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show the results after N = 1 (left), N = 100 (second from left), N = 2,000 (second from right), and N = 12,000 (right) iterations.
‘We can generate these layouts in 0.003, 0.43, 7.35, and 39.3 seconds, and outperform a typical CUDA software implementation

by 10.2x, 7.44x,9.6%, and 10.9 x, respectively.
ABSTRACT

Graph drawing with spring embedders employs a V x V computa-
tion phase over the graph’s vertex set to compute repulsive forces.
Here, the efficacy of forces diminishes with distance: a vertex can
effectively only influence other vertices in a certain radius around
its position. Therefore, the algorithm lends itself to an implemen-
tation using search data structures to reduce the runtime complex-
ity. NVIDIA RT cores implement hierarchical tree traversal in hard-
ware. We show how to map the problem of finding graph layouts
with force-directed methods to a ray tracing problem that can subse-
quently be implemented with dedicated ray tracing hardware. With
that, we observe speedups of 4x to 13x over a CUDA software
implementation.

Index Terms: Human-centered computing— Visualiza-
tion—Visualization techniques—Graph drawings; Computing
methodologies—Computer graphics—Rendering—Ray tracing;

1 INTRODUCTION

Graph drawing is concerned with finding layouts for graphs and net-
works while adhering to particular aesthetic criteria [7,32]. These
can, for example, be minimal edge crossings, grouping by con-
nected components or clusters, and obtaining a uniform edge length.
Force-directed algorithms [8, 23] associate forces with the vertices
and edges and iteratively apply those to the layout until equilibrium
is reached and the layout becomes stationary.

Spring embedders, as one representative of force-directed algo-
rithms, iteratively apply repulsive and attractive forces to the graph
layout. The repulsive force computation phase requires O(|V|?)
time over the graph’s vertex set V. This phase can be optimized us-
ing data structures like grids or quadtrees, as the mutually applied
forces effectively only affect vertices within a certain radius.
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In this paper, we show how the task of finding all vertices within
a given radius can also be formulated as a ray tracing problem.
This approach does not only create a simpler solution by leaving
the problem of efficient data structure construction to the API, but
also allows for leveraging hardware-accelerated NVIDIA RTX ray
tracing cores (RT cores).

2 BACKGROUND AND PRIOR WORK

In the following, we provide background and discuss related work
on force-directed graph drawing algorithms. We also give an intro-
duction to NVIDIA RTX and prior work.

2.1 Force-directed graph drawing

We consider graphs G = (V,E) with vertex set V and edge set
E. Each v € V has a position p(v) € R2. Edges ¢ € E = {u,v},
with u,v € V, are undirected and unweighted. The Fruchterman-
Reingold (FR) algorithm [9] (see Alg. 1) calculates the dispersion
to displace each vertex based on the forces. A dampening factor
is used to slow down the forces with an increasing number of it-
erations. Repulsive forces are computed for each pair of vertices
(u,v) € V. Attractive forces only affect those pairs that are con-
nected by an edge. The following force functions are used:
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where A = p(v) — p(u) is the vector between the two vertices acting
forces upon each other. k is computed as y/A/|V|, where A is the
area of the axis-aligned bounding rectangle of V.

As the complexity of the first nested for loop per iteration is
O(|[V)?), and by observing that the pairwise forces diminish with
increasing distance between vertices, the authors propose to adapt
the computation of the repulsive force using:

A K2
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Algorithm 1 Fruchterman-Reingold spring embedder algorithm.

procedure SPRINGEMBEDDER(G(V, E),Iterations,k)
for i := 1 to Iterations do

D« |V| > dispersion to displace vertices
for allveV do > calculate repulsive forces (V x V)
D(v):=0

forallu €V do
D(v) = D(v) + Frep(p(v) — plu). k)
end for
end for
foralle € E do > calculate attractive forces
D(v) = D(v) — Fur (p(v) — plu) k)
D() := D(u) + Farr(p(u) — p(v). k)
end for
for allveV do © displace vertices according to forces
DISPLACE(v,D(v),t) > ¢ is a dampening factor
end for
t 1= COOL(t)
end for
end procedure

> Decrease dampening factor

where u(x) is 1 if x > 0 and 0 otherwise. With that, only vertices
inside a radius 2k will have a non-zero contribution, which in turn
allows for employing acceleration data structures to focus computa-
tions on only vertices within the neighborhood of p(v).

