
An Evaluation of Explicit Time Integration

Schemes For Use with the Generalized

Interpolation Material Point Method

P. C. Wallstedt J. E. Guilkey ∗

Department of Mechanical Engineering, U of U, Salt Lake City, UT 84112

Abstract

The stability and accuracy of the Generalized Interpolation Material Point (GIMP)
Method is measured directly through carefully-formulated manufactured solutions
over wide ranges of CFL numbers and mesh sizes. The manufactured solutions are
described in detail. The accuracy and stability of several time integration schemes
are compared via numerical experiments. The effect of various treatment of parti-
cle “size” are also considered. The hypothesis that GIMP is most accurate when
particles remain contiguous and non-overlapping is confirmed by comparing manu-
factured solutions with and without this property.

Key words: material point method, manufactured solutions, time integration,
MPM, GIMP, MMS, PIC
PACS: 02.70.Ns, 02.70.Dh, 52.65.Rr, 07.05.Tp

1 Introduction

The Generalized Interpolation Material Point (GIMP) Method is a particle-in-
cell method for solid mechanics applications, described by Bardenhagen and
Kober (1), that is an extension of the Material Point Method (MPM) of Sulsky
et al. (2). MPM and GIMP have been studied and used by numerous inves-
tigators, a subset of these important contributions include: analysis of time
integration properties by Bardenhagen (3); membranes and fluid-structure in-
teraction by York, Sulsky and Schreyer (4; 5); implicit time integration by

∗ Corresponding Author
Email address: james.guilkey@utah.edu (J. E. Guilkey).

Preprint submitted to Elsevier 18 July 2008

Guilkey and Weiss (6), as well as Sulsky and Kaul (7); conservation prop-
erties and plasticity by Love and Sulsky (8; 9); contact by Bardenhagen et
al. (10); cracks and fracture by Nairn (11).

MPM and GIMP are convenient because they allow easy discretization of
complex geometries, fast and straightforward contact treatments, robustness
under large deformations and relative ease of parallel implementation.

However, the family of GIMP methods, including MPM, has largely defied the
types of rigorous analysis that have been applied to say, the Finite Element
Method (FEM). This is due, at least in part, to the mixed Eulerian-Lagrangian
nature of the method, in which particles carry all state data, while the ad-
vancement of that state is carried out on the underlying grid, often referred
to as a computational “scratchpad”.

The standard GIMP implementation, in which particles are treated as blocks
of material, as opposed to Dirac delta functions, does a great deal to reduce
the errors and instabilies that potentially arise as particle distributions become
disordered. Tracking of particle “corners”, described by Ma et al. (12) offers a
vehicle by which to improve the size estimates of GIMP particles. An enhanced
scheme for projecting particle data to the grid was described by Wallstedt and
Guilkey (13) which both reduces the error in this operation, and also provides
more predictable behavior.

Despite the significant value of these works, they do little to explore cer-
tain fundamental questions regarding the accuracy and stability of MPM and
GIMP. The work of Bardenhagen (3) in particular, considers energy conser-
vation in the face of a particular choice of time integration strategy, but it
does not consider how that choice affects accuracy or stability. Here, we seek
to build on that work, by studying the accuracy and stability of the time in-
tegration strategies described in (3) as well as a centered difference scheme as
described in (14).

This paper is organized as follows. We first present a brief overview of MPM
and GIMP, followed by a description of the choices of time integration strategy.
This includes a detailed exposition of the time evolution of a single vibrating
particle, which illustrates the non-linear nature of the discrete equations. Next,
we describe the vehicle by which we have studied the behavior of the strategies
described here, namely, the Method of Manufactured Solutions (MMS) (15;
16; 17). Finally, we present results from a series of numerical experiments, and
from these, draw conclusions about the efficacies of the various approaches.

2

2 Review of the Generalized Interpolation Material Point Method

The material point method (MPM) was described by Sulsky et al. (2; 22) as
an extension to the FLIP (Fluid-Implicit Particle) method of Brackbill (18),
which itself is an extension of the particle-in-cell (PIC) method of Harlow (19).
Interestingly, the name “material point method” first appeared in the litera-
ture two years later in a description of an axisymmetric form of the method (20).
In both FLIP and MPM, the basic idea is the same: objects are discretized into
particles, or material points, each of which contains all state data for the small
region of material that it represents. These particles are spatially Dirac delta
functions, meaning that the material that each represents is assumed to exist
at a single point in space, namely the position of the particle. A subset of the
particle data, minimally mass and velocity, are projected onto a background
grid that is usually, although not necessarily, Cartesian. This projection is
accomplished using weighting functions, also known as shape functions or in-
terpolation functions. These are typically, but not necessarily, linear, bilinear
or trilinear in one, two and three dimensions, respectively.

More recently, Bardenhagen and Kober (1) generalized the development that
gives rise to MPM, and suggested that MPM may be thought of as a subset
of their “Generalized Interpolation Material Point” (GIMP) method. In the
family of GIMP methods one chooses a characteristic function χp to represent
the particles and a shape function Si as a basis of support on the computational
nodes. An effective shape function S̄ip is found by the convolution of the χp

and Si which is written as:

S̄ip(xp) =
1

Vp

∫
Ωp∩Ω

χp(x− xp)Si(x) dx. (1)

While the user has significant latitude in choosing these two functions, in
practice, the choice of Si is usually given (in one-dimension) as,

Si (x) =

1 + (x− xi) /h −h < x− xi ≤ 0

1− (x− xi) /h 0 < x− xi ≤ h

0 otherwise,

(2)

where xi is the vertex location, and h is the cell width, assumed to be constant
in this investigation, although this is not a general restriction on the method.
Multi-dimensional versions are constructed by forming tensor products of the
one-dimensional version in the orthogonal directions.

When the choice of characteristic function is the Dirac delta,

χp(x) = δ(x− xp)Vp, (3)

3

where xp is the particle position, and Vp is the particle volume, then traditional
MPM is recovered. Typically, when an analyst indicates that they are “using
GIMP” this implies use of the linear grid basis function given in Eq. 2 and a
“top-hat” characteristic function, given by (in one-dimension),

χp(x) = H(x− (xp − lp))−H(x− (xp + lp)), (4)

where H(x) is the Heaviside function (H(x) = 0 if x < 0 and H(x) = 1 if
x ≥ 0) and lp is the half-length of the particle. When the convolution indicated
in Eq. 1 is carried out using the expressions in Eqns. 2 and 4, a closed form
for the effective shape function can be written as:

Si (xp) =

(h+lp+(xp−xi))
2

4hlp
−h− lp < xp − xi ≤ −h + lp

1 + (xp−xi)
h

−h + lp < xp − xi ≤ −lp

1− (xp−xi)
2+l2p

2hlp
−lp < xp − xi ≤ lp

1− (xp−xi)
h

lp < xp − xi ≤ h− lp
(h+lp−(xp−xi))

2

4hlp
h− lp < xp − xi ≤ h + lp

0 otherwise,

(5)

The gradient of the shape is:

∇Si(xp) =

h+lp+(xp−xi)
2hlp

−h− lp < xp − xi ≤ −h + lp
1
h

−h + lp < xp − xi ≤ −lp

− (xp−xi)
hlp

−lp < xp − xi ≤ lp

− 1
h

lp < xp − xi ≤ h− lp

−h+lp−(xp−xi)
2hlp

h− lp < xp − xi ≤ h + lp

0 otherwise,

(6)

There is one further consideration in defining the effective shape function,
and that is whether or not the size (length in 1-D) of the particle is kept
fixed (denoted as “UGIMP” here) or is allowed to evolve due to material
deformations (“Finite GIMP” or “Contiguous GIMP” in (1) and “cpGIMP”
here). In one-dimensional simulations, evolution of the particle (half-)length
is straightforward,

lnp = F n
p l0p, (7)

where F n
p is the deformation gradient at time n. In multi-dimensional simu-

lations, a similar approach can be used, assuming an initially rectangular or
cuboid particle, to find the current particle shape. The difficulty arises in eval-
uating Eq. 1 for these general shapes. One approach, apparently effective, has
been to create a cuboid that circumscribes the deformed particle shape (12).
Alternatively, one can assume that the particle size remains constant (inso-
far as it applies to the effective shape function evaluations only). The error

4

that this assumption introduces was demonstrated in (1) and will be further
explored below.

Regardless of the choice of particle characteristic function, the timestepping
algorithm is an independent choice. In his paper exploring energy conservation
error, Bardenhagen (3) considered two possibilities which he denoted USF for
“update stress first” and USL for “update stress last”. As the names imply,
these refer to the point within a timestep at which the particle stress is com-
puted. While the original publications describing MPM used the USL scheme,
USF came into use because it had a particular practical advantage. Namely,
the velocity field from which gradients are taken for use in computing the
stress is smoothly varying, having just been projected to the grid via inter-
polation functions. This improved the robustness of the method. A general
overview of an MPM (or GIMP) timestep is given here, advancing from time
n to n+1, in which the USF/USL distinction is described where appropriate.

The algorithm begins by a projection of the particle mass and momentum to
the grid to form nodal masses and velocities. If we adopt the shorthand that
Sip = Si(xp), these can be written as:

mi =
∑
p

Sipmp, (8)

vn
i =

∑
p Sipv

n
pmp

mi

. (9)

If the USF option is chosen, then gradients of vn
i are computed. These can be

used to compute a strain increment for use in a hypoelastic constitutive model.
Alternatively, a deformation gradient on the particle can be updated for use
in a hyperelastic model. Additionally, the particle volume Vp is updated by
multiplying the initial volume by the determinant of the deformation gradient.

∇vp =
∑

i

∇Sipv
n
i , (10)

Fn+1
p = (1 +∇vp∆t)Fn

p , (11)

σn+1
p = σ(Fn+1

p), (12)

V n+1
p = V 0

p |Fn+1
p |. (13)

The internal force, f int
i , is computed at the nodes from the volume integral

of the divergence of the particle stress. In the USF case, this is based on the
stress and volume that were just computed, while in the USL case, they are
the values computed at the end of the prior timestep. The time superscript is
omitted here for generality,

f int
i = −

∑
p

∇Sip · σpVp. (14)

5

Body forces and tractions are lumped into an external force term denoted by
f ext
i , and with this we can compute acceleration on the grid by:

ai =
f int
i + f ext

i

mi

. (15)

This acceleration is used to update the grid velocity:

v∗i = vn
i + ai∆t. (16)

Material point positions and velocities are updated by:

xn+1
p = xn

p +
∑

i

Sipv
∗
i ∆t, (17)

vn+1
p = vn

p +
∑

i

Sipai∆t, (18)

Finally, if the USL algorithm is chosen, the velocity gradients at the particles
are computed based on the v∗i values:

∇vp =
∑

i

∇Sipv
∗
i , (19)

and Eqns. (11-13) are evaluated here. An important alternate method for
finding velocity gradients in MPM is discussed in section 4.

3 Development of Discrete Equations for a One-Particle System

In attempting to analyze the stability and accuracy characteristics of compet-
ing time integration schemes, we construct discrete equations for xn+1

p ,vn+1
p

and Fn+1
p in terms of these same time n quantities. We choose nearly the

simplest possible system, a single one-dimensional particle in a single compu-
tational cell, constrained on the left side. This is the same problem analyzed
by Bardenhagen (3), and is depicted here in Fig. 1.

