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Abstract

Recently recursive algorithm has been used in getting
Fisher criterion based linear discriminants through which
the features obtained are statistically uncorrelated. This
paper investigates a simpler and faster approach to
compute uncorrelated discriminants. This is done by first
mapping the input data onto an uncorrelated feature space
and computing Fisher criterion based discriminants in that
space. By avoiding recursive procedure, our algorithm is
(C − 1)/2 times faster than recursive algorithm when the
number of classes C is large. Theoretical formulation and
real world data confirmed the effectiveness of our approach.

Index Terms–Uncorrelated discriminants, Pattern Recogni-
tion, Feature extraction, Uncorrelated space

1. Introduction

Recent years have shown a strong trend in the computer
vision and pattern recognition community away from ge-
ometry towards statistical and appearance based models[1,
2, 3]. Among the widely used approaches, Fisher lin-
ear discriminant analysis can be interpreted as a bench-
mark both for dimensionality reduction and classification
method[4, 5]. To generalize Fisher LDA from two classes
to multiclass application, Liu [6] introduced the recursive
algorithm that can obtain optimal linear discriminants in
multiclass observations. Although Liu’s discriminants are

optimal in the sense of Fisher criterion at each recursion,
the features drawn from these discriminants are statistically
correlated. While in feature extraction field, we always
hope to extract uncorrelated features to characterize differ-
ent patterns accurately. To deal with this problem, Jin [7]
presented an improved algorithm that can get uncorrelated
discriminants. This is done by adding an un-correlation
constraint at each recursion. Jin’s feature extraction algo-
rithm achieved high scores in pattern classification exper-
iment. However, the problem remains that the time cost
of this approach is prohibitive considering it still computes
discriminant vectors in a recursive way.

Along this line, our paper aims at obtaining optimal un-
correlated discriminants in a simpler and faster way. The
basic idea behind our approach is: First we construct a con-
venient uncorrelated feature space and map the input data
into that space. Then in the uncorrelated space we conduct
the second mapping based on Fisher criterion. The combi-
nation of two mapping amounts to getting optimal discrim-
inants in original input space through which we get uncor-
related features.

In next section, we first give the formulation of our Un-
correlated Discriminants on Feature Space (UDFS), then
investigate its relationship with Jin [7]’s uncorrelated Dis-
criminants in Recursive Algorithm (UDRA). Section 3 is
devoted to the experiments confirming the effects of the new
method, and the conclusions are given in the last section.



2. Discriminants on uncorrelated feature space

We first fix some notations used in the following formu-
lation. Let ω1, ω2,. . . ,ωC be C known patterns, and x be a
sample in n dimensional space. mi and Pi(i = 1, 2, ..., C)
are the mean and prior probability of ωi respectively. Then
the between-class scatter matrix Sb, within-class scatter ma-
trix Sw, and total population scatter matrix St can be de-
fined as:

Sb =

C
∑

i=1

Pi [mi − E (x)] [mi − E (x)]
> (1)

Sw =

C
∑

i=1

PiE
[

(x−mi) (x−mi)
>
|ωi

]

(2)

St = E
{

[x− E (x)] [x− E (x)]
T
}

= Sb + Sw

(3)

The optimal uncorrelated discriminants are such vectors:
All the features obtained by mapping input data on these
discriminants vectors are uncorrelated. Meanwhile, on ev-
ery discriminants the ratio of the between-class distance to
the within-class distance is maximum.

Definition 1. For any training sample x, assume Φ =
[φ1, φ2, · · · , φk] to be discriminant vectors. Then the linear
transformation of Rn → Rk is defined as:
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If E [(yi − Eyi) (yj − Eyj)] = φ>j Stφi = 0 (j 6= i), and
Φ maximize the ratio of between-class distance to the
within-class distance, then Φ = [φ1, ..., φk] are uncorre-
lated discriminants.

2.1. Uncorrelated feature space

Theorem 1. Any orthogonal transformation of an iden-
tity matrix leads to an identity matrix.

This conclusion is obvious. From theorem 1 we know
that in first mapping if we transform St into an identity ma-
trix with a column orthogonal matrix V, we can get an un-
correlated feature space F , in which the total population
scatter matrix becomes identity matrix. Then we can al-
ways get φ>j Stφi = 0 (j 6= i) and φ>j Stφi = 1 (j = i)
as long as the projection directions φi and φj used for the
second mapping are orthogonal. According to definition 1,
φi is the uncorrelated vectors. We can obtain discriminants
based on Fisher criterion in F .

The matrix V used in the first mapping can be de-
rived from St. Suppose St to be non-singular matrix
with eigenvectors U = [u1,u2, · · · ,un] and eigenvalues
[λ1, λ2, · · · , λn]. Then,

U>StU = Λ (5)

where Λ is diagonal matrix with eigenvalues λi.
Let V = UΛ−1/2, there exists

V>StV = I (6)

where I is identity matrix.
Then the V in (6) is the first projection matrix we want.