The FR algorithm is a good match for GPUs as the three phases—
repulsive force computation, attractive force computation, and ver-
tex displacement—are highly parallel. The most apparent paral-
lelization described by Klapka and Slaby [25] devotes one GPU
kernel to each phase. The outer dimension of the nested for-loop
over v € V is executed in parallel, but each GPU thread runs the
full inner loop over u € V in Alg. 1. This reduces the time com-
plexity to ®(|V|), whereas the work complexity remains ©(|V|?).
Force-directed algorithms—and in general graph drawing algo-
rithms based on nearest neighbor search—lend themselves well to
massive parallelization on distributed systems [1,21] or on many-
core systems and GPUs [17,31,33].

Gajdos et al. [10] accelerate the repulsive force computation
phase by initially sorting the v € V on a Morton curve. This or-
der is subdivided into individual blocks to be processed in parallel
in separate CUDA kernels. However, this process is inaccurate, as
forces will only affect vertices from the same block. The authors
try to account for that by randomly jittering vertex positions so that
some of them spill over to neighboring blocks. Mi et al. [29] use
a similar approximation but motivate that by imbalances originat-
ing from the multi-level approach described in [18] that they use in
combination with FR. Our approach does not use approximations
but is equivalent to the FR algorithm using the grid optimization
that was proposed in the original work.

General nearest neighbor queries have been accelerated on the
GPU with k-d trees, as in the work of Hu et al. [22] and by Wehr
and Radkowski [37]. For dense graphs with O(|E|) = O(|V|?), the
attractive force phase can also become a bottleneck. The works by
Brandes and Pich [5] and by Gove [15] propose to choose only a
subset of E using sampling to compute the attractive forces. Gove
also suggests using sampling for the graph’s vertex set V to improve
the complexity of the repulsive force phase [16]. Other modifica-
tions to the stress model exist. The COAST algorithm by Ganser
et al. [12] extends force-directed algorithms to support given, non-
uniform edge lengths. They reformulate the stress function based
on those edge lengths so that it can be solved using semi-definite
programming. The maxent-stress model by Ganser et al. [13] ini-
tially solves the model only for the edge lengths and later resolves
the remaining degrees of freedom via an entropy maximization
model. The repulsive force computation in this work is based on the

classical N-body model by Barnes and Hut [3] and uses a quadtree
data structure for the all-pairs comparison. Hachul and Jiinger [20]
gave a survey of force-directed algorithms for large graphs. For a
general overview of force-directed graph drawing algorithms, we
refer the reader to the book chapter by Kobourov [26].

2.2 RTXray tracing

NVIDIA RTX APIs allow the user to test for intersections of rays
and arbitrary geometric primitives. This technique is often used to
generate raster images. Here, bounding volume hierarchies (BVHs)
help to reduce the complexity of this test, which is otherwise pro-
portional to the number of rays times the number of primitives. The
user supplies a bounds program so that RTX can generate axis-
aligned bounding boxes (AABBs) for the user geometry and build
a BVH. Now, a ray generation program can be executed on the
GPU’s programmable shader cores that will trace rays through the
BVH using an API call. In the intersection program, which is called
when rays hit the AABBs, the user can test for and potentially re-
port an intersection with the geometry. A reported intersection will
then be available in potential closest-hit or any-hit programs. RTX
GPUs perform BVH traversal in hardware. When RTX calls an in-
tersection program, hardware traversal is interrupted and a context
switch occurs that switches execution to the shader cores.

RTX was recently used to accelerate visualization algorithms
like direct volume rendering [30] or glyph rendering [39]. RT cores
have, however, also been used for non-rendering applications, such
as the point location method on tetrahedral elements presented by
Wald et al. [36].

