
Accelerating Unstructured Mesh Point Location with RT Cores

Nate Morrical‡ Ingo Wald† Will Usher‡ Valerio Pascucci‡

‡SCI Institute, University of Utah †NVIDIA

Fig. 1: The Agulhas Current dataset, courtesy Niklas Röber, DKRZ. This image shows simulated ocean currents off the coast of South Africa,

represented using cell-centered wedges. When rendered using our hardware accelerated point queries, we see up to a 14.86× performance

improvement over a CUDA reference implementation (2.49 FPS vs 37 FPS on an RTX 2080 at 1024×1024).

Abstract—We present a technique that leverages ray tracing hardware available in recent Nvidia RTX GPUs to solve a problem other than classical

ray tracing. Specifically, we demonstrate how to use these units to accelerate the point location of general unstructured elements consisting of both

planar and bilinear faces. This unstructured mesh point location problem has previously been challenging to accelerate on GPU architectures; yet, the

performance of these queries is crucial to many unstructured volume rendering and compute applications. Starting with a CUDA reference method,

we describe and evaluate three approaches that reformulate these point queries to incrementally map algorithmic complexity to these new hardware

ray tracing units. Each variant replaces the simpler problem of point queries with a more complex one of ray queries. Initial variants exploit ray

tracing cores for accelerated BVH traversal, and subsequent variants use ray-triangle intersections and per-face metadata to detect point-in-element

intersections. Although these later variants are more algorithmically complex, they are significantly faster than the reference method thanks to

hardware acceleration. Using our approach, we improve the performance of an unstructured volume renderer by up to 4× for tetrahedral meshes and

up to 15× for general bilinear element meshes, matching, or out-performing state-of-the-art solutions while simultaneously improving on robustness

and ease-of-implementation.

Index Terms—Scientific Ray Tracing, Unstructured Scalar Data, GPGPU, Simulation, Volume Rendering

1 INTRODUCTION

Even before the first programmable GPUs, researchers have been find-

ing new ways to cleverly reformulate their algorithms to take advantage

of specialized graphics hardware [25]. These graphics accelerators

started as relatively simple devices that offloaded only certain parts

of the rasterization pipeline, but have since evolved into massively

parallel processors with a wide range of applications. As hardware

has progressed, it is easier, now more than ever, to use these GPUs for

general computation. However, GPUs still contain a significant amount

of dedicated hardware resources that offer the potential to accelerate

workloads beyond what current frameworks enable, and have yet to be

explored to their fullest.

Our work focuses on exploring the ray tracing (RT) cores new to

Nvidia’s Turing architecture (via the "RTX" platform), which can be

used to achieve compelling visual effects like reflections and refractions,

soft shadows, and global illumination [4]. Algorithms like ray tracing

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication

xx xxx. 201x; date of current version xx xxx. 201x. For information on

obtaining reprints of this article, please send e-mail to: reprints@ieee.org.

Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

heavily involve tree traversal to locate and test intersections of rays

against primitives, and have traditionally been difficult to parallelize

on GPU architectures, as summarized by Vinkler et al [37]. Tree

traversal tends to be inherently divergent, resulting in a reduction of

parallelism, instruction cache thrashing, and many incoherent reads to

memory–all of which significantly degrade GPU performance. Once

candidate leaves are found, the large number of primitive intersection

tests required can also be prohibitively expensive. These RT cores

help accelerate this process by performing bounding volume hierarchy

(BVH) traversal and ray-triangle intersections in hardware [9], freeing

up existing GPU resources to focus on shading computation.

Beyond ray tracing, we believe these RT cores can be used for gen-

eral purpose computation. In geometry processing, BVH traversal

is essential for closest point queries [33]. In simulation, both BVH

traversal as well as primitive intersection testing are used for collision

detection [10], for mesh contact deformations [42], and for adjacency

queries [24]. And in visualization, these operations are required for

sample reconstruction of unstructured meshes during volumetric ren-

dering [28]. If carefully reformulated into a "ray tracing" problem,

applications like these could likely leverage these RT cores as well.

This paper explores a proof-of-concept that leverages these RT cores

to solve a problem other than classical ray tracing. Specifically, we de-

velop a technique that uses these RT cores for volumetric rendering of

This is the author's pre-print of the article, the final published version is available at DOI 10.1109/TVCG.2020.3042930

Accelerating Unstructured Mesh Point Location with RT Cores

Nate Morrical‡ Ingo Wald† Will Usher‡ Valerio Pascucci‡

‡SCI Institute, University of Utah †NVIDIA



large unstructured meshes through the use of point queries. This point

query method is particularly attractive for unstructured mesh volume

rendering, as it integrates nicely with existing regular grid methods like

adaptive ray marching, empty space skipping, and stochastic path trac-

ing. Traditional point query methods used to render large unstructured

volumes require clusters of CPU nodes to achieve interactive frame

rates [2, 28]. However, these clusters are inaccessible to many in the vi-

sualization community, and performance is limited when constrained to

a single workstation. Other prior works [39] make the assumption that

these unstructured volumes contain only tetrahedral elements. However,

many unstructured data sets contain a mix of both tetrahedral as well

as higher dimensional elements like pyramids, wedges, and hexes [1].

We show that these data sets can be visualized interactively on a

single GPU workstation by reformulating the process of point location

to use ray tracing hardware. We additionally show that it is possible

to extend the use of these RT cores to support more general, nonlinear

unstructured elements, despite the presence of non-triangular geome-

try. The methods we present progressively build off of each other to

incrementally map the algorithmic complexity of these point location

queries to different aspects of the ray tracing hardware. Finally, we

evaluate our solution on a mix of synthetic and real world applications,

and show that our approach matches or outperforms state-of-the-art

while simultaneously reducing implementation complexity by relying

on hardware to perform otherwise involved operations.

2 RELATED WORKS

There are two separate collections of prior works that both relate to our

work, although in different ways. First, our work demonstrates the use

of RT cores for General Purpose GPU (GPGPU) Computation. There

is an interesting history to GPGPU strategies that we draw inspiration

from, and so we briefly summarize the body of work in this area in

Section 2.1. Following that, in Section 2.2, we cover the prior works of

our targeted example use case—volume visualization of large, mixed

element unstructured meshes.

2.1 General Purpose GPU Computation

Many previous applications have successfully shown that it is possible

to leverage specialized GPU hardware for general computation [25].

2.1.1 Fixed-Function Hardware

Before the development of programmable shaders, researchers were al-

ready demonstrating how GPUs could be used to accelerate several gen-

eral applications. One of the earliest of these techniques was presented

by Larsen and McAllister [14], who accelerated large matrix-matrix

multiplication by actually "visualizing" the matrix computation with

graphics hardware. Moreland and Angel [16] successfully implemented

a fast Fourier Transform which took advantage of bitmap and frame

buffer operations. Rumpf and Strzodka [30,31] demonstrated the poten-

tial of register combiners for accelerating Finite-Element simulations,

as well as for computing level sets of regular-grid image data.

2.1.2 Programmable Shaders

As hardware evolved, programmable vertex and fragment shaders were

introduced, which allowed users to perform custom per-vertex and

per-fragment operations in parallel. Many researchers investigated

the use of these shaders in accelerating physically based simulations.

Green [5] demonstrated the use of these shaders in accelerating cloth

simulation. Kim and Lin [11] used these shaders to implement a partial-

differential-equation solver to model the growth of ice crystals. Krüger

and Westermann [13] described a technique for simulating volumetric

effects by rendering iterations into 2D textures using fragment shaders.

2.1.3 Post-CUDA Fixed-Function Hardware

Since the introduction of CUDA [21] and OpenCL [35] in the early

2000s, research in exploiting graphics hardware has calmed down a

bit. These frameworks enabled developers to leverage many GPU

capabilities directly in a general-purpose programming language. Still,

specialized hardware units have been introduced since then that can be

leveraged for general computation.

Tensor Cores. With the Volta architecture came tensor cores, which

accelerate large tensor multiply and accumulate operations for use in

accelerating AI and machine learning applications. Although not the

focus of this work, tensor cores have the potential to accelerate many

general purpose applications as well. Haidar et al. [8] were able to apply

these cores to iterative linear system solvers, extending the hardware’s

use to many general scientific computing problems.

Ray-Tracing Cores. Most relevant to our work are the ray tracing

(RT) cores introduced with Turing. Traditionally, acceleration structure

traversal has been a difficult task to optimize for GPU architectures,

as summarized by Vinkler et al [37]. However, with these RT cores,

bounding volume hierarchy (BVH) traversal and ray-triangle intersec-

tions are now accelerated in hardware. Since the publication of our

short paper [39], several works have leveraged these cores for other

tasks beyond ray tracing for rendering. Ganter et al. [3] demonstrated

that ray tracing cores could be used to more efficiently skip empty space

in the context of a structured data ray caster. Morrical et al. [17] also

showed that ray tracing cores could be used to skip empty space, but in

the context of unstructured data instead of regular grid data. Their work

further demonstrated an adaptive sampling scheme that used ray tracing

cores to fetch metadata about a local region in space for use in adap-

tive volume sampling. Knoll et al. [12] demonstrated that these cores

could be used to accelerate particle sorting in the context of an efficient

particle volume splatter. Wald et al. [41] make use of ray tracing cores

for adaptive mesh refinement visualization. In the simulation domain,

Salmon et al. [32] leveraged ray tracing cores to accelerate a Monte

Carlo particle transport simulation code. Ulmstedt and Joacim [36] use

ray tracing cores to simulate the propagation paths of sound in water.

Zellmann et al. [43] proposed a technique that uses ray tracing cores to

simulate force directed graphs.

2.2 Unstructured Volume Rendering

Unstructured volume visualization is a challenging problem in the

scientific visualization community. In the context of unstructured

volume rendering, the bulk of existing methods can only visualize

an approximation of the true underlying unstructured volumetric data,

and suffer from algorithmic complexity issues as data sets grow larger.

Many of these algorithms have focused on rasterization based GPU

methods. The early work by Shirley and Tuchman [34] approximate

direct scalar volume rendering of unstructured meshes by sorting and

rasterizing a collection of tetrahedra from front to back each frame.

Maximo et al. [15] use CUDA to accelerate this sorting process, and use

programmable shaders to avoid multiple draw calls. However, this sort

is still prohibitively expensive. At the time, Maximo et al. were only

able to reorder 6 million tetrahedra per second, while we demonstrate

interactive rendering on datasets up to an order of magnitude larger.

