
CS 5150/6150: Assignment 1
Due: Sep 23, 2010

Wei Liu

September 24, 2010

Q1: (1) Using master theorem: a = 7, b = 4, f(n) = O(n). Because
f(n) = nlogb a−ε holds when ε = logb a = log4 7, we can apply the first case of
master theorem and get T (n) = Θ(nlogb a) = Θ(n1.4).

(2)a = 2, b = 2, f(n) = O(n log2 n) = n log2 n. If we check the con-
dition f(n) = O(logb a logk n), we find it holds when k = 2. So T (n) =
Θ(nlogb a logk+1 n = Θ(n log3 n).

(3) We can make a guess that T (n) = O(n log n), hence

T (n/ log n) =
n

log n
log

n

log n

= log n · n

log n
· log

n

log n
+ n

= n log
n

log n
+ n

= n log n− n log log n + n

= O(n log n)

(4). T (n) = π√
2

T (1)
T (2)

= π√
2a

= Θ(c).
Q2: We can do a merge sort using devide and conquer approach, which

is O(n log n)-time, and get a sorted array y first. Then to find two number
yi and yj satisfying yi + yj = x, we do searching from both sides of the array
y, that is, searching begin with i = 1 and j = n, here n is the array size.
During the searching, if yi + yj < x, we update i = i + 1, else if yi + yj > x,
we update j = j−1, the algorithm will stop when yi+yj = x. This searching
algorithm yields a O(n) time. So the total computation complexity of the
procedure is O(n log n)+O(n). Since O(n log n) is dominated, the algorithm

1

is O(n log n)-time.

Q3: We need to look at the points where two lines meet, because these
points seperate visible segment and invisible segments. The algorithm takes
a few steps:

• Find all possible points where two lines meet. There is at most
(
n
2

)
number of points, so this step takes O(n2).

• For each line equation, plug in all points in previous step, to see which
side the points are, so we know if each points are uppermost. This is
O(n2) points cross with n lines, so this step takes O(n3).

• Find the lines that meet at these uppermost points. These lines are
what we need.

Q4: (a).One disadvantage of using a even number is there is no median
for each subgroup, so we may need to compute the mean and use the mean
instead. Another disadvange lies in that if using even number, the size of
the subproblem will be bigger than that of using odd number. For exam-
ple,for even number 2k, the subproblem size is T (4k−k

4k
n) = T (3

4
n), while for

odd number 2k + 1, the subproblem size is T (4k+2−(k+1)
4k+2

n) = T (3k+1
4k+2

n) =

T ((k
4k+2

+ 1
2
)n) . It is easy to see that T ((k

4k+2
+ 1

2
)n) is smaller than T (3

4
n).

(b). Using 5 yields:

T (n)5 = O(n) + T (n/5) + T (7n/10)

O(n) is the time to compute medians, T (n/5) is the time to compute pivot,
and T (7n/10) is the time for subproblem.

While using 3, we have:

T (n)3 = O(n) + T (n/3) + T (2n/3)

O(n) time to compute medians, T (n/3) time to compute pivot, T (2n/3) is
the time for subproblem.
Since T (n)3 > T (n)5, we use 5 instead of 3.

(c). For using an odd number, eg, m = 2k+1, as we discussed before, the
size of subproblem is T ((k

4k+2
+ 1

2
)n). If increase the number from 5 to 7, 9,

11 or bigger, we can see that the size of subproblem increases, when m = 5,
size of subproblem is T (7

10
n) = T (0.7n), when m = 7, size of subproblem is

2

T (10
14

n) ≈ T (0.714n), when m = 9, size of subproblem is T (13
18

n) ≈ T (0.722n).
So using larger odd can’t give us better result. On the other hand, as the
increasing of the odd number, the time of computing medians will also in-
crease. let’s take 5 and 7 as examples: the time of computing medians are
n
5
5 log 5 = (log 5)n and n

7
7 log 7 = (log 7)n, we observe a increase of time

when switch from 5 to 7. So in a sense, 5 if optimal.
Q5: Here is an example that the algorithm gives wrong answer.

week 1 week 2 week 3 week 4

l 6 3 10 5

h 40 8 5 8

The algorithm will pick l1 = 6 at week 1, because l1 + l2 > h2.And
actually choosing h1 = 40 is a better solution in this case. So the problem
of the algorithm is that it does not take h1 into account, so even if in the
following steps it chooses the optimal values, it can’t get a global maximum
in the end.

(b). The algorithm below modified the first step of the original one, which
make sure that h1 is taken into account:

3

StartIndex = 1;

If h2 ≤ l1 + l2 then

if h1 > l1 then

Output ’Choose a high-stress job h1 in week 1’

Else

Output ’Choose a low-stress job l1 in week 1’

Set StartIndex = StartIndex + 1;

Else

If h1 > h2 then

Output ’Choose a high-stress job h1 in week 1’

Set StartIndex = StartIndex +1;

Else

Output ’Choose no job in week 1’

Output ’Choose a high-stress job h2 in week 2’

Set StartIndex = StartIndex+2;

Endif

Do the original algorithm begin with i = StartIndex.

Q6:

Segmented-Least_Squares(n)

Array M[0...n]

Set M[0] = 0

For all pairs i<=j

Compute the least squares errors e_i,e_j for the segment p_i,...,p_j

Endfor

For j=1,2,...,n

Use the recurrence (6.7) to compute M[j]

Endfor

Return M[n]

4

Find-Segments(j)

If j=0 then

Output nothing

Else

Find an i that minimizeds e_ij + C + M[i-1]

Output the segment {p_i,....,p_j} and the result of

Find-Segments(i-1)

Endif

This homework is a joint effort with Bo wang.

5

