Data Parallel Multi-GPU Path Tracing using Ray Queue Cycling
(author’s pre-print, with some addtl material)

Ingo Wald” Milan Jaro§* Stefan Zellmann®

NVIDIA

fIT4Innovations, VSB — Technical University of Ostrava, Ostrava, Czech Republic

°University of Cologne

Fig. 1. A high-resolution version of the Disney Moana island model, with nearly 600 million triangles before instancing, 31 million instances, and 33 GB of textures,
for a total of 84 GBs of model data excluding acceleration structures. At 2560 x 1080 pixels and 8 paths per pixel, our method runs this at 2.9 frames per second
(FPS) on a DGX-2 (with 16 Volta class GPUs and NVLink and NVSwitch), at 2.9 FPS on an HGX (similar architecture, but with 8 A100 GPUs), and at 6.0 FPS,
respectively, on an RTX Server with 8 Ampere class GPUs with ray tracing cores on PCle. An important feature of our method is that it is almost entirely oblivious to
how geometry gets partitioned across GPUs, and does not require any spatially or object-space coherent assignment whatsoever. Right: A false-color image where
an object’s color encodes which GPU it is on; showing a near-random assignment that works just fine in our method.

Abstract

We propose a novel approach to data-parallel path tracing on single-node/multi-
GPU hardware that builds on ray forwarding, but which aims—above all
else—at generality and practicability. We do this by avoiding any attempts at
reducing the number of traces or forward operations performed, and instead
focus on always using all GPUs’ aggregate compute and bandwidth to effec-
tively trace each ray on every GPU. We show that—counter-intuitively—this
is both feasible and desirable; and that when run on typical data-center/cloud
hardware, the resulting framework not only achieves good performance and
scalability, but also comes with significantly fewer limitations, assumptions,
or preprocessing requirements than existing techniques.

1 INTRODUCTION

Modern GPUs have become highly efficient at ray tracing, and what
can or cannot efficiently be ray traced today is almost entirely gov-
erned by what can or cannot be fit into GPU memory. For games, this
constraint is addressed by aggressively managing what is or is not in
GPU memory at any point in time—using techniques like streaming,
LOD, compression, etc. For more general rendering outside of gam-
ing, however, such techniques seem to be less applicable, and limited
GPU memory is frequently a serious issue.

One solution to rendering models larger than GPU memory is
to adopt data-parallel rendering, where the model gets distributed
across the memories of multiple different GPUs and/or nodes that
then work together. This is not applicable to gaming where users only
have a single GPU; but for most professional uses of rendering more

© 2023 Association for Computing Machinery.
Preprint submitted to ArXiv.

than one GPU is either already the norm, or an easy-to-adopt option.
However, despite a rich history of data parallel rendering research, in
practice this technology seems to be entirely confined to scientific
visualization, and hardly used at all outside of that field.

Why this may be so is an interesting topic for debate; however, we
believe the three most important reasons are the following: first, most
existing approaches to data parallel rendering have focused on multi-
node cluster/MPI setups, but those are often constrained in terms of
bandwidth, and are too complicated to set up and use for the average
user. Second, existing approaches in sci-vis typically rely on sorz-
last image compositing, which does not work at all for path tracing.
Data parallel path tracing requires very different communication
patterns—either frequent forwarding of rays, or fetching data on the
fly—that are significantly more challenging to realize. Lastly, for
existing techniques that do use fetching or forwarding, it matters a
lot how exactly the scene is partitioned across the different GPUs
(see, e.g., the discussion in [28]), which in practice means that these
techniques are inherently fragile regarding which content they can or
cannot handle well.

In this paper, we address these three issues by following the mantra
of make it simple, make it work. First, we exclusively focus on single-
node, multi-GPU hardware; this cannot scale to the kind of “hero
run” problems sometimes encountered in sci-vis, but for most ap-
plications reduces the problem of what the user can render to what
machine he or she has access to. Machines such as NVIDIA DGX-2
and A100/HGX (or similar hardware from other vendors) today are
widely available in many data centers, supercomputers, and through

2 + Waldetal

virtually any cloud provider; and often have aggregate GPU memory
that is sufficient for even very large production models. Second, we
consciously abandon the very idea of using some clever partition-
ing to minimize the amount of work or bandwidth generated—and
instead focus on maximizing the throughput of the aggregate sys-
tem by fully utilizing every GPU’s compute and bandwidth in every
stage of our method. In particular, our method will eventually trace
every ray on every GPU. This sounds very inefficient, but as we will
show it is not: doubling the number of GPUs does indeed double
the number of times any ray needs forwarding and tracing—but it
also doubles the overall system’s aggregate compute and memory
capabilities available for doing that, and simultaneously also reduces
how many rays each GPU has to trace; so when properly utilizing
all resources these effects cancel each other out. Tracing each ray
on every GPU means that it no longer matters how the scene gets
partitioned across different GPUs, allowing our method to be applied
to virtually any input, with scene content assigned to GPUs on-the-fly,
and with no constraints other than that the model must fit into the
aggregate memory of all GPUs.

2 BACKGROUND AND RELATED WORK

We assume familiarity with the basics of modern ray and path tracing;
for reference, we point the reader to Alarcon’s explanation of the RTX
pipeline [1], and Boksanksy and Marrs’ Reference Path Tracer [3].
We also assume familiarity with the concept of wavefront path tracing
(see, e.g., [13]).

Path tracing depends on the ability to efficiently trace lots of
rays. Our method’s core ideas are general, but for this paper, we
explicitly target modern GPUs. Leveraging such GPUs’ ray tracing
capabilities requires the use of APIs such as OptiX [17], DirectX, or
Vulkan. In this paper, we build on top of NVIDIA OptiX [17], using
the OWL library [24], but the same techinques should also map to
other vendors’ APIs, or to vendor-independent APIs such as DXR or
Vulkan.

2.1 Data Parallel Rendering

When dealing with models larger than what fits into a single node or
GPU, one option is to use out of core, in which geometry and/or rays
are temporarily paged out to disk or host memory. This was first pro-
posed in Pharr’s seminal memory coherent ray tracing [19]; a more
recent example is Disney’s Hyperion renderer [5]. An alternative to
out of core rendering is data parallel rendering, where the model
gets split across the memories of multiple different render nodes or
GPUs. This was used as early as the nineties to realize ray tracing on
early parallel computers [21]. Today, data parallel rendering is almost
entirely constrained to scientific visualization (sci-vis), typically via
sort-last image compositing [8, 14].

For ray and path tracing, image compositing does not apply. In this
context, methods can be classified into those that ferch scene data
to the processors that need them; or those that send/forward rays to
whichever processor has the data that those rays need.

Data fetching. usually relies on caching to reduce bandwidth [7,
10, 26]; this works great most of the time, but tends to catastrophic
stalls whenever sudden changes in visible content invalidate the

caches. Jaros et al. [11] described a method that also uses fetch-
and-cache, but leverages NVIDIA GPUs’ managed memory to fetch
data with driver- and hardware support. To further reduce memory
transfers they also pre-compute which virtual memory pages will get
the most accesses, and replicate those to each GPU. The downside
to their approach is that this requires a-priori knowledge of what the
user will render, and that this is incompatible with vendor-optimized
and/or hardware-accelerated solutions where the acceleration struc-
ture cannot be changed by the user, or even with hardware texture
units that cannot access memory on other GPUs.

