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Markov Random Field: Application Overview

Awate and Whitaker 2006
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Markov Random Field: Application Overview
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Markov Random Field: Application Overview

without spatial MRF prior with spatial MRF prior

gray matter? white matter?
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Bayesian Image Analysis
• Unknown ‘true’ image X

• observed data Y

• ModelM and parameter set θ

Goal: Estimate X from Y based on some objective funciton.
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Review: Markov Chains
Definition 1. A markov chain is a sequence of random variables
X1, X2, X3, . . . with the Markov property that given the present state,
the future and past states are conditionally indepedent.

P (Xn+1|X1, X2, . . . , Xn) = P (Xn+1|xn)

The joint probability of the sequence is given by

P (X) = P (X0)

N∏
n=1

P (Xn|Xn−1)
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Markov Random Fields: Some Definition
Define

• S = {1, . . . ,M} the set of lattice points.

• s ∈ S a site in S

• L = {1, . . . , L} the set of labels

• Xs the random variable at s. Xs = xs ∈ L

• Ns the set of sites neighboring s. Properties of neigh-
boring sites:

– s /∈ Ns

– s ∈ Nt ⇔ t ∈ Ns

• S and neighbor system N together defines a graph
(S,N ) = G.
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Markov Random Fields: Some Definition
Definition. X is called a random field if X = {X1, . . . , XN} is a collection
of random variables defined on the set S, where each Xs takes a value xs in
L. x = {x1, . . . , xN} is called a configuration of the field.

Definition. X is said to be a Markov random field on S with respect to a
neighborhood system N if for all s ∈ S

P (Xs|XS−s) = P (Xs|XNs)

Definition. X is homogeneous if P (Xs|XNs) is independent of the relative
location of site s in S.

Generalization of Markov chain:

• unilateral → bilateral

• 1D → 2D

• time domain → space domain. No natural ordering on image pixels.



9

Markov Random Fields: Issues
Advantage of MRF’s

• Can be isotropic or anistropic depending on the definition of neigh-
bor system N .

• Local dependencies

Disadvantages of MRF’s

• difficult to compute P (X) from local dependency P (Xs|XNs)

• Parameter estimation is difficult

Hammersley-Clifford theorem build the relationship between local
properties P (Xs|XNs) and global properties P (X).
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Gibbs Random fields: Definition
Definition.A clique C is a set of points,
which are all neighbors of each other

C1 = {s|s ∈ S}
C2 = {(s, t)|s ∈ Nt, t ∈ Ns}
C3 = . . .
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Gibbs Random Fields: Definition
Definition. A set of random variable X is said to be a Gibbs
random field (GRF) on S with respect to N if and only if its
configurations obey a Gibbs distribution

P (X) =
1

Z
exp{− 1

T
U(X)}

• U(X) – energy function. Configurations with lower energy are
more probable.

U(X) =
∑
c∈C

Vc(X)

• T – temperature. Sharpness of the distribution.

• Z – normalization constant. Z =
∑

X∈X exp{ 1TU(X)}, X = LN
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Gibbs­Markov Equivalence

Theorem.X is an Markov random field on S if and only if X is
a Gibbs field on S with respect to N .

• Gives a method to specify joint probability by specifying the
clique potential Vc(X).

• Different clique potential gives different MRFs.

• Z is still difficult to compute.
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Ising Model

• Two state: L = {−1,+1}

• Clique potential V (Xr, Xs) = −βXrXs

•
U(X) =

∑
c∈C

Vc(X) = −β
∑

(r,s)∈C2

XrXs, P (X) =
1

Z
exp{−U(X)

kT
}

• Conditional distribution at site Xs:

P (Xs|XNs) =
exp{βXs

∑
r∈NsXr}

2 cosh(β
∑

r∈NsXr)

• Aplication: image matting (foreground/background)
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Ising Model

Beta = 0.8 Beta = 0.88 Beta = 1.0

Beta = 1.5 Beta = 2.0 Beta = 0.88. detailed view
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Potts Model
• Multiple state: Xs = xs ∈ L, L = {1, 2, . . . , L}

• 4-neighbor or 8-neighbor system

• V1(Xs = l) = αl, l ∈ L

• V2(Xr, Xs) =

{
β Xr 6= Xs

0 Xr = Xs
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Potts Model example

Beta = 0.88 Beta = 1.2 Beta = 2.0
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Potts Model
β can be different at different di-

rections ⇒ anistropic field.

