep. The overall average localization 
error is smaller than one grid unit (see e.g. (3), (2), and (8)). 

 
A series of papers published in 1998 and 1999 (see (19)-(23)) introduced for the 

first time the method of high time resolution statistical parametric mapping for 
tomographic images of electric neuronal activity. The idea was to adopt the methods 
of statistical inference for the localization of brain function as used in PET and fMRI 
studies. This methodology was applied to high time resolution, time varying LORETA 
images. 

 
In the present study a new tomographic method for electric neuronal activity is 

introduced, where localization inference is based on images of standardized current 
density. The method is denoted as standardized low resolution brain electromagnetic 
tomography (sLORETA). Unlike the method recently introduced by Dale et al. (6), 
which has systematic non-zero localization error, sLORETA has zero localization 
error. 

 

Method 
 

Case 1: EEG with unknown current density vector 
 
The equation of interest takes the form: 

cΦ = +KJ 1            Eq. 1 
 
In Eq. 1, 1ENΦ ×∈ ¡  is a vector containing scalp electric potentials measured at 

EN  cephalic electrodes, with respect to a common, arbitrary reference electrode 
located anywhere on the body. 

 
The primary (impressed) current density ( )3 1VN ×∈J ¡  is defined as: 

( )1 2 3, , ,...,
V

TT T T T
N=J J J J J          Eq. 2 
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where 3 1
l

×∈J ¡  for 1... Vl N= . At the lth voxel, ( ), ,T x y z
l l l lJ J J=J  contains the three 

unknown dipole moments. 
 
The superscript “T” denotes transpose. 
 
The lead field ( )3E VN N×∈K ¡  has the following structure: 

1,1 1,2 1,

2,1 2,2 2,

,1 ,2 ,

...
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V

V
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N

N N N N

 
 
 =  
 
 
 

k k k

k k k
K

k k k

        Eq. 3 

with 1 3
,i l

×∈k ¡ , for 1... Ei N= , and for 1... Vl N= . Note that ( ), , , ,, ,x y z
i l i l i l i lk k k=k , where ,

x
i lk  

is the scalp electric potential at the ith electrode, due to a unit strength X-oriented 
dipole at the lth voxel; ,

y
i lk  is the scalp electric potential at the ith electrode, due to a 

unit strength Y- oriented dipole at the lth voxel; and ,
z
i lk  is the scalp electric potential 

at the ith electrode, due to a unit strength Z- oriented dipole at the lth voxel. 
 
In Eq. 1, c is an arbitrary constant which embodies the fact that the electric 

potential is determined up to an arbitrary constant; and 1EN ×∈1 ¡  is a vector of ones. 
The parameter c allows the use of any reference for the lead field and the 
measurements. 

 
Hämäläinen, M.S., and Ilmoniemi (1) were the first to publish a particular 

solution to the instantaneous, distributed, discrete, linear EEG/MEG inverse 
problem. Their solution is known as the minimum norm inverse solution. However, 
the minimum norm solution is notorious for totally misplacing actual deep sources 
onto the outermost cortex (2). 

 
Dale et al. (6) proposed a method in which localization inference is based on a 

standardization of the current density estimates. In particular, they employed the 
current density estimate given by the minimum norm solution, and they 
standardized it by using its expected standard deviation, which is hypothesized to be 
originated exclusively by measurement noise. The method of Dale et al. (6) produces 
systematic non-zero localization errors (8), even in the presence of negligible noise. 
This fact was not evaluated nor admitted in their original paper. 

 
sLORETA is similar to the Dale et al. (6) method: it employs the current 

density estimate given by the minimum norm solution, and localization inference is 
based on standardized values of the current density estimates. However, 
standardization in sLORETA takes a completely different route (explained below). 
The consequence is that, unlike the Dale et al. (6) method, sLORETA is capable of 
exact (zero-error) localization. 