Therefore to get discriminants we merely need find out a set
of orthogonal projection vectors in F . Section 2.2 would
demonstrate that the discriminants drawn from fisher crite-
rion fulfill all the requirements.

2.2. Fisher discriminants on uncorrelated feature
space

Since we have obtained an uncorrelated feature space F ,
the next task is to find a set of orthogonal discriminant vec-
tors maximizing Fisher coefficient.

Theorem 2. In a n-dimensional space Rn,x ∈
Rn, f (x) ≥ 0, g (x) > 0. Let h1 (x) = f (x)/g (x),
h2 (x) = f (x) / [f (x) + g (x)]. Then x maximize h1 (x)
if and only if it maximize h2 (x) .

The proving procedure is easy and can be referred to
Jin [7].

The Fisher coefficient in feature space F is defined as:

JF (φ) =
φ>Su

bφ

φ>Su
wφ

(7)

where Su
b and Su

w denote the between-class scatter matrix
and within-class scatter matrix of samples in F . Accord-
ing to theorem 2, the above function can be rewritten in a
slightly different form:

JF (φ) =
φ>Su

bφ

φ>Su
t φ

(8)

where Su
t is the total population scatter matrix in the uncor-

related feature space F . Considering that we perform the
second projection in F , and any unit vector φ in F fulfill
φ>Su

t
φ = 1, we can simplify the Fisher criterion as:

JF (φ) = φ>Su
b
φ (9)

In this eigenvalues problem the eigenvectors correspond-
ing to the k(k ≤ n) largest eigenvalues of Su

b can be chosen
as the k projection directions. We reach this conclusion not
only because these eigenvectors maximize JF (φ) but also
because they are orthogonal vectors, which is a premise in
theorem 1. In this way, we get optimal discriminant vectors
on which all the features projected are uncorrelated.



2.3. Solution of uncorrelated discriminants on fea-
ture Space (UDFS)

After the theoretical analysis, the procedure of obtaining
uncorrelated discriminant vectors can be decomposed into
the following several steps:

• Compute the between-class scatter matrix Sb and the
total population scatter matrix St.

• Compute the eigenvalues and eigenvectors of St, then
obtain matrix Λ and U in (5).

• Implement the first mapping by use of the eigenvec-
tors of St as projection directions, and get the between-
class scatter matrix in F : Su

b = V>SbV.

• Compute the first k largest eigenvalues and corre-
sponding eigenvectors of Su

b (usually we fix k toC−1,
with C the number of classes). Thus we get n× k ma-
trix Φ = [φ1, ...φk] used in the second projection.

• Merge two projection matrixes into one, W = VΦ,
and normalize the column vectors of W. Finally the
column vectors of W are the expected uncorrelated
discriminants.

2.4. Relationship with Jin’s algorithm (UDRA)

If [λ1, ..., λn] are the eigenvalues of Su
b in descending

size, the corresponding eigenvectors are Φ = [φ1, ...φn],
and corresponding vectors in original space Rn are W =
[w1, ...wn] = [Vφ

1
, ...Vφn]

Suppose wi (i = 1, ...r − 1) to be the first (r − 1) un-
correlated discriminants that have been verified, i.e.,

w̃i = wi (i = 1, ..., r − 1) . (10)

As to the rth discriminant w̃r, we define a w in Rn that
satisfies

wTStw̃i = 0 (i = 1, ..., r − 1) . (11)

Let Qr−1 = span
{

Vφ
1
, ...,Vφr−1

}

and Q̄r−1 =
span {Vφr, ...,Vφn}. Q̄r−1is the complementary sub-
space of Qr−1.

Obviously w ∈ Q̄r−1, and we can get an expansion for
w in terms of linearly uncorrelated wi, i.e.,

w =

n
∑

i=r

αiwi (12)

Then,

w>Sbw =
n
∑

i=r

n
∑

j=r

αiαjw
>

i Sbwj

=
n
∑

i=r

n
∑

j=r

αiαjφ
>

i V
>SbVφj

=
n
∑

i=r

n
∑

j=r

αiαjφ
>

i S
u
b φj =

n
∑

i=r

α2

iλi

(13)

Analogous to (13),

w>Stw =

n
∑

i=r

α2

i (14)

w>Sbw

w>Stw
=

n
∑

i=r

α2

iλi

n
∑

i=r

α2

i

≤ λr =
w>r Sbwr

w>r Stwr
(15)

As a result, among all the possible w in Q̄r−1, only wr

maximizes Fisher coefficient . Hence w̃r = wr. Since
UDIA seeks to find optimal discriminant that maximizes
Fisher coefficient in Q̄r−1 at each recursion, the rth dis-
criminant in our method is identical with Jin’s.