Ray forwarding has been looked at by several different researchers
(e.g., [15, 16, 20, 21]. Fouladi et al. [9] proposed this for low-cost
(offline-)rendering in the cloud. Wald and Parker [25] recently pro-
posed the BriX framework that uses a combination of object-space
partitioning, partial replication, and cleverly designed next-node ker-
nels to reduce the number of times rays need to be sent across the
network. BriX did show that scene partitioning does not have to be
spatial—but itself also heavily relies on a suitable (object-space)
partitioning. In Kilauea, Kato et al. [12] proposed an architecture
where the scene could be arbitrarily distributed across multiple nodes.
A single rendering node would broadcast every ray to every scene
node, then select the closest intersection returned by any such node.
Partitioning. Irrespective of underlying algorithm, data parallel ren-
dering requires some sort of partitioning of the model into smaller
pieces. This is typically done via spatial partitioning; however, this
can be problematic for modern production content with lots of
instances, hard-to-split objects, or highly varying geometric den-
sity [28]. In a sci-vis context, the model partitioning can also be
pre-ordained by the application that produced the data.

2.2 (Multi-)GPU Technology

Throughout this paper it is important to understand how device mem-
ory works, and how data can move from one GPU to another. On the
lowest level, each GPU talks to any other GPU—or main memory—
via PCle, or via NVLink where available. Conceptually both NVLink
and PCle behave the same way, except for NVLink having higher
bandwidth and lower latency (e.g., PCI 4.0 has a theoretical peak of
32 GB/s in each direction [22], while fourth-generation NVLink on
a HGX-2 has up to 900 GB/s [6]).

Both NVLink and PCle allow for what is referred to as peer access,
where GPUs can directly read from, or write to, other GPUs’ physical
memories. Peer access only works for GPUs that are direct peers,
such as being on the same PCI root complex, or on the same NVLink
bridge or switch. Older hardware like DGX-1 allowed peer access
only between certain pairs of GPUs; newer hardware is fully switched,
meaning each GPU can peer access any other. Both PCle and NVLink
are bidirectional (each GPU can both send and receive at the same
time), and at least when fully switched will also allow for multiple
concurrent communications, meaning aggregate bandwidth is much
higher than for any individual GPU.

Modern GPUs have unified virtual addressing, where the GPU
performs translation between virtual and physical addresses. When
using CUDA managed memory, this can be used to share allocated
memory across multiple GPUs, and/or host memory. Depending on
how the driver has mapped the pages, a given memory access can

{RAY QUEUI

i

z

T+C1

LR bttt L L L L DL L L DL bl TL |
Trace and Cycle (N steps)
T+CN T+C2

collaborative trace stage: N trace-and-cycle rounds

Data Parallel Multi-GPU Path Tracing using Ray Queue Cycling
(author’s pre-print, with some addtl material) =« 3

GPU 1 GPU 2 GPUN

EN1 EN2 ENN
G\L FB1 G@ FB2 \L GJL FBN

SR T R T

SHADE AND TRACE UNTIL DONE J

r
1
[
1
'
]
1
1
'
]
1
1
[
]
1
1
1
'
1
1
1

= B
= o =

FINAL FB

Fig. 2. lllustration of our method. Given N GPUs (that each have their own queue rays, for one-N'th of all pixels) rays are traced through N successive trace-and-
cycle (T&C) stages. In each such T&Cstage (left) each GPU reads the rays from its right neighbor, traces these against the data stored on that GPU, and then
stores these rays in its own outgoing ray queue. After N such stages each ray has been traced on each GPU, and is on the GPU that originally spawned. Right: the
entire pipeline, with each rounded-edge trace box corresponding to the N steps on the left. Each GPU traces one-N'th of all pixels; and has a local accumulation
buffer for those pixels that its shade stages write into. Once all paths have been traced these get tone mapped and merged into the final application frame buffer.

either be resolved locally, or through peer access, or it can cause
a page fault that the driver then uses to either migrate or copy the
respective page. Using cudaMemAdvise the program can suggest
certain access patterns, but the actual mapping is up to the driver.
We observe that NVLink is a vendor specific technology, but that
PCle, peer access, virtual addressing of GPU memory, etc., are not.

3 METHOD OVERVIEW

The fundamental insight that motivated our method is twofold: First,
that in most data parallel techniques “clever” scene partitioning is the
key to performance—but also the main source of overhead and limi-
tations regarding what content that technique can or cannot handle.
Second, that at least on single-node multi-GPU hardware it is both
feasible and desirable to not use a clever partitioning, and instead, to
trace each ray on every GPU. This is desirable because if we can do
so we automatically solve the aforementioned source of limitations,
getting an approach to data parallel rendering that will be much more
general in what kind of content it can handle. Counter-intuitively, it
is also feasible: tracing each ray on every GPU does indeed consume
a lot of compute and bandwidth, and doubling the number of GPUs
doubles that cost—but that at least when the GPUs are connected in
the right manner (using fully switched PCle or NVLink) doubling
the number of GPUs will also double the aggregate compute and
bandwidth available to do this, and will have only half as many rays
per GPU per step.

The key aim of our method thus is to trace every ray on every GPU,
and to leverage the aggregate bandwidth and compute to achieve this.
This means we avoid techniques that channel work to specific GPUs,
and instead use every GPU in every step. To do this, we adopt a
design where we view all N GPUs as forming a ring in which each
GPU has a clearly defined left and right neighbor it communicates
with; each GPU contains some of the scene geometry, with few
constraints as to how this partitioning is attained.

When starting a new frame, each GPU will initially generate its
own wavefront of primary rays, for one N’th of the pixels (i.e., all
GPUs together trace all pixels). All GPUs then trace their rays against
their own geometry, in parallel; i.e., each GPU traces a different one-
N’th of all rays against a different one-/N’th of the geometry. Once all
GPUs are done with this step we perform what we call a ray queue
cycling step, where all GPUs concurrently pass their current set of
partially traced rays to their respective right neighbor, taking their
left neighbor’s rays in turn. Each GPU then again traces the rays it
now has—at which point all rays have been traced against two N’th
of the geometry, etc. After N such trace-and-cycle (T&C) steps, each
group of rays arrives back on the GPU that they were once spawned
on—but every ray has now been traced on every GPU, against every
piece of scene content. The GPUs can now perform shading of their
rays, can each generate a new secondary wavefront for their portion
of the pixels, etc.

When considering this algorithm, intuition wrongly suggests this
to be a terrible idea, because doubling the number of GPUs obviously
doubles the number of times each ray has to be forwarded and traced—
which seems very inefficient. However, it is not: if we double the
number of GPUs we also have each GPU trace half as many rays,
and we have twice the aggregate number of cores and bandwidth
to do that. Since these effects do cancel each other out we cannot
necessarily expect a major speed-up from adding more GPUs; but
we absolutely can expect to be able to trace models that are N times
as large without getting slower. And once we have enough GPUs we
can also employ island parallelism (Section 4.11) to gain both larger
models and higher performance, too.

4 IMPLEMENTATION

Whereas the preceding section sketched some general concept, in
this section we describe a sample wavefront path tracer that is built
on this idea. For the sake of reproducibility we sketch all the different
stages of this path tracer; however, we observe that with very few

4 + Waldetal.

exceptions—that we will explicitly point out—this path tracer looks
like any other GPU wave-front path tracer. In fact, the entire renderer
we are about to sketch was largely based on pieces that existed before
this core idea was even conceived. This is good, as we believe this to
be a strong indicator that these same ideas should be easy to integrate
into any other wave-front renderer.