Following the steps outlined in Section 2, we begin by projecting the particle
data to the computational nodes. Since this is a one-dimensional scenario,
bold facing of the variables is omitted. Because the left node is constrained,
we can neglect it and only consider the quantities on the right node, which will
be denoted here by a subscript i. In this analysis, the standard linear shape
functions are used, which can be simplified for the current system as follows:

Sip =
xn

p

h
x < h (20)

6

Thus the lumped mass on the right node is:

mi = mp

(
xn

p

h

)
(21)

and the velocity is:

vi =
mpvp

(
xn

p

h

)
mi

= vp (22)

At this point, we will assume a USF formulation, and compute the new de-
formation gradient. This can be found via a recursion relation:

F n+1
p = F n+1

n F n
p (23)

where F n+1
n is the incremental deformation gradient from time n to n+1.

Equation 23 can be rewritten as:

F n+1
p = (1 +∇vp∆t) F n

p (24)

where the gradient of velocity on the particle, ∇vp, is as given by Eq. 10. For
the present case, this is:

∇vp =
∑
p

Gipvi =
vn

p

h
(25)

where Gip = 1
h

is the gradient of the linear shape function on the right node,
and the above accounts for the fixed boundary condition on the left node.
Thus, Eq. 24 can be written in terms of time n values:

F n+1
p =

(
1 +

vn
p

h
∆t

)
F n

p (26)

Fig. 1. Time n configuration of a single particle system. Linear shape function for
the rightmost node is also depicted.

7

Moving forward in the timestep, the nodal force at the grid is the volume
integral of the divergence of stress, computed as:

f int
i =

∑
p

Gipσ
n+1
p V n+1

p (27)

where V n+1
p is the current particle volume. In one dimension, V n+1

p = F n+1
p V 0

p .
In addition, we have chosen the Neo-Hookean constitutive relation with zero
Poisson’s ratio:

σ =
E

2

(
F − 1

F

)
, (28)

where E is Young’s modulus. Combining these gives:

f int
i =

(
E

2h

)((
F n+1

p

)2
− 1

)
V 0

p (29)

Next, the nodal acceleration is the quotient of the internal force divided by
the nodal mass, or Eq. 29 divided by Eq. 21. Simplification gives:

ai =

E
2

((
F n+1

p

)2
− 1

)
V 0

p

mpxn
p

(30)

We can now integrate the velocity at the node according to Eq. 16, using
Eqns. 22, 26 and 30.

v∗i = vn
i +

E
2

(((
1 +

vn
p

h
∆t
)
F n

p

)2
− 1

)
V 0

p

mpxn
p

∆t. (31)

Finally, we can update the particle position and velocity according to Eqns. 17
and 18.

xn+1
p = xn

p +
xn

p

h

vn
p +

E
2

(((
1 +

vn
p

h
∆t
)
F n

p

)2
− 1

)
V 0

p

mpxn
p

∆t

∆t, (32)

vn+1
p = vn

p +
xn

p

h

E
2

((
F n+1

p

)2
− 1

)
V 0

p

mpxn
p

∆t, (33)

Simplifiying gives expressions for position, velocity and deformation gradient
at time n+1 in terms of those quantities at time n for the USF approach.

xn+1
p = xn

p + vn
p

(
xn

p

h

)
∆t +

E

2h

((1 +
vn

p

h
∆t

)
F n

p

)2

− 1

(V 0
p

mp

)
∆t2 (34)

vn+1
p = vn

p +
E

2h

((1 +
vn

p

h
∆t

)
F n

p

)2

− 1

(V 0
p

mp

)
∆t (35)

8

F n+1
p =

(
1 +

vn
p

h
∆t

)
F n

p (36)

By following the same procedure, similar expressions can be arrived at for the
USL scheme. These are just stated here:

xn+1
p = xn

p + vn
p

(
xn

p

h

)
∆t +

E

2h

((
F n

p

)2
− 1

)(V 0
p

mp

)
∆t2 (37)

vn+1
p = vn

p +
E

2h

((
F n

p

)2
− 1

)(V 0
p

mp

)
∆t (38)

F n+1
p =

1 +

vn
p

h
+

E
2

((
F n

p

)2
− 1

)
V 0

p

mpxn
ph

∆t

∆t

F n
p (39)

The conclusion of this development is that, even for the simplest possible
simulation, the resulting discrete equations are non-linear in several variables.
As such, classical stability analysis is not feasible. For this reason, we have
turned to the Method of Manufactured Solutions to generate exact solutions
for non-linear problems. By comparing algorithmic performance against these,
we can characterize the efficacy of the various approaches. First, we consider
other candidate schemes for time integration.

4 Centered-Difference Time Integration

A number of families of time integration schemes have been investigated
for use with GIMP including Runge Kutta, Runge-Kutta-Nystrom, Adams-
Bashforth-Moulton (ABM), and Predictor-Corrector Newmark methods. In
the authors’ experience, few of these methods have been able to achieve their
formal orders of accuracy. For example, the Runge-Kutta family is stable but
offers no additional accuracy while incurring significantly greater computa-
tional cost. Not only is GIMP used for highly discontinuous and nonlinear
problems (for which the ABM family is ill-suited) but the spatial idiosyncra-
cies of the method tend to overwhelm any improvement that a temporally
high order method might offer.

Significant trial-and-error experience has shown that successful algorithms for
GIMP are 1. made from low order versions of the given family of time inte-
gration schemes and 2. involve a mixture of explicit and implicit forms. The
successful USL and USF methods update grid velocity or particle stress explic-
itly (based on the current time step) then update remaining variables based
on the new time step.

9

Nonlinear finite element codes often use a staggered central difference (CD)
scheme (21) and such an approach is used for MPM by Sulsky (14). For the
sake of clarity the method is written out in full using the notation of section
2. In practice the CD scheme is exactly the same as USL but for one crucial
difference: initialization of particle velocity to a negative half time step.

mi =
∑
p

Sipmp, (40)

v
n− 1

2
i =

∑
p Sipv

n− 1
2

p mp

mi

(41)

σn
p = σ(Fn

p) (42)

V n
p = V 0

p |Fn
p | (43)

f int
i = −

∑
p

∇Sip · σpVp (44)

ai =
f int
i + f ext

i

mi

(45)

v
n+ 1

2
p = v

n− 1
2

p +
∑

i

Sipai∆t (46)

v
n+ 1

2
i = v

n− 1
2

i + ai∆t (47)

∇v
n+ 1

2
p =

∑
i

∇Sipv
n+ 1

2
i (48)

xn+1
p = xn

p +
∑

i

Sipv
n+ 1

2
i ∆t (49)

Fn+1
p =

(
1 +∇v

n+ 1
2

p ∆t
)

Fn
p (50)

For MPM as described in (22), an extra integration step is performed on the
updated particle velocities to enhance stability. Equation 47 is replaced by:

v
n+ 1

2
i =

∑
p Sipv

n+ 1
2

p mp

mi

(51)

We designate this modification to central difference time integration as “Up-
date Velocity First”, or “UVF-MPM” in the subsequent results section.

The negative 1/2 step data are available for known solutions, but for typical
simulations they may be impossible to find. An easier approach that works
nearly as well, and is used for all of the cases in this paper, is to multiply the
grid acceleration values by 1/2 for the first time step only. This propagates
the 1/2 through the algorithm correctly and fixes the first order error that
would otherwise be incurred.

Although a number of additional variations of explicit time integration al-
gorithms have been investigated (11) we limit our analysis to the methods

10

discussed here that appear to be in widest use. Additionally, by providing
details of the manufactured solutions, a framework exists by which interested
readers may test their own variations

5 Method of Manufactured Solutions

Code verification has gained importance in recent decades as costly projects
rely more heavily on computer simulations. The Method of Manufactured So-
lutions (MMS) (15; 16; 17) begins with an assumed solution to the model
equations, and analytically determines the external force required to achieve
that solution. This allows the user to verify the accuracy of numerical imple-
mentations and to find where bugs may exist or improvements can be made.
The critical advantage afforded by MMS is the ability to test codes with
boundaries or nonlinearities for which exact solutions will never be known. It
is argued (15) that MMS is sufficient to verify a code, not merely necessary.

For this paper we define two non-linear large deformation dynamic manufac-
tured solutions, and use both of them for subsequent testing. The two solutions
exercize the mathematical and numerical capabilities of the code and provide
reliable answers about its accuracy and stability.

Finite Element Method (FEM) texts often present Total Lagrange and Up-
dated Lagrange forms of the equations of motion. Both forms can be used
successfully in a FEM algorithm, and solutions from both forms are equiv-
alent (21). However, it turns out that it is necessary, or at least convenient,
to manufacture solutions in the Total Lagrange formulation. This might at
first appear to conflict with the fact that GIMP is always implemented in the
Updated Lagrange form. But the equivalence of the two forms and the ability
to map back and forth between them allows a manufactured solution in the
Total Lagrange form to be validly compared to a numerical solution in the
Updated Lagrange form.

The equation of motion is presented in Total and Updated Lagrange forms,
respectively:

∇P + ρ0b = ρ0a (52)

∇σ + ρb = ρa (53)

where P is the 1st Piola-Kirchoff Stress; σ is Cauchy Stress; ρ is density; b is
acceleration due to body forces; and a is acceleration.

Many complicated constitutive models are used successfully with GIMP but
for our purposes the simple neo-Hookean is sufficient to test the nonlinear
capabilities of the algorithm. The stress is related in Total and Updated Lan-

11

grangean forms, respectively:

P = λlnJF−1 + µF−1
(
FFT − I

)
(54)

σ =
λlnJ

J
I +

µ

J

(
FFT − I

)
(55)

where u is displacement; X is position in the reference configuration; F =
I+ ∂u

∂X
is the deformation gradient; J = |F| is the Jacobian; µ is shear modulus;

and λ is the Lamé constant.

The acceleration b due to body forces is used as the MMS source term. The
source term is manufactured such that the equations of motion are satisfied.
We simply declare that the displacement will follow some reasonable but prob-
ably non-physical path, such as a sine function, and then determine the body
force throughout the object that causes the assumed displacement to occur.

Two 2D cases are drawn from the equation of motion and discussed in detail
in the next two sections.

5.1 Axis-Aligned Displacement in a Unit Square

Displacement in a unit square is prescribed with normal components only.
Through this choice, the corners and edges of cpGIMP particles are coincident
and colinear. This choice allows direct demonstration that GIMP can achieve
the same spatial accuracy characteristics in multiple dimensions that have
been shown in a single dimension (1). While it is not representative of general
material deformations, it does allow characterization of the error introduced
via the inexact approximations to cpGIMP, e.g., use of a constant sized particle
characteristic function.

The plane strain displacement field is chosen to be:

u =

Asin(πX)cos(cπt)

Asin(πY)sin(cπt)

0

 (56)

where X and Y are the scalar components of position in the reference config-
uration, t is time, A is the maximum amplitude of displacement and c is wave
speed such that c2 = E

ρ0
where E is Young’s modulus.

The deformation gradient is found by taking derivatives with respect to posi-

12

tion:

F =

1 + Aπcos(πX)cos(cπt) 0 0

0 1 + Aπcos(πY)sin(cπt) 0

0 0 1

 (57)

The stress is found by substituting Eq. 57 into 54:

P =

λ

FXX
K + µ

FXX
(F 2

XX − 1) 0 0

0 λ
FY Y

K + µ
FY Y

(F 2
Y Y − 1) 0

0 0 λK

 (58)

where K = ln(FXXFY Y) and the subscripts on u and F indicate individual
terms of displacement and deformation gradient equations.

