HW8: Probabilistic Modeling

1 Written Exercises

1. Suppose we have a binomial distribution with the "probability of heads" $\pi=0.8$. Compute (show all the stops) the expected value and variance of this distribution.
Answer: the probability distribution over x can be written as:

$$
\mathcal{P}(x \mid \pi)=\pi^{x}(1-\pi)^{1-x}
$$

The expectation of x is

$$
E(x)=\sum_{x=0,1} p(x) f(x)=\pi \cdot 1+(1-\pi) \cdot 0=\pi
$$

The variance of x is

$$
\operatorname{var}(x)=E[x-E(x)]^{2}=E\left(x^{2}-2 x \cdot E(x)+E^{2}(x)\right]=E\left(x^{2}\right)-E^{2}(x)
$$

Because

$$
E\left(x^{2}\right)=\sum_{x=0,1} p(x) x^{2}=(1-\pi) \cdot 0^{2}+\pi \cdot 1^{2}=\pi
$$

We have

$$
\operatorname{var}(x)=\pi-\pi^{2}=\pi(1-\pi)
$$

2. Suppose we have a Gaussian with known mean $\mu=1$ and known variance $\sigma^{2}=1$. What is the density of the distribution $\mathcal{N} \operatorname{or}\left(\mu, \sigma^{2}\right)$ at the following points: $0,1,2$?
Answer: the Gaussian distribution function with $\mu=1$ and $\sigma^{2}=1$ can be written as

$$
\mathcal{N}(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}(x-1)^{2}}
$$

Hence,

$$
\mathcal{N}(0)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}}=0.2420, \mathcal{N}(1)=\frac{1}{\sqrt{2 \pi}}=0.3989, \mathcal{N}(2)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{1}{2}}=0.2420
$$

3. Consider the previous question, but where $\sigma^{2}=0.1$. What is the density at the given points? For $x=1$, the density should be greater than one. How is this possible given that the Gaussian is normalized (i.e., sums to one).

Answer: when $\sigma^{2}=0.1$, the distribution function is

$$
\mathcal{N}(x)=\frac{1}{\sqrt{0.02 \pi}} e^{-50(x-1)^{2}}
$$

And

$$
\mathcal{N}(0)=7.6946 e^{-22}, \mathcal{N}(1)=3.9894, \mathcal{N}(2)=7.6946 e^{-22}
$$

The $\mathcal{N}(1)=1$ means at point $x=1$, the probability of x falls into the interval $(x, x+\delta x)$ is $\mathcal{N}(x) \cdot \delta x$ when $\delta x \rightarrow 0$. So, even $\mathcal{N}(x)>1$ at this point, the $\mathcal{N}(x) \cdot \delta x$ is less than 1 .
4. The Poisson distribution is a distribution over positive count values. It has the form $p(k \mid \lambda)=\frac{1}{e^{\lambda}} \frac{\lambda^{k}}{k!}$, where k is the count and λ is the (single) parameter of the Poisson. Suppose we have a bunch of count data (for instance, the number of cars to pass an intersection on a given day, measured on N-many days) called $k_{1}, k_{2}, \ldots, k_{N}$. Compute the maximum likelihood estimate for λ given this data. (Hint: write down the likelihood, then take the log. Do some algebra to simplify and then take the derivative with respect to λ.)
Answer: The likelihood function of λ is

$$
\begin{gathered}
P(\text { data } \mid \text { model })=P\left(k_{1}, k_{2}, \cdots k_{N} \mid \lambda\right)=\prod_{i=1}^{N} P\left(k_{i} \mid \lambda\right) \\
=\prod_{i=1}^{N} \frac{1}{e^{\lambda}} \cdot \frac{\lambda^{k_{i}}}{k_{i}!}=e^{-\lambda N} \prod_{i=1}^{N} \frac{\lambda^{k_{i}}}{k_{i}!}
\end{gathered}
$$

And the \log-likelihood of λ is

$$
L(\lambda)=-N \lambda+\sum_{i=1}^{N} \log \frac{\lambda^{k_{i}}}{k_{i}!}=-N \lambda+\sum_{i=1}^{N} k_{i} \log \lambda-\sum_{i=1}^{N} \log k_{i}
$$

Take derivative with respect to λ, we get

$$
\frac{\partial L(\lambda)}{\partial \lambda}=-N+\sum_{i=1}^{N} k_{i} \frac{1}{\lambda}=0
$$

Hence we get

$$
\lambda=\frac{\sum_{i=1}^{N} k_{i}}{N}
$$