4.1 Input Structure and Partitioning

Our method is not limited to a specific type of scene content; but
for this paper we focus on production style content that is organized
similar to PBRT’s [18]: A scene consists of one or more instances of
logical objects; each object consists of one or more triangle meshes;
and each triangle mesh has one Disney “Principled BRDF’-style
material [4], and possibly color and alpha textures. As we trace each
ray on each GPU, how we partition that scene will not matter much.
Consequently, our first implementation simply assigned objects to
GPUs in a round-robin manner.

Geometry Weight Estimate. The main issue we encountered with
this totally random assignment is that different GPUs can end up with
vastly different memory load—wasting resources. To address this
we implemented what we call a content weight estimate, which can
predict how much GPU memory a given object would require. This is
the sum of all vertices, indices, texture memory, etc., but also needs
to account for how much memory OptiX will spend on acceleration
structures. The former we can compute exactly; the latter we can
only estimate. We measured OptiX’ BVH sizes for different triangle
and instance counts, then hand-fitted two constants (for triangles and
instances, respectively) to approximate the observed sizes. These
constants depend on what type of GPU OptiX is running on: for
GPUs with hardware ray tracing cores, we use 50 and 400 bytes per
triangle and instance, respectively; for those without we use 100 and
400 bytes, respectively. Other geometry types such as hair, fur, etc.,
would require some equivalent weight estimates, but should then
work in exactly the same way.

Weight-based Partitioning. Using this weight estimate we can
easily achieve a more equal memory load across our GPUs (or, con-
versely, use less GPUs per model): during loading we make a list of
all objects in the scene, and compute the weight of each such object
(including all the instances pointing to it). We then sort these objects
by their size, and, starting with the heaviest object, greedily assign
each to the then respectively least loaded GPU. This is trivially cheap,
and can be done on-the-fly.

Big-Object Splitting. Another problem we observed is that produc-
tion scenes often have one “ground object” that is much larger than
all the others (also see, e.g., [28]). If we always assign entire objects
then the biggest such object would still dictate what kind of models
we could or could not scale to. To address this we take objects that
have more than a certain number of triangles, and split those into
multiple objects with fewer meshes. Since we only split objects—not
meshes—this can be done by simple operations on the scene graph,
at near zero cost.

4.2 Per-GPU Acceleration Structures

Once the scene has been partitioned into the desired number of parts,
each GPU picks one part, uploads its data, and builds its acceleration
structures. For ray tracing we build on OptiX [17]: OptiX can make
use of ray tracing cores where available, but also has a fast software
fallback for GPUs that do not. We use OptiX through the OWL li-
brary [24]; OWL allows for low-level access to performance-relevant
features such as CUDA inter-op or asynchronous launches, but sig-
nificantly reduces the effort required to build OptiX acceleration
structures, shader binding tables, etc.

Building the OptiX acceleration structures is not conceptually dif-
ferent from any other OptiX/OWL based path tracer, except that each
GPU will have different meshes and instances, and thus needs its own
acceleration structures and shader binding table. We create N differ-
ent OWL contexts—one per GPU—and treat these as independent.
Each context has its own CUDA stream for asynchronous launches,
which we later use to run these GPUs in parallel.

4.3 Rays and Ray Queues

Like any other wave-front path tracer we maintain queues of rays,
where each ray is not just a geometric ray, but actually describes the
end-point of a path that is being traced: Each ray stores information
about the pixel it belongs to, the ray type (shadow or not), the current
path length, state, and throughput, as well as information about that
ray’s intersection with the scene, etc. As in any other wavefront path
tracer we eventually have three kernels that operate on these queues:
a wave generation Kernel that generates a new wavefront of rays; a
trace kernel that computes each ray’s intersection with the scenes;
and a shade/bounce kernel that processes a ray’s found intersection,
possibly generating one or more new outgoing rays.

Ray Queue Management. To avoid dynamic memory allocations
during rendering we allow the path tracer to only have at most two
rays active per pixel at any time (see Section 4.7 below), then pre-
allocate ray queues with twice as many slots as there are pixels per
GPU. We also use two such queues per GPU, to allow kernels to
have different input and output queues, where required. Both of these
measures are common practice for wave-front path tracers.
Embedded Full Hit Information. Our rays and ray queues as de-
scribed so far are not significantly different from common practice.
One important difference, however, is in how a ray stores its inter-
section with the scene: Usually, each ray would store only high-level
information such as primitive, mesh, and instance IDs, barycentrics,
etc., and leaves the computation of the shading point, normals, mate-
rial data, etc., to the shade kernel.

In our case, however, rays may find an intersection on a GPU other
than the one that will eventually shade that ray, so any IDs would
not be valid. We solve this by having the ray store the full geometry
of the intersection (position, shading normal, and geometric normal)
as well as the full set of coefficients for a Disney Principled-style
BRDF [4].

Storing all this in a ray sounds prohibitive, but it is not: partly
this is because we no longer have to store the IDs and barycentrics;
partly it is because for normals and BRDF coefficients we can use
half precision without fear of artifacts (we could likely use even less).
Intersection point and distance require full single-precision. Our ray

struct currently uses 88 bytes per ray; this is about twice as much
as what is used by BriX, but for the hardware we are targeting (with
order 10s to several 100s of GB/s of available bandwidth per GPU)
this is quite manageable—and a price worth paying for the ability to
equally distribute all rays across all GPUs.

4.4 CUDA Wave-front Generation Kernel

Our wave-front generation kernel is realized in CUDA. Unlike, for
example, the BriX system we chose to explicitly not try to generate
rays only where some heuristic might indicate so, and instead aim
for distributing the load of rays as equally as possible. We currently
simply have each GPU trace every N’th row of pixels, meaning that
all N GPUs together spawn exactly one path per each pixel, with
each GPU having one N’th of those. The kernel generates a new path
for each assigned pixel, and atomically appends this to the outgoing
ray queue. All GPUs’ generation kernels are launched in parallel,
each into its own GPU’s CUDA stream.

4.5 (Per-GPU) Trace Kernel

The tracing kernel is realized in OptiX, using a ray-gen (RG) program
to launch the rays, and a combination of any-hit (AH) and closest-hit
(CH) programs to process intersections.

Ray-Gen (RG) Program. Despite the name the RG program does
not generate rays—it is merely OptiX’ way of naming this program,
and in our case is the program we use to trace a given ray queue’s
worth of rays into the OptiX acceleration structures. The RG program
gets launched with one GPU thread per ray in the input ray queue;
its launch parameters include a device pointer to the ray queue to
be traced. Each thread first reads the corresponding ray from the ray
queue, then checks if that is a shadow ray that was already terminated
on a previous GPU. If so, the respective thread simply terminates;
otherwise, it stores a pointer to that ray’s data in the OptiX per-ray-
data (PRD) and asks OptiX to trace that ray.

Any-Hit (AH) Program. The AH program gets called by OptiX on
any potential intersection. It first looks up the current intersection’s
material, and checks if the hit is fully transparent. This includes
both material information and, where required, alpha texturing. If
this indicates a fully-transparent hit the intersection gets discarded;
otherwise, the program checks if the ray is a fully occluded shadow
ray, and if so, marks it as occluded and terminates traversal.
Closest-Hit (CH) Program. The CH program takes the closest
found intersection—if it exists—and stores that in the ray (using
the pointer from the PRD). It first computes shading and geometry
normal, transforms those to world space, and stores that using half
precision. It then computes the BRDF coefficients and stores these in
half precision as well; any textures get evaluated and baked into the
BRDF coefficients. For the 3D intersection coordinates we experi-
mented with only storing the distance to the hit point, but for the kind
of models we use this resulted in objectionable surface acne. Instead
we now use Wichter’s method [23] to compute a stable intersection
position and store that in single precision.