• βu

• βr

• βd

• βl

βu = βd = 0, βl = βr = 2 βu = βd = 2, βl = βr = 0 βu = βd = 1, βl = 4, βr = 2



18

Hierarchical MRF Model

• X ∈ LN is MRF – region configuration.

• P (Ys|Xs) depneds on YNs.

• Given Xs, {s,Ns} has same texture type.
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Simulation of MRFs
Why do we want draw a sample of MRFs (or Gibbs distribution)?

P (X) =
1

Z
exp{−U(X)}

• Compare simulatd image with real image ⇒ Model is good?

• Texture synthesis

• Model verification.

• Monte Carlo integration

Review of Monte Carlo integration. Consider the generic problem
of evaluating the integral

Ef(x) =

∫
X
h(x)f (x)dx

We can use a set of samples (x1, x2, . . . , xM) generated from density
f (x) to approximate above integral by the empirical average

h =
1

M

M∑
m=1

h(xm)
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Simulation of MRFs

• Metropolis sampler. Used when we know P (X) up to a constant

• Gibbs Sampler. Used when we know exactly P (X)
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Metropolis Sampling: Review
Goal: draw samples from some distribution P (X) where P (X) = f (X)/K.

• Start with any initial value X0 satisfying f (X0) > 0.

• Sample a candidate point X∗ from distribution g(X) (proposal distribution).

• Calculate the

α =
P (X∗)

P (Xt−1)
=

f (X∗)

f (Xt−1)

• If α > 1, accept cadidate point and set Xt = X∗. Otherwise accept X∗ with
probability α.

We don’t have to know the constant K!
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Metropolis Sampling of MRFs
Goal: draw samples from Gibbs distribution P (X) = 1

Z exp{−U(X)}.

1. Randomly init X0 satisfying f (X0) > 0 (X is the whole iamge)

2. For s ∈ S do step 3, 4, 5

3. Generate a univariate sample X∗s from proposal probability Q(X∗s |X t−1) (Q can
be uniform distribution), and replace Xs with X∗s to get candidate X∗. X t−1 and
X∗ differs only at Xs.

4. Calculate the

∆U(X∗) = U(X∗)− U(X t−1) = U(X∗s )− U(Xs)

5. If ∆U(X∗) < 0, accept cadidate point and set X t = X∗. Otherwise accept X∗

with probability exp{−∆U(X∗)}.

6. Repeat above steps M times.

The sequence of random fields X t (after burn-in period) is a Markov chain.
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Gibbs Sampling of MRFs
Goal: draw samples from Gibbs distribution

P (X) = 1
Z exp{−U(X)}.

1. Randomly init X0 satisfying f (X0) > 0 (X
is the whole iamge)

2. For s ∈ S do step 3, 4

3. Compute P (Xs|X t−1) = P (Xs|X t−1
Ns

) and
draw sample X∗s from it.

4. Accept X∗s , i.e. replace Xs with X∗s and
obtain X t.

5. Repeat above steps M times.

The sequence of random fields X t (after burn-
in period) is a Markov chain.
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Gibbs v.s. Metropolis Sampling
Gibbs:

• Always accepted.

• Have to compute P (Xs = l|XNs) for all l ∈ L.

Metropolis:

• Expected acceptance rate is 1/L – low when L is large ⇒ more
burn-in time.

• No need to compute P (Xs = l|XNs) for all l ∈ L. Only compute
U(X∗s |XNs) for candidate X

∗.
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Bayesian Image Analysis
Image Segmentation:

• X ∈ LN : Image labels we’re interested

• Y ∈ RN : noise data (observed image)

Goal: Estimate X from Y .

Image Denoising:

• X ∈ RN : True image intensity.

• Y ∈ RN : noise data (observed image)

Goal: Recover X from Y .

P (X|Y ) ∝ P (X) + P (Y |X)

MRF prior
P (X) = 1

Z expU(X) Conditional likelihood
For Segmenttation:
P (Y |X) =

∑
s∈S P (Ys|Xs = l) = N (µl, σ

2
l )

For denoising:
P (Y |X) =

∑
s∈S P (Ys|Xs = xs) = N (xs, σ

2
l )
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Bayesian Image Segmentation
• Define a model.

P (X) =
1

Z
exp{U(X)}

P (Y |X) =
∑
s∈S

P (Ys|Xs = l) = N (µl, σ
2
l )

• Formulation of objective function. Optimal Criteria.

• Search solution in the admissible space.
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Bayesian Risk
• Bayesian Risk is defined as

R(X∗) =

∫
X∈X

C(X,X∗)P (X|Y )dX

• C(X,X∗): cost function. X : true value. X∗: estimated value.

– C(X,X∗) = ||X −X∗||2 ⇒ X∗ =
∫
X∈X P (X|Y )dX (Posterior mean)

– C(X,X∗) =

{
0 ||X −X∗|| ≤ δ
1 otherwise

⇒ X∗ = argmaxX∈XP (X|Y ) =

argmaxX∈X (P (X) + P (Y |X)). This is mode of posterior.
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MRF­MAP: Case Study

Image Segmentation. Two classes L = {−1, 1}

• Prior is Ising model

– P (X) = 1
Z exp{U(X)}, U(X) = −β

∑
(r,s)∈C2XrXs. Assume T and K is

1.

– P (Xs|XNs) =
exp{βXs

∑
r∈NsXr}

2 cosh(β
∑
r∈NsXr)

• Conditional likelihood P (Y |X) =
∏

s∈S P (Ys|Xs), P (Ys|Xs = l) = N (µl, σ
2
l )

• objective function:

logP (X|Y ) ∝ logP (X) + logP (Y |X)

= −β
∑

(r,s)∈C2

XrXs − log(Z) +
∑
s∈S

(Ys − µl)2

2σ2l
− log(σl) + const

• Combinatorial optimization problem. NP hard.
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Posterior Optimization
(Approximation) Optimization method:

• Iterated Conditional Modes

• Simulated Annealing

• Graph-cuts

Strategy:

• constrained minimization⇒ unconstrained minimization (Lagrange
multiplier).

• discrete labels ⇒ continuous labels (Relaxation labeling).
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ICM
1. Init X by maximum likelihood X0 = argmaxX∈XP (Y |X)

2. For s ∈ S, update Xs by

X t+1
s = argmaxXs∈L logP (Xs|X t

Ns, Ys).

For the Ising-Gaussian case, this is

X t+1
s = argmaxXs∈L logP (Xs|XNs) + logP (Ys|Xs)

= argminXs∈L

−βXs

∑
r∈Ns

X t
r +

(Ys − µl)2

2σ2
+ log(σl)

 .

Note µl and σl is function ofXs, and log(Zs) = log(2 cosh(β
∑

r∈NsX
t
r)) is not a function

of Xs.

3. Do above step for all s ∈ S.

4. Repeat 2 and 3 until converge.
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ICM cont.

• Greddy algorithm ⇒ local minimum.

• Sensitive to initialization.

• Quick convergence.
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Simulated Annealing

local min

global min

P(downhill)
P(uphill)

• Not always downhill moving.

• Global minimum with enough
scan.
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Simulated Annealing
• Assuming Ising+Gaussian model

P (X|Y ) ∝ P (X) · P (Y |X)

=
1

Z
exp{β

∑
(r,s)∈C2

XrXs} ·
∏
s∈S

exp

{
−(Xs − µl(Xs))

2

2σ2l (Xs)
− log(

√
2πσl(Xs))

}
=

1

ZP
exp{−UP (X|Y )}

UP (X|Y ) = −β
∑

(r,s)∈C2

XrXs +
(Xs − µl(Xs))

2

2σ2l (Xs)
+
√
2πσl(Xs)

Posterior distribution P (X|Y ) is also Gibbs.
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Simulated Annealing cont.
Goal: Find argmaxX∈XP (X|Y )

• Introduce temperature T :

P (X|Y ) =
1

ZP
exp {UP (X|Y )} ⇒ P (X|Y ) =

1

ZP
exp

{
UP (X|Y )

T

}
1. Init with X0 and a high temperature T .

2. Draw samples form P (X|Y ) by Gibbs Sampling or Metropolis Sampling (by
sample from P (Xs|Ys),∀s ∈ S.

3. Decrease T and repeat step 2.

4. Repeat step 2 and 3 until T is low enough.

Why this works?
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Energy minimization for Segmentation

Boykov et. al. 2006
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Graph Cuts for Ising Model
• Different with Normalized Cuts.

• For two class labeling problem, find the global minimum of

logP (X|Y ) =
∑
s∈S

λsXs +
∑

(r,s)∈C2

β(r,s)(XsXr + (1−Xs)(1−Xr)),

where λs = logP (Ys|Xs = 1)/P (YS|Ys = 0)).

• Define a graph G = (V , E). V = {S, u, t}

cws =

{
λs λs > 0
−λs λs < 0

, csr = β(s,r)

• Define partition B = {u}
⋃
{s : Xs = 1}, W = {t}

⋃
{s : Xs = 0} and cut

C(X) =
∑

s∈B
∑

r∈W crs.

• It can be proved C(x) = logP (X|Y )+const. In words, finding a min-cut is equivalent
to find the minimum of posterior P (X|Y ).

• Ford-Fulkerson algorithm and Push-Relabeling method can be used to find such a cut
quickly.

Boykov ICCV, 2005
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Graph Cuts for Multi­Labeling

• Convert the multi-labeling problem to 2-labeling problem by α − β swap
and α expansion.

• Approximation method, but with strong sense of local minima.

• Answer questions like: if results is not good, is that due to bad modeling
or bad optimization algorithm?

From Left 1. Initial image. 2. standard move (ICM), 3. strong moves of alpha­beta swap. 4. strong moves of alpha expansion. (Boykov 2002).
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Graph Cuts for Multi­Labeling

• For label {α, β} ∈ L

– Find X̂ = argminE(X ′) among X ′ within one α− β swap of X.

– If E(X̂ < E(X), accept X̂

• Repeat above step for all pair of labels {α, β}.
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Graph Cuts Pros and Cons
Pros:

• Break the multi-cut problem to a sequence
of binary s− t cuts by α− β swap and α
expansion.

• Approximation method, but with strong
sense of local minima.

• Easy to add hard constraints.

• Answer questions like: if results is not
good, is that due to bad modeling or bad
optimization algorithm?

• Parallel algorithm⇒ Push-Relabeling al-
gorithm.

Cons:

• minimize boundary ⇒ tends to fail for
structures that are not blob shape, like
vessels,

Vessels and aneurism. (kolmogorov, ICCV 2006)
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MRF Parameter EstimationMRF Parameter Estimation
• Correct model and correct parameters ⇒ good result.

• Correct model, and incorrect parameters ⇒ bad result.
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MRF Parameter Estimation
Problem 1:

Given data X ∼MRF , we assume modelM with unknown param-
eter set θ.

Goal: Estimate θ.

Problem 2:

Given noised data Y , we assume modelM with unknown parameter
set θ.

Goal: Estimate θ and hidden MRF X simultaneously.
Problem 2 is significantly harder and for now we focus on problem 1.

Given an image shown on the right and suppose we
know it is generated from Ising model

P (X) =
1

Z
exp{−β

∑
(r,s)∈C2

XrXs}.

Question: what is the is best estimation of β?
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MRF Parameter Estimation

• Least square estimation

• Pseudo-likelihood

• Coding method
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Least Square Estimation
For Ising model,

• U(X) = −β
∑

(r,s)∈C2XrXs, P (X) = 1
Z exp{−U(X)}, P (Xs|XNs) =

exp{βXs
∑
r∈NsXr}

2 cosh(β
∑
r∈NsXr)

• The ratio of observed states

log

(
P (Xs = 1|XNs)
P (Xs = 0|XNs)

)
= 2β

∑
r∈Ns

Xr

• For each set of neighboring pixel value Ns, we compute

– The observed rate of log
(
P (Xs=1|XNs)
P (Xs=0|XNs)

)
– The value of

∑
r∈NsXr.

• We have a est of over-determined linear equations and β can be solved with standard least
square method.

• Easy implementation.
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Pseudo­likelihood

• Review ML estimation.

• ML estimation of θ: θ = argmaxP (X ; θ) = argmax 1
Z(θ) exp{U(X ; θ)}. Intractable

Z(θ)

• Pseudo-likelihood:
PL(X) =

∏
s∈S

P (Xs|XNs)

does not have Z(θ) anymore.

• Solve θ by standard method, ∂ lnPL(X;θ)
∂θ = 0

• For full Bayesian, if we know P (θ), the estimation is

θ̂ = arg maxP (θ|X) ∝ P (θ) · P (X|θ)
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Least Square Estimation
For Ising model,

• U(X) = −β
∑

(r,s)∈C2XrXs, P (X) = 1
Z exp{−U(X)}, P (Xs|XNs) =

exp{βXs
∑
r∈NsXr}

2 cosh(β
∑
r∈NsXr)

• The ratio of observed states

log

(
P (Xs = 1|XNs)
P (Xs = 0|XNs)

)
= 2β

∑
r∈Ns

Xr

• For each set of neighboring pixel value Ns, we compute

– The observed rate of log
(
P (Xs=1|XNs)
P (Xs=0|XNs)

)
– The value of

∑
r∈NsXr.

• We have a est of over-determined linear equations and β can be solved with standard least
square method.

• Easy implementation.