More recent works tend to prefer ray-casting approaches to volume

rendering rather than rasterization techniques, as ray marching does

not require reordering the data during camera movement, and can be

terminated early if a pixel reaches maximum opacity. One such way to

do this ray-casting process on unstructured volumes, as demonstrated

by Muigg et al. [18], is to compute a set of per-pixel face-sequence

lists that can be used to march the ray from one element to the next.

Although this technique does improve performance over rasterization



Tetrahedron Planar Pyramid Bilinear Pyramid Planar Wedge Bilinear Wedge Planar Hexahedron Bilinear Hexahedron

Fig. 2: In this work, we’ll evaluate different ways to leverage ray tracing hardware to accelerate point location within the above elements for use in volume

rendering. Given an unstructured mesh composed of the above elements as well as an arbitrary 3D point, determine which element that point is in and return it to

the user. Each element can be composed of entirely triangular faces, or of more complex configurations of triangles, planar quads, and bilinear patches.

based alternatives, the overhead of traversing these face-sequence lists

limits performance improvements when compared to a CPU reference.

This traversal from cell to neighboring cell tends to dominate rendering

performance, especially as unstructured meshes become more dense.

The work by Gu and Kim [7] attempt to correct some of the accuracy

and performance limitations of the work by Muigg et al. Their work

avoids construction of linked-lists on the GPU by instead using more

memory-coherent arrays. Although their technique improves perfor-

mance over Muigg, their approach remains non-interactive for large

meshes, taking four to five seconds to render a 41 million tetrahedral

mesh on a Pascal GPU.

Another approach to unstructured volume visualization, as demon-

strated by Childs et al. [2], is to rasterize the unstructured elements into

a regular grid. Once rasterized, texture units can be used to efficiently

query elements at a given set of coordinates during ray marching. These

texture units work exceptionally well when neighboring threads query

from similar locations; however, rasterized versions of unstructured

data can quickly become too expensive to store in memory and on disk.

To reduce memory usage the grid can be coarsened; however, if made

too coarse, the rasterization process may lose important details in the

data. In these cases, rasterization may be infeasible to do, or produce a

poor-quality representation that is unsuitable for use.

Outside of GPU unstructured mesh visualization, the recent work

by Rathke et al [28] relies heavily on tree traversal for direct sample

reconstruction and level-set extraction of unstructured volume data. By

sampling the unstructured elements directly, Rathke et al. can render

unstructured volumes in a nearly identical process to traditional regular

grid volume rendering, without any loss in accuracy or significant

increase in memory usage. This has the advantage of enabling existing

optimizations that have traditionally been limited to regular grid volume

rendering, like adaptive sampling and empty space skipping [17]. Their

approach, when run on a dual socket CPU workstation, is able to

achieve semi-interactive frame rates that beat out many prior GPU

methods as unstructured meshes grow larger.

3 RTX BEYOND RAY TRACING

The overarching goal of this paper is to investigate and evaluate different

ways to leverage ray tracing hardware to accelerate direct unstructured

mesh point location. In the following sections, we will describe sev-

eral different kernel iterations (also see Figure 1). First, we describe

a reference CUDA kernel that traverses a BVH without any RT core

acceleration whatsoever (Section 4). Next, we describe a kernel that

uses the RT cores for BVH traversal (Section 5), followed by two dif-

ferent kernels (Section 6) that exploit both hardware BVH traversal and

hardware ray-triangle intersection. New to this extension, we modify

our final kernel to support general elements with potentially non-linear

faces (Section 7) and explain any additional preprocessing required. Fi-

nally, we evaluate these kernels using artificial point query benchmarks

and a proof-of-concept volume ray marcher for unstructured meshes

on a broad range of commodity and high-end GPUs, both with and

without hardware-accelerated ray tracing (Section 9).

3.1 Kernel Interface

All four kernels use the same interface: Given an unstructured mesh

and an arbitrary 3D point, determine which element that point is in and

return it to the user. For each kernel we look at two variants: one that

returns just the ID of the element containing the point, and one that

returns a scalar field value for the query point (either by interpolating

a per-vertex scalar, or looking up a per-cell scalar, as provided by the

data set). If the point is not contained in any element, the kernels return

an ID of -1 or a scalar value of −∞, respectively.

3.2 Input Element Types

The input to each of our kernels is an unstructured mesh that consists of

an array of float3 vertices and an array of eight int indices. During

the point query, we can determine the element type from the number of

non-negative indices. For tetrahedra, the fifth through eighth indices are

-1. For pyramids, the sixth through eighth indices are -1. For wedges,

the seventh and eighth indices are -1, and for hexahedra, all indices

are greater than or equal to 0. Note that each element type that we

demonstrate in Figure 2 requires a different number of indices, and

for certain elements like tetrahedra, eight indices per element would

be inefficient memory-wise. However, we use eight indices for all

elements for simplicity. For the scalar field kernel, the data set also

provides an additional float array of per-vertex or per-cell scalars.

The faces of these unstructured elements can be triangles or bilinear

quads. Although the edges of these bilinear quads are always linear,

since the corners of these quads might not necessarily be co-planar, the

surface of these faces may curve quadratically to meet all four corners.

Any point in the interior of the bilinear surface can be obtained by

interpolation of a u and v between 0 and 1 using the following equation:

Q(u,v) = P0(1−u)(1− v)+P1(1−u)v+P2u(1− v)+P3uv (1)

Note that bilinear quads are always order 2 surfaces, with order 1

interpolants along u and v, and have no inflection points. Although

higher-order faces are possible for general unstructured data sets, for

simplicity, we will be focusing on only bilinear elements.

3.3 Implementation

We implement all our kernels within OptiX [26], which added sup-

port for Turing’s hardware accelerated ray tracing capabilities through

Nvidia’s RTX platform in version 6. We do assume basic familiarity

with both OptiX and Nvidia’s RTX platform, and refer the reader to the

latest OptiX Programming Guide [22] and the Turing whitepaper [23]

for reference. Beyond portability, one advantage of OptiX is that it uses

CUDA under the hood, which allows us to evaluate our CUDA-only

reference method within the same framework as our RTX optimized

methods. We also make use of OptiX’s template support to guarantee

code consistency (i.e., point-in-element testing, the volume renderer’s

ray marching, transfer function lookup code, etc.) across our kernels.



✐♥t ♣♦✐♥t▲♦❝❛t✐♦♥❘❡❢❡r❡♥❝❡✭✈❡❝✸❢ P✮
st❛❝❦ ❂ ④ r♦♦t◆♦❞❡ ⑥❀
✇❤✐❧❡ ✭✦st❛❝❦✳❡♠♣t②✭✮✮

♥♦❞❡❘❡❢ ❂ st❛❝❦✳♣♦♣✭✮❀
✐❢ ✭♥♦❞❡❘❡❢ ✐s ❧❡❛❢✮
✐❢ ✭♣♦✐♥t■♥❊❧❡♠❡♥t✭P✱ ♥♦❞❡❘❡❢✳❣❡t❈❤✐❧❞✭✮✮✮

r❡t✉r♥ ❡❧❡♠❡♥t
❡❧s❡ ❢♦r❡❛❝❤ ❝❤✐❧❞ ✿ ✵✳✳✹
✐❢ ✭♣♦✐♥t■♥❇♦①✭P✱ ♥♦❞❡❘❡❢✳❣❡t❇♦✉♥❞s✭❝❤✐❧❞✮✮

st❛❝❦✳♣✉s❤✭♥♦❞❡❘❡❢✳❣❡t❈❤✐❧❞❘❡❢✭❝❤✐❧❞✮✮❀
r❡t✉r♥ ✲✶❀ ✴✯ ♥♦ ❝♦♥t❛✐♥✐♥❣ ❡❧❡♠❡♥t ✯✴

Fig. 3: Pseudocode for the reference method we’ll be comparing against. This

method performs a point query by traversing a four-wide BVH and performing

point-in-element tests at the leaves.

For the point-in-tetrahedra test we use the 3D version of Cramer’s

method (also known as Pineda’s method [27]) to compute the four

barycentric coordinates of p, and test if they are all non-negative. If

all are positive, the four values can then, if desired, be used for in-

terpolating the per-vertex scalar values. For all other general, non-

linear elements, the scalar field interpolants cannot (to our knowledge)

be inverted analytically. Instead, we use a root-finding algorithm—

specifically Newton’s method as done in OSPRay [38]—to determine

if a point lies within an element, and if required, how to interpolate that

element’s per vertex values. These Newton-Raphson iterations become

very efficient when the optimization is initialized to be close to the

underlying solution where the iterations exhibit quadratic convergence.

4 NON-RTX REFERENCE: CUDA-BVH

To provide a non-RTX reference method, we first implemented a

software-based unstructured-mesh point query in CUDA. Our im-

plementation is similar to how such queries are done in OSPRay [38],

using the method described by Rathke et al. [28]. Similar to Rathke

et al., we build a BVH over the unstructured elements comprising the

volume; however, instead of their uncompressed binary BVH, we use a

four-wide BVH with quantized child node bounds, similar to Embree’s

QBVH8 layout [40]. We note that this choice of BVH was not moti-

vated by any expected performance gain or memory use optimization,

but rather because an easy-to-integrate library for this BVH was readily

available. This BVH is built on the host using this library, after which

it is uploaded to the GPU.

Though we use this reference method in our OptiX framework,

the kernel itself does not use any OptiX constructs whatsoever, and

could be used from arbitrary CUDA programs. To find the element

containing the query point, the kernel performs a depth-first traversal

using a software managed stack of BVH node references, immediately

returning the element once it is found. Our implementation is similar

to the pseudocode in Figure 3.