3 METHOD OVERVIEW

We propose to reformulate the FR algorithm as a ray tracing prob-
lem. That way, we can use an RTX BVH to accelerate the near-
est neighbor query during the repulsive force computation phase.
The queries and data structures used by the two algorithms differ
substantially: force-directed algorithms use spatial subdivision data
structures, whereas RTX uses object subdivision. Nearest neighbor
queries do not directly map to the ray / primitive intersection query
supported by RTX. However, we present a mapping from one ap-
proach to the other and demonstrate its effectiveness using an FR
implementation with the CUDA GPU programming interface.

3.1 Mapping the force-directed graph drawing problem
to a ray tracing problem

We present a high-level overview of our approach in Fig. 2. A near-
est neighbor query can be performed by expanding a circle around
the position p(v) of the vertex v € V that we are interested in and
gathering all u € V,u # v inside that circle. To compute forces, we
would perform that search query for all v € V and would integrate
the accumulation of the forces directly into the query.

By observing that the circle we expand around v always has a
radius 2k, we can reverse the problem: instead of expanding a circle
around v, we instead expand circles around all v € V. We then trace
an epsilon ray with infinitesimal length and origin at p(v) against
this set of circles and accumulate the forces whenever p(v) is inside
the circle associated with u € V, given that u # v. The intersection
routine of the ray tracer only has to compute the length of the vector
between the ray origin and the center of the circle and report an
intersection whenever that length is less than 2k. Geometrically,
one can think of this as splatting, where the splats whose footprints
overlap p(v) act a repulsive force upon v.

The runtime complexity of the repulsive force computation
phase using nearest neighbor queries can be reduced from @(|V|?)
to O(|V|log(|V|)) using spatial indices like quadtrees [18] or binary
space partitioning trees [28] built over V. The spatial index would
have to be rebuilt on each iteration. Likewise, the ray tracing query
complexity can be reduced in the same manner using a BVH.
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Figure 2: Mapping nearest neighbor queries to ray tracing queries. (a) The Ks: 10 graph; we are interested in the repulsive forces acted upon
the green vertex by all the other vertices. (b) Nearest neighbor queries are performed by gathering the vertices inside a circle around the green
vertex. (c) With a ray tracing query, instead of expanding a circle around the vertex of interest, we expand circles around all vertices. (d) We
trace an epsilon ray (green arrow) originating at the green vertex’ position and with infinitesimal length against the circles’ geometry. Every
circle that overlaps the ray origin—except the circle belonging to the vertex of interest itself—contributes to the force on the green vertex.

3.2 Implementation with CUDA and OptiX 7

We implemented the FR algorithm with CUDA. We use separate
CUDA kernels for the repulsive and attractive forces and for the
vertex dispersion phase. Those kernels are called sequentially in a
loop over all iterations. The dispersion that is computed during the
force phases is stored and updated in a global GPU array.

The parallel attractive force phase uses atomic operations to up-
date the dispersion array. The repulsive phase is implemented us-
ing OptiX 7 and the OptiX Wrapper Library (OWL) [35]. Since
the number of vertices will never change, we use a global, fixed-
size GPU array for the 2-d positions that is shared between CUDA
kernels and OptiX programs. Initial vertex placement is at random
and in a square. RTX does not support 2-d primitives, so that we
construct the BVH from discs with infinitesimal thickness.

The ray generation program spawns one infinitesimal ray per ver-
tex v originating at p(v); we again account for RTX being a 3-d API
by setting the z coordinates of the ray origin and direction vector to
0 and 1, respectively. In this way, we can directly accumulate the
dispersion inside the intersection program and do not even have to
report an intersection that would otherwise be passed along to a
potential closest-hit or any-hit program.

4 EVALUATION

For a comparison with a fairly optimized, GPU-based nearest neigh-
bor query, we use a 2-d spatial data structure based on the LBVH
algorithm [27,40]. As the vertices have no area, we obtain a 2-d
BSP tree with axis-aligned split planes that subdivide parent nodes
into two same-sized halves (middle split). With the restriction be-
ing relaxed that two split planes need to be placed at once, we
should outperform the commonly used grid or quadtree implemen-
tations [6, 16]. Using Karras’ construction algorithm [24], the build
complexity is O(n) in the number of primitives. Our motivation
to use a data structure with superior construction performance is
that is must be rebuild after each iteration. We use a full traversal
stack in local GPU memory and perform nearest neighbor queries
by gathering all vertices within a 2k radius around the current ver-
tex position at the leaves. We have a slight advantage over RTX as
our data structure is tailored for 2-d. At the same time we note that
we cannot possibly optimize our data structure in the same way that
NVIDIA probably has done with RTX, and neither that this is our
goal with this comparison.

Note that the LBVH and RTX implementations and grid-based
FR result in identical graph layouts. In comparison to state-of-the-
art implementations in graph drawing libraries such as OGDF [6],
Tulip [2], or Gephi [4]—all of which provide sequential CPU im-

plementations of FR—both our RTX and LBVH solutions are mag-
nitudes faster. In order to put both our GPU results into perspective,
we also implemented the naive GPU parallelization from [25] over
just the outer loop of the repulsive force phase.

We report execution times for the four data sets depicted in Ta-
ble 1. Two artificial data sets consist of many fully connected K5: 10
graphs (five vertices, ten edges). In one case we use 5K of those
and sequentially connect pairs of them with a single edge. In the
second case we use 50K of them as individual connected compo-
nents. We also test using a complete binary tree with depth 16, as
well as the graph representing twitter feed data that is also depicted
in Fig. 1. For the results reported in Table 1 we used an NVIDIA
GTX 1080 Ti (no RT cores), an RTX 2070, and a Quadro RTX 8000.
The scalability study from Fig. 3 and the evaluation of the repulsive
phase in Table 2 were conducted solely on the Quadro GPU.

5 DiscussION

Our evaluation suggests speedups of 4x to 13 x over LBVH. From
the difference between the mean iteration times in Table 1 and the
mean times for only the repulsive phase in Table 2 we see that the al-
gorithm is dominated by the latter. The other phases plus overhead
account for less than 1 % of the execution time. While Fig. 3 shows
that our method’s performance overhead for small graphs can be
neglected—because it is on the order of about 1 ms—we observe
dramatic speedups that increase asymptotically with |V|.
Interestingly, we see about the same relative speedups on the
GeForce GTX GPU and on the RTX 2070 GPU with hardware ac-
celeration. At the same time, we observe that the absolute runtimes
differ substantially, which we cannot intuitively explain, as neither
the peak performance in FLOPS, nor the memory performance of
the two GPUs, differ that much. Profiling our handwritten CUDA
nearest neighbor query, we find tree traversal to be limited by L2
cache hit rate, which is about 20 %. For RTX, such an analysis is
impossible and we can only speculate about the results. It is con-
ceivable that the RTX BVH has an optimized memory layout such
as the one by Ylitie et al. [38]. Assuming that we are bound by mem-
ory access latency, the speedups we observe might stem from better
utilization of the GPU’s memory subsystem rather than hardware
acceleration. Switching between hardware and software execution
on RTX GPUs incurs an expensive context switch. Hardware traver-
sal is interrupted whenever the intersection program is called. For
our test data sets, we consistently found the average number of in-
tersection program instances called to be in the hundreds. We might
see an adversarial effect where we, on the one hand, benefit from
hardware acceleration, but on the other hand suffer from expensive
context switches and that the two effects in the end cancel. We find



Table 1: Statistics and average execution times on different GPUs. We use three artificial graphs with different connectivity and edge degrees,

and a twitter feed graph. ¢ € C denote connected components. Execution times reported are per full iteration including all phases.

5K x Ks: 10 (connected)

[V|: 25K, |E|: 69K, |C|: 1
Min./max./& Vert. Degree: 4/8/6
Min./max./@ Vert’s / c: 25K (all)

Twitter
[V]: 68K, |E|: 101K, |C|: 3K

Min./max./& Vert’s / c: 2/44K /20

Min./max./@ Vert. Degree: 1/810/3

50K x K5: 10 (unconnected)
[V]: 250K, |E|: 500K, |C|: 50K
Min./max./& Vert. Degree: 4/4/4
Min./max./& Vert’s / c¢: 5 (all)

Binary Tree (Depth=16)
IV|: 131K, |E|: 131K, |C]: 1
Min./max./& Vert. Degree: 1/3/2
Min./max./@ Vert’s / ¢: 131K (all)
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Naive LBVH RTX Naive LBVH RTX Naive LBVH RTX Naive LBVH RTX
Table 2: Acceleration data structure statistics on RTX 8000, for the 3000- 2048.0
repulsive force computation phases. Execution times per iteration s
are given in milliseconds and the ratio of build vs. traversal times E oo 128.0
. . . " Mode
in percent. We also report total BVH memory consumption in MB. £ Naive
i 8.0 « LBVH
Data Set ‘ ‘ Mode ‘ ‘Mem‘ ‘ Build ‘ Traversal ‘ ‘Z Fre p‘Speedup S 1000- = RTX (Ours)
Q
5K x Ks: 10 ||[LBVH]| 1.53(]0.92 (8.37%)|10.0 (91.6%)|| 10.9 = P 05
(connected) || RTX || 1.18 [[1.16 (45.5%)|1.39 (54.5%)|| 2.55 | 4.27x 0-
4 6 8 10 12 14 16 18 4 6 8 10 12 14 16 18
Twitter LBVH|[4.16 ||1.94 (7.94%)|22.5 (92.1%)|| 24.4 Binary Tree Depth Binary Tree Depth
RTX ||3.22{]2.18 (39.7%)|3.31 (60.3%)|| 5.49 | 4.44x : » . )

- Figure 3: Scalability study where we build complete binary trees
Bmary_Tree LBVH)| 8.0012.53 (3.84%)|63.3 (96.2%))| 65.8 with depth D = 4,5,...,18. Left: linear scale, right: logarithmic
(Depth=16) || RTX || 6.19][2.36 (40.3%)|3.50 (59.7%)|[ 5.87 | 11.2x scale. We report mean times for only the repulsive force phase.
50K x Ks: 10 |[|[LBVH|| 15.3 ||2.87 (3.26%)|85.4 (96.7%)|| 88.3

(unconnected)|| RTX || 11.8{]2.82 (41.6%)|3.95 (58.4%)|| 6.77 | 13.0x

the speedups that we observe reassuring, especially because using
RTX lifts the burden of having to program an optimized tree traver-
sal algorithm for the GPU from the user.

6 LIMITATIONS OF OUR STUDY

We acknowledge that force-directed methods for large graphs ex-
ist that require fewer iferations to arrive at a converged layout and
outperform FR by far in this regard [20] and are often based on
multilevel optimizations [34]. We chose FR as a most simple force-
directed algorithm to reason about the speedup and practicability of
our approach. Algorithms that perform a nearest neighbor search to
compute forces will generally benefit from the proposed techniques.
The Fast Multipole Multilevel Method (FM 3 119] employs such a
nearest neighbor search and uses a coarsening phase in-between
iterations. Similar to our method, the GPU multipole algorithm
by Godiyal et al. [14] employs a k-d tree that is rebuilt per itera-
tion, uses stackless traversal, and would likely benefit from RTX.

The GRIP method by Gajer and Kobourov [11] employs a refine-
ment phase that uses FR to compute local displacement vectors.
Although we assume that our approach will complement state-of-
the-art algorithms with better convergence rates, a thorough com-
parison is outside of this paper’s scope and presents a compelling
direction for future work.

7 CONCLUSIONS

We presented a GPU-based optimization to the force-directed
Fruchterman-Reingold graph drawing algorithm by mapping the
nearest neighbor query performed during the repulsive force com-
putation phase to a ray tracing problem that can be solved with
RT core hardware. The speedup over a nearest neighbor query
with a state-of-the-art data structure that we observe is encourag-
ing. Force-directed algorithms lend themselves to a parallelization
with GPUs. We found that those algorithms can be optimized even
further by using RT cores and hope that our work raises awareness
for this hardware feature even outside the typical graphics and ren-
dering communities.
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