Acceleration is found by twice differentiating displacement Eq. 56 in time.
Finally, substituting stress P into Eq. 52 and solving for the body force b
(used as the MMS source term) it is found that:

b =

π2uX

ρ0

[
λ

F 2
XX

(1−K) + µ
(
1 + 1

F 2
XX

)
− E

]
π2uY

ρ0

[
λ

F 2
Y Y

(1−K) + µ
(
1 + 1

F 2
Y Y

)
− E

]
0

 . (59)

5.2 Radial Expansion of a Ring

Displacement is prescribed with radial symmetry for a ring as

u(R) = Acos(cπt)(c3R
3 + c2R

2 + c1R) (60)

where R (and θ) represent cylindrical coordinates in the reference configura-
tion. A is the maximum magnitude of displacement (10% of RO in this case),
t is time, and c is the wave speed in the material. The constants c3, c2, and
c1 are chosen so that the field always provides for zero normal stress on the
inner (RI) and outer (RO) surfaces of the ring and so that u(RO) = A:

c3 = −2
R2

O(RO−3RI)
, c2 = 3(RO+RI)

R2
O(RO−3RI)

, c1 = −6RI

RO(RO−3RI)
(61)

The neo-Hookean constitutive model of Eq. 54 with zero Poisson’s ratio is
used to make the manufactured solution tractible. This is deemed acceptable
because behavior for non-zero Poisson’s ratio has already been represented

13

by the axis-aligned problem. Free surfaces provide the complicating factor for
this scenario.

We relate the cartesian components of displacement in terms of the reference
coordinates X and Y where R2 = X2 + Y 2:

u =

Acos(cπt)(c3R

3 + c2R
2 + c1R)X

R

Acos(cπt)(c3R
3 + c2R

2 + c1R)Y
R

0

 (62)

Equations for velocity, acceleration, and deformation gradient are straight-
forward to find by differentiating Eq. 62 with respect to time and position.
It is more difficult to solve Eq. 54 (with zero Poisson’s ratio) for the MMS
source term, and the resultant equations are quite unwieldy. We use the Maple
symbolic manipulation package to achieve a solution, and to generate C-
compatible source code. The Maple commands that we used to do this are
presented along with a brief description in Appendix B. This should allow the
reader to reproduce these results for testing their own codes.

6 Numerical Results

As discussed above, GIMP does not lend itself to linear stability analysis and
no analytical method has been seen by the authors for predicting the behavior
of the time integration schemes in this paper when used with GIMP. In lieu of
analysis, a series of numerical experiments are performed on cases chosen for
their generality and applicability. A representative sampling of results obtained
is presented here.

In order to save on computational effort various reduced forms of GIMP
are sometimes used as shape functions. For cases denoted below as using
cpGIMP, particle extents in each direction are approximated according to
a three-dimensional version of Eq. 7:

lnp = l0pdiag(Fn
p) (63)

Note that only for the axis-aligned displacement problem does this result in
the deformed particles filling the spatial domain exactly without any gaps or
overlaps. For UGIMP the particle lengths are not changed: lnp = l0p, while for
MPM lp = 0.

The definition of error is chosen with the Total versus Updated Lagrange
formulations in mind. On each particle the exact displacement in the Total

14

Lagrange form is related to the computed displacement in the Updated La-
grange form by measuring the error at each particle δp as the norm of the
difference in computed displacement relative to the exact displacement:

δp = ||(xp −Xp)− uexact(Xp, t)||. (64)

The definition for error at a node is more difficult; see Appendix A.

For the results of this paper we define a single pessimistic, but trustworthy,
measure of error for a complete solution as the L∞ norm over all particles and
all time steps:

L∞ = max(δp). (65)

During the computation of results we also calculated the L1 and L2 norms
for all scenarios. However, we found that they indicated the same orders of
accuracy as Eq. 65. For problems that are smooth in space and time, such as
those used here, we prefer the L∞ norm because it assures us that all particles
are converging. However, for problems involving discontinuities such as contact
or shocks, the L1 and L2 norms are appropriate.

6.1 Axis-Aligned Displacement

A series of simulations are carried out to measure temporal and spatial con-
vergence. In each, the reference configuration contains four equally-spaced
particles per cell. Example results for particle displacement from one such
simulation, using a coarse 8x8 grid, are depicted in Fig. 2.

(a) t = 0 (b) t = 1
2c (c) t = 1

c

Fig. 2. Illustration of particle displacements at three representative times.

6.1.1 Temporal Convergence for Axis-Aligned Displacement

The temporal convergence behavior is examined by measuring the error in dis-
placement, as defined by Eq. 65, of computed solutions over a range of CFL

15

numbers. All solutions use 562 cells and the maximum magnitude of displace-
ment A = 0.1 (from Eq. 56) is large enough to cause the majority of particles
to experience several cell crossings per period. The test code is configured so
that an error of one is returned whenever a particular solution crashes. Results
for several interesting combinations of time integration algorithm and shape
function are plotted in Fig. 3. Below, we consider the results for each.

 0.0001

 0.001

 0.01

 0.1

 1

 0.1 0.2 0.4 0.8

L
∞

 e
rr

or

CFL

USF-cpGIMP
USL-cpGIMP
CD-cpGIMP
CD-UGIMP
UVF-MPM

Fig. 3. Temporal Convergence for Axis-Aligned Displacement

The USF-cpGIMP combination displays uninspiring behavior for the Axis-
Aligned problem. Although it completes the solution successfully for low CFL
cases, its accuracy is poor and gets dramatically worse with increasing values
of CFL. Although Bardenhagen (3) showed that USF conserves energy better
for infinitesimal linear elastic problems, he did not recommend using USF and
the results found here indicate that its lack of dissipation becomes problematic
for non-linear large deformations. The algorithm becomes progressively less
stable and imperfections in the solution are preserved and amplified. However,
it must be noted that USF-MPM performs better than USL-MPM (neither of
which are shown here, and neither of which performs better than the UVF-
MPM in this simulation) because the velocity gradients are based on smooth
values of velocity that have not yet been updated by potentially inaccurate
grid accelerations. The smoother spatial gradients of GIMP enable the use of
more delicate time integration schemes.

Use of the USL-cpGIMP combination results in a dramatic improvement over
USF-cpGIMP with a reduction of error of up to three orders of magnitude.
Accuracy is preserved over a wide range of CFL conditions and the algorithm
does not crash until CFL > 0.7 or thereabouts. We draw attention to the
curious “elbow” that is observed at about CFL = 0.2 wherein the convergence
rate changes from zero to one. Analysis of subsequent spatial convergence

16

results will suggest that a close link between spatial and temporal phenomena
in GIMP causes the elbow. We believe the elbow indicates a shift of dominant
error in USL-cpGIMP from spatial to temporal.

A minor modification to USL changes the algorithm to centered-difference
(CD) (see Section 4) and eliminates the elbow. The CD-cpGIMP combination
displays the same accuracy regardless of CFL right up until CFL exceeds
the stable limit of roughly 0.7. By improving the time integration algorithm
from USL to CD, temporal convergence is entirely eliminated. This is evidence
that spatial error dominates the CD-cpGIMP combination, so temporal effects
are not observed. Experience with a number of problems indicates that the
CD-cpGIMP combination is the best all-around method; it is used as the
benchmark throughout this paper.

The small algorithmic difference between cpGIMP and UGIMP has a substan-
tial effect on accuracy as shown in the CD-UGIMP trend of Fig. 3. An order
of magnitude in accuracy is lost by using UGIMP, but other traits of stability
and general good behavior are retained. The UGIMP results are likely more
representative of real world behavior, as general deformations do not retain the
rectangular shape of the particles needed to fill the deformed domain exactly.

Lastly, we observe that the UVF-MPM of Sulsky et al. (22) is able to complete
the solution over a range of CFL conditions but accuracy is an order of magni-
tude worse than CD-cpGIMP. It has been our experience that MPM produces
poor quantitative convergence when high stress and large deformation occur
together, but can perform acceptably under less demanding conditions.

6.1.2 Spatial Convergence for Axis-Aligned Displacement

The spatial convergence behavior is found by measuring the displacement
error, as defined by Eq. 65, of computed solutions over a range of mesh sizes.
All solutions use CFL = 0.4 and A = 0.1. Convergence results are plotted in
Fig. 4.

The USF-cpGIMP and UVF-MPM combinations display similar trends of spa-
tial accuracy despite being based on different time and spatial integration ap-
proaches. Both display unsatisfactory performance in that they fail to show
convergence with decreasing cell size. However, we note with interest that
neither method crashes, rather both continue to provide solutions that are
visually plausible even when their fundamental accuracy falters.

CD-UGIMP displays initially promising second order convergence, but accu-
racy is lost as the mesh is refined, due evidently to the spatial integration
error that results from constant sized particles not filling the domain exactly.
USL-cpGIMP displays second order convergence for coarse meshes but drops

17

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0.01 0.1

L
∞

 e
rr

or

cell size h

USF-cpGIMP
USL-cpGIMP
CD-cpGIMP
CD-UGIMP
UVF-MPM

Fig. 4. Spatial Convergence for Axis-Aligned Displacement

to first order for finer meshes. We continue to suppose that this is due to the
close coupling of spatial and temporal effects.

Finally, the CD-cpGIMP combination is satisfyingly second order in space.
We are reminded that this excellent behavior is only displayed for the special
circumstances of the axis-aligned problem where no gaps or overlaps exist in
the cell integration. The behavior of a more realistic problem is assessed in
the next section.

6.2 Expanding Ring

A series of simulations, each with four equally-spaced particles per cell, are
carried out to measure temporal and spatial convergence. Example results for
particle displacement from one such simulation, using a coarse 8x8 grid, are
depicted in Fig. 5.

6.2.1 Temporal Convergence for Expanding Ring

The temporal convergence behavior is found by measuring the error in dis-
placement, as defined by Eq. 65, of computed solutions over a range of CFL
numbers. All solutions use 562 cells and A = 0.1 from Eq. 62. The curved
surfaces of the ring are “stair-stepped” approximations in the particle repre-
sentation. Temporal convergence results are generated for the expanding ring
in Fig. 6.

18

(a) t = 0 (b) t = 1
2c (c) t = 1

c

Fig. 5. Illustration of particle displacements at three representative times.

Temporal convergence trends are somewhat different for the expanding ring
as compared to the axis-aligned problem. UGIMP performs just as well as
cpGIMP and USL performs better, compared to CD, than it did for the axis-
aligned problem. This suggests that common factors dominate the results for
all the methods and we believe that the most important of these is the gaps
and overlaps in the particle representation that causes inaccuracies in the
spatial integration due to non axis-aligned displacements in the ring.

While UVF-MPM appears to be the most stable algorithm, it is also sig-
nificantly less accurate than the GIMP variations. Lastly we note that USF
displayed very poor performance and for this reason is omitted from the results
shown in the next section for spatial convergence.

 0.001

 0.01

 0.1

 1

 0.1 0.2 0.4 0.8

L
∞

 e
rr

or

CFL

USF-cpGIMP
USL-cpGIMP
CD-cpGIMP
CD-UGIMP
UVF-MPM

Fig. 6. Temporal Convergence for Expanding Ring

19

6.2.2 Spatial Convergence for Expanding Ring

Spatial convergence behavior, as presented in Fig. 7, is found by measuring the
error, as defined by Eq. 65, of computed solutions over a range of mesh sizes.
All solutions use four initially equally-spaced particles per cell with CFL = 0.4
and A = 0.1.

 0.001

 0.01

 0.01 0.1

L
∞

 e
rr

or

cell size h

USL-cpGIMP
CD-cpGIMP
CD-UGIMP
UVF-MPM

Fig. 7. Spatial Convergence for Expanding Ring

For the most part the trends display nominally first order convergence as
compared to the second order convergence for the axis-aligned solutions. USL
has more error than CD simply because of its first order initialization error,
which is shown to decrease as time step sizes decrease. The loss of convergence
that we expect to see with UGIMP occurs only at high resolution – the last
point of the trend. UVF-MPM provides visually satisfactory solutions but it
fails to converge.

The second order effects, seen in the axis-aligned problem, that differentiate
USL and UGIMP from the CD-cpGIMP baseline are less evident as the error
is now dominated by the stair-stepped surface approximation and by gaps
and overlaps among adjacent particles in the spatial integration. Due to the
deformation, the latter of these is not eliminated by a full cpGIMP treatment
of the particle sizes.

20

7 Conclusions

As demonstrated in Section 3 a formal stability analysis for MPM (or GIMP)
is difficult, if not impossible, due to the non-linear nature of the equations
governing the advancement in time of position, velocity and deformation gra-
dient. In lieu of formal analysis, the Method of Manufactured Solutions pro-
vides a suitable platform for testing stability and convergence behavior. MMS
was used here to determine this behavior for a selection of time integration
schemes suitable for use with GIMP. In addition, MMS allows investigation of
non-linear, large deformation simulations for which GIMP is frequently em-
ployed.

Centered difference (CD) time integration was shown to be closely related to
the “Update Stress Last” (USL) scheme, both of which performed significantly
better than the “Update Stress First” (USF) scheme when used with cpGIMP.
Evidence of the superiority of the CD and USL schemes is most apparent in
light of stability and spatial convergence behavior. However, none of these
schemes were able to achieve their formal orders of accuracy for the simula-
tions considered here. (Note that for small deformation versions of these cases,
convergence is significantly better.) This is evidently due to the comparatively
large amount of spatial error inherent in GIMP, even for the manufactured so-
lution for which GIMP is ideally suited.

Via the axis-aligned displacement problem we show that the UGIMP approx-
imation, in which particle sizes are assumed to remain constant, eventually
causes the accuracy to diverge with mesh refinement. Note that the strat-
egy of Ma, et al., (12) for evolving particle shapes was not investigated here.
Cursory testing of this idea showed some promise, but tracking the particle
corners with sufficient accuracy has proved challenging in general simulations.
Specifically, near the edges of objects, particle corners will eventually migrate
into cells, some of the nodes of which don’t have well defined velocities. In our
experience, this often leads those corners into non-physical territory. Presum-
ably, a solution to this difficulty exists, but our efforts in this arena have been
minimal.

While choice of time integration schemes has a large impact on the overall
accuracy of a simulation, the ultimate conclusion of this work is that, when
the best of these choices is made, spatial error remains dominant. As such,
future work will concentrate on identification and reduction of specific spatial
error sources.

21

8 Acknowledgements

The authors gratefully acknowledge valuable discussions with Mike Steffen,
Mike Kirby, and Martin Berzins, as well as input from Comer Duncan. This
work was supported by the National Science Foundation’s Information Tech-
nology Research Program under grant CTS0218574, and the U.S. Department
of Energy through the Center for the Simulation of Accidental Fires and Ex-
plosions, under grant W-7405-ENG-48.

A Nodal Error in the Current Configuration

The definition for error at a node is complicated by the fact that the nodes
of the computational “scratch pad” are stationary with respect to the current
configuration, but move with respect to the reference configuration. The ref-
erence position of a node is found by solving the following implicit equation
for Xi using a simple root-finding subroutine:

uexact(Xi, t) = xi −Xi (A.1)

where xi is the known position of the node i. Then the error in acceleration
on a node, for example, could be defined as:

δi = ||ai − aexact(Xi, t)||. (A.2)

B Example Maple Commands for Ring Body Force

The following Maple commands allow one to generate the body force for the
ring problem in Sec. 5.2, and should be generally useful in developing other
manufactured solutions.

with(linalg);

Displacement is defined to be radially symmetric; R is radius in the reference
configuration and T is a placeholder for some function of time, which is later
assumed to be trigonometric:

u:=T*(c3*R^3+c2*R^2+c1*R);

We first set out to find expressions for the coefficients c1 − c3. Displacement
in cartesian coordinates in terms of radius R and angle H can be written:

22

uc:=<u*cos(H),u*sin(H),0>;

Displacement gradient with respect to cartesian coordinates in terms of R and
H via the chain rule:

Gu:=evalm(matrix([

[diff(uc[1],R)*cos(H)-diff(uc[1],H)*sin(H)/R,

diff(uc[1],R)*sin(H)+diff(uc[1],H)*cos(H)/R,0],

[diff(uc[2],R)*cos(H)-diff(uc[2],H)*sin(H)/R,

diff(uc[2],R)*sin(H)+diff(uc[2],H)*cos(H)/R,0],

[0,0,0]]));

Forming the deformation gradient:

I3:=matrix([[1,0,0],[0,1,0],[0,0,1]]);

F:=simplify(evalm(I3+Gu));

Evaluate stress assuming zero Poisson’s ratio. At this point the stress matrix,
if written densely, fills nearly a page and is difficult to handle. Symbolic math
manipulation software is extremely helpful:

P:=simplify(evalm(E/2*inverse(F)&*(F&*transpose(F)-I3)));

We find the constants of Eq. 61 by rotating the stress to an arbitrary angle H,
which leaves just two diagonal components in the stress tensor: normal stress
and hoop stress.

Q:=matrix([[cos(H),sin(H),0],

[-sin(H),cos(H),0],

[0,0,1]]);

PQ:=simplify(evalm(Q&*P&*transpose(Q)));

We set the normal stress at the inner and outer radii to zero and scale dis-
placement at the outer radius. The software finds constants that satisfy these
conditions. However, if Poisson’s ratio is not zero then closed forms for the
constants cannot be found.

Pb:=unapply(PQ[1,1],R);

ub:=unapply(u,R);

assume(Ri>0);

assume(Ro>Ri);

interface(showassumed=2);

solve({Pb(Ro)=0,Pb(Ri)=0,ub(Ro)=T},{c1,c2,c3});

With the coefficients of the displacement equation in hand, we find the diver-
gence of stress in cartesian coordinates in terms of R and H via the same chain

23

rule operator used above:

dP:=simplify(<diff(P[1,1],R)*cos(H)-diff(P[1,1],H)*sin(H)/R

+diff(P[2,1],R)*sin(H)+diff(P[2,1],H)*cos(H)/R,

diff(P[1,2],R)*cos(H)-diff(P[1,2],H)*sin(H)/R

+diff(P[2,2],R)*sin(H)+diff(P[2,2],H)*cos(H)/R,

0>);

Finally we solve the momentum equation for b (assuming that T is of the form
used in Eq. 60) and generate optimized C-style code (about a page and a half
of it) that can be used to check our implementation of GIMP.

b:=evalm(-pi^2*E/rho*uc-1/rho*dP);

with(codegen,C):

C(b,optimized,mode=double);

References

[1] S. Bardenhagen, E. Kober, The generalized interpolation material point
method, Computer Modeling in Engineering and Sciences 5 (2004) 477–
495.

[2] D. Sulsky, Z. Chen, H. Schreyer, A particle method for history dependent
materials, Computer Methods in Applied Mechanics and Engineering 118
(1994) 179–196.

[3] S. Bardenhagen, Energy conservation error in the material point method
for solid mechanics, Journal of Computational Physics 180 (2002) 383–
403.

[4] A. R. York, D. L. Sulsky, H. L. Schreyer, The material point method
for simulation of thin membranes, International Journal for Numerical
Methods in Engineering 44 (1999) 1429–1456.

[5] A. R. York, D. L. Sulsky, H. L. Schreyer, Fluid-membrane interaction
based on the material point method, International Journal for Numerical
Methods in Engineering 48 (2000) 901–924.

[6] J. E. Guilkey, J. A. Weiss, Implicit time integration for the material
point method: Quantitative and algorithmic comparisons with the finite
element method, International Journal for Numerical Methods in Engi-
neering 57 (2003) 1323–1338.

[7] D. Sulsky, A. Kaul, Implicit dynamics in the material-point method,
Computer Methods in Applied Mechanics and Engineering 193 (2004)
1137–1170.

[8] E. Love, D. L. Sulsky, An unconditionally stable, energymomentum con-
sistent implementation of the material-point method, Computer Methods
in Applied Mechanics and Engineering 195 (2006) 3903–3925.

[9] E. Love, D. L. Sulsky, An energy-consistent material-point method for

24

dynamic finite deformation plasticity, International Journal for Numerical
Methods in Engineering 65 (2005) 1608–1638.

[10] S. Bardenhagen, J. Guilkey, K. Roessig, J. Brackbill, W. Witzel, J. Foster,
An improved contact algorithm for the material point method and appli-
cation to stress propagation in granular material, Computer Modeling in
Engineering and Sciences 2 (2001) 509–522.

[11] J. A. Nairn, Material point method calculations with explicit cracks,
Computer Modeling in Engineering and Sciences 4 (2003) 649–663.

[12] J. Ma, H. Lu, R. Komanduri, Structured mesh refinement in generalized
interpolation material point method (gimp) for simulation of dynamic
problems, Computer Modeling in Engineering and Sciences 12 (2006) 213–
227.

[13] P. Wallstedt, J. Guilkey, Improved velocity projection for the material
point method, Computer Modeling in Engineering and Sciences 19 (2007)
223–232.

[14] D. Sulsky, H. Schreyer, K. Peterson, R. Kwok, M. Coon, Using the ma-
terial point method to model sea ice dynamics, Journal of Geophysical
Research 112 (2007) doi:10.1029/2005JC003329.

[15] P. Knupp, K. Salari, Verification of Computer Codes in Computational
Science and Engineering, Chapman and Hall/CRC, 2003.

[16] B. Banerjee, Method of manufactured solutions,
www.eng.utah.edu/ banerjee/Notes/MMS.pdf (October 2006).

[17] L. Schwer, Method of manufactured solutions: Demonstrations,
www.usacm.org/vnvcsm/PDF Documents/MMS-Demo-03Sep02.pdf
(August 2002).

[18] J. Brackbill, H. Ruppel, Flip: A low-dissipation, particle-in-cell method
for fluid flows in two dimensions, J. Comp. Phys. 65 (1986) 314–343.

[19] F. Harlow, The particle-in-cell computing method for fluid dynamics,
Methods Comput. Phys. 3 (1963) 319–343.

[20] D. Sulsky, H. Schreyer, Axisymmetric form of the material point method
with applications to upsetting and taylor impact problems, Computer
Methods in Applied Mechanics and Engineering 139 (1996) 409–429.

[21] T. Belytschko, W. K. Liu, B. Moran, Nonlinear Finite Elements for Con-
tinua and Structures, John Wiley and Sons, LTD, 2000.

[22] D. Sulsky, S. Zhou, H. Schreyer, Application of a particle-in-cell method
to solid mechanics, Computer Physics Communications 87 (1995) 236–
252.

25