4.6 Ray Queue Cycling

The core idea of our method is to not just trace each ray once, but
to cycle each ray through every GPU, and trace it on each. We do

Data Parallel Multi-GPU Path Tracing using Ray Queue Cycling
(author’s pre-print, with some addtl material) <« 5

this by simply calling the above trace kernel N times, and cycle all
GPUs’ ray queues once between each step (cf. Figure 2). In each
such cycle, every GPU passes its current ray queue to its respective
right neighbor, and receives its left neighbor’s queue in turn.

One way of doing this—we call this an implicit copy—is for the
RG program to have two ray queue pointers: one that points to its
right neighbor’s input queue, and one to its own output queue. The
program then reads from one and writes the traced rays back to the
other, which means that rays get copied while they are being traced.
In what we call an explicit copy we instead have the trace kernel
operate on only its own local input queue, and have it write the rays
back to that queue where required. Following this we then launch,
on each GPU, a dedicated cudaMemcpyPeerAsync that copies this
queue to its neighbor GPU’s output queue. These N copies can get
launched into the same streams as the trace, in which case they will
automatically wait for their respective trace to finish, yet still run in
parallel to each other. We finally wait for those N parallel copies to
finish, then simply swap each GPU’s input and output queue pointers;
then iterate. We currently first trace then copy; changing this order
should not matter.

In theory, the implicit version should be faster, because copying
and tracing are interleaved. We do see a slight benefit on NVLink;
however, for PCle-based hardware the explicit version was faster,
likely due to PCI struggling with the less temporally ordered nature
of the implicit variant. Since the communication is more bottlenecked
on PCI we decided to make the latter the default.

‘We now take these two kernel—t race and cycle—and call them
N times. At this time, each ray is back on the GPU that originally
spawned it, having been traced on each GPU (Figure 2).

4.7 CUDA Shade/Bounce kernel

The bounce kernel reads rays from the input queue, shades these rays,
and appends any generated shadow or secondary rays to the output
queue. This kernel first checks if the ray to be shaded is a shadow
ray, and if so, whether it had any intersection. If so it gets discarded;
otherwise, we take its throughput value (which states how much light
it carries), and add this to the pixel it belongs to.

For non-shadow rays we first check if the ray did hit any geometry;
if not, it gets shaded with environment illumination, and the result
gets atomically added to the pixel that this ray belongs to. Otherwise,
we first handle any potential emission of the hit surface, then compute
a new outgoing ray based on BRDF, hit point, and current state of
the ray. We first check if that ray exceeds a predetermined maximum
number of specular or diffuse bounces, respectively, and if so, ter-
minate that path. Otherwise, we update the ray’s throughput value,
origin, direction, etc. To avoid tracing lots of low-throughput rays we
perform Russian-Roulette termination based on the throughput value.
If the ray was not discarded we atomically append it to that GPU’s
output queue. The same atomic counter used to specify the next free
output queue position can later also be used to determine how many
rays are in each queue.

If the ray undergoes a diffuse bounce we also generate a single
shadow ray. We do this by performing repeated reservoir sampling,
first choosing one from possibly multiple different area light samples,
then one from possibly multiple point lights, etc., then choosing one

6 + Waldetal

‘ num GPUs GPU memory fabric ‘ bidir P2P BW' #CUDA cores Arch RT Cores ‘ location
DGX-2 16 16x32 GB=512 GB 2nd-gen NVLink+NVSwitch 270 GB/s 16%x5,120 Volta no IT4Innovations
HGX/A100 8 8x40 GB=320 GB 3rd-gen NVLink+NVSwitch 475 GB/s 8x6,912 Ampere no IT4Innovations
RTX-server | 8xA40 8x48=384 GB PCle 4.0, fully switched 36.7-51.9 GB/s* 8x10,752 Ampere yes NVIDIA GPU Cloud

Table 1. Hardware specifications for the machines used for our performance evaluations. "measured using the CUDA Toolkit's p2pBandwidth tool. *Bandwidth on
this platform varies across different GPU pairs, likely due to varying number of available PCle lanes.

of those to trace a shadow ray to. Each of these different sampling
stages use importance sampling based on how much light the shadow
ray would ultimately carries. Once a shadow ray has been generated,
we store this carried light (divided by the light sample’s PDF) in that
ray’s throughput field, mark it as a shadow ray, and append it to the
queue. Once all GPUs have finished shading we are back to having
an input queue of rays to be traced on each GPU, and simply iterate
back to the next set of T&C cycles.

4.8 Image Contributions and Local Frame Buffer Merging

The bounce kernel can generate image contributions that need to get
added to the frame buffer. In a single GPU this would be done using a
single device buffer, but in our method this can happen on N different
GPUs in parallel. Unlike in BriX we do not have to deal with adding
different GPUs’ contributions to the same pixels, because image
contributions happen only during shading, on the GPU that actually
spawned the original path. However, we still have pixels interleaved
between different GPUs, and these need to be merged into a single
contiguous buffer.

One way of doing this is to have a single accumulation buffer on
GPU 0, then all GPUs atomically add into this using peer access. On
NVLink this actually works quite well; however, on PCle the result-
ing atomics are really slow. Instead, we have each GPU maintain its
own local accumulation buffer for only its one-N’th of the pixels.
After all paths have been traced each GPU first performs simple
Firefly-clamping, Gamma-correction, and RGBAS conversion on its
own pixels (in parallel), then the resulting N small frame buffers are
copied to GPU 0, which then re-arranges those into the proper order
in a CUDA kernel. More complex tone mapping or denoising would
require to merge pixels in float precision; but this is orthogonal to
our method.

4.9 Taking it all Together

Using these four kernels the main components of our method are
now complete, and rendering an entire frame is simply a matter of
launching these kernels in the right order.

Wave Generation. First each GPU launches its generation kernel, in
parallel. At that time, each GPU has one-N’th of all rays.
Distributed Trace. We then trace all rays through all GPUs by doing
N trace-and-cycle iterations. In each iteration we first launch one
trace kernel on each GPU (using OptiX’ asynchronous launches to
make those run in parallel), then launch the corresponding copy into
that same stream. We then wait for these traces and copies to finish by
synchronizing those per-GPU streams, then simply swap all GPUs’
input and output queue pointers, and set each GPU’s ray count to that
of its right neighbor. This marks the end of the first trace-and-cycle
iteration, and each GPU now has one N’th of the rays, each of which
has been traced on one N’th of all GPUs, against its respective GPU’s
part of the data. We repeat this N times, at which point each ray is

back to the GPU that spawned it, having been traced on every GPU,
against all data.

Wave-front Path Tracing. After the distributed trace is complete
we launch each GPU’s bounce kernel, again in parallel using our N
streams. We then wait for these to complete, and read each GPU’s
atomic ray queue size counter. If this is zero for every GPU we are
done; otherwise we have another generation of rays to trace, and
go back to the distributed trace as described above. Once a wave
is traced through all its generations we can either stop tracing and
proceed to merging the local frame buffers, or can call another wave
generation kernel with an additional path per pixel, if so desired.
Final Frame Buffer Merge. After all paths of all waves have been
traced we execute the final accumulation buffer to RGBAS conversion,
and merge the resulting pixels on GPU 0 for saving or display.

4.10 Wave-front Merging

One issue we observed is that very often some pixels require many
more bounces than the average pixel. This “long tail” problem is a
known issue for any path tracer, in particular for GPUs: lots of small
waves mean a lot of call overhead, and low GPU utilization.

To address this we added what we call wave front merging: Instead
of sizing all ray queues to have only two ray slots per pixel we instead
make these ray queues somewhat larger, for example, with 3 instead
of 2 ray slots per pixel on that GPU. After each shade step we look
at how many rays are still in the ray queue at this time, and check if
there are now enough free ray slots to hold both these existing rays
and a new primary wave-front. If not, we simply proceed as before;
otherwise we call the wave generation kernel and have it put the new
rays right behind the still active rays—and then proceed with tracing.
This effectively merges all but the last wave’s short queues into larger
ones, leading to speedups of order 10%.

4.11 Combination with Island Parallelism

Another issue we encountered is that for any data-parallel ray tracer
there is a quickly diminishing return for adding more GPUs than
are strictly required for a model: adding more GPUs reduces how
much geometry each GPU will end up having—but ray tracing is
logarithmic in geometric complexity, so reducing the geometry per
GPU will not result in much speedup. This is still OK from the
perspective that without data-parallelism the model would not have
rendered at all; however, it is still a waste of potential if the underlying
machine has significantly more GPUs than required.

To recoup this potential we integrated island parallelism as de-
scribed by Zellmann et al. [29]. The idea of island parallelism is
to take a configuration of N GPUs, and split these into M so-called
islands of K GPUs each—with data-parallel rendering performed
within each K-sized island, and data-replicated rendering performed
across the M different islands. For our method, applying this is triv-
ially simple (see Figure 4): During startup we partition the scene

landscape (1.6 GB on disk) island (18.8 GB on disk)

1.4 GB textures 4.1 GB textures

Data Parallel Multi-GPU Path Tracing using Ray Queue Cycling
(author’s pre-print, with some addtl material) =« 7

island-XL (84.1 GB on disk)
30.0K insts, 370 meshes, 27.8M tris 39.3M insts, 7.1M meshes, 285.5M tris 31.2M insts, 18.9K meshes, 592.4M tris 3.1K insts, 397 meshes, 647.7M tris

museum (113.7 GB on disk)

33.2 GB textures 44.9 GB textures

Fig. 3. The models we use for our evaluation. For the island model we include both the triangles-only PBRT version used in [25], as well as a much larger one

created by having Blender perform subdivision surface tesselation.

into K (not N) parts, and have each GPU i < N pick part i mod K.
For each GPU i we then set its right neighbor as GPU i 1 mod K, at
which point our N GPUs form M cycles of K GPUs each. Once this
is done all we need to do is reduce the number of trace-and-cycle
iterations from N to K, which is what actually gives us the desired
speedup. Nothing else needs to be changed at all: Each GPU still
spawns the same one-N’th of all pixels’ rays; and the trace, bounce,
cycle, or frame buffer merge kernels do not even have to know that
this technique is being used.

Island parallelism is not only trivial to add to our method, we can
even make it work fully automatically: Using the weight estimate
from Section 4.1 we simply compute how many GPUs are needed to
hold the model once. Then any multiple of this minimum number of
GPU s is used to create more islands.

5 RESULTS AND EVALUATION

We evaluate our framework on different scenes and hardware plat-
forms. In practice we also use our method on consumer hardware
with only one or two GPUs (when run on a single GPU, our method
automatically behaves just like any other path tracer), and with or
without NVLink bridges—but for this evaluation we focus on pro-
fessional multi-GPU hardware. For the type of hardware most likely
to be found in a cloud or data center we include both DGX-2’s and
HGX/A100 machines; these machines have fully switched NVLink
interconnect, but no hardware ray tracing cores. For more rendering
oriented hardware we also include an 8-GPU RTX Server, which has
hardware ray tracing cores, but no NVLink. This machine has fully
switched PCle with still 30 to 50 GB/s of bidirectional bandwidth
per GPU, but this is about an order of magnitude less than NVLink,
while simultaneously having about an order of magnitude higher
trace potential due to its hardware cores. Detailed specifications for

4 GPUs

=

==

=

=

—— —— —— ——

(G D)
A

21Islands, 2 GPUs each

SHADE

[w] = [m] [[=] =1 =]

v

ADD AND TONEMAP

ADD AND TONEMAP

Fig. 4. lllustration of island parallelism [29] within our method, here for 4
GPUs. Left, without islands each GPU holds one fourth of the model, but
also requires four trace-and-cycle stages. Right: the same four GPUs, using
a configuration of two islands of two GPUs each—requiring only two cycle
stages.

these three machine types are given in Table 1. We observe that
these machines (intentionally) cover opposite ends of the compute-
to-bandwidth spectrum.

The models we use for evaluating are depicted in Figure 3. To
enable a close comparison to BriX we include the same landscape
and island models used in that paper. We also include two much
larger models—island-XL and museum—as well as some up-sampled
versions of landscape for reference. We observe that island and
island-XL are conceptually the same model, but at very different
scales: the former is from an export to PBRT (without subdivision
surfaces), the latter is exported from Blender [2], with Blender doing
subdivision surface tessellation. Both museum and island-XL also
use significantly higher-resolution textures.

5.1 Fixed Model Size, Scaling Number of GPUs

The most obvious question for our method is how, for a given model,
it will perform for different numbers of GPUs. We ran our framework
on our different hardware platforms, and made it use only a user-
specified number of GPUs. We also ran this experiment once with and
once without islands; if islands are enabled the island is computed
automatically as described in Section 4.1.

The result of these experiments is shown in Figure 5: Without
island parallelism (upper half) we see a mostly binary outcome: until
we get enough GPUs the model will not render at all; once we do
get enough it will (which is the point), but adding more will not help
much. Once we enable island parallelism (lower half), adding more
GPUs also translates to higher performance. This can still result in
some unused GPUs because we can only add GPUs in multiples of
island size, but generally speaking leads to useful gains.

5.2 Scalability in Model Size

We also implemented a method that lets us artificially grow a given
scene by any user-defined factor: E.g., for a factor of 12 we would
get a model that has an expected ~ 12 the number of triangles in
each mesh, plus 12 copies of all the model’s instances on a 4 x 3
grid; for a total of 144 x the number of instantiated triangles.
Figure 6 shows the render time for different growth scales of the
landscape model—starting at 1x (the original model) up to 120x
the number of triangles and instances (i.e., 14,400x the number of
instanced triangles). Automatic island parallelism was enabled; the
ticks on the x axis also show when our method switched to different
island sizes. Actual data parallel rendering does not even kick in until
16 x, where our method first uses more than one GPU per island.
Overall, we see render time increase from 44 ms/frame to 1 s/frame
(i.e., by 25x), for a range of 120x in model size and 14,400x in

8 + Waldetal

RTX Server DGX-2 HGX

naive (no islands)

20 Is —_— !s\and
— Is-x4 island-xI 4 3
15 Isx16 —— museum
@D 3 [
a a a2
LT w o
2 ==
I 4 g /
5 1 N\ /’—/—~
0 : 0 0
2 4 6 8 10 15 4 8
#GPUs #GPUs # GPUs

with auto-islands

20
4 3

15
[3 [
s o a2
10 o, i
5 ._/_./‘—Z 1, 1

2

4 6 8 5 10 15 2 4 6 8
#GPUs # GPUs #GPUs

Fig. 5. Performance of our method over different hardware and models, using
different numbers of GPUs; once without (top) and one with (bottom) island
parallelism. Solid circles indicate that the method switched to a different island
configuration.

instanced model size, and from data-parallelism going from fully
data replicated (IS=1) to all data parallel (IS=8).

Iahdscape modell subdiv‘ided by growth‘factor
1s I R

10ms & I L L L ! L L B
1x (IS=1) 16x (IS=2) 32.5x (IS=3) 50x (IS=4) 70x (5) 80x (6) 100x (7110x (8) 120x

Fig. 6. Time per frame (using an RTX Server) over a scale of artificially
up-sampled variants of the /andscape model; from 1x (the original model)
up to one that is roughly 120x as big in number of triangles, instances, and
overall memory consumption.

5.3 Timing Profile

To illustrate how our framework behaves over time we also acquired
a timing profile for one frame of the museum model (see Figure 7). To
reduce measurement noise and improve readability we used a high
resolution of 8kx 8k pixels and 8 paths/pixel (smaller resolutions
would affect all kernels equally, and show overall similar behavior).
In this graph, light green boxes include trace and transfer time, dark
green are shading, and background means idle.

The most important observation to make in this graph is that
generally speaking, all GPUs are busy almost all the time: GPUs 1,
3, and 4 have less work than the others, likely because they received
geometry that is mostly off-screen and/or easier to trace against—but
overall there is no single hot-spot where everything bottlenecks.

5.4 Qualitative Factors: Generality and Ease of Use

So far, our evaluation has concentrated on the obvious “hard” criteria
for evaluating a parallel system—Ilike performance and scalability.
However, the main goal of our method was not to always be faster

GPUO N N 0 A N MM
GPUL -SRI L LRELRRI D ARCRROR LA RURRN L ERLUUCEDELUURURRRLRURURUN R L UURUREEDURURUAR R ARRROAN L RRDLRRR T
G2 - |] A ——
GPU3 -SRI | REARR IR ARERANRARARURRNE L LU UL URUE L UREUREN T URAA TR AR LR LARR R
GPUA - TNIR ELERLRR R T RULEREEIEERURIURCERRRARTEN R R RRRRRNERRNURIRR R RRRRERR R LR D VAR LT
GPUS5 |
GPU6 [T §

GPU7

Fig. 7. Timing profile for one frame of the museum model, using 8k x 8k
pixels and 8 paths/pixel, wave-front merging is enabled. Dark green indicates
shading, light green indicates trace and cycle.

than any competing technique, but instead to be, above all else,
practical in the sense that it has fewer restrictions—and is as easy
to use, employ, and extend as any other non-data parallel technique.
This is not something that can easily be proven, and where every case
in point will necessarily be subjective. However, we want to briefly
sketch two such case-in-point examples.

Experimental Blender Integration. We prototypically integrated
our sample implementation into Blender (see Figure 8). We do this
using a Blender plugin that intercepts the data Blender would usually
have given to Blender’s own Cycles renderer, and writes that in our
renderer’s scene format. This plugin then remotely starts our renderer
on a different node in the data center, and waits for this to connect
back using a TCP socket—at which point the plugin can interact with
our renderer, change render settings, display the resulting pictures
in the Blender GUI, etc. Though crude, this integration is not unlike
Cycles itself; in particular, that plugin does not even have to be aware
that our renderer is data-parallel: model partitioning happens on the
fly during loading, everything is fully automatic, and the data-parallel
rendering across multiple GPUs just so happens without Blender even
being aware of it.

Fig. 8. The island-XL and museum scenes in our experimental Blender inte-
gration, interactively rendered with our method on a DGX-2, while controlled
from, and displayed in, Blender.

Extension to Other Data Types. To evaluate how general our method
is we also experimentally extended it to a totally different type of
data: volume data. This required lots of different changes in terms
of data loaders, user interface, applying transfer functions, etc., but
conceptually was trivially easy: We load different parts of the vol-
ume to different GPUs, then use Woodcock tracking [27] to compute
intersections between rays and volume, and a 3D-DDA for traversing
the volume. All these components are completely compatible with
the rest of the system, meaning we can also mix surface and volume
data on the same GPUs, or load some GPUs with volume data while
others use surface data; we can also run that inside our Blender plu-
gin, etc. Two examples of this are shown in Figure 9; extensions to
other types of data—both volumetric and/or surface based—should
be similarly easy. We also observe that these case-in-point examples,
too, are fairly large models of hundreds of Gigabytes.

Fig. 9. Proof-of-concept application of our method to volume data (both inside
our Blender plugin). Left: the 10,240 x 7,680 x 1,536 DNS data set (483 GB).
On a DGX-2 with 16 GPUs of 32 GB each our method renders this at 9 frames
per second (1625 x 930 resolution, 16 paths per pixel). Right: The Space
Shuttle data set featuring both surface data and a 218 GB volume data set.

6 SUMMARY AND DISCUSSION

In this paper, we have presented a novel approach to single-node/multi-
GPU data-parallel path tracing that we termed ray queue cycling. Our

method employs ray-forwarding, and primarily aims for practicabil-
ity and generality. Each ray is sent to—and traced on—each GPU,

requiring the presence of interconnect such as fully switched PCle,

or preferably NVLink; however, on typical cloud or data center hard-
ware where such is available our method is significantly simpler to

employ than other recently proposed methods. Our method does not

require a user to be familiar with MPI or clusters, nor does it require

any sophisticated (and possibly precarious) data-partitioning to work

well: instead, data can be assigned to different GPUs on the fly during

the load time, with which GPU gets what part of the data is largely

irrelevant.

We have shown a sample implementation of our method to be able
to interactively render even massively complex models with hundreds
of Gigabytes of data, including both surface- and volume data, in-
cluding non-trivial path traced shading, and including a prototypical
integration into Blender.

‘While our implementation makes heavy use of NVIDIA-specific
technologies (and will benefit from both ray tracing hardware and
NVLink where available) we have shown it also works without ray
tracing cores, and on vendor-agnostic PCle. Similarly, we make
heavy use of NVIDIA APIs such as OptiX and CUDA, but the core
ideas are not specific to those APIs.

6.1 Comparison to Alternative Approaches

One obvious question is how our framework refers to other methods,
in particular those by Wald and Parker [25], and Jaros et al. [11]. For
the former, the authors report 7.9 FPS for island, using four nodes of
two RTX 8000 cards each. For the same model and camera position,
in our best configuration we achieve 2.9 FPS on a DGX-2 and an
HGX, respectively, and 6 FPS on an RTX Server—but each using 8
times as many paths per pixel. To get an even closer comparison we
also used a desktop PC with two RTX 8000 cards, which is virtually
identical to the render nodes used in BriX. On this machine, our
framework renders the island model at 12.3 FPS. This is faster than
BriX—at 4 less nodes.

Comparing to Jaros et al. is harder because the underlying path
tracers are different. With this in mind, Jaros et al. report 181 seconds
for island-XL, and 126 seconds for museum, each using 1000 paths
per pixel. On identical hardware and render settings our renderer
takes 172 seconds and 98 seconds, respectively. Unlike Jaros’, our

Data Parallel Multi-GPU Path Tracing using Ray Queue Cycling
(author’s pre-print, with some addtl material) =« 9

method can make full use of vendor-supplied accelerated ray tracing
frameworks, and is less dependent on NVLink.

Though such performance comparisons have to be taken with
a grain of salt we believe this proves our method to be at least
competitive with regards to performance (and often faster). This
is important because the real advantage of our method was never
supposed to be performance, but ease of use and generality: BriX, for
example, relies on a costly offline preprocessing step to render these
models at all, plus some amount of expert knowledge in selecting
the right parameters, a much higher hardware hurdle, etc.—whereas
our method can load and render these models on the fly, in a fully
automatic way, and without needing any knowledge of how to employ
clusters via MPI. Jaros’ system is easier to use than BriX, but also
requires some offline preprocessing. More importantly that method
depends on knowing a priori which view the user will want to render
(ours has no such constraints), cannot make use of ray tracing cores
where available, and requires the user write and maintain his own ray
tracing back-end.

6.2 Remaining Issues and Limitations

Arguably the biggest limitation of our method is that it assumes the
renderer to be using a Disney Principled BRDF (or similar) that
can be embedded in the ray—this may not work for every renderer.
For renderers that use shader networks it may still be possible to
compile a given ray-scene intersection’s instantiation of that shader
network down to a similar set of BRDF parameters (in which the
same approach would then again work by each GPU doing that on its
local closest hit); but how exactly this may or may not work would
depend on the specific renderer.

On the performance side, the most obvious issue with our current
implementation is that it is necessarily limited to how many GPUs
can be found in a single machine. In theory, our argument about
more GPUs also providing more bandwidth and compute applies to
multi nodes as well, and with some network technologies now also
reaching order 50 GB/s our technique might eventually also work
for some small networked setups as well—but this requires more
investigation.

Another issue is that our method relies heavily on island paral-
lelism for performance scalability, but it is not clear that this might
always be available. For example, if geometry gets created on the
fly it might not be possible to compute an island size up front. In
that case, our method would still work, but not scale beyond the
performance of a single GPU.

Yet another limitation is that though our method can make use of
ray tracing cores, most data center hardware today does not have
those. Our method is still competitive even without those (and still
saves the user from having to write his own ray tracing back-end), but
it still means that our method cannot use its full potential on current
hardware. Also, even with our method the best way of dealing with
data larger than GPU memory is to avoid this situation in the first
place: if techniques like streaming, LOD, etc. can be used to not go
over the GPU memory limit in the first place, then it will always be
more (cost-)efficient to use that.

10 « Waldetal.

Finally, our renderer is still but a proof of concept prototype, and
integration into a real production renderer may well raise some issues
we have not yet encountered.

7 CONCLUSION

In this paper, we have argued for a new approach to data-parallel
rendering on single-node, multi-GPU hardware. The core idea of our
method is to not try and minimize which rays get sent or traced where,
and instead, to make full use of all GPUs’ aggregate compute and
bandwidth to simply trace each ray on every GPU. We have shown
that against intuition this approach is both feasible and desirable:
It is feasible, because adding more GPUs will increase the total
aggregate available bandwidth by exactly the same factor as tracing
on all GPUs requires. This allows for model size-scaling to however
many GPUs as are required to hold the model; and when combined
with island parallelism, any additional GPUs can still be used for
performance scaling as well. We have shown our method to not only
be generally feasible, but even to be highly competitive with the best
known existing techniques.

In addition to being feasible, our method is also desirable, because
it comes with significantly fewer constraints than competing tech-
niques. It can live with essentially arbitrary assignments of geometry
to GPUs, without preprocessing or a priori knowledge, etc., in a fully
automatic way. This we believe finally brings data-parallel rendering
to where it is practical for more mainstream GPU renderers. Though
our method is only intended for single-node setups with a necessarily
limited number of GPUs, this still allows a renderer to scale sup-
ported model size by at least one order of magnitude, with virtually
no restrictions as to what kind of content or exact path tracer is being
used.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education, Youth and
Sports of the Czech Republic through the e-INFRA CZ (ID:90254),
and by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) through grant no. 456842964.

The authors thank Alvaro Luna Bautista and Joel Andersdon for
the model of Natural History, Three D Scans project for models of
statues, and Art Institute of Chicago for free images (CCO) that have
been used in the Museum scene. We would also like to thank Disney
for making the Moana Island Scene publicly available.

We gratefully acknowledge the use of the computational facilities
of the Center for Data and Simulation Science (CDS) at the Uni-
versity of Cologne; at the Center for High Performance Computing
(CHPC) at the University of Utah; at the IT4Innovations National
Supercomputing Center at the University of Ostrava; and at NVIDIA.
Amir Mohammad Tavakkoli and Daniel Rushton have helped out
with various measurements.

REFERENCES

[1] Nefi Alarcon. 2020. Ray Tracing Essentials Part 4: The Ray Tracing Pipeline.
NVidia Technical Blog. https://tinyurl.com/mpvfcxm5

[2] Blender Foundation [n.d.]. Blender — The Freedom to Create. blender.org

[3] Jakub Boksansky and Adam Marrs. 2021. The Reference Path Tracer. In Ray
Tracing Gems II - Next-Generation Real-Time Rendering with DXR, Vulkan, and
OptiX, Adam Marrs, Peter Shirley, and Ingo Wald (Eds.).

(4]

(5

[6

(7]

[8]

9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

Brent Burley. 2012. Physically-Based Shading at Disney. Siggraph 2012 Course
Notes.. https://tinyurl.com/33977vpx

Brent Burley, David Adler, Matt Jen-Yuan Chiang, Hank Driskill, Ralf Habel,
Patrick Kelly, Peter Kutz, Yining Karl Li, and Daniel Teece. 2018. The Design
and Evolution of Disney’s Hyperion Renderer. ACM Trans. Graph. 37, 3 (2018).
https://doi.org/10.1145/3182159

NVIDIA Corp. 2020. NVIDIA H100 Tensor Core GPU Architecture. Available at
https://resources.nvidia.com/en-us-tensor-core, Accessed: 20 March 2023.
David E DeMarle, Christiaan Gribble, and Steven G Parker. 2004. Memory-
Savvy Distributed Interactive Ray Tracing. In 5th Eurographics / ACM SIGGRAPH
Symposium on Parallel Graphics and Visualization (EGPGV 2004).

Stefan Eilemann. 2019. Parallel Rendering and Large Data Visualization. Ph.D.
Dissertation. University of Zurich. arXiv:1902.08755v1.

Sadjad Fouladi, Brennan Shaklett, Fait Poms, Arjun Arora, Alex Ozdemir, Deepti
Raghavan, Pat Hanrahan, Kayvon Fatahalian, and Keith Winstein. 2022. R2E2:
Low-Latency Path Tracing of Terabyte-Scale Scenes using Thousands of Cloud
CPUs. ACM Transactions on Graphics (Proceedings of ACM SIGGRAPH) (2022).
(to appear).

Thiago Ize, Carson Brownle, and Charles D Hansen. 2011. Real-Time Ray Tracer
for Visualizing Massive Models on a Cluster. In Eurographics Symposium on
Parallel Graphics and Visualization.

Milan Jaros, Lubomir Riha, Petr Strakos, and Matej Spetko. 2021. GPU Accel-
erated Path Tracing of Massive Scenes. ACM Transaction on Graphics 40, 2
(2021).

Toshi Kato and Jun Saito. 2002. “Kilauea” — Parallel Global Illumination Renderer.
In Fourth Eurographics Workshop on Parallel Graphics and Visualization.
Samuli Laine, Tero Karras, and Timo Aila. 2013. Megakernels Considered Harmful:
Wavefront Path Tracing on GPUs. In Eurographics/ ACM SIGGRAPH Symposium
on High Performance Graphics.

Kenneth Moreland. 2011. IceT users’ guide and reference. Technical Report
SAND2010-7451. US Department of Energy Office of Scientific and Technical
Information, Sandia National Labs.

Paul A Navratil. 2010. Memory-Efficient, Scalable Ray Tracing. Ph.D. Dissertation.
University of Texas, Austin.

Paul A. Navritil, Hank Childs, Donald S. Fussell, and Calvin Lin. 2014. Exploring
the Spectrum of Dynamic Scheduling Algorithms for Scalable Distributed-Memory
Ray Tracing. IEEE Transactions on Visualization and Computer Graphics 20, 6
(2014).

Steven G Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared Hoberock,
David Luebke, David McAllister, Morgan McGuire, Keith Morley, Austin Robison,
et al. 2010. OptiX: A General Purpose Ray Tracing Engine. ACM Transactions on
Graphics 29, 4 (2010).

Matt Pharr, Wenzel Jakob, and Greg Humphreys. 2016. Physically Based
Rendering: From Theory to Implementation (3rd ed.). (2016), 1200. http:
/linfoscience.epfl.ch/record/220021

Matt Pharr, Craig Kolb, Reid Gershbein, and Pat Hanrahan. 1997. Rendering
Complex Scenes with Memory-Coherent Ray Tracing. In Proceedings of the 24th
Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH
’97). https://doi.org/10.1145/258734.258791

Erik Reinhard. 1995. Scheduling and Data Management for Parallel Ray Tracing.
Ph.D. Dissertation. University of East Anglia.

J. Salmon and J. Goldsmith. 1989. A Hypercube Ray-Tracer. In C3P: Proceedings
of the third conference on Hypercube concurrent computers and applications -
Volume 2.

Richard Solomon. 2014. PCI Express Basics & Background. https:/tinyurl.com/
uj2y663x

Carsten Wichter and Nikolaus Binder. 2019. A Fast and Robust Method for
Avoiding Self-Intersection. In Ray Tracing Gems - High-Quality and Real-time
Rendering with DXR and other APIs.

I. Wald, N. Morrical, and E. Haines. 2020. OWL — The OptiX 7 Wrapper Library.
Available at https://github.com/owl-project/owl, Accessed: 27 March 2022.

Ingo Wald and Steven G Parker. 2022. Data Parallel Path Tracing with Object
Hierarchies. Proceedings of the ACM on Computer Graphics and Interactive
Techniques 5, 3 (2022). https://doi.org/10.1145/3543861

Ingo Wald, Philipp Slusallek, and Carsten Benthin. 2001. Interactive Distributed
Ray Tracing of Highly Complex Models. In Eurographics Workshop on Rendering
Techniques.

E. R. Woodcock, T. Murphy, P. J. Hemmings, and T. C. Longworth. 1965. Tech-
niques Used in the GEM Code for Monte Carlo Neutronics Calculations in Reactors
and Other Systems of Complex Geometry. In Proceedings of the Conference on
Applications of Computing Methods to Reactor Problems. Argonne National Labo-
ratory.

Stefan Zellmann, Nate Morrical, Ingo Wald, and Valerio Pascucci. 2020. Finding
Efficient Spatial Distributions for Massively Instanced 3-d Models. In Eurographics
Symposium on Parallel Graphics and Visualization, Steffen Frey, Jian Huang, and
Filip Sadlo (Eds.). The Eurographics Association. https://doi.org/10.2312/pgv.

https://tinyurl.com/mpvfcxm5
blender.org
https://tinyurl.com/33977vpx
https://doi.org/10.1145/3182159
https://resources.nvidia.com/en-us-tensor-core
http://infoscience.epfl.ch/record/220021
http://infoscience.epfl.ch/record/220021
https://doi.org/10.1145/258734.258791
https://tinyurl.com/uj2y663x
https://tinyurl.com/uj2y663x
https://github.com/owl-project/owl
https://doi.org/10.1145/3543861
https://doi.org/10.2312/pgv.20201070
https://doi.org/10.2312/pgv.20201070

Data Parallel Multi-GPU Path Tracing using Ray Queue Cycling
(author’s pre-print, with some addtl material) « 11

20201070

[29] S Zellmann, I Wald, J Barbosa, S Dermic, A Sahistan, and U Gudukbay. 2022.
Hybrid Image-/Data-Parallel Rendering Using Island Parallelism. In Proceedings
of the 2022 IEEE 12th Symposium on Large Data Analysis and Visualization
(LDAV). https://doi.org/10.1109/LDAV57265.2022.9966396

https://doi.org/10.2312/pgv.20201070
https://doi.org/10.1109/LDAV57265.2022.9966396

12 + Waldetal.

A ADDITIONAL IMAGES

This section adds some additional images that—due to page limitations and formatting restrictions—could not get added to the official paper.

A.1 Blender Integration (Museum and Island-XL

Data Parallel Multi-GPU Path Tracing using Ray Queue Cycling
(author’s pre-print, with some addtl material) * 13

A.2 Moana Island, False-Color and Reference

Moana Island, with objects color-coded to show which GPU the respective geometry was on during rendering.

e - i - =

Moana Island, reference image.

14 « Wald et al.

A.3 Images of Prototype Extension to Volume Rendering

o ecapren

Space shuttle, with both surface geometry and volume data:

The “DNS” data set, with Woodcock-based volume path tracing.

Data Parallel Multi-GPU Path Tracing using Ray Queue Cycling
(author’s pre-print, with some addtl material) * 15

A.4 Timing Profile from Figure 7

GPUO - O R ORI IMIN NN R A OEENAERNISOMY
eSO | R A e L CECET T, W enner |
GP U2~ e o o
GPU3 SITIIIIE ERRRRRRI R i e .
GPU4 JEITTIINIE DERRRRRRRRRRR i e e i
GPU5]

GPU6
GPUT

Timing profile for one frame of the museum model, using 8k x 8k pixels and 8 paths/pixel, wave-front merging is enabled. Dark green indicates
shading, light green indicates trace and cycle.

16 + Wald et al.

B REVISION HISTORY

v1.0 Created author’s pre-print with additional images that couldn’t
fit into official paper.

	Abstract
	Introduction
	Background and Related Work
	Data Parallel Rendering
	(Multi-)GPU Technology

	Method Overview
	Implementation
	Input Structure and Partitioning
	Per-GPU Acceleration Structures
	Rays and Ray Queues
	CUDA Wave-front Generation Kernel
	(Per-GPU) Trace Kernel
	Ray Queue Cycling
	CUDA Shade/Bounce kernel
	Image Contributions and Local Frame Buffer Merging
	Taking it all Together
	Wave-front Merging
	Combination with Island Parallelism

	Results and Evaluation
	Fixed Model Size, Scaling Number of GPUs
	Scalability in Model Size
	Timing Profile
	Qualitative Factors: Generality and Ease of Use

	Summary and Discussion
	Comparison to Alternative Approaches
	Remaining Issues and Limitations

	Conclusion
	References
	Additional Images
	Blender Integration (Museum and Island-XL
	 Moana Island, False-Color and Reference
	Images of Prototype Extension to Volume Rendering
	Timing Profile from Figure 7

	Revision History

