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1 Introduction

Resting-state functional MRI (rs-fMRI) is increasingly used for probing functional connec-
tivity of the human brain. The spontaneous activity identified by rs-fMRI plays a key
role in understanding the normal brain’s functional organization. It also holds valuable
diagnostic and prognostic information towards various neurological or psychiatric diseases
including Alzheimer’s disease, depression, schizophrenia, etc [1]. The blood oxygenation
level-dependent (BOLD) signal of fMRI detects the locations of increased neuro activity by
measuring the blood oxygen levels at consecutive time points. The higher the temporal
correlation between two spatially distant regions, the more likely that there is a functional
connection between those regions.

The analysis of rs-fMRI data is a challenging task, due to the scanner noise, physiological
noise, head motion, and subject’s random thoughts during data acquisition. Various tech-
niques are proposed to address these issue. Among them, (1) spatial smoothing is used to
increase the signal-to-noise ratio, and (2) group analysis is used to increase the statistical
power by estimating an average functional network and to allow comparisons between groups.
Both approaches have drawbacks that are to be elaborated in the next two paragraphs. In
my work I address the issues concerning the above two aspects, with the focus on the latter.

In conventional functional connectivity studies, the spatial regularities of the connectivity are
enforced by applying a smoothing filter as a preprocessing step. Depending on the noise level
and the number of subjects in a group study, optimal kernel width of the filter may vary [2].
In current state-of-art processing pipeline, the kernel size is arbitrarily given a value ranging
from 4mm to 10mm. This may introduce over-smoothing and pose difficulty in identifying
connections between small regions, or introduce under-smoothing resulting in insufficient
noise reduction. Moreover, the sub-optimal choice of the smoothing parameters can change
the result drastically. There needs to be a statistical method that explicitly models the
spatial smoothness of the connectivity patterns. The model should be data-driven in that
the parameters are estimated from the fMRI images data under study.

In the group analysis, subjects may exhibit similar but not exactly same spontaneous BOLD
fluctuation. Current group studies typically first identify each subject’s connectivity sepa-
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rately regardless of other subjects, and then estimate a pooled summary of the group connec-
tivity map [3, 4], or estimate group map first and then back-reconstruct the subject network
map [5]. Such approaches are sub-optimal, since estimation of one subject’s connectivity
does not benefit from other subjects. From a Bayesian point of view, once the population
distribution is known, it can help each subject’s estimation as a prior. Subjects network
estimates also gives feedback on group estimation. We need a data-driven, unified proba-
bilistic framework and put the connectivity variables of both group and subjects jointly into
this model. Inference can be made from the posterior of the variables in both (subject and
group) levels given the observed time series data.

Furthermore, the full Bayesian model provides us an opportunity to study the variability of
the functional network by inference of the posterior. Besides the traditional variance and
confidence interval analysis, the mode of spatial variability can be inferred from multivari-
ate analysis. For the first time, to our best knowledge, it would be possible to visualize
how functional homogeneous regions change along the principal direction of their posterior
variability, and compare these change across subjects.

2 Thesis Statement

A multilevel Markov Random Field model improves the relia-
bility of the functional network estimation in rs-fMRI group
study by taking into account context information as a prior.
The data-driven Bayesian model can jointly estimate both
population and subjects’ connectivity networks, as well as
drawing inference on the uncertainty in the estimation, and
on the variability across subjects.

The phrase Context has two meanings: 1) The functional patterns of human brain is spatially
coherent. Neighboring voxels have larger probability of being in the same functional network.
2) The network that a voxel belongs to in one subjects is dependant on the networks of the
same voxels in other subjects. The patterns of functional networks from the rs-fMRI study
are to some extent shared by multiple subjects, while the variability across subjects must be
taken into account.

By reliability I mean the decrease in the variance of the functional networks that we estimate
with different subsets of all subjects. The reliable estimates will be closer to the true network
in simulation test, where we know the true answer.

3 Contributions

To test our statement, we propose the following contributions:

• Full Pairwise Connectivity With Spatial Coherence. I propose a method that
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estimates pairwise functional connectivity in the whole brain of a single subject, with-
out a priori knowledge of the seed region. The model needs to take into account the
spatial context information, and learn the strength of the coherence from the data.

• Identify Consistent, Spatially Coherent Multiple Functional Networks. I
propose a data-driven, generative model that can cluster the gray matter voxels of
single subject’s brain into disjoint multiple functional networks, while respecting the
spatial coherence of the voxels.

• Hierarchical Model For Group Study. I propose a hierarchical model that can
estimate functional networks from a group of subjects. The model will estimate an
overall group’s network map as well as individual subjects network maps at the same
time. When Clustering the voxels into different networks, spatial neighbors both within
and across subjects will be used in a prior of a Bayesian framework. The variability of
each subject’s connectivity due to noise and artifact will be reduced to the extent that
is to be determined automatically from the data.

• Variability of Resting-State Functional Network. Based on the hierarchical
MRF model proposed above, I will draw inference on the variance and the confidence
intervals of the functional network. I will test the variability of the network by using a
subset of the data and perform bootstrap sampling. I also plan to explore and visualize
the modes of spatial variability of the functional network patterns.

4 Literature Review

There are two fundamental principles in probing brain’s functional organization: functional
integration and functional specialization [6]. Functional specialization means an anatomically
segregated cortex region is specialized for some aspects of a mental process. A cortical
infrastructure that support such process may involve many specialized areas. Functional
integration says these areas do not exist in isolation, but are mediated by the information
flows via the action potentials carried by axons, which are bundled into large fiber tracts.

fMRI is originally used for detect the neuro activity in experiments with task paradigm. It
was found [7] that there are consistent patterns of activity even at subject’s resting state,
when subjects do not receive any external stimulus during scan. In recent years the emphasis
of neuroimaging is shifting from blobology (functional specialization/segregation) towards
connectology (functional integration) [8], such spontaneous activity estimated from resting-
state fMRI (rs-fMRI) have provide insight into the intrinsic architecture of the human brain.

The majority of functional neuroscience studies has a task or stimulus for the subject to con-
duct, and the resulting changes in neuro activity are measured. For data obtained in such
experiments, the core methods such as Statistical Parametric Mapping (SPM) use general
linear model [9] to test a null hypothesis, hence a hypothesis driven method. The effects of
a stimulus signal is estimated as a multiple linear regression problem, with BOLD signal of
stimulus as predictor variable, and BOLD signal of any brain voxel as response variables.
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Figure 1: A MRF defined on high di-
mensional graph that model the pair-
wise connections of gray matter voxels.
A node in the high dimension graph is
defined as a pair of voxels in original
image. an edge are added when any
voxels in the two pair of voxels are spa-
tially neighbors. This MRF is embed-
ded into a generative model as a prior
distribution, i.e. we suppose , a sample
correlation is generated from the given
random variable of connectivity or no
connectivity. For inference of the con-
nectivity given the observed sample cor-
relation data, Maximum a Posteriori is
used, together with the Gibbs Sampling
and mean field theory approximation.

Activation or no activation is decided by the significance of the effects (i.e. regression coef-
ficients) under the null hypothesis of no activation. This method is often regarded as mass
univariate, in the sense that the effects of the stimulus on one voxel is independent on the
effect of others, even they are spatially adjacent. In practice, a Gaussian filter is always
applied for spatial smoothing in preprocessing step, and introduces dependence between
spatially adjacent voxels’ intensities (and also the effects of SPM).

In rs-fMRI study, the aim is to look for spontaneous neuro activity when there is no external
input.Because of the lack of stimulus signal, the standard SPM method does not apply to the
rs-fMRI data. New computational methods, sometimes called data-driven analysis, borrow
technical concepts from many fields including machine learning and computer vision. These
methods fall into a few categories [10] listed as below.

Seed-based methods look for the linear correlation between an a priori region-of-interest
(ROI) and all other regions or voxels in the whole brain [11]. This approach is inherent
simple, sensible, and easy to interpret. However, a a priori manual selection of ROI is
required, and only one functional system can be detected at a time. In section 5.1 we
propose a mixture model for connectivity analysis without the seed region as input [Liu10a].
This is to our knowledge the first work that can estimate all spatially coherent, pairwise
connections in a single run.

Independent Component analysis (ICA) methods look for statistically independent compo-
nents without the need of selecting ROI [12]. But users need to manually select meaningful
component by visual inspection. Clustering-based methods partition the brain voxels into
distinct regions (clusters), and voxels in same regions belong to same functional networks.
If the goal is to discriminate the patients and healthy control groups, pattern classification
method can also be used.

There are also graph theory based methods that treats each ROI (or voxel) as a node on the
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graph, and the connectivity between them as edges, and a rich set of graph algorithms can
be used to learn the graph structure (small-worldness, modularity, etc).

5 Methodology and Preliminary work

The main technical tool used in our series of work is the generative probabilistic model and
Markov random field (MRF). To be specific, define a graph G = (V , E), where V is the set
of nodes, with each node representing a single voxel in the image. An edge e = (s, r) is
added to E if the node s and r are spatial neighbors. The label of functional network that
a voxel belongs to is defined by the random variable xs ∈ L = {1, . . . , L} that attached to
each vertex s ∈ V .

Two labels are correlated if they are spatially neighbor. The network label map x =
(x1, . . . , xN) is a MRF because given the spatial neighbors of a voxel, its network label
does not depend on the remaining voxels statistically. This local neighboring structure can
be represented globally by a multivariate distribution

Prob(x) =
1

Z
exp

−β ∑
(s,r)∈E

δ(xs, xr)

 .

The function δ(xs, xr) takes 1 when xs = xr, and takes 0 otherwise. By this definition, a
label map with large regions of constant labels has higher probability. This will be used
as a regularization prior in our Bayesian model. The applications of MRF in my work
depends on the specific questions to answer. In [Liu10a], it is used as a prior distribution of
a high dimensional MRF. In [Liu11a], it is used in a generative model for clustering. And in
[Liu12a], the MRF is generalized to include both group labels and subject labels for solving
a joint estimation problem.

5.1 Full Pairwise Connectivity With Spatial Coherence

Our first attempt [Liu10a] on detecting functional network aims to explicitly model the spa-
tial smoothness of the network. In both task-based and resting-state fMRI the impact of
imaging noise can be reduced by taking advantage of the spatial correlations between neigh-
boring voxels in the image. A common approach used for instance in statistical parametric
mapping (SPM)[9] is to apply a spatial Gaussian filter to smooth the signal prior to sta-
tistical analysis. However, this can lead to overly blurred results, where effects with small
spatial extent can be lost and detected regions may extend beyond their actual boundaries.
An alternative approach to spatial regularization that has been proposed for task activation
paradigms is to use a Markov Random Field (MRF) prior [13, 14, 15, 16, 17], which models
the conditional dependence of the signals in neighboring voxels.

We propose [Liu10a] to use MRF models in rs-fMRI to leverage spatial correlations in func-
tional connectivity maps. Unlike previous MRF-based approaches, which use the neighbor-
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hood structure defined by the original image voxel grid, the neighborhoods in functional
connectivity must take into account the possible relationships between spatially distant vox-
els. Therefore, we define the neighborhood graph on the set of all voxel pairs. This results
in a Markov structure on a grid with twice the dimensions of the original image data, i.e.,
the pairwise connectivities for three-dimensional images results in a six-dimensional MRF.
The neighborhood structure is defined so that two voxels are more likely to be connected if
they are connected to each other’s spatial neighbors. See figure 1 for a illustrative view.

We combine the Markov prior on functional connectivity maps with a likelihood model of
the time series correlations in a posterior estimation problem. Furthermore, we model solve
for the unknown parameters of the MRF and likelihood using an Expectation Maximization
(EM) algorithm. In the estimation step the posterior random field is sampled using Gibbs
Sampling and estimated using Mean Field theory.

Fig. 2 compares the real data results using no spatial regularization, Gaussian smoothing,
and the proposed MRF model. Though the posterior connectivity of the MRF is computed
between every pair of voxels within a slice, for visualization purposes, only the posterior
of the connectivity between one voxel and the slice is shown. We chose to visualize the
connectivity to a voxel in the posterior cingulate cortex (PCC) because this is known to be
involved in the Default Mode Network [7], with connections to the medial prefrontal cortex
(MPFC). The results show that Gaussian smoothing is able to remove noise, but is unable
to find a clear connection between the PCC and the MPFC. Our proposed MRF model
(rightmost plot) is able to remove spurious connections, and also clearly shows a connection
to the MPFC.

It is noted that this approach does not need a priori knowledge of the ROI. Once the
algorithm finishes, it outputs all the pairwise connectivity for all gray matter voxels. Putting
this large connectivity matrix into a visualization tool, users can explore the functional
networks with various seed regions and see the real-time results.

Figure 2: Correlation map and Posterior Connectivity map between
seed voxel and slice containing the seed. From left to right: the cor-
relation map computed from data without spatial smoothing; corre-
lation map of data after smoothing; Posterior probability computed
from MRF.
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5.2 Identify Consistent, Spatially Coherent Multiple Functional
Networks

The above method in section 5.1 is able to detect functional networks such as default mode
network, there are two issues that have to be addressed. 1) With one seed region at a
time, only one functional system can be shown. The functional architecture would be better
understood if multiple systems are shown together in the same image. 2) The computation
cost is huge, mostly due to the high dimensional graph and the optimization problem. This
is partly mitigated by a GPU implementation in current single subject analysis, but would
be difficult for generalizing to group study.

One possible solution is to employ clustering techniques to automatically partition the brain
into functional networks. In such methods, a similarity metric is defined first, e.g., correlation
[18] or frequency coherence [19], and then a clustering method such as k-means or spectral
clustering is used to group voxels with similar time series. A drawback of these approaches
is that they disregard the spatial position of voxels, and thus ignore the fact that functional
networks are organized into sets of spatially coherent regions.

We introduce a new data-driven method [Liu11a] to partition the brain into spatial coher-
ent, non-overlapping networks of functionally-related regions from rs-fMRI. The proposed
algorithm does not require specification of a seed, and there is no ad hoc thresholding or
parameter selection. We make a natural assumption that functionally homogeneous regions
should be spatially coherent. Our method incorporates spatial information through a Markov
random field (MRF) prior on voxel labels, which models the tendency of spatially-nearby
voxels to be within the same functional network.

We notice the mean intensity and the variance (both over all the time points) of the time
course at each voxel is not a indicator whether they belong to same functional network,
so each time series is first normalized to zero mean and unit norm, which results in data
lying on a high-dimensional unit sphere. We then model the normalized time-series data
as a mixture of von Mises-Fisher (vMF) distributions [20]. Each component of the mixture
model corresponds to the distribution of time series from one functional network.

Solving for the parameters in this combinatorial model is intractable, and we therefore
use a stochastic method called Monte Carlo Expectation Maximization (MCEM), which
approximates the expectation step using Monte Carlo integration. The stochastic property
of MCEM makes it possible to explore a large solution space, and it performs better than a
standard mode approximation method using iterated conditional modes (ICM).

The proposed method is related to previous approaches using MRFs to model spatial re-
lationships in fMRI data. Descombes et al. [14] use a spatio-temporal MRF to analyze
task-activation fMRI data. Our previous methods [Liu10a] use an MRF model of rs-fMRI
to estimate pairwise voxel connections. However, neither of these approaches tackle the
problem of clustering resting-state fMRI into functional networks.

The linear correlation between two time series in original image space is equivalent to the
inner product of two points on the sphere. MRF is again used as a spatial smoothness prior
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on the hidden network labels. We estimate the network labels by maximizing its posterior
probability in a EM framework, such that voxels with same estimated labels have larger
inner product, which amounts to have larger correlation in original space and belong to
same functional network. The introduction of MRF again poses the difficulty of computing
the expectation directly, We use Monte-Carlo Sampling to approximate the expectation
value in EM. By this method [Liu11a] we are able to detect most significant brain networks
like motor, visual, motion, salience and executive control, and default mode network with
precision and consistency competitive to standard ICA method, as can be found in figure 3.

Subject 1 Subject 2 Subject 3

Figure 3: Functional networks detected by the proposed method for
3 subjects overlaid on their T1 images. The clusters are the visual
(cyan), motor (green), executive control (blue), salience (magenta),
dorsal attention (yellow), and default mode (red) networks.

5.3 Current Work: Hierarchical Model For Group Study

The availability of large rs-fMRI databases opens the door for systematic group studies of
functional connectivity. It is a natural assumption that a group of subjects must share sim-
ilar patterns of functional connectivity, while keeping individual subject’s variability. Such
variability may come from subject random thoughts, despite that they are instructed not to
think anything specifically. While the inherently high level of noise in fMRI makes functional
network estimation difficult at the individual level, combining many subjects’ data together
and jointly estimating the common functional networks is more robust. However, this ap-
proach does not produce estimates of individual functional connectivity. Such individual
estimates are an important step in understanding functional networks not just on average,
but also how these networks vary across individuals.

The method we propose in above section [Liu11a] works specifically on single subject analysis,
and my next aim is to build a model that estimate functional networks among a group of
subjects. Most current studies estimate the networks in a sequential approach, i.e., they
identify each individual subject’s network independently to other subjects, and then estimate
the group network from the subjects networks. This one-way flow of information prevents
one subject’s network estimation benefiting from other subjects.

Group ICA [12] is a generalization of ICA to multiple subjects, in which all subjects are
assumed to share a common spatial component map but have distinct time courses. The
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time courses from all subjects are concatenated temporally, followed by a single ICA. Al-
though the subject component maps are obtained by a back-reconstruction procedure, there
is no explicit statistical modeling of the variability between the group and subject compo-
nent maps. Ng et. al [21] use group replicator dynamics (RD) to detect subject’s sparse
component maps, with group information integrated into each subject’s RD process. In
clustering-based methods, the subjects clusterings are usually averaged to obtain a group
affinity matrix and are followed by a second level clustering on the group similarity matrix
[22, 3]. Because the group level clustering is conducted after subject level clustering, the
clustering of one subject is unaware of the information from other subjects, as well as the
group clustering.

J

group level

subject level

Observed 
time courses

Figure 4: Left: Hierarchical MRF depicted by undirected graph. The
J subjects are compactly represented by a box with label J . α and β
are parameters that represent the strength of the statistical depen-
dencies between the nodes.

We propose a Bayesian hierarchical model [Liu12a] to identify the functional networks from
rs-fMRI that includes both subject and population levels. We assume a group network label
map that acts as a prior to the label maps for all subjects in the population. This Bayesian
perspective provides a natural regularization of the estimation problem of a single subject
using information from the entire population. The variability between the subjects and group
are taken into account through the conditional distributions between group and subjects.
The within-subject spatial coherence is again modeled by a MRF. The group and all subjects
network map are connected into a larger graph, with edges between corresponding voxels
between group and subjects, and between adjacent voxels within single subjects. See figure
4 for the model illustration.

The concept of this hierarchical model is similar to the multi-level modeling of linear re-
gression. Estimation of the functional network on single subject corresponds to no pooling
since it fits a model for each subject separately. A sequential approach of estimating group
network after subjects networks is like complete pooling, since it ignores the group informa-
tion when estimating subjects network. And our hierarchical MRF model corresponds to the
partial pooling, i.e., the multi-level model where a tradeoff defined by a pooling factor, or a
shrinkage factor. Compared to the pooled averaging method, our hierarchical model respects
the individual variablity, hence also better estimates the group’s functional network.
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Both the group clustering and subject clusterings are estimated simultaneously with a Monte
Carlo Expectation Maximization (MCEM) algorithm. The model is data-driven in that all
parameters, regularized by two given hyper-parameters, are estimated from the data, and
the only parameter that must be specified is the number of networks.

Ours is the first hierarchical MRF applied to fMRI for modeling both group and individual
networks. The model of Ng et al. [23] combines all subjects into a single MRF and bypasses
the need for one-to-one voxel correspondence across subjects, but the edges are added directly
between subjects without a group layer. In our model, a group layer network map is explicitly
defined, and the consistency between subjects is encoded through adding edges between
group and subjects labels. Our method differs from other clustering methods [22, 3] in that
their methods identify the subject’s functional network patterns independently, without any
knowledge of other subjects or group population. Instead, our method estimates both levels
of network patterns simultaneously. The proposed approach can be seen as a counterpart on
the clustering branch of the multi-subject dictionary learning algorithm [24], which also has
a hierarchical model and a spatially smoothed sparsity prior on the group component map.

5.4 Variability of Resting-State Functional Network

The hierarchical MRF model decreases the scanner noise, physiological noise and other
artifacts, but does not spoil the true signal. The variability of the functional connectivity
due to individual subject’s spontaneous thoughts is believed to be part of the true signal
that we want to keep and explore. Given the Bayesian model we proposed in section 5.3,
a multivariate posterior distribution of the connectivity variables is available as a summary
of our current state of knowledge (arising from both the observed data and the MRF prior
opinions). A standard point estimate would just report a single value (mean, mode or
median) for each variable. However, when the sample size is small, and number of variables
is large (which is the case in fMRI study), it is inappropriate to summarize inference by
one value, especially when the summary is used for clinical decision. We need to measure
the uncertainty and variability of the estimates. Uncertainty means the variance of the
connectivity variables inferred from the posterior density. Variability means the change of
the spatial patterns because of single variable’s uncertainty and the difference across subjects.

Because the lack of analytic solution of posterior distribution, obtaining the uncertainty of
single variable is not straightforward. However, by using the Markov Chain Monte-Carlo tool
we developed in previous work, we are able to draw samples of the connectivity variables
from the posterior, and estimate the variance from the samples.

Given the uncertainty on the voxel level, the more interesting question is the variability on
the network level. Here I want to find the most dominant pattern of change of a functional
network over subjects, as well as over the uncertainty of single voxels. For example, does
the PCC’s size and shape change over all subjects mainly happen along the dorsal-ventral
direction, or the anterior-posterior direction? We can see the functional network patterns as
objects with certain shape and size. The change of the shape or size can be represented by
the multivariate analysis method such as Principal Component Analysis.

10



6 Timeline

Based on the my current work and the contributions that I will work on, I give the schedule
for the remaining time of the thesis work:

• Fall 2012: Network variability analysis.

• Spring 2013: Submit a journal paper on the hierarchical model in section 5.3. Con-
tinue on variability analysis.

• Summer 2013: Dissertation writing and Ph.D thesis defense.
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