 
The minimum norm inverse solution is harmonic (2), which means that the 

Laplacian of the current density is zero, i.e., ( )2∇ ≡J r 0 , where r denotes volume 

coordinates in the brain. Therefore, the minimum norm inverse solution is very 
smooth. The concept of smoothness employed here is discussed in greater detail in 
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(8), with special emphasis on its electrophysiological interpretation. However, as 
previously mentioned, the minimum norm inverse solution is notorious for its 
incapability of correct localization of deep point sources (2). 

 
This problem is solved by standardization of the minimum norm inverse 

solution, and basing localization inference on these standardized estimates. 
 
The functional of interest here is: 

2 2
F c αΦ= − − +KJ 1 J          Eq. 4 

where 0α ≥  is a regularization parameter. This functional is to be minimized with 
respect to J and c, for given K, Φ, and α. The explicit solution to this minimization 
problem is (see e.g. (3)): 
ˆ Φ=J T            Eq. 5 

where: 
T T α

+
 = + T K H HKK H H         Eq. 6 
T T= −H I 11 1 1           Eq. 7 

with E EN N×∈H ¡  denoting the centering matrix; E EN N×∈I ¡  the identity matrix; and 
1EN ×∈1 ¡  is a vector of ones. 

 
For any matrix M , +M  denotes its Moore-Penrose pseudoinverse (see e.g. (9)). 
 
The centering matrix H in Eq. 7 is the average reference operator. 
 
In what follows, for all EEG cases, the symbols Φ and K will denote the 

average reference transforms of the EEG measurements and the lead field, 
respectively. This simplifies the notation. But most important of all, the correct 
solution to EEG problems is based on these average reference transforms. 

 
Therefore, when using average reference transforms of Φ and K, Eq. 1 

becomes: 
Φ = KJ            Eq. 8 
and the functional in Eq. 4 becomes: 

2 2
F αΦ= − +KJ J          Eq. 9 

with minimum: 
ˆ Φ=J T            Eq. 10 

where: 
T T α

+
 = + T K KK H          Eq. 11 

 
Standardization of the estimate Ĵ  requires an estimate of its variance. 
 
Note that Eq. 9 can be derived from a Bayesian formulation of the inverse 

problem (see e.g. (5), Eq. 1.88 therein). In this view, the actual source variance (prior) 
( ) ( )3 3V VN N×∈JS ¡  is equal to the identity matrix, i.e.: 

( ) ( )3 3, V VN N×= ∈JS I I ¡          Eq. 12 
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In addition, from the Bayesian point of view, the electric potential variance is due to 
noisy measurements: 

noise αΦ =S H            Eq. 13 
Note that in Eq. 13, the average reference operator H plays the role of the identity 
matrix in the subspace spanned by the measurement space. 

 
It is usually assumed that activity of the actual sources and the noise in the 

measurements are uncorrelated. 
 
Based on the linear relation in Eq. 8, making use of Eqs. 12 and 13, and taking 

into account the independence of actual source activity and measurement noise, the 
electric potential variance E EN N

Φ
×∈S ¡  then is: 

T noise T αΦ Φ= + = +JS KS K S KK H         Eq. 14 
See e.g. (10), Eqs. 1.5.1-1.5.6 therein. 

 
Due to the linear relation in Eq. 10, and making use of Eq. 14, the variance of 

the estimated current density is: 

( )ˆ
T T T T Tα αΦ

+
 = = + = + J

S TS T T KK H T K KK H K      Eq. 15 

See e.g. (10), Eqs. 1.5.1-1.5.6 therein, and (9). 
 
Note that the variance of the estimated current density is equivalent to the 

Backus and Gilbert (4) resolution matrix, which is obtained by plugging Eqs. 8 and 
11 into 10: 

ˆ
ˆ T T α

+
 = = + = =  J

J TKJ K KK H KJ RJ S J       Eq. 16 

with: 

ˆ
T T α

+
 = = + J

S R K KK H K         Eq. 17 

where R is the resolution matrix. 
 
Note that the variance of the estimated current density in Eqs. 15 and 17 is not 

the posterior variance in the Bayesian formulation (see e.g. (5), Eq. 1.94). 
 
In contrast, according to Dale et al. (6), the variance of the estimated current 

density is based on the assumption that the only source of variation is measurement 
noise. This means that Eq. 14 now is: 

Dale noise
Φ Φ=S S            Eq. 18 

and Eq. 15 now is: 

ˆ
Dale Dale T noise T

Φ Φ= =
J

S TS T TS T         Eq. 19 

 
Note that unlike the approach of Dale et al. (6), sLORETA takes into account 

two sources of variation: mainly the variation of the actual sources, and then finally, 
if any, the variation due to noisy measurements. 

 
Finally, sLORETA corresponds to the following estimates of standardized 

current density power: 

{ } 1

ˆ
ˆ ˆT

l lll

−
  J

J S J           Eq. 20 
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where 3 1ˆ
l

×∈J ¡  is the current density estimate at the lth voxel given by Eqs. 10 and 11 

(for average reference transforms); and 3 3
ˆ ll

×  ∈ J
S ¡  is the lth diagonal block of matrix 

Ĵ
S  in Eqs. 15 or 17. 

 
Note that the pseudo-statistic in Eq. 20 has the form of an “F” statistic. 
 
Note that Eq. 20 is different in form from the Dale et al. (6) standardization 

(see (6), Eq. 7 therein). The Dale et al. (6) standardized estimates are: 

( ) 1

ˆ
ˆ ˆT Dale

l lll
Diag

−
    J

J S J          Eq. 21 

where 3 3
ˆ
Dale

ll

×  ∈ J
S ¡  is the lth diagonal block of matrix ˆ

Dale
J

S  in Eq. 19; and for any 

symmetric matrix M, ( )Diag M  is the diagonal matrix formed by the diagonal 

elements of M. 
 

Case 2: EEG with known current density vector orientation, unknown 
amplitude 

 
This case usually corresponds to the inverse problem when the cortical surface 

is completely known. Voxels are now distributed along the cortical surface, and the 
dipoles at each voxel have known orientation (perpendicular to the cortical surface). 
The unknowns correspond to the amplitudes, which may take positive, zero, or 
negative values. The dipole orientations (defined as unit length vectors with three 
components) can be incorporated into the lead field K in Eq. 8. Details can be found in 
(3). 

 
In this case Eq. 8 has the same form, but now 1VN ×∈J ¡  since it only contains 

one unknown scalar per voxel, and E VN N×∈K ¡  since it includes the dipole orientation 
at each voxel. Details can be found in (3). All the derivations employed in Eqs. 8-17 
remain formally identical. 

 
However, sLORETA now corresponds to the following estimates of 

standardized current density power: 

( )2

ˆ

ˆ
l

ll

J

  J
S

            Eq. 22 

where the scalar ˆ
lJ  is the current density amplitude estimate at the lth voxel; and the 

scalar ˆ ll
  J
S  is the lth diagonal element of matrix ˆ

V VN N×∈
J

S ¡ . 

 
Note that the pseudo-statistic in Eq. 22 has the form of an “F” statistic. 



R.D. Pascual-Marqui. sLORETA. In press at: Methods & Findings in Experimental & Clinical Pharmacology 
(http://www.prous.com/journals/advpubmf.html) (SCI=0.644) (in Medline, etc.) 2002-November. Author’s version. 

Page 7 of 16 

 

Case 3: MEG 
 
The equations for the MEG case have identical form to Eqs. 8-17, 20, and 22, 

depending on the case of unknown dipole moments, or only unknown amplitudes. 
 
Note that the average reference does not apply to MEG. 
 
The only change corresponds to the equations for the MEG lead field, which 

are different to those for the EEG. 
 

Head models 
 
Simulations were carried out in a three-shell spherical head model registered 

to the Talairach human brain atlas (11), available as a digitized MRI from the Brain 
Imaging Centre, Montreal Neurological Institute. Registration between spherical and 
realistic head geometry used EEG electrode coordinates reported by Towle et al. (12). 

 
In one set of practical, realistic, simulations, the solution space was restricted 

to cortical gray matter and hippocampus, as determined by the corresponding 
digitized Probability Atlas also available from the Brain Imaging Centre, Montreal 
Neurological Institute. A voxel was labeled as gray matter if it met the following 
three conditions: its probability of being gray matter was higher than that of being 
white matter, its probability of being gray matter was higher than that of being 
cerebrospinal fluid, and its probability of being gray matter was higher than 33%. 
Only gray matter voxels that belonged to cortical and hippocampal regions were used 
for the analysis. A total of 6430 voxels at 5mm spatial resolution were produced 
under these neuroanatomical constraints. At each voxel, three unknown values (the 
three dipole moments) were estimated, making a total of 6430x3=19290 unknowns. 
25 electrodes (in EEG experiments), or 25 magnetometer sensors (in MEG 
experiments) were used. In both cases, sensors and electrodes were placed in the 
same locations. 

 
In the second set of practical, realistic, simulations, the solution space was 

restricted to the cortical surface, represented as 12980 triangles (voxels) (13). This 
case corresponded to unknown current density amplitude (but with known 
orientation), making a total of 12980 unknowns. 101 electrodes (in EEG 
experiments), or 101 magnetometer sensors (in MEG experiments) were used. In both 
cases, sensors and electrodes were placed in the same locations. 

 

Comparison of imaging methods 
 
The minimum norm solution, the method of Dale et al. (6), and sLORETA were 

compared in terms of localization errors and spatial spread. The methods were tested 
with point sources located at the voxels. For the case corresponding to 3 unknowns 
per voxel, an arbitrary (random) orientation of the test source was employed. The test 



R.D. Pascual-Marqui. sLORETA. In press at: Methods & Findings in Experimental & Clinical Pharmacology 
(http://www.prous.com/journals/advpubmf.html) (SCI=0.644) (in Medline, etc.) 2002-November. Author’s version. 

Page 8 of 16 

sources were used to generate the measurements (forward equation (Eq. 8)), which 
were then given to the imaging methods. Simulations included “noise free” and 
“noisy” measurements. 

 
In the minimum norm solution case, the imaging method is based on Eqs. 20 

and 22, but without standardization, which is achieved by setting the variance to the 
identity matrix, i.e., ˆ ≡

J
S I . 

 
In the minimum norm solution and in sLORETA, the regularization parameter 

α in the previous equations was estimated by cross-validation. Exact details and 
equations for a practical implementation of the cross-validation method can be found 
in (14). 

 
In the Dale et al. (6) method, the parameter α is interpreted as the variance of 

the noise in the measurements, and this value was determined by the simulation 
design. In the “noise free” case, a very small value of α was used, typically in the 
order of 10-10 times the power of the scalp field produced by the test source with 
lowest scalp field power. 

 
Localization error was defined as the distance between the actual test source 

and the location of the maximum in the imaging method. The spatial spread was 
defined identically as in (3), which corresponds to a measure of spatial standard 
deviation of the imaging method centered at the actual test source, and not at the 
imaging method’s own maximum, since this would unjustifiably favor the method’s 
performance. 

 

Results 
 
Figures 1a-1h summarize localization error, spatial spread, and estimated 

activity values for the three imaging methods (minimum norm, Dale, and sLORETA). 
 
Note that the estimated activity values at test source locations cannot be 

compared among the different imaging methods, since these values are in different 
units for the different imaging methods. However, this feature is very informative for 
comparing the quality of the different methods. For example, from Fig 1a, the ratios 
of estimated source activity (maximum to minimum) were 850, 103, and, 30, for 
minimum norm, Dale, and sLORETA, respectively. This means that with sLORETA, 
some sources (especially deep ones) will be underestimated. However, sLORETA out-
performs tremendously the minimum norm and the Dale methods in this aspect. 

 
In all noise free simulations, only sLORETA has exact, zero error localization. 