3. Experiment performances and analysis

In this section we conducted two experiments to cor-
roborate the formulation and test the performance of our
method. The experiments were based on a widely used pat-
tern recognition benchmark database. As face recognition
is an active area in pattern recognition and also a tough
problem, the ORL face dataset was adopted in our exper-
iments. This dataset include forty distinct subjects and each
subject has ten images with resolution of 112 × 92. All
the images were taken against a dark homogeneous back-
ground with the subjects in an upright, frontal position. The
variation in scale is up to 10%. The dataset is available at
http://www.uk.research.att.com/facedatabase.html.

In the initial experiment we chose the first 8 classes of
faces in ORL dataset. In each class, we utilize the first 5 of
10 as training samples. All the sample images were resized
to 7× 6 and for comparison, the 42 dimension feature vec-
tors were compressed to 8 dimension using the method in
Jin [7]. In the following feature extraction procedure, both
our method and Jin’s were used for obtaining uncorrelated
discriminants, and the results were shown in table 1 and ta-
ble 2.

From the tables, it is easy to see that discriminants w1,
w3, w5 in two methods were exactly identical, and w2, w4,
w6, w7 have same values but opposite directions. As we
know the direction has no influence on the computation of
distances. Thus all the discriminants obtained in the above
two methods are identical. This interesting result confirmed
the analysis we did in section 2.4.

In the second experiment, we aim at comparing the time
cost of our method and Jin’s. Respectively we chose the first
30, 32, 34, 36, 38, 40 classes in the dataset. We also used
first 5 image in each class to compute Sb and St. But this
time we compressed the 7× 6 = 42 dimensional images to
C dimension (C is the number of classes). Then two algo-
rithms were used in feature extraction phase. All the com-



Table 1. Uncorrelated discriminants in our algorithm (UDFS)
w1 w2 w3 w4 w5 w6 w7

0.2402 0.3216 0.6219 -0.2110 -0.8737 0.4070 0.0755
-0.4337 0.4198 0.3397 0.5778 0.3889 0.4812 0.3737
0.1100 -0.2711 0.5327 -0.5481 -0.0815 -0.6925 0.8783
-0.6231 0.5339 -0.1934 -0.1619 0.0182 -0.1060 0.1611
-0.0435 0.2123 -0.3655 0.2738 -0.1943 -0.0336 0.0311
0.4838 -0.1501 -0.1999 -0.0892 -0.0519 0.1688 0.2340
0.2984 0.5382 0.0552 0.0938 0.1061 -0.1140 -0.0384
-0.1700 -0.0667 -0.0029 0.4509 0.1636 -0.2636 -0.0057

Table 2. Uncorrelated discriminants in Jin’s algorithm (UDRA)
w1 w2 w3 w4 w5 w6 w7

0.2402 -0.3216 0.6219 0.2110 -0.8737 -0.4070 -0.0755
-0.4337 -0.4198 0.3397 -0.5778 0.3889 -0.4812 -0.3737
0.1100 0.2711 0.5327 0.5481 -0.0815 0.6925 -0.8783
-0.6231 -0.5339 -0.1934 0.1619 0.0182 0.1060 -0.1611
-0.0435 -0.2123 -0.3655 -0.2738 -0.1943 0.0336 -0.0311
0.4838 0.1501 -0.1999 0.0892 -0.0519 -0.1688 -0.2340
0.2984 -0.5382 0.0552 -0.0938 0.1061 0.1140 0.0384
-0.1700 0.0667 -0.0029 -0.4509 0.1636 0.2636 0.0057

Table 3. The time cost of two methods
Number of classes 30 32 34 36 38 40
Time cost of UDFS 0.05 0.05 0.06 0.06 0.06 0.06
Time cost of UDRA 0.44 0.55 0.72 0.83 0.98 1.15

putations were conducted on a computer of PIII 366MHz.
Table 3 gave the time cost of the two methods.

In table 3, we see that the time cost of our method is
roughly constant, while Jin’s increases significantly. The
reason lies in our algorithm includes only two feature ex-
traction procedure. Yet Jin’s algorithm has to do (C − 1) re-
cursion to extract (C − 1) discriminants, and the time cost
is o (C − 1). When C is large enough, the time cost be-
tween two algorithms tends to be 2 : (C − 1).

4. Conclusions

This paper presented a new method for deriving optimal
uncorrelated discriminants. Complete theoretical analysis
and experimental results demonstrate that our method can
get identical discriminants as those in recursive algorithm.
Besides, the new method is simpler and costs less time. This
paper can also cast light on the optimization problems un-
der some constraints: We may first construct a constrained
space, where all the solutions fulfill the constraints. Then
the optimization problems can be solved in that constrained
space.
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