Extending our prior work [39], we modified our reference imple-

mentation to support data sets containing a mix of element types (i.e.,

those in Figure 2). Specifically, we have replaced the pointInTetrahedra

test with a more general pointInElement test. Inside this function, we

first determine the type of the given unstructured element based on the

number of non-negative indices. From there, we call the respective

intersection routine: Cramer’s method for tetrahedra, and element-

type-customized Newton-Raphson routines otherwise. By adding a

conditional in this intersection test, we have observed a small but notice-

able performance impact as a result. Although we could optimize this

intersection routine to account for data sets containing only a limited

subset of these unstructured element types, we chose not to pursue

this optimization. Instead, we leave the overhead of this conditional to

rt❉❡❝❧❛r❡❱❛r✐❛❜❧❡✭❘❛②✱ r❛②✱ rt❈✉rr❡♥t❘❛②✱ ✮❀
rt❉❡❝❧❛r❡❱❛r✐❛❜❧❡✭✢♦❛t✱ ♣r❞✱ rtP❛②❧♦❛❞✱ ✮❀
rt❉❡❝❧❛r❡❱❛r✐❛❜❧❡✭rt❖❜❥❡❝t✱ ✇♦r❧❞✱ ✱ ✮❀
❘❚❴P❘❖●❘❆▼ ✈♦✐❞ ❜♦✉♥❞s✭✢♦❛t ✯❜♦✉♥❞s✱ ✐♥t ❡❧❡♠■❉✮
④ ✯❜♦✉♥❞s ❂ ❜♦①✸❢✭✈❡rt❡①❬✐♥❞❡①❬❡❧❡♠■❉❪✳①❪✱✳✳✳✮❀ ⑥
❘❚❴P❘❖●❘❆▼ ✈♦✐❞ ✐♥t❡rs❡❝t✭✐♥t ❡❧❡♠■❉✮ ④
✐❢ ✭✐♥t❡rs❡❝t❊❧❡♠❡♥t✭r❛②✳♦r✐❣✐♥✱❡❧❡♠■❉✱r❡s✉❧t✮
✫✫ rtP♦t❡♥t✐❛❧■♥t❡rs❡❝t✐♦♥✭✶❡✲✶✵❢✮✮ ④
♣r❞ ❂ r❡s✉❧t❀ rt❘❡♣♦rt■♥t❡rs❡❝t✐♦♥✭✵✮❀

⑥
⑥
❴❴❞❡✈✐❝❡❴❴ ✢♦❛t ❣❡t❙❛♠♣❧❡✭❝♦♥st ✈❡❝✸❢ P✮ ④
❘❛② r❛②✭P✱ ✈❡❝✸❢✭✶✮✱ ✵✱ ✵✳❢✱ ✷❡✲✶✵❢✮❀
✢♦❛t ♣r❞❴r❡s✉❧t ❂ ♥❡❣■♥❢❀
rt❚r❛❝❡✭✇♦r❧❞✱ r❛②✱ ♣r❞❴r❡s✉❧t✱
❘❚❴❱■❙■❇■▲■❚❨❴❆▲▲✱
❘❚❴❘❆❨❴❋▲❆●❴❚❊❘▼■◆❆❚❊❴❖◆❴❋■❘❙❚❴❍■❚
⑤❘❚❴❘❆❨❴❋▲❆●❴❉■❙❆❇▲❊❴❆◆❨❍■❚
⑤❘❚❴❘❆❨❴❋▲❆●❴❉■❙❆❇▲❊❴❈▲❖❙❊❙❚❍■❚✮❀

r❡t✉r♥ ♣r❞❴r❡s✉❧t❀
⑥

Fig. 4: Pseudocode for our rtx-bvh method, which performs a point query

by first tracing an infinitesimal ray from the point and then executing the point-

in-element tests in the intersection program.

isolate the performance of the hardware-acceleration from other factors

across the data sets tested.

5 RTX-BVH: EXPLOITING RT CORES FOR BVH TRAVERSAL

The reference method is reasonably efficient, but it does not use the RT

cores at all. To leverage these cores, we first have to reformulate our

problem in such a way that it fits the hardware. In other words, we have

to express point location as a ray tracing problem.

Staying conceptually close to our reference implementation, we can

use OptiX to build an RTX BVH over the elements by creating an OptiX

geometry with the given number of elements as custom, user-defined

primitives. We can then write a bounding box kernel that computes

each respective element’s bounding box in parallel. To compute the

bounds of a general unstructured element, we first consider the element

type within the bounding box program, and read in that element’s

corresponding vertices. Since the faces of our elements are either linear

or bilinear, we can compute an element’s axis-aligned bounding box

by iterating over all the vertices of the given element, computing the

minimum and maximum corners. Once these boxes are computed and

we have our geometry object, we can request OptiX to build an RTX

acceleration structure over the elements of this geometry for us.

Although we are now armed with a hardware-accelerated BVH, one

problem remains: the hardware knows only about tracing rays, not

points. Thus, we must find a way to express our query points as “rays”.

Fortunately, we can view each query point as an infinitesimally short

ray, and use an arbitrary direction (e.g., (1,1,1)) and a vanishingly

small ray interval (ray.tmax = 1e−10 f ) to express this point to OptiX.

When we trace such a “ray”, the hardware will traverse the BVH

and will visit every element potentially overlapping the ray to find an

intersection. To find the element containing the query point, we attach

an intersection program to our geometry that executes our point-in-

element test and, when found, stores the intersected element ID in the

per-ray data (Figure 4).

As the rays traced are vanishingly short, we can expect the traversal

to visit roughly the same BVH nodes as our reference implementation,

although with no guarantee that the hardware will visit only those nodes

overlapping the point. Once the containing element is found we tell

OptiX to report the hit, allowing the hardware to immediately terminate

BVH traversal regardless of what else might be on the traversal stack,



as done in the reference implementation. For performance reasons,

we explicitly disable the any-hit and closest-hit programs to save the

overhead of calling empty functions.

The rtx-bvh kernel defers the actual BVH construction and traver-

sal to OptiX, which under the hood implements highly optimized BVH

construction routines. During traversal, OptiX will automatically use

hardware accelerated BVH traversal if available, and fall back to its own

software traversal if not. Compared to the CUDA reference method,

rtx-bvh leverages the ray tracing hardware to accelerate BVH traver-

sal, although rtx-bvh still performs the point-in-element tests in

software. Although traversing a ray is more expensive than traversing a

point, the ray traversal is now hardware accelerated, and we can expect

to observe a performance gain over the reference method.

6 FULL HARDWARE ACCELERATION WITH RTX TRIANGLES

Although the rtx-bvhmethod uses hardware-accelerated BVH traver-

sal, it still relies on a software point-in-element test, limiting the po-

tential speed-up it can achieve. To improve performance further, we

must reduce these tests and eliminate the back and forth between the

hardware traversal units and the programmable cores running the soft-

ware point-in-element test. Our goal is to be able to make a single trace

call and immediately get back just the ID of the element containing the

point, with no software execution required in between.

To achieve this goal, we first note that each element is enclosed

by a set of faces, meaning that any noninfinitesimal ray traced from a

point within the element will hit one of these faces. Furthermore, if the

faces of an element are planar, they can be accurately represented using

triangles, and ray-triangle intersection is accelerated by RTX. In the

planar case, we can represent an element by its tessellation, and instead

of going back and forth between hardware BVH traversal and software

intersection, we can let the hardware perform both the BVH traversal

and ray-triangle intersection. When an intersection is found, we will be

given the intersected triangle ID, which we can use to determine the

corresponding element.

Before looking into the core problem addressed in this extension—

namely, how to handle general elements with bilinear faces—let us first

discuss the simplified case where all elements consist of only planar

faces. In practice, many higher dimensional elements will twist and

bend to better match the underlying data (meaning that some faces

cannot be perfectly represented with a set of triangles) but for now,

planar faces are easier to think about.

6.1 RTX-Replicated-Faces

Assuming all faces are planar, the most straightforward way to imple-

ment this ray-triangle-accelerated idea is to create a list of int3 indices,

one int3 index for each triangular face defining an element, and two

int3 indices for each planar quadrilateral face defining an element.

Then, in the closest-hit program we look up which element the hit

triangle belongs to. In theory, that element should be the element that

contains our point.

This technique is easy to implement, but in practice has some caveats.

First, interior faces are now represented twice, and we need a way to

ensure that the ray only reports the current element’s face, and not the

co-planar face from its neighbor. We solve this by constructing the

triangles such that they always face inward towards the element, and

trace the ray with back face culling enabled (Figures 5, 6a and 6b).

Ray traversal, intersection, and back face culling are now all performed

in hardware, and we can simply trace a ray and let the hardware do

the work until the right face is found, eliminating the back and forth

between hardware and software required by the previous methods.

Although the method as described so far works perfectly well for any

query point inside a planar element, without further care it may return

str✉❝t ❋❛❝❡ ④ ✐♥t✸ ✐♥❞❡①❀ ✐♥t ❡❧❡♠■❉❀ ⑥❀
rt❇✉✛❡r❁❋❛❝❡✱ ✶❃ ❢❛❝❡❇✉✛❡r❀
rt❉❡❝❧❛r❡❱❛r✐❛❜❧❡✭✢♦❛t✱ ♣r❞✱ rtP❛②❧♦❛❞✱ ✮❀
rt❉❡❝❧❛r❡❱❛r✐❛❜❧❡✭rt❖❜❥❡❝t✱ ✇♦r❧❞✱ ✱ ✮❀
rt❉❡❝❧❛r❡❱❛r✐❛❜❧❡✭✢♦❛t✱ ♠❛①❊❞❣❡▲❡♥❣t❤✱ ✱ ✮❀
❘❚❴P❘❖●❘❆▼ ✈♦✐❞ ❝❧♦s❡st❴❤✐t✭✮ ④
❝♦♥st ✐♥t ❢❛❝❡■❉ ❂ rt●❡tPr✐♠✐t✐✈❡■♥❞❡①✭✮❀
❝♦♥st ✐♥t ❡❧❡♠■❉ ❂ ❢❛❝❡❇✉✛❡r❬❢❛❝❡■❉❪✳❡❧❡♠■❉❀
✢♦❛t ✜❡❧❞❱❛❧✉❡❀
✐❢ ✭✐♥t❡r♣♦❧❛t❡❊❧❡♠❡♥t✭❡❧❡♠■❉✱ r❛②✳♦r✐❣✐♥✱ ✜❡❧❞❱❛❧✉❡✮ ✮
♣r❞ ❂ ✜❡❧❞❱❛❧✉❡❀

⑥
❴❴❞❡✈✐❝❡❴❴ ✢♦❛t ❣❡t❙❛♠♣❧❡✭❝♦♥st ✈❡❝✸❢ P✮ ④

❘❛② r❛②✭P✱ ✈❡❝✸❢✭✶✮✱ ✵✱ ✵✳❢✱ ♠❛①❊❞❣❡▲❡♥❣t❤✮❀
✢♦❛t ✜❡❧❞❱❛❧✉❡ ❂ ♥❡❣■♥❢❀
rt❚r❛❝❡✭✇♦r❧❞✱ r❛②✱ ✜❡❧❞❱❛❧✉❡✱

❘❚❴❱■❙■❇■▲■❚❨❴❆▲▲✱
❘❚❴❘❆❨❴❋▲❆●❴❈❯▲▲❴❇❆❈❑❴❋❆❈■◆●❴❚❘■❆◆●▲❊❙
⑤❘❚❴❘❆❨❴❋▲❆●❴❉■❙❆❇▲❊❴❆◆❨❍■❚✮❀

r❡t✉r♥ ✜❡❧❞❱❛❧✉❡❀
⑥

Fig. 5: Pseudocode kernels for our rtx-rep-faces method, which performs

a point query by tracing a finite length ray and performing a single point-in-

element test in the closest hit program.