In all noisy simulations, sLORETA has by far the lowest localization errors. In most 
cases, the spatial spread (i.e. “blurring”) of sLORETA is smaller than that of the Dale 
method. 
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Figure 1: “a-h” summarize in tabular form localization error, spatial spread, 
and estimated activity values for the three imaging methods (minimum norm, Dale, 
and sLORETA). (a) EEG, 6430 voxels, 3 unknowns per voxel, 25 electrodes, 6430 test 
sources with random orientation, no noise. (b) Same as (a), but with additive random 
noise (noise scalp field standard deviation equal to 0.12 times the test source with 
lowest scalp field standard deviation). (c) MEG, 6430 voxels, 3 unknowns per voxel, 
25 sensors, 6430 test sources with random orientation, no noise. (d) Same as (c), but 
with additive random noise (noise scalp field standard deviation equal to 7.21 times 
the test source with lowest scalp field standard deviation). (e) EEG, 12980 voxels, 1 
unknown per voxel, 101 electrodes, 100 randomly selected test sources, no noise. (f) 
Same as (e), but with additive random noise (noise scalp field standard deviation 
equal to 0.082 times the test source with lowest scalp field standard deviation). (g) 
MEG, 12980 voxels, 1 unknown per voxel, 101 sensors, 100 randomly selected test 
sources, no noise. (h) Same as (g), but with additive random noise (noise scalp field 
standard deviation equal to 8.49 times the test source with lowest scalp field 
standard deviation). MNE: minimum norm localization error (mm); MNSSD: 
minimum norm spatial standard deviation (mm); MNMaxAbs: estimated minimum 
norm activity value at test source location (arbitrary units); DaleE: Dale localization 
error (mm); DaleSSD: Dale spatial standard deviation (mm); DMaxAbs: estimated 
Dale activity value at test source location (arbitrary units); LORE: sLORETA 
localization error (mm); LORSSD: sLORETA spatial standard deviation (mm); 
LORMaxAbs: estimated sLORETA activity value at test source location (arbitrary 
units). Note that the estimated activity values at test source locations cannot be 
compared among the different imaging methods (see text for explanation). 
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Discussion 
 

Properties of sLORETA for EEG and MEG with unknown current 
density vector 

 
The main properties of sLORETA, for both EEG and MEG, based on estimates 

of activity given by Eq. 20 are: 
1. Exact, zero error, localization for test dipoles located at voxel positions, in the 
absence of noisy measurements. 
2. Exact, zero error, localization of test dipoles with arbitrary orientation, located at 
voxel positions, in the absence of noisy measurements. 
3. Exact, zero error, localization of test dipoles with arbitrary orientation, located at 
voxel positions, in the absence of noisy measurements, even under regularization 
( )0α > . 

4. Exact, zero error, localization even for dipoles corresponding to a non-connected 
grid. For example, cortical and non-connected subcortical grey matter can now be 
modeled as the solution space. The error remains zero. 

 

Properties of sLORETA for EEG and MEG with known current density 
vector orientation, unknown amplitude 

 
The main properties of sLORETA based on estimates of activity given by Eq. 

22 are: 
1. Exact, zero error, localization of test dipoles located at voxel positions, in the 
absence of noisy measurements. 
3. Exact, zero error, localization of test dipoles located at voxel positions, in the 
absence of noisy measurements, even under regularization ( )0α > . 

4. Exact, zero error, localization even for dipoles corresponding to non-connected 
grids. For example, cortical and non-connected subcortical grey matter can now be 
modeled as the solution space. The error remains zero. 
5. These results mean that the distribution of voxels can be quite arbitrary. For 
example, voxels do not have to be uniformly distributed from the geometrical point of 
view, although they should be uniformly distributed from the “grey matter density” 
point of view. Furthermore, different types of voxels may exist, some with unknown 
current density vector, and some with known current density orientation but 
unknown amplitude. 

 

A Generalization 
 
Suppose there exist reasons to believe that the actual (prior) current density 

variance is the diagonal, positive definite matrix W. This situation arises for 
example, in some approaches that force fMRI hot spot locations onto the EEG/MEG 
inverse solution (see for example (6)). In this case, Eq. 8 can be rewritten as: 
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( ) ( )1 2 1 2Φ −= KW W J          Eq. 23 

where the new unknown variable ( )1 2−W J  has been “pre-standardized” to have the 

identity matrix as its variance. This transformed variable plays the role of J in all 
equations above, and ( )1 2KW  plays the role of the lead field in all equations above. 

