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‘Markov Random Field: Application Overview SCI
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EERRRimage Analysis e

e Unknown ‘true’ image X

e observed data Y

e Model M and parameter set 0

Goal: Estimate X from Y based on some objective funciton.



IRakov Chains S0

Definition 1. A markov chain is a sequence of random variables
X1, X9, X3, ... with the Markov property that given the present state,
the future and past states are conditionally indepedent.

P(Xn+1|X1, XQ, ce ,Xn) = P(Xn+1|l'n)

The joint probability of the sequence is given by

P(X) = P(Xo) | | P(XalX01)

n=1

Xl. X2. Xg. X4.



‘Markov Random Fields: Some Definition SCI }

Define
XN,
e S={1,..., M} the set of lattice points.
e scSasiteinS XNS Xs XNs
o L={1,...,L} the set of labels X\,

e X, the random variable at s. X, =z, € L

o N, the set of sites neighboring s. Properties of neigh-
boring sites:

— s¢ N,
—seN, &te N,

e S and neighbor system N together defines a graph
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- Random Fields: Some Definition SCI 2~

Definition. X is called a random field if X = {Xy,..., Xy} is a collection

of random variables defined on the set S, where each X, takes a value x4 in
L. xz={x,...,xn} is called a configuration of the field.

Definition. X is said to be a Markov random field on & with respect to a
neighborhood system N if for all s € S

P<XS|XS—S> — P<XS‘XNS>

Definition. X is homogeneous if P(X|Xyr,) is independent of the relative
location of site s in S. é—O—C}

Generalization of Markov chain:
e unilateral — bilateral C) () .

O

O—0O—C0
)
S

O

e time domain — space domain. No natural ordering on image pixels.



Markov Random Fields: Issues SCI 3

Advantage of MRF’s

e Can be isotropic or anistropic depending on the definition of neigh-
bor system N

e Local dependencies
Disadvantages of MRF's
e difficult to compute P(X) from local dependency P(Xs|X,)

e Parameter estimation is difficult

Hammersley-Clifford theorem build the relationship between local
properties P(X | Xr,) and global properties P(X).



SO fields: Definition S

Definition. A clique C is a set of points,
which are all neighbors of each other

C, = {s|s € S}
€= {(s, s €Ni, ¢ N} x| X, | xu
C3=...

single site clique

two-site clique

Three-site clique

not a clique
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Gibbs Random Fields: Definition SCI 3

Definition. A set of random variable X is said to be a Gibbs
random field (GRF) on S with respect to N if and only if its
configurations obey a Gibbs distribution

P(X) = 7 exp{—U(X))

e U(X) — energy function. Configurations with lower energy are
more probable.

UX) =) ViX)

ceC

e ' — temperature. Sharpness of the distribution.

e Z —normalization constant. Z =Y pexp{7U(X)}, X = LV

A A

High temperature low temperature
11



EIEHOY Equivalence S0

Theorem. X is an Markov random field on S if and only if X is
a Gibbs field on S with respect to N.

e Gives a method to specity joint probability by specitying the
clique potential V,(X).

e Different clique potential gives different MRF's.

o 7 is still difficult to compute.
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Conditional distribution at site X.:

P(X | Xp,) =

GXp{ﬁX ZT‘ENSX}
2cosh(B)_,en. Xr)

exp{—

U(X)
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ng Model

[ LR

Beta = 0.88

Beta = 0.88. detailed view
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e Multiple state: Xy =2z,€ L, L={1,2,...,L}
e 4-neighbor or 8-neighbor system

el

X, # X,
X, = X,

Xy

X
1111 x| x
d|1]1 cliques
3133
31311

X
11111
1]1]1 313|333 neighbors
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[ can be different at different di-

Niong = anistropic field.

* b
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ERRNIEAI MRF Model

qﬂ rIIIIIIIIII :I:I:I:I:I:Ilr"\;\:} Y -TEXture feature Vemors
“‘“-vr_—_‘i N e observed from image.
oS 2 T~ ; o
e Yy L= - X -Unobserved field containing
g, WE gk . 3 = theclass of each pixel
"---.______-- /_, G __,_---""J"b

o X € £V is MRF - region configuration.
o P(Y;|X,) depneds on Y.

e Given X, {s, N} has same texture type.
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NG of MRFs Scl &

Why do we want draw a sample of MRF's (or Gibbs distribution)?

P(X) = exp{~U(X))

e Compare simulatd image with real image = Model is good?
e Texture synthesis

e Model verification.

e Monte Carlo integration

Review of Monte Carlo integration. Consider the generic problem
of evaluating the integral

By = [ hia)fla)ds

We can use a set of samples (z1, x9, . .., x)s) generated from density
f(x) to approximate above integral by the empirical average

1 M

h =
Mm:

h(wy)

1
19
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e Metropolis sampler. Used when we know P(X) up to a constant

e Gibbs Sampler. Used when we know exactly P(X)

20



EERISISampling: Review S

Goal: draw samples from some distribution P(X) where P(X) = f(X)/K.

e Start with any initial value X satisfying f(Xy) > 0.
e Sample a candidate point X* from distribution g(X) (proposal distribution).

e (alculate the . .
P(X*)  f(X7)

P(Xi1)  f(Xia)

o If > 1, accept cadidate point and set X; = X™*. Otherwise accept X* with
probability a.

We don’t have to know the constant K

21



‘Metropolis Sampling of MRFs SCI }

Goal: draw samples from Gibbs distribution P(X) = - exp{—U(X)}.

L.
2.

0.

Randomly init X satisfying f(X") > 0 (X is the whole iamge)
For s € S do step 3, 4, 5

Generate a univariate sample X* from proposal probability Q(X | X'™!) (Q can
be uniform distribution), and replace X, with X* to get candidate X*. X! and
X* differs only at Xj.

Calculate the

AU(X™) =U(X") - UX") =U(X]) - U(X,)

S

If AU(X™*) < 0, accept cadidate point and set X' = X*. Otherwise accept X*
with probability exp{—AU(X™*)}.

Repeat above steps M times.

The sequence of random fields X' (after burn-in period) is a Markov chain.

22



EESEipling of MRFs Scl &

Goal: draw samples from Gibbs distribution

1111
P(X) = Lexp{—U(X)} X
1111 X,
1. Randomly init X satisfying f(X") > 0 (X 1131 | x
is the whole iamge) 1|11 cli;ue;
2. For s € § dostep 3, 4 R
111
3. Compute P(X,|X"™1) = P(X3|X/t\fs1) and 111
draw sample X from it. 11111

4. Accept X[, ie. replace Xy with X} and
obtain X*.

5. Repeat above steps M times.

The sequence of random fields X* (after burn-
in period) is a Markov chain.
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EESSlEtropolis Sampling S0

Gibbs:

o Always accepted.
e Have to compute P(X; =1|Xy,) forall [ € L.
Metropolis:

e Expected acceptance rate is 1/L — low when L is large = more
burn-in time.

e No need to compute P(Xs = [|Xy,) for all [ € £. Only compute
U(X?| Xy,) for candidate X *

24



Bayesian Image Analysis SCI

Image Segmentation: Image Denoising:

o X € L% Image labels we're interested e X € RY: True image intensity.

e Y € RY: noise data (observed image) e Y € R™: noise data (observed image)
Goal: Estimate X from Y . Goal: Recover X from Y.

P(X|Y) x P(X)+ P(Y|X)

MREF prior (/

1
P(X) = zexp U(X) Conditional likelihood
For Segmenttation:
P<Y’X> — 2368 P<}/S|X5 — l) — N(:uha-lQ)
For denoising:
P(Y|X) =3 cs PY|Xs = 2,) = Nz, 07)
<
i

e

25



EIfage Segmentation S

e Define a model.

e Formulation of objective function. Optimal Criteria.

e Search solution in the admissible space.

26
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e Bayesian Risk is defined as

R(X*) = /X » C(X, X*)P(X|Y)dX

o (X, X"): cost function. X: true value. X*: estimated value.

— (X, X)) =[|X = X*|" = X" = [, P(X|Y)dX (Posterior mean)

_ oo JO0 X=X <9 . _ _
C(X,X") = | otherwise = X* = argmaxy . P(X|Y) =

argmax ycy (P(X) 4+ P(Y|X)). This is mode of posterior.

27



AR Case Study S0

Image Segmentation. Two classes £ = {—1,1}

e Prior is Ising model

— P(X) = zexp{U(X)}, UX) = =83, e, XrXs Assume T and K is
1.

exp{BXs D en, Xt
_ P(XS|XNS> o 2COSh(BZ7’€€N3X7”)

e Conditional likelihood P(Y'|X) = [[,cs P(Ys|Xs), P(Y{Xs=1)=N(w,o})

e objective function:
log P(X|Y) o< log P(X) + log P(Y|X)

Y
= 8 Z X, X, —log(Z) + Z ’ul — log(oy) + const

(r,s)€Cy seS

e Combinatorial optimization problem. NP hard.

28



ISR ptimization

(Approximation) Optimization method:
e [terated Conditional Modes
e Simulated Annealing

e Graph-cuts

Strategy:
e constrained minimization = unconstrained minimization (Lagrange
multiplier).

e discrete labels = continuous labels (Relaxation labeling).

SCI 2

INSTITUTE
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1. Init X by maximum likelihood X" = argmax y. v P(Y|X)

2. For s € §, update X, by
X! = argmaxy o log P(X| X}, Yy).
For the Ising-Gaussian case, this is

X = argmaxy o log P(X|X,) + log P(Y4]X,)

— : o (Y — )’
= argminy .» ¢ —BX, Z X, + 52 + log(ay)

Note ju and oy is function of Xy, and log(Z,) = log(2cosh(8 ), X})) is not a function
of X..

3. Do above step for all s € S.

4. Repeat 2 and 3 until converge.

30
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e Greddy algorithm = local minimum.
e Sensitive to initialization.

e (Quick convergence.

31



Simulated Annealing
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JIEIEd Annealing

e Assuming Ising+Gaussian model

P(X|Y) x P(X)- P(Y]X)

= %exp{ﬁ Z X, X} Hexp {

. (Xs - :LLZ(XS))

2

(r,s)€Cy s€eS 20[ <XS)

1
= Z—GXP{—UP(X\Y)}
P
X, — ) (X))?
Up(XY) =8 3 XX, ( 202‘&) L =
(r,s)€Co l 5

Posterior distribution P(X|Y') is also Gibbs.

2 — 1og(\/§al(X8))}

33



ISt Annealing cont

Goal: Find argmaxy .y P(X|Y)
e Introduce temperature 7"

PIX|Y) = 5 o (Up(X[Y)) = PXIY) = Zip{

Up(?IY)}

1. Init with XY and a high temperature 7.

2. Draw samples form P(X|Y) by Gibbs Sampling or Metropolis Sampling (by
sample from P(X;|Y;),Vs € S.

3. Decrease T' and repeat step 2.

4. Repeat step 2 and 3 until 7" is low enough.

Why this works?

34



_tion for Segmentation

Variational methods Combinatorial methods
(optimization in R*) (optimization in Z")
explicit Snakes &Balloons Dynamic Programming and
boundary (variational formulations) “path-based” graph methods (2D only)
representation e.g. (Kass et al., 1988; Cohen, 1991) (e.g., Amir et al., 1990; Geiger et al., 1995; Mortensen and
Barrett, 1998; Falcao et al., 1998; Jermyn and Ishikawa,
1999)
implicit Level-sets Combinatorial Graph Cuts
boundary (e.g., Sethian, 1999; Osher and Fedkiw, 2002; (as originally outlined in Boykov and Jolly, 2001)
representation Sapiro, 2001; Osher and Paragios, 2003)

Boykov et. al. 2006
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_for Ising Model

e Different with Normalized Cuts.

e For two class labeling problem, find the global minimum of

g P(X|Y) =) AXo+ Y Bry(X X+ (1- X)) (1 - X)),

SES (r,s)€Co

where Ay = log P(Y;| X, =1)/P(Ys|Ys = 0)).

e Define a graph G = (V,E&). V = {S,u,t} E;oykov ICCV, 2005
A A >0 _ 3
Cus = Y A, <0 Csr = P(s,r)

e Define partition B = {u}|J{s : Xs = 1}, W = {t} U{s : X, = 0} and cut
C(X) =D sen 2orew Crs.

e [t can be proved C'(z) = log P(X|Y )+const. In words, finding a min-cut is equivalent
to find the minimum of posterior P(X|Y).

e Ford-Fulkerson algorithm and Push-Relabeling method can be used to find such a cut
quickly.

36



ulti-Labeling Je i
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From Left 1. Initial image. 2. standard move (ICM), 3. strong moves of alpha-beta swap. 4. strong moves of alpha expansion. (Boykov 2002).

e Convert the multi-labeling problem to 2-labeling problem by o — 8 swap
and o expansion.

e Approximation method, but with strong sense of local minima.

e Answer questions like: if results is not good, is that due to bad modeling
or bad optimization algorithm?

37



Graph Cuts for Multi-Labeling SCI }

terminals (I-vertices or labels)

0 o o ’ ' ' o
- ™ . .
X ’ / .,,__-"
/ :

pixels
(p-vertices)

e For label {a, 8} € L

— Find X = argminE(X’) among X’ within one o — § swap of X.
— If E(X < E(X), accept X

e Repeat above step for all pair of labels {«, 8}.

38



RIS Pros and Cons =g
Pros:
hard L :acut
constraint [
o o
+ .‘:-

hard
constraint

e DBreak the multi-cut problem to a sequence
of binary s — t cuts by o — 8 swap and «
expansion.

=)
(4

e Approximation method, but with strong
sense of local minima.

e Fasy to add hard constraints.

e Answer questions like: if results is not
good, is that due to bad modeling or bad
optimization algorithm?

e Parallel algorithm =- Push-Relabeling al-
gorithm.

Cons:

e minimize boundary = tends to fail for
structures that are not blob shape, like
vessels,

Vessels and aneurism. (kolmogorov, ICCV 2006)
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-Darameter Estimation

e Correct model and correct parameters = good result.

e Correct model, and incorrect parameters = bad result.

(a) true (b) with noise c) recovered, 8 = 0.7 ) recovered, 8 = 0.5

(133

e) recovered, 5 = 0.4 (f) recovered, G = 0.3 ) recovered, 3 =10.2  (h) recovered, 8 = 0.15

SCI

INSTITUTE
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-F Parameter Estimation e
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Problem 1:
Given data X ~ M RF', we assume model M with unknown param-

eter set 6.
Gloal: Estimate 6.

Problem 2:

Given noised data Y, we assume model M with unknown parameter
set 6.

Goal: Estimate 8 and hidden MRF X simultaneously.

Problem 2 is significantly harder and for now we focus on problem 1.

Given an image shown on the right and suppose we
know it is generated from Ising model

P(X) = 1eXp{—B > XX}

Z
(r,s)€Co

Question: what is the is best estimation of 57

41



e [cast square estimation

e Pscudo-likelihood

e Coding method

42



-e Estimation SCI 2

For Ising model,

ex {BXSZTG SXT}
. U(X) = —p Z(T,S)ECQ XX, P<X> — %exp{—U(X)}, P<X8|XN3> - QSOSh(BZrEJJ\\/Ks Xr)

e The ratio of observed states

P(Xs=1|Xu\) B
8 (P<Xs = O\Xm) =200 X

e [or each set of neighboring pixel value Ny, we compute

— The observed rate of log (]Jz(XSZHXNs))

(Xs=0[Xps)
— The value of ) .\ X

e We have a est of over-determined linear equations and 5 can be solved with standard leas
square method.

e [asy implementation.

43



Pseudo-likelihood Je

e Review ML estimation.

e ML estimation of #: § = argmaxP(X;0) = argmax% exp{U(X;0)}. Intractable
Z(0)

e Psecudo-likelihood:
PL(X) = | [ P(X,|Xx,)
seS

does not have Z(6) anymore.

PLIXH) _

e Solve # by standard method, 2™ S =

e For full Bayesian, if we know P(0), the estimation is

0 = arg maxP(0|X) « P(0) - P(X|0)

44



-e Estimation SCI 2

For Ising model,

ex {BXSZTG SXT}
. U(X) = —p Z(T,S)ECQ XX, P<X> — %exp{—U(X)}, P<X8|XN3> - QSOSh(BZrEJJ\\/Ks Xr)

e The ratio of observed states

P(Xs=1|Xu\) B
8 (P<Xs = O\Xm) =200 X

e [or each set of neighboring pixel value Ny, we compute

— The observed rate of log (]Jz(XSZHXNs))

(Xs=0[Xps)
— The value of ) .\ X

e We have a est of over-determined linear equations and 5 can be solved with standard leas
square method.

e [asy implementation.
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