(a) (b)

(c) (d)

Fig. 6: (a) and (b) rtx-rep-faces uses back face culling to avoid intersect-

ing co-planar neighboring faces; (c) however, points outside any element can

return false positive intersections as the exterior back faces are hidden, requir-

ing an extra point-in-element test for correctness. In the case of bilinear faces,

(d) triangle approximations result in false positive and negative intersections.

Note that in (d), the S-like boundary is purely for illustration purposes, and in

practice the face is bilinear with no inflection points. Also note that this is a 2D

simplification of our rtx-rep-faces technique, and can be interpreted as a

cross section of the 3D version.

false positives for points outside the mesh. As shown in Figure 6c, a

ray traced from a point outside the mesh can travel into an element

and, with back face culling enabled, will not intersect the boundary

face but rather the next interior face, incorrectly marking the point

as contained in the boundary element. To ensure correctness in all

planar face cases, we perform an additional point-in-element test inside

the closest-hit program. Unlike the reference and rtx-bvh methods,

this test needs to be done only once per ray, and thus is relatively

cheap. When per-vertex scalar interpolation is desired, the barycentric

coordinates computed during this point-in-element test are also needed

for interpolation, and so we must compute this final point-in-element

test anyway.

6.2 RTX-Shared-Faces

Instead of replicating shared faces as in the previous approach, a more

memory efficient alternative is to find faces shared by neighboring



str✉❝t ❋❛❝❡ ④ ✐♥t✸ ✐♥❞❡①❀ ✐♥t✷ ❡❧❡♠■❉s❀ ⑥❀
rt❇✉✛❡r❁❋❛❝❡✱ ✶❃ ❢❛❝❡❇✉✛❡r❀
❘❚❴P❘❖●❘❆▼ ✈♦✐❞ ❝❧♦s❡st❴❤✐t✭✮ ④
✐♥t ❢❛❝❡■❉ ❂ rt●❡tPr✐♠✐t✐✈❡■♥❞❡①✭✮❀
✐♥t✷ ❡❧❡♠■❉s ❂ ❢❛❝❡❇✉✛❡r❬❢❛❝❡■❉❪✳❡❧❡♠■❉s❀
✐♥t ❡❧❡♠■❉ ❂ rt■s❚r✐❛♥❣❧❡❍✐t❇❛❝❦❋❛❝❡✭✮ ❄

❡❧❡♠■❉s❬✶❪ ✿ ❡❧❡♠■❉s❬✵❪❀
✐❢ ✭❡❧❡♠■❉ ❁ ✵✮ r❡t✉r♥❀
✴✴ st♦r❡ ■❉ ♦r ❝♦♠♣✉t❡ s❝❛❧❛r ✜❡❧❞ ✳✳✳

⑥

Fig. 7: The closest_hit program for rtx-shrd-faces . (getSample() is the

same as in Figure 5).

elements and merge them in a preprocess. Although this preprocessing

step can be expensive, the benefits are significant: the resulting output

triangle mesh is much smaller, and no longer requires special treatment

to cull co-planar duplicate faces.

For each face, we now store two integers, which specify the IDs of

the elements on its front and back face (or -1 if no element exists on that

side). In the closest-hit program, we check to see if our ray hit a front

face or a back face, and use that information to determine the containing

element ID (see Figures 9a and 9b). As back face culling is no longer

needed to hide co-planar faces, rtx-shrd-faces eliminates the

caveats of rtx-rep-faces discussed above (e.g., for points outside

the volume, Figure 9c). Pseudocode for rtx-shrd-faces is shown

in Figure 7.

During our preprocessing step, we compute a list of unique faces,

where we tag the front and back sides of each face with a corresponding

element ID (Figure 8). To match these faces together, we first define a

unique representation of a face by temporarily sorting its vertex indices

and hashing them (see hash_tri in Figure 8). We can then use this

hash to find faces shared by elements using a hash map, although we

preserve the original vertex order during insertion for later rendering

purposes.

First, we loop through the list of inside faces of each element com-

puted in Section 6.1 and find the hash of each face’s unique repre-

sentation. We then use this hash to check in a hash map if we have

already added this face to our list of shared faces. If the face is not in

the map, we first add the face to our shared faces list. At this point in

our preprocessing, we know which element the current replicated face

belongs to and can also conclude the face is oriented toward the current

element. Therefore, we set the front face ID of the newly added face to

be the current element ID and initialize the back face ID to -1. Finally,

we insert the face into the hash map along with the face’s index in the

shared faces list.

If the face is already in the map it must have been inserted by another

element. In this case, the previously inserted face is shared with the

current element and is oriented away toward the other element. We

use the hash map to determine where the shared face is located in our

shared faces list, and set the current element ID as the back face ID for

the shared face.

7 EXTENDING TO GENERAL ELEMENTS WITH BILINEAR FACES

As described so far, our triangle-based methods will work well for

data sets containing elements with planar faces. The element location

process is performed entirely in hardware, allowing us to provide a point

and get back the containing element without any software intervention.

However, not all general unstructured elements have planar faces. For

elements with quad faces (i.e., pyramids, wedges, hexahedra), if the

four vertices forming a quad face do not lie on the same plane, we

can no longer accurately represent the face using two triangles. Such

str✉❝t ❋❛❝❡ ④ ✐♥t✸ ✐♥❞❡①❀ ✐♥t✷ ❡❧❡♠■❉s❀ ⑥❀
st❞✿✿✈❡❝t♦r❁❋❛❝❡❃ s❤❛r❡❞❴tr✐s❀
s✐③❡❴t ❤❛s❤❴tr✐✭✐♥t✸ tr✐✮ ④ r❡t✉r♥ ❤❛s❤✭s♦rt✭tr✐✮✮❀ ⑥❀
✈♦✐❞ ❝♦♠♣✉t❡❴s❤❛r❡❞❴tr✐❴❢❛❝❡s✭❯♥str✉❝t✉r❡❞▼❡s❤ ✫♠❡s❤✮ ④
st❞✿✿✉♥♦r❞❡r❡❞❴♠❛♣❁✐♥t✸✱ ✐♥t✱ ❤❛s❤❴tr✐❃ tr✐❴✐❞❴♠❛♣❀
❢♦r ✭❛✉t♦ ✫❡❧❡♠❡♥t ✐♥ ♠❡s❤✳❡❧❡♠❡♥ts✮
❢♦r ✭❛✉t♦ ✫tr✐❛♥❣❧❡ ✐♥ ❡❧❡♠❡♥t✳✐♥s✐❞❡❴❢❛❝✐♥❣❴tr✐❛♥❣❧❡s✮
✐❢ ✭✦tr✐❴✐❞❴♠❛♣✳✜♥❞✭tr✐❛♥❣❧❡✮✮ ④
✴✴ ❚❤✐s ❡❧❡♠❡♥t ✐♥s❡rts t❤❡ ❢❛❝❡✱ ✇❡ ❛r❡ ❢r♦♥t s✐❞❡
✐♥t tr✐❛♥❣❧❡❴✐♥❞❡① ❂ s❤❛r❡❞❴tr✐s✳s✐③❡✭✮❀
tr✐❴✐❞❴♠❛♣❬tr✐❛♥❣❧❡❪ ❂ tr✐❛♥❣❧❡❴✐♥❞❡①❀
❋❛❝❡ ♥❡✇❴❢❛❝❡ ❂ ❋❛❝❡✭tr✐❛♥❣❧❡✱ ✐♥t✷✭❡❧❡♠❡♥t✳■❉✱ ✲✶✮✮❀
s❤❛r❡❞❴tr✐s✳♣✉s❤❴❜❛❝❦✭♥❡✇❴❢❛❝❡✮

⑥ ❡❧s❡ ④
✴✴ ❋❛❝❡ ✇❛s ❛❧r❡❛❞② ✐♥s❡rt❡❞✱ ✇❡ ❛r❡ ♦♥ t❤❡ ❜❛❝❦ s✐❞❡
❋❛❝❡ ✫tr✐ ❂ s❤❛r❡❞❴tr✐s❬tr✐❴✐❞❴♠❛♣❬tr✐❛♥❣❧❡❪❪❀
tr✐✳❡❧❡♠■❉s❬✶❪ ❂ ❡❧❡♠❡♥t✳■❉❀

⑥
⑥

Fig. 8: Pseudocode to compute a list of shared faces, where each face stores the

IDs of the elements on the front and back side.

(a) (b)

(c) (d)

Fig. 9: (a,b) unlike rtx-rep-faces, the rtx-shrd-faces approach

does not rely on back face culling and replicated faces, and instead relies on

face orientation to determine the containing element. (c) Since we no longer rely

on backface culling, we now get correct results for points outside an element.

(d) Still, we run into issues near bilinear faces with approximate tessellations.

(Note again that in (d), the S-like boundary is purely for illustration purposes,

and in practice is bilinear with no inflection points.)

(a) (b) (c)

Fig. 10: General unstructured elements can contain curved bilinear faces such

as (a). Although the edges of these patches are linear, the interpolated surface

bends in the center to meet all four possibly non-coplanar corners. These

bilinear faces can be approximately tessellated in two different configurations.

Tessellation (b) lies entirely below the surface, whereas tessellation (c) lies

entirely above. We refer to (b) as an underestimating tessellation and (c) as an

overestimating tessellation.

non-planar faces are represented as curved bilinear surfaces, which we

extend our method to support in this section. To do so, we build on the

following observations of the problems that arise when applying our

triangle-based methods to a data set containing curved bilinear faces.



(a) (b) (c) (d) (e) (f)

Fig. 11: When rendering general bilinear cells using our rtx-shrd-faces approach, artifacts can occur at bilinear faces. In (a), we place two hexahedra

together, such that a bilinear face (b) separates the two cells vertically. As shown in (c), artifacts occur near this face due to false positive and negative point query

intersections. However, these artifacts are isolated to the bounding tetrahedra for that bilinear patch, as shown in (d). With rtx-shrd-bilinear-faces,

these faces are accounted for, correcting these artifacts (e,f).

1. Curved bilinear faces cannot be accurately triangulated. The

triangle based methods described so far rely on the assumption that

we can accurately represent the faces of an unstructured element using

only triangles. However, this no longer holds for curved bilinear faces.

Turing’s RT cores do not support bilinear surface intersections, and

moving the tests back to software would lose the hardware acceleration

benefits gained in the previous sections. Although the surfaces could

be approximated by more than two triangles, this would impact perfor-

mance, increase memory usage, and it is unclear how many triangles

would be needed to accurately represent each face.

2. Bilinear surfaces satisfy the “Strong Convex Hull” property.

This property guarantees that each bilinear surface is entirely contained

within the convex hull defined by the control points of that surface. In

the case of bilinear faces, the convex hull is the combination of the

under and overestimating tessellations of the bilinear surface’s quad,

shown in Figure 10.

3. We can isolate problematic cases by generating convex hulls

containing our bilinear faces. Depending on the direction of the

ray, our methods described so far can result in either false positive or

negative intersections (Figure 9d) when the query point falls inside

a bilinear surface’s convex hull. These false positive and negative

intersections result in visual artifacts as shown in Figure 11. However,

for query points outside the bilinear face’s convex hull, the rtx-rep-

faces and rtx-shrd-facesmethods locate the correct containing

element.

4. The convex hull of a bilinear surface is a tetrahedron, and as

we have demonstrated with both rtx-rep-faces and rtx-shrd-

faces methods, we can accelerate tetrahedral element point location

using the RT cores. Thus, we can form the tetrahedra bounding each

bilinear face and, when a point query falls inside one, perform a correct

bilinear surface intersection test to determine the side the point falls on

to find the correct containing element.

7.1 RTX-Shared-Bilinear-Faces

Using the above observations, we can extend our rtx-shrd-faces

approach to support unstructured elements containing bilinear faces.

First, as in the shared faces approach, we store two integers per bilinear

face. These integers specify the IDs of the elements on the front and

back sides of the bilinear face (or -1 if no element exists on that side).

However, unlike the triangle faces, we do not insert these shared bilinear

faces into our RTX acceleration structure directly.

Instead, for each shared bilinear face, we generate its bounding

tetrahedron to isolate problematic cases. When we generate the triangle

faces to represent this bounding tetrahedron we also store two integers

per triangle, that are simply copied from the shared bilinear face. For

each triangle, we additionally store the fourth vertex index required to

reconstruct the original shared bilinear surface. During traversal we can

now perform hardware accelerated intersection tests against the faces

of the bounding tetrahedra of each bilinear face, rather than falling back

to a software intersection program to test against the bilinear surfaces.

Next, we need to be able to detect if a query point lies within a bilin-

ear face’s bounding tetrahedron, or just a regular tetrahedral element.

As our rtx-shrd-faces approach no longer culls back faces, we

can leverage the face orientation (in addition to the presence of a fourth

vertex) to detect if a point is located within a bilinear face’s bounding

tetrahedron. This requires us to reorient the triangles of the bounding

tetrahedra to face outwards away from the bilinear surface, as opposed

to the inwards facing triangles of regular tetrahedral elements. Shared

element IDs are then adjusted accordingly so that the correct element

ID is returned depending on the side of the face our ray hits. (see

Figure 14). Following from observation 3, we can then use the fact that

our point lies within a bilinear face’s bounding tetrahedron to determine

that we need to do additional intersection testing in software to properly

handle the bilinear face.

In the closest-hit program, if OptiX reports we hit either a front face

or a back face not belonging to a bounding tetrahedron, we can safely

conclude the element that our ray origin lies within, without considering

any bilinear faces (see Figure 14a). On the other hand, if we hit the

back face of a triangle that belongs to a bounding tetrahedron, we

know that the ray origin must lie within that bounding tetrahedron, and

that further intersection testing is required to handle the corresponding

bilinear face. In this case, we use the fourth vertex to reconstruct

that bounding tetrahedron’s corresponding bilinear surface and test

to see if we hit that surface in the closest-hit program, as shown in

Figure 14b. To perform this bilinear surface intersection test, we use

the GARP intersector from Reshetov [29]. If the ray intersects the

surface (Figure 14c), we can conclude the point is in the back facing

element of the closest hit triangle, or outside the volume if there is no

neighbor. If the ray does not hit the surface (Figure 14d), the query

point must be inside the front facing element of the closest hit triangle.

With this approach, we need at most one bilinear surface intersection

test per point query, and more often than not we can skip performing

bilinear surface intersections entirely. For bilinear surfaces that are

nearly planar, the corresponding bounding tetrahedra will decrease in

volume, and thus our slightly more expensive final intersection routine

will be less likely to be called.

We integrate the generation of the triangulated bounding tetrahedra

within the shared faces preprocessing step. We define the unique



str✉❝t ❋❛❝❡ ④ ✐♥t✹ ✐♥❞❡①❀ ✐♥t✷ ❡❧❡♠■❉s❀ ⑥❀
rt❇✉✛❡r❁❋❛❝❡✱ ✶❃ ❢❛❝❡❇✉✛❡r❀
❘❚❴P❘❖●❘❆▼ ✈♦✐❞ ❝❧♦s❡st❴❤✐t✭✮ ④
✐♥t ❢❛❝❡■❉ ❂ rt●❡tPr✐♠✐t✐✈❡■♥❞❡①✭✮❀
✐♥t✷ ❡❧❡♠■❉s ❂ ❢❛❝❡❇✉✛❡r❬❢❛❝❡■❉❪✳❡❧❡♠❡♥t■❉s❀
❜♦♦❧ ✐s❇✐❧✐♥❡❛r ❂ ❢❛❝❡❇✉✛❡r❬❢❛❝❡■❉❪✳✇ ✦❂ ✲✶❀
❜♦♦❧ ❤✐t❇❛❝❦❋❛❝❡ ❂ rt■s❚r✐❛♥❣❧❡❍✐t❇❛❝❦❋❛❝❡✭✮❀
✐♥t ❡❧❡♠■❉ ❂ ❤✐t❇❛❝❦❋❛❝❡ ❄ ❡❧❡♠■❉s❬✶❪ ✿ ❡❧❡♠■❉s❬✵❪❀
✐❢ ✭❤✐t❇❛❝❦❋❛❝❡ ✫✫ ✐s❇✐❧✐♥❡❛r✮
✐❢ ✭✐♥t❡rs❡❝t❇✐❧✐♥❡❛rP❛t❝❤✭❢❛❝❡■❉✱ r❛②✮✮

❡❧❡♠■❉ ❂ ❡❧❡♠■❉s❬✵❪❀
✐❢ ✭❡❧❡♠■❉ ❁ ✵✮ r❡t✉r♥❀
✴✴ st♦r❡ ■❉ ♦r ❝♦♠♣✉t❡ s❝❛❧❛r ✜❡❧❞ ✳✳✳

⑥

Fig. 12: The closest_hit program for rtx-shrd-faces , now modified to

support elements with bilinear faces. getSample() is the same as in Figure 5.

Note that the previous int3 index is now an int4, potentially representing a

counter-clockwise quad represented by the int3 triangle face we hit.

✴✴ ❇❡❧♦✇ s✐♠✐❧❛r t♦ ❋✐❣ ✼
✈♦✐❞ ❝♦♠♣✉t❡❴s❤❛r❡❞❴❢❛❝❡s✭❯♥str✉❝t✉r❡❞▼❡s❤ ✫♠❡s❤✮ ④
❝♦♠♣✉t❡❴s❤❛r❡❞❴tr✐❴❢❛❝❡s✭♠❡s❤✮❀
❝♦♠♣✉t❡❴s❤❛r❡❞❴q✉❛❞❴❢❛❝❡s✭♠❡s❤✮❀
✴✴ ❚❡ss❡❧❧❛t❡ q✉❛❞s✱ ❛❞❞✐♥❣ t♦ s❤❛r❡❞ tr✐s ❧✐st
❢♦r q✉❛❞ ✐♥ s❤❛r❡❞❴q✉❛❞s✿
✐❢ ✭q✉❛❞✳✐s❴♣❧❛♥❛r✮ ④

❋❛❝❡ ❢❛❝❡s❬✷❪ ❂ t❡ss❡❧❛t❡❴♣❧❛♥❛r✭q✉❛❞✮
s❤❛r❡❞❴tr✐s✳♣✉s❤❴❜❛❝❦✭❢❛❝❡s✮

❡❧s❡ ④
✴✴ ❜♦t❤ ♦✈❡r ❛♥❞ ✉♥❞❡r❡st✐♠❛t✐♥❣ tr✐s ♥❡❡❞❡❞
✴✴ ❢♦r ❜✐❧✐♥❡❛r ♣❛t❝❤❡s✳ ❖✈❡r❡st✐♠❛t✐♥❣ tr✐s ❤❛✈❡
✴✴ s✇❛♣♣❡❞ ❡❧❡♠■❉s✳
❋❛❝❡ ❢❛❝❡s❬✹❪ ❂ t❡ss❡❧❛t❡❴❜✐❧✐♥❡❛r✭q✉❛❞✮
s❤❛r❡❞❴tr✐s✳♣✉s❤❴❜❛❝❦✭❢❛❝❡s✮

⑥
⑥

Fig. 13: Preprocessing code for bilinear shared faces. Shared planar quads

generate two shared triangle faces whereas shared bilinear quads generate four.

representation of each bilinear face by sorting its four vertex indices

and hashing them as before. The list of shared bilinear faces with

front and back element IDs are generated as before, using the unique

representation to check which element is the first and second to insert

the face into the list.

After computing the list of shared bilinear faces, we compute a set

of triangles used to represent the bounding tetrahedron for each bilinear

face. In the case of planar bilinear faces, we instead generate two

planar triangles as done in the planar rtx-shrd-faces approach.

(Figure 13). When the bounding tetrahedron triangles are generated

they are made to face away from the bilinear face that the bounding

tetrahedron contains. These bounding tetrahedron’s triangles are tagged

as belonging to a bilinear face. This orientation and tag together allows

us to detect within the closest-hit program whether a point query lies

within a bounding tetrahedron or not. (See Figure 12) The triangles

are then inserted into the list of shared triangles, placing them into the

same BVH as those representing faces of elements with planar faces.

8 COMMON IMPLEMENTATION DETAILS

Once the set of triangles is generated for each method, the actual OptiX

set-up code is almost identical. We create an OptiX triangle geometry

for the triangle mesh and assign the triangle vertices and indices. For

each triangle, we use an int4 to store the indices, where the first three

indices reference a counterclockwise triangle. If the triangle comes

from a bounding tetrahedron of a bilinear surface, the fourth index is

(a) (b)

(c) (d)

(e) (f)

Fig. 14: (a) As in the original rtx-shrd-faces approach, when a front face

is hit we return the corresponding front element ID. However, back face hits

belonging to bilinear patches (b) require additional information to conclude

which element contains the point. If we hit the patch associated with the current

face (c), the point is in the back face element. Otherwise, (d) the point is in the

front face element. This same test can be used to resolve point queries outside

an element (e,f) near bilinear boundaries. (Note that the S-like boundary is

purely for illustration purposes, and in practice is bilinear with no inflection

points.)

set to the missing quad vertex, such that the set of vertices in order

1, 2, 3, 4 forms a counterclockwise loop around the quad. Otherwise,

this fourth index is set to -1, indicating the triangle does not belong

to a curved bilinear surface. This triangle geometry is then placed in

an optix acceleration structure. After that, we upload the buffer of

unstructured elements, as well as a buffer containing with either one

or two element IDs per-triangle. As an optimization, for all methods

we explicitly disable the any-hit program. This guarantees to the ray

tracer that it can skip the any-hit program, avoiding any back and forth

between hardware traversal and an empty software any-hit program.

A key difference of our triangle-based methods when compared

to rtx-bvh is that we can no longer use an infinitesmal ray length,

since such short rays would not reach the faces. Although infinite

length rays would intersect the faces, they would necessarily require

the hardware to perform more traversal operations, which, even with

hardware acceleration, is expensive. To address this problem, we

compute the maximum edge length of any element in the data set, and

use this length as the ray’s ray.tmax value. This approach ensures

that rays can reach the right faces, while limiting the traversal distance.

Finally, although an arbitrary ray direction of, e.g., (1,1,1) works

for most point queries, we have encountered rare artifacts when rays

glance triangle edges. To mitigate these artifacts, we choose a random

direction for each ray in our volumetric ray caster example.

9 EVALUATION

Given these four kernels, we can now evaluate their relative perfor-

mance. We ran our experiments on a mid-range workstation with an

Intel Core i7–5960X CPU and 128 GBs of RAM and tested on a variety

of both consumer and high-end RTX-enabled cards. Specifically, we

use an RTX 2080, an RTX 2080TI, a Titan RTX, and an RTX 8000.

For reference, we also ran our experiments on a pre-Turing Titan V,



Fusion Jets Agulhas Current Scivis 2011 Pump Japan Earthquake

3 M tets, 622 K verts 12 M tets, 2.1 M verts 35.7 M tets and 6.2 M verts 6.4 M hexes and 6.6 M verts, 62.2 M tets and 15 M verts

scalar per-vertex scalar per-vertex 14.4M wedges, scalar per-vertex, + 963 K tris 8M hexes,

scalar per-cell, + 10.1 M tris scalar per-vertex, + 257 K tris

Fig. 15: Sample images and statistical data for the data sets used in evaluating our kernels. Agulhas, Scivis 2011 and Japan include triangle meshes for the

bathymetry, wireframe, and continent outlines, respectively. These are used during rendering but do not affect the point query kernels.

which performs all ray tracing operations in software.

We ran all our evaluations on Ubuntu 18.04 using Optix 6.5, with

Nvidia driver version 440.44 and CUDA 10.2. The data sets used for

tetrahedral point query evaluation cover a range of shapes and sizes

(see Figure 15), from 3 to nearly 63 million elements. All but the

Jets data set are sparse, in that only part of the data’s bounding box

is covered by unstructured elements. For Fusion, cells cover only the

torus; in Agulhas, cells cover only “wet” cells (roughly 50% of the

bounding box; and for Japan, our data includes only nonzero elements,

covering just 5.15% of the bounding box.

To test our newly supported general unstructured elements, we ad-

ditionally chose to use two variants of the Agulhas and Japan data

sets. The original Agulhas data set is composed solely of wedges, and

the Japan data set is composed of hexahedra. By additionally using

the original forms of these data sets, we can compare the performance

of our approach for general unstructured meshes directly against our

previous tet-mesh-only approach. Finally, as an additional point of

comparison against other unstructured volume rendering solutions, we

include the Scivis 2011 Pump data set, which is composed of 6.4 M

hexahedra.

9.1 Memory Usage

We first measured the total GPU memory usage for the various methods,

listed in Table 1. We observe that on Turing, our kernels require signifi-

cantly less GPU memory than on Volta, especially for the triangle-based

variants. On our rtx-bvh method, we see a 31% overall decrease in

peak memory usage when moving from Volta to Turing. Likewise, our

peak memory usage on our rtx-shrd-faces approach sees a 59%

overall decrease in memory usage.

Irrespective of the GPU architecture, we found that OptiX 6.5 ex-

hibited a significant difference between its final memory usage after it

had finished building all data structures, compared to its peak memory

usage while building these data structures. Although this overhead

is temporary, it was significant enough that some of our experiments

initially ran out of memory on the RTX 2080. To avoid OptiX allo-

cating such a large block of scratch memory all at once, we split the

mesh elements ahead of time into smaller groups, and serialized BVH

construction over these groups.

We first partition the set of primitives into groups of at most 1 mil-

lion each, and then put each group into a geometry instance with a

corresponding acceleration structure. These geometry instances are

then put into a “top-level” OptiX acceleration structure. Since each

BVH is now much smaller, the peak memory usage during construction

is lower, allowing even the 8 GB card to fit all but one experiment.

Turing architecture GPUs support this two-level data structure natively

in hardware, so this two-level approach does not significantly impact

performance (some experiments even performed marginally better).

Additionally, it is worth noting that OptiX 7 allows for much more

Volta, no RTX Turing, with RTX

model fusion jets agul-t jpn-t agul-w jpn-h fusion jets agul-t jpn-t agul-w jpn-h

#elements 3M 12M 36M 62M 14M 8M 3M 12M 36M 62M 14M 8M

cuda-bvh (Section 4)

final 725M 921M 2.0G 3.2G 1.3G 1.0G 466M 844M 1.9G 3.1G 1.3G 1.0G

rtx-bvh (Section 5)

peak (no p/s) 837M 2.4G 6.3G 10.6G 3.0G 2.0G 656M 2.1G 5.7G 9.6G 2.6G 1.6G

peak (w/ p/s) 725M 1.6G 3.9G 6.5G 2.5G 1.7G 504M 1.1G 2.1G 4.4G 1.8G 1.4G

final 717M 1.6G 3.8G 6.1G 2.5G 1.7G 464M 754M 1.7G 3.1G 1.8G 1.3G

rtx-rep-faces (Section 6.1)

#faces 11.9M 49.1M 143M 249M NA NA 11.9M 49.1M 143M 249M NA NA

peak (no p/s) 2.5G 9.0G (oom) (oom) NA NA 1.6G 5.9G 16.9G (oom) NA NA

peak (w/ p/s) 2.1G 7.3G (oom) (oom) NA NA 1.2G 2.3G 6.1G 11.0G NA NA

final 2.1G 7.2G (oom) (oom) NA NA 770M 1.8G 5.4G 10.7G NA NA

rtx-shrd-faces (Section 6.2)

#faces 5.99M 24.7M 72M 134M 58M 52M 5.99M 24.7M 72M 134M 58M 52M

peak (no p/s) 1.5G 4.9G (oom) (oom) 11G 9.5G 960M 3.3G 9.3G 16.9G 9.0G 8.2G

peak (w/ p/s) 1.3G 4.1G 11.3G (oom) 8.6G 7.8G 846M 1.7G 4.4G 7.2G 4.0G 3.7G

final 1.3G 4.0G 11.3G (oom) 8.6G 7.8G 643M 1.4G 3.9G 6.8G 3.8G 3.3G

Table 1: GPU memory cost for our four kernels across our test data sets. “Peak” is the peak memory used by OptiX during the BVH build (with and without

pre-splitting); “final” is the total memory required after BVH construction. Additional nonvolume data, e.g., framebuffer and surface meshes, are not included. (-t

indicates a data set contains tetrahedra, -w contains wedges and -h contains hexahedra )



Synthetic Uniform (samples/sec)

fusion jets agulh jpn-tet agul-wed jpn-hex

#elements (3M) (12M) (36M) (62M) (14M) (8M)

Titan V

cuda-bvh 89.7M 1.55G 971M 461M 358.7M 183.0M

rtx-bvh 91.8M 1.05G 741M 373M 179.6M 200.5M

rtx-rep-faces 34.7M 407M (oom) (oom) NA NA

rtx-shrd-faces 59.7M 689M 397M (oom) 238.6M 150.1M

RTX 2080

cuda-bvh 53M 996M 563M 263M 121.0M 136.1M

rtx-bvh 98.2M 1.17G 1.03G 525M 115.0M 175.0M

rtx-rep-faces 253M 1.23G 1.11G (oom) NA NA

rtx-shrd-faces 354M 1.62G 1.58G 1.28G 1.3G 960.2M

RTX 2080 TI

cuda-bvh 75.8M 1.3G 764.6M 360.5M 180.1M 190.8M

rtx-bvh 129.2M 1.5G 1.3G 672.6M 170.4M 235.9M

rtx-rep-faces 354.4M 1.8G 1.6G 1.3G NA NA

rtx-shrd-faces 492.8M 2.3G 2.3G 1.8G 1.8G 1.3G

Titan RTX

cuda-bvh 84.5M 1.39G 813M 386M 188.7M 202.5M

rtx-bvh 145M 1.67G 1.43G 736M 178.3M 259.5M

rtx-rep-faces 377M 1.78G 1.7G 1.4G NA NA

rtx-shrd-faces 537M 2.4G 2.4G 2.0G 1.9G 1.3G

RTX 8000

cuda-bvh 83.2M 1.3G 768M 371M 182M 195.7

rtx-bvh 134.7M 1.6G 1.3G 699.4M 173M 248.8M

rtx-rep-faces 363M 1.8G 1.6G 1.4G NA NA

rtx-shrd-faces 505M 2.3G 2.3G 1.9G 1.9G 1.3G

Table 2: Synthetic uniform performance results for all our kernels, across

all data sets. Here we execute point queries in a coherent fashion, one point

query per element. All experiments use pre-splitting (see Section 9.1), and are

averaged across several runs to reduce launch overhead. (oom) indicates OptiX

ran out of memory during the BVH build.

fine-grained control over this BVH construction process than OptiX

6.5. There are likely more ways to minimize this peak memory usage

than what we have explored so far.

Since we are now able to support general unstructured elements, we

can save a large amount of memory for data sets that were previously

being tetrahedralized. In practice, many unstructured volumes use these

general unstructured elements as the basis for more efficient and numer-

ically stable simulations. However, there are potential memory benefits

to using higher dimensional elements as well, since fewer elements are

required to represent the same data set. For example, two of our data

sets, Agulhas and Japan, were previously general unstructured meshes

before we tetrahedralized them in our prior work [39]. On the other

hand, if a general unstructured mesh is tetrahedralized, the number

of elements increases significantly. Pyramids require two tetrahedra,

wedges require three, and hexahedra commonly use six.

In our example use case, we find this can make the difference be-

tween a mesh fitting in memory or not. For example, on our Volta

experiments, we were unable to fit the tetrahedralized Japan data set

(62.2 M tetrahedra) into memory with our rtx-shrd-faces ap-

proach. However, the hexahedral Japan data set (8 M hexahedra) fits

comfortably within the same 12 GB card. With the Japan data set, we

see, on average, a 61% overall reduction in peak memory usage when

comparing the tetrahedralized version to the original hexahedral one.

Likewise, we find an average 20% reduction in memory usage on the

Agulhas data set when comparing the tetrahedralized version (35 M

tetrahedra) to the original one with wedges (14 M wedges). Note that

for these comparisons, our wedges and hexes used eight indices per

element, whereas tetrahedra used only four indices. For the wedges

case, we would likely see larger memory improvements by using six

indices instead of eight.

Synthetic Random (samples/sec)

fusion jets agul jpn-t agul-w jpn-h

#elements (3M) (12M) (36M) (62M) (14M) (8M)

Titan V

cuda-bvh 36.4M 82.4M 83.8M 70.3M 130.1M 73.4M

rtx-bvh 30.2M 108M 83.6M 68.6M 80.3M 69.8M

rtx-rep-faces 23.7M 81.5M (oom) (oom) NA NA

rtx-shrd-faces 35.1M 101M 63.6M (oom) 78.5M 51.1M

RTX 2080

cuda-bvh 19.7M 60.5M 53.3M 44.1M 52.8M 50.5M

rtx-bvh 24.7M 74.7M 69M 59.6M 61.1M 52.6M

rtx-rep-faces 65.2M 159M 126M (oom) NA NA

rtx-shrd-faces 76.1M 175M 130M 100M 125.3M 99.3M

RTX 2080 TI

cuda-bvh 27.6M 82.2M 69.9M 71.3M 81.7M 71.4M

rtx-bvh 30.6M 99.1M 82.7M 89.6M 90.7M 74.2M

rtx-rep-faces 92.5M 227.9M 166.8M 129.0M NA NA

rtx-shrd-faces 109.4M 245.6M 166.6M 141.0M 184.5M 142.6M

Titan RTX

cuda-bvh 31.4M 90.1M 77.5M 62.8M 85.2M 75.5M

rtx-bvh 37.1M 111M 99.5M 83.9M 96.2M 80.2M

rtx-rep-faces 99M 243M 188M 138M NA NA

rtx-shrd-faces 116M 268M 196M 150M 195.8M 150.9M

RTX 8000

cuda-bvh 31.1M 89.9M 76.4M 62.4M 82.9M 72.3M

rtx-bvh 35.7M 109.2M 98.5M 83.1M 93.2M 79.7M

rtx-rep-faces 99.3M 244.4M 188.2M 137.5M NA NA

rtx-shrd-faces 116.6M 269M 196.5M 150.2M 195.4M 149.5M

Table 3: Synthetic random performance results for all our kernels, across all

data sets. Here we execute 10M point queries per launch, each query originating

in a randomly chosen cell at a random location inside that cell. All experiments

use pre-splitting (see Section 9.1), and are averaged across several runs to

reduce launch overhead. (oom) indicates OptiX ran out of memory during the

BVH build.

9.2 Benchmark Performance

To measure just the raw query performance of our kernels, we con-

ducted a set of synthetic benchmarks (Tables 2 and 3). We first per-

formed these benchmarks by taking uniformly and randomly distributed

sample points within the volume’s bounding box; however, as most

models are sparse, many of these samples will not be inside any element,

making them artificially less expensive to compute. This distribution

led to an unrealistically high average sampling rate for the kernels.

Such a purely spatial sample pattern is not entirely unrealistic; in fact,

our prototype volume renderer will generate these kinds of distributions

in the next section. Nevertheless, we felt this bounding-box-based

sampling pattern was artificially inflating our sampling rates since rays

that fall outside the volume quickly terminate during BVH traversal. We

decided to change this sampling pattern to instead always place samples

within valid elements. The uniform benchmark launches one thread per

cell in a coalesced order and takes a sample at the element’s center. The

random benchmark has each thread select a random cell, and sample

an arbitrary position within the cell. For general unstructured cells,

some of these randomized positions may fall outside elements near

bilinear boundaries. However, this is not necessarily an issue, since

this approach covers both inside and outside bilinear intersection cases

described in Figure 12.

On the pre-Turing Titan V, we see that, as expected, performance

decreases as we increasingly use more ray tracing. Tracing a ray is

inherently more expensive than querying a point, and without hardware

acceleration, our point queries will be slower. Despite this theoretically

higher cost, when we ran our benchmarks on GPUs with hardware-

accelerated ray tracing, our kernels not only performed well compared

to the reference method, but outperformed it significantly–by 1.6−

6.6× for tetrahedral meshes on the uniform benchmark and 2− 4×

on the random benchmark. Our general unstructured meshes also see



significant performance improvements–they are 6.4−11× faster than

the reference method on the uniform benchmark and 2−4× faster on

the random benchmark.

Since Newton-Raphson-based bilinear point queries traditionally

perform worse than Cramer’s rule-based tetrahedral point queries, we

also wanted to compare the differences in performance between our

general unstructured meshes and their tetrahedralized versions. As

we anticipated, our baseline method on the uniform benchmark ex-

hibits a decrease in performance when comparing our tetrahedralized

meshes against their original hexahedral and wedge-based versions–

by about 3.21− 3.65× on the Agulhas data set and by 0.86− 1.52×

on the Japan benchmark. However, after moving to our hardware-

accelerated ray tracing kernels, this penalty is reduced dramatically to

only 0.21−0.27× for Agulhas and 0.33−0.46× for Japan. On our ran-

dom benchmark, results are less clear, and we see certain cases where

performance decreases slightly, with other experiments we see a slight

increase in performance. However, for all these random benchmarks,

we see little to no difference in performance between the tetrahedralized

meshes and their original hexahedral- and wedge-based versions.

An interesting outlier in these results is our smallest data set, Fusion,

which sees the worst absolute performance on the synthetic benchmarks.

The tetrahedra in the Fusion data set have a much wider difference

between the minimum and maximum edge lengths, and are densely

packed around the center line of the torus. As the ray-tracing-based

methods use the maximum edge length as the ray query distance, rays

will traverse many more BVH nodes than required on the Fusion data

set compared to the other data sets, impacting performance on the

synthetic benchmarks.

On the random benchmark, we find that, as anticipated, the lack

of query point coherence between neighboring threads impacts per-

formance on all the kernels evaluated. Across all the methods, we

see a decrease in performance on the order of 5−10×; however, our

ray-tracing-accelerated point queries continue to outperform the ref-

erence. The uniform benchmarks achieve much higher sample rates

on all methods, with our rtx-shrd-faces kernel reaching on the

order of 1–2 billion samples per second. This result far exceeded our

expectations, as the rays are by no means coherent from a rendering

sense. Our experimental setup guarantees that even in the uniform case,

no two rays will ever hit the same face.

9.3 Unstructured Volume Ray Marching

To see how these speed-ups translate to a more challenging application,

we implemented a prototype volume ray marcher similar to that pre-

sented by Rathke et al. [28]. For each pixel, we march a ray through the

volume’s bounding box and perform point queries at a fixed step size,

sampling the volume approximately once per element. At each sample

point, the renderer uses one of our point-query kernels to compute the

scalar field value. In contrast to unstructured volume renderers based

on marching from element to element (e.g., [18, 19]), the renderer uses

a fixed sampling rate along the ray and is not guaranteed to sample

each element, though can achieve better performance as a result. The

field value is then assigned a color and opacity from a transfer function

stored in a 1D texture. The color-mapped samples are accumulated

along the ray until the ray’s opacity exceeds 99%. If a sample falls

outside the volume, the ray marcher treats the sample as being fully

transparent. If the data set includes surface geometry, we place the

geometry into an OptiX triangles geometry instance and first trace a

ray to find the nearest surface intersection point before integrating the

volume up to the surface.

We find that the speed-ups achieved by our kernels on the synthetic

benchmarks carry over to rendering. Our fastest method, rtx-shrd-

faces, achieves a 1.5−4× speed-up over the reference on tetrahedral

Volume Rendering (FPS, 10242 pix)

fusion jets agulh jpn-tet agul-wed jpn-hex

#elements (3M) (12M) (36M) (62M) (14M) (8M)

Titan V

cuda-bvh 13.98 27.64 24.62 5.15 6.68 1.66

rtx-bvh 5.74 13.7 17.3 3.07 7.35 2.13

rtx-rep-faces 5.82 8.79 (oom) (oom) NA NA

rtx-shrd-faces 9.4 13.2 (oom) (oom) 11.2 2.22

RTX 2080

cuda-bvh 8.85 17.2 19.6 3.18 2.49 1.34

rtx-bvh 6.45 9.78 13.1 3 4.55 2.28

rtx-rep-faces 21.6 22.5 28.3 (oom) NA NA

rtx-shrd-faces 33.7 29.7 35.4 5.53 37.0 8.89

RTX 2080 TI

cuda-bvh 10.78 22.4 24.3 4.31 3.53 1.85

rtx-bvh 4.07 7.01 13.4 2.32 6.30 2.84

rtx-rep-faces 28.42 30.0 36.2 7.72 NA NA

rtx-shrd-faces 41.78 36.2 46.1 9.57 46.5 11.2

Titan RTX

cuda-bvh 12.7 22.6 26.0 4.59 3.87 2.05

rtx-bvh 4.97 8.39 16.2 2.55 6.66 3.36

rtx-rep-faces 27.7 31.7 37.8 8.20 NA NA

rtx-shrd-faces 42.0 38.6 48.8 10.1 48.4 12.1

RTX 8000

cuda-bvh 12.3 22.5 25.5 4.41 3.67 1.91

rtx-bvh 5.05 8.33 15.8 2.46 6.52 3.32

rtx-rep-faces 27.9 31.5 37.8 8.13 NA NA

rtx-shrd-faces 41.9 39.0 48.8 10.0 47.3 11.5

Table 4: Volume rendering performance results for all our kernels, across all

data sets. A series of view aligned point queries are executed within a volumetric

ray caster, producing the images seen in Figure 15. All experiments use pre-

splitting (see Section 9.1), and are averaged across several runs to reduce launch

overhead. (oom) indicates OptiX ran out of memory during the BVH build.

Volume Rendering (FPS, 10242 pix)

fusion jets agul jpn-t agul-w jpn-h scivis-h

#elements (3M) (12M) (36M) (62M) (14M) (8M) (6M)

Paraview 0.80 2.1 0.04 0.03 0.04 0.04 0.05

OSPRay 1.64 0.76 0.58 0.48 0.93 1.94 0.23

IndeX 40.9 6.7 NA 8.10 NA 7.83 13.0

Ours 41.9 39.0 48.8 10.0 47.3 11.5 25.6

Table 5: A set of rendering performance comparisons against other common

unstructured volume rendering frameworks. OSPRay volume rendering perfor-

mance was measured on an i9-9920X. All other measurements were recorded

using an RTX 8000. For comparisons against Nvidia’s IndeX renderer, NA

indicates the presence of cell-centered data, which is currently unsupported.

data, and a 6.6−15× improvement on the bilinear data sets (Table 4).

We also find that performance improvements for our general unstruc-

tured elements are much more significant than our performance im-

provements for tetrahedra. This more substantial improvement makes

sense. The baseline of our reference method is much lower for general

unstructured meshes than for tetrahedral meshes, and thus there is much

more room for improvement. In particular, when data sets consist of

bilinear elements with per cell values, the reference method requires a

full Newton-Raphson optimization to determine if the point lies within

a cell. However, with our shared faces method, if we know the elements

contain per-cell values, we can avoid this Newton-Raphson optimiza-

tion altogether, and instead just test if we intersect the bilinear face

in the closest-hit program before returning the cell value or -1. For

unstructured meshes with per-vertex data, our method still requires a

full Newton-Raphson optimization to interpolate the field values in the

closest-hit program. Even so, we still see significant performance im-

provements for meshes with per-vertex data, on the order of 5.9−6.6×

compared to the reference.

Finally, to validate our RT-core accelerated unstructured volume

renderer, we measured some performance comparisons against current



state of the art in Table 5. From our testing, we are able to demonstrate a

clear advantage in terms of unstructured volume rendering performance.

Compared to Paraview’s OpenGL projected tetrahedra approach, our

results see performance improvements between two to three orders of

magnitude. However, this projected tetrahedra approach is quite old,

and we would not consider it as being state of the art.

More recently updated and more commonly used is the approach

by Rathke, which is implemented in Intel’s OSPRay renderer. When

we measure the performance of OSPRay 2.2.0’s unstructured volume

renderer against Paraview’s projected tetrahedra approach, OSPRay’s

performance beats Paraview’s projected tetrahedra by about an order

of magnitude. However, our results again demonstrate another order

of magnitude in performance improvements over OSPRay. It is worth

noting that the comparison between our approach and OSPRay is more-

so due to hardware differences rather than algorithmic differences,

since we both implement the approach by Rathke. For our OSPRay

comparisons, we chose to compare our high-end workstation RTX 8000

results against an i9-9920x, as this hardware was what we had available

during testing; however, in terms of cost, the i9 is significantly less

expensive than the RTX 8000. More comparable are the benchmarks of

our technique measured on our more budget-comparable RTX 2080 TI,

where we still see an order of magnitude of improvement over OSPRay.

Nvidia’s IndeX (version 2.4) is arguably the most competitive un-

structured volume renderer we compare our performance results against.

We consistently outperform IndeX with our approach, although the size

of our performance improvements depends significantly on the data

set and transfer function. For the Fusion data set, IndeX performance

roughly matches ours. In this data set, each volumetric point query

sample is more expensive; however, due to the selected transfer func-

tion, relatively few queries are required before rays reach maximum

opacity. As data sets grow larger, we likewise see larger performance

improvements compared to IndeX, up to 2× for the hexahedral Japan

data set. However, our largest performance improvements actually

come from the smaller Jets data set, where we see a 5.8× performance

improvement over IndeX. This dataset contains many elements that

are made transparent after the transfer function is applied. It seems

the strategy used by IndeX suffers under these cases highly transparent

cases, and our point query approach seems to do much better.

Overall, the frame rate of our volumetric raycaster appears to be

dependent on the data size, and in absolute terms, decreases as the

data size grows. We note that this decrease in frame rate is not due

to an increase in cost per-sample but rather due to our relatively naive

volume ray marcher. The ray marcher uses a fixed step size and does

not implement empty-space skipping or adaptive sampling. Thus for

large but sparse data sets, the ray marcher will take a large number of

samples in largely homogeneous or empty regions of the data. Although

each point query is relatively cheap, in aggregate, they are not. We

could likely address this problem by adding support for space skipping

or adaptive sampling to our renderer (see, e.g., [17]).

9.4 Power Draw

Finally, it is interesting to compare the different methods in terms of

power draw. We log the output of nvidia-smi during the rendering

benchmarks to monitor power draw. We find that both the cuda-bvh

and rtx-bvh methods always reach roughly the card’s maximal

power draw (225W for the RTX 2080, 260W for the RTX 2080TI,

280W for the TITAN RTX, 260W for the RTX 8000). However, the

RTX triangle-based tetrahedra kernels consistently draw less power,

averaging around 170W on the RTX 2080, 250W on the RTX 2080TI,

230W on the TITAN RTX, and 191W on the RTX 8000. By leveraging

these new hardware capabilities, our kernels achieve a 2× or higher

performance improvement on tetrahedral meshes, while using around

20% less power. We see roughly the same power improvements for

general unstructured meshes with cell-centered scalar data, where we

achieve a 15× performance improvement. However, general cells

with per vertex scalars require a more computationally intense Newton-

Raphson operation within the closest program, where our power savings

over the reference are more limited.

10 DISCUSSION AND CONCLUSION

Although our results are promising, there are several interesting avenues

for future work to explore creative uses of the ray tracing cores.

With regard to addressing our larger goal of exploring wider use

of the RT cores, we have successfully shown one application where

they can be used to accelerate a problem beyond traditional ray tracing.

However, more work must be done to extend this initial idea beyond

point queries on unstructured meshes. We have now demonstrated how

our approach can extend to elements with non-triangular faces, and it

is likely that other common unstructured data queries and mesh types

could be accelerated as well. For example, k-nearest-neighbor and

closest point queries are widely used in a broad class of applications,

and accelerating such queries would be valuable.

As for the kernels presented in this paper, we believe other applica-

tions beyond direct volume rendering could leverage our approach as

well. Simulations that combine particle and volumetric data or advect

particles through a field could benefit from accelerated point queries.

However, such simulations may require a high degree of numerical

accuracy. Although the field could be stored in double-precision, RTX

supports only single-precision vertex data at this time. Furthermore,

such simulations may require higher order polynomial interpolants,

whereas our current approach is currently limited to bilinear elements.

We believe our technique could be extended to support these higher

order elements so long as the surfaces of the mesh elements can be con-

tained within an underestimating and overestimating tessellation. The

Newton-Raphson node interpolation and GARP bilinear patch intersec-

tion methods we use now could then be replaced with the equivalent

higher order techniques.

When it comes to unstructured volume rendering, another caveat

with our prototype renderer is that we only explore taking individual

samples in a simple ray marcher. However, other techniques based on

stepping from element to element may be more efficient or provide

higher quality images (e.g., [6, 18, 20]). Some of our general ideas

may be applicable to such techniques as well. We note that adding

empty-space skipping and adaptive sampling, as suggested by Morri-

cal et al. [17] or Ganter and Manzke [3], would greatly improve the

performance and quality of our prototype ray marcher, and would in-

tegrate nicely with the presented approach. Beyond volume rendering

unstructured meshes specificially, it is likely that the RT cores could

be used to accelerate common visualization tasks beyond sampling or

space skipping.

Overall, our results are encouraging. Not only did our first attempt to

use the RT cores for something beyond classical ray tracing work, each

of the three kernels evaluated provided improvements over the software

reference, with the fastest methods far exceeding our expectations. On

the more challenging bilinear element use case, we have seen even more

substantial performance improvements. These results continue to raise

new questions for current and future hardware architectures. Beyond

point queries, what other problems could we accelerate by leveraging

ray tracing hardware? How might changes to future iterations of these

or similar hardware units change the answer to that question? Will

more general, non-ray tracing use cases shape future hardware designs?

We hope our results serve to motivate further investigation into what

we believe to be the promising potential of general-purpose ray tracing.



ACKNOWLEDGMENTS

The Agulhas data set is courtesy of Dr. Niklas Röber (DKRZ); the

Japan Earthquake data set is courtesy of Carsten Burstedde, Omar Ghat-

tas, James R. Martin, Georg Stadