
CS 5150/6150: Assignment 5+6

Wei Liu (u0614581, weiliu@sci.utah.edu)

December 17, 2010

1 Question 1

The 2-approximation algorithm: The algorithm looks like this:

Algorithm 1 2-approximation algorithm for E-commerce problem

STATE Give {v1, . . . , vn} and {A1, . . . , Am} as input.while a new customer comes in do show him the ads j̃
with lowest total weight eVj among all ads up to now.

end while
return The ads assignment and the lowest spread s.

2-approximation proof: First I try to find a upper bound of s∗, the spread value of the optimal solution. Just
like in load-balancing problem, we do not know the exact solution and its spread value, but we can construct a
upperbound and compare our approximated solution with that upperbound. Along this line, we see

s∗ ≤
v

m
(1)

Suppose s∗ > v
m

, then all other ads have weights greater than v
m

, so the sum of weights v =
∑

Vj < m · v
m
= v,

which is a contradiction.
With eq. (1) established, a good guess is we can prove for spread s in our approximated solution,

s > v/(2m) (2)

With eq. (1) and eq. (2) together, we can prove s > (1/2)s∗ with no problem. Now I will prove eq. (2). Let
js be the ads that achieves the spread s, and let j be any ads other than js. Assume v j is the last customer that
comes to ads j. Just the moments before vi comes in, ads Vj , as the total weights on j, must be less than spread
s, so Vj − v j < s, and Vj < v j + s < v/(2m) + s.

m
∑

k=1

Vk = s+
Vj
∑

j 6= js

< s+ (m− 1)(
v

2m
+ s) = m · s+

m− 1

m
v

If we suppose (2) is not true, then s ≤ v/(2m), we have

m
∑

k=1

Vk <
v

2m
·m+

m− 1

m
v =

2m− 1

2m
v (3)

The left hand side of (3) is just the sum of all the weights, and (3) is a contradiction. hence we prove (2).

1



2 Question 2

Suppose there are N items and each has value vn and weight wn. The maximal weight is W . To define a integer
programming problem, we define a indicator variable xn for each item. xn ∈ {0, 1}, and 1 means xn is put into
the knapsack, while 0 mean it is not. The integer programming will look like:

minimize
N
∑

n=1

vn xn

subject to
N
∑

n=1

wn xn ≤W

xn ∈ {0,1} for all n ∈ {1, . . . , N}

To relax the IP problem to a LP problem, we need to relax the constraint of xn and let xn ∈ [0, 1], i.e. xn takes
any real value between 0 and 1. Because the integer solution is the subset of the linear programming problem’s
solution, the optimal value of LP is no less than the IP problem.

To solve this simple LP problem, we can sort all the item in non-increasing order of vi/wi . We take item in
this order until the total weights exceed the allowed weight, i.e.

∑K
n=1 wn ≤W . To make the total sum of weights

of selected items equal to W , there will be one item whose xk is a fractional value.
rounding and approximation: Now we need to round the LP to get an approximated solution of the original

problem. How good the approximation is depend on the rounding scheme.
Rounding scheme one: We just discard the fractional item xk and choose x1, . . . , xk−1 as the final solution.

If w1 = 1, v1 = 2, and w2 =W, v2 =W , by this rounding scheme we would select the first item, since it has larger
v/w ratio. However the second item is a better solution in the case of W > 2. This says the rounding scheme can
be arbitrary bad.

Rounding scheme two: We choose one item with largest wi and still less than W . We compare this solution
and solution of round scheme one, and choose the better one.

2-Approximation: I claim rounding scheme two is a 2-Approximation. To prove this, we first see
∑K

n=1 xn ≥
OPT, where OPT is the optimal solution of original KNAPSACK problem. Then either

∑k−1
n=1 or xk is greater than

OPT/2 (otherwise the sum of them
∑k

n=1 =
∑k−1

n=1+xk would be less than OPT). So if we choose a better solution

between
∑k−1

n=1 and xk, the solution is at least OPT/2.

3 Question 3

Heuristics one: In each step we choose a vi with largest weight wi , and remove the possible neighbors vi−1 and
vi+1. So we have

wi ≥ wi−1

wi ≥ wi+1

2wi ≥ wi−1 +wi+1

We can compare this solution and optimal solution. We see this solution is less optimal only because in some
steps, it choose some vi not in optimal set, and discard its neighbors which may be in the optimal set. However,
each time this happens, we choose vi which has weights greater than half the weight of discarded nodes. In the
worse case, all the nodes in optimal set is discarded and replaced with nodes not in the optimal set. In this case
we still guarantee

W =
wi
∑

i

≥
1

2

�

∑

wi−1 +wi+1

�

=
1

2
OPT

Page 2



And we prove the 2-approximation.
Heuristics two: Suppose it is not 2-approximation. That means both the sets {v,v3, . . . } and {v2, v4, . . . } are

less than (1/2)W ∗, with W ∗ the optimal solution. Because W ∗ <
∑n

i=1 wi , that means (v1+ v3+ . . . )+ (v2+ v4+
. . . ) =
∑n

i=1 vi <W ∗ <
∑n

i=1 wi , which is a contradiction. Therefore this heuristics is a 2-approximation.

4 Question 4

Following the hint, I will first build a Dynamic Programming (DP) algorithm which find the exact optimal solution.
Then I will use scaling and rounding to get an approximate solution, just like KNAPSACK.

DP Solution: In DP solution of KNAPSACK, we draw a N ×W table, with N is number of the items, and
W is the total weights allowed. Here, because the objective function is a ratio of subset sum, we need to use
M =
∑n

i=1 ai and draw two n×M table A and B. A(i, j) = 1 when there is a subset S̃ =
∑K

k=1 ak = j and i is the
largest element in this subset. Also let B(i, j) = S̃ if there is such subset. And the algorithm to fill table A and B
is[1]

Algorithm 2 DP solution for Subset-Ratio problem
Let A(0, 0) = 1 and B(0, 0) = φ
for i = 1 to n do

A(i, 0) = 0, B(i, 0) = φ.
end for
for j = 1 to M do

A(0, j) = 0, B(0, j) = φ.
end for
for j = 1 to M do

for i = 1 to n do
if j ≥ ai , and there exist k < i such that A(k, j− ai) = 1 then

A(i, j) = 1, B(i, j) = B(i, j)∪ {i}
else

A(i, j) = 0, B(i, j) = φ.
end if
if A(i1, j) = A(i2, j) = 1 and i1 6= i2 then

STOP
end if

end for
end for

Analysis of the algorithm 2: Table A tell us which j is the sum of some elements. j is called a candidate if
A(i, j) = 1. For each such candidate, we look for any greatest candidate k, such that k < j and B(i, j)∩B(i′, k) =
φ, meaning disjoint set. When we find all such k, we look for the k∗ that has minimal j

k
. And B(i, j) and B(i′, k∗)

is the subsets of the best solution.
For each j ∈ {1, M}, we need look at k × n number of B(i′, k). So the computation cost of searching table

B is O (nM2). Together withe cost of building table A and B is O (nM), the total time spent on this algorithm is
O (nM2), which is a pseudo-polynomial algorithm. When M is small, it can be seen as polynomial.

Scaling and Rounding: When the exact solution is available, we will use a scaling parameter b, and set the
value of ai to a multiple of b, i.e. ãi = dai/beb. By doing this, the M =

∑n
i=1 ai will also be a multiple of b. Then,

instead of solving the ãi problem, we can solve âi = ãi/b problem.
Proof of FPTAS: If we choose b as a function of ε like KNAPSACK-APPROX algorithm on the textbook, we

can get a Full Polynomial Time Approximation scheme(FPTAS), and have
∑

i∈S1
ai
∑

i∈S2
ai
≤ (1+ ε)

∑

i∈S∗1
ai
∑

i∈S∗2
ai

Page 3



That is, the approximated solution is with ε of optimal solution. And the approximation algorithm runs in
polynomial time.

5 Question 5

A naive solution is to increase n until the approximated value reach close to e.

Algorithm 3 Find n that approximate e.
n = 1
while (1+ 1/n)n < (1− ε)e do

n := n+ 1
end while

We use 1− ε because (1+ 1/n)n is a increasing function of n.

Algorithm 4 Find n that approximate 1/e.
n = 1
while (1− 1/n)n < (1− ε)(1/e) do

n := n+ 1
end while

In above algorithm I assume e is know as a optimal solution. A better assumption is not to assume we know
the optimal solution but establish a upper/lower bound of it. The final result for (a) is 50 and 500017. For (b) it
is 50 and 500008.

6 Question 6

Upper Bound: We use Chebyshev’s inequality (i.e. Markov inequality) to find the upper bound. Chebyshev’s
inequality says for any random variable X and a > 0

Pr{|X −E(X )| ≥ a} ≤
Var(X )

a2 .

In our case we can compute expectation and variance of X as

E(X ) = E
�

∑

x i

�

=
∑

E[X i] = 100 · 3.5= 350

Var(X ) =
∑
�

E[X 2]− (E[X ])2
�

= 290

If we let a = 50, we have

Pr{|X − 350| ≥ 50} ≤
290

502 = 0.116.

7 Question 7

We use Hoeffding’s inequality to provide an upper bound on the probability of the sum of random variables. First
we simplify the original inequality as

Pr{XH − X T > c
p

n}= Pr{XH − (2n− XH)< c
p

n}

= Pr{2XH − 2n> c
p

n}

= Pr{XH − n>
c

2

p
n}

Page 4



XH can be seen as sum of independent variable XH =
∑2n

i=1 X i , where X i is indicator variables. X i = 1 means
head and X i = 0 means tail. Now we are ready to use Hoeffding’s inequality, which says for independent variable
X1, . . . , Xn and X i ∈ [ai , bi], the sum of these variables S has the following inequality

Pr(S−E(S)≥ t)≤ exp

¨

−
2t2

∑n
i=1(bi − ai)2

«

Here in our case, ai = 0 and bi = 1 for any i in {1, . . . , 2n}. Also we know E(X ) = 2n · 1
2
= n. If we let

t = c
2

p
n, we can write Hoeffding’s inequality as

Pr{XH − n≥
c

2

p
n} ≤ exp

¨

−
2t2

2n

«

= exp

¨

−
(c/2
p

n)2

n

«

= exp

¨

−
c2

4

«

Comparing with original inequality, we just let ε =− c2

4
, and solve c =−2 lnε. hence we proved for any ε > 0

there exist such a constant c that satisfy the original inequality.
So c is a function of ε, which means a smaller ε requires a larger constant c. That also means, the probability

of big difference between H and T is small.

8 Question 8

References

[1] Cristina Bazgan, Miklos Santha, and Zsolt Tuza. Efficient approximation algorithms for the subset-sums
equality problem. In Kim Larsen, Sven Skyum, and Glynn Winskel, editors, Automata, Languages and Pro-
gramming, volume 1443 of Lecture Notes in Computer Science, pages 387–396. Springer Berlin / Heidelberg,
1998. URL http://dx.doi.org/10.1007/BFb0055069. 10.1007/BFb0055069.

Page 5

http://dx.doi.org/10.1007/BFb0055069

	Question 1 
	Question 2 
	Question 3 
	Question 4 
	Question 5 
	Question 6 
	Question 7 
	Question 8 