All else proceeds identically with these new formal substitutions. 
 
Note that the final sLORETA image corresponds to standardized estimates of 

activity (Eqs. 20 or 22) for the pre-standardized current density ( )1 2−W J . 

 
Note that this approach can be applied to any actual (prior) current density 

variance W, as long as it is positive definite, and there exists a meaningful 
decomposition: 

( ) ( )1 2 1 2T
=W W W           Eq. 24 

for the square root matrix 1 2W . For example, this is the case of the classical 
LORETA method (2), where 1 2−W  embodies a discrete spatial Laplacian operator 
that achieves smoothness between neighboring voxels. 

 

Estimating the regularization parameter α 
 
The regularization parameter α cannot be estimated from the functional in Eq. 

8. However, it can be estimated via the cross-validation functional. This has been 
published in (14), in a reply to comments made to the paper in (2), which includes the 
detailed derivation of the method, and a set of equations that can be used efficiently 
in practice. 

 

sLORETA in experimental designs (statistical analysis of tomographic 
images) 

 
Although sLORETA calculations produce pseudo-statistics, it is highly 

recommended to not use these values as actual statistics in testing of hypotheses in 
experimental designs. 

 
Unlike the approach of Dale et al. (6), which makes use of their statistics for 

hypothesis testing, it is recommended to use sLORETA pseudo-statistic values as 
estimates of activity, and to apply standard techniques such as in statistical non-
parametric mapping (SnPM) (7) for the analysis of experimental designs. 

 

sLORETA in testing for absolute activation 
 
Note that tests for absolute activation with sLORETA can be performed by 

using the modified pseudo-statistics: 

{ } 1 2

ˆ
ˆ

lll

−
  J
S J            Eq. 25 
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or: 
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           Eq. 26 

which correspond to Eqs. 20 and 22, respectively. 
 
These pseudo-statistics should be used in an experimental design where there 

are N independent sLORETA images. For example, in a visual event related potential 
study with 10N =  subjects, consider the 10 sLORETA images at the P100 latency. 

 

In Eq. 25, { } 1 2

ˆ ll

−
  J
S  denotes the unique symmetric inverse square root matrix 

of ˆ ll
  J
S . The pseudo-statistic in Eq. 26 has the form of a univariate Student’s t-

statistic, and the pseudo-statistic in Eq. 25 has the form of a Mahalanobis transform 
(10). 

 
In the case of unknown amplitudes only, significant absolute activation is 

based on testing for zero mean of the pseudo-statistic in Eq. 26. SnPM can be used to 
correct for multiple comparisons and to bypass assumptions of Gaussianity. 

 
In the case of unknown current density vector, significant absolute activation 

is based on testing for zero mean of the “max-statistic” of the pseudo-statistic in Eq. 
25. This corresponds to the maximum of the absolute value among the three 
components. The “max-statistic” reduces three numbers per voxel to a single number 
per voxel. This is then used in SnPM to correct for multiple comparisons and to 
bypass assumptions of Gaussianity. 

 

Conclusions 
 
1. Localization error can not be improved beyond the present result. It is zero. Up to 
the present, no other instantaneous, distributed, discrete, imaging method for 
EEG/MEG has been published (to the best of the author’s knowledge) that achieved 
perfect localization. All other previously published methods at best produced 
systematic non-zero localization errors (see (2), (6), (15), (16), (17)). 
2. If the aim is localization, this new method, denoted as sLORETA, at least has 
perfect first order localization. 
3. A distributed imaging method capable of exact localization of point sources is of 
great interest, since the principles of linearity and superposition would guarantee its 
trustworthiness as a functional imaging method, given that brain activity occurs in 
the form of a finite number of distributed “hot spots”. 
4. The detailed information provided here allows the reader to reproduce, check, test, 
and validate the previous claims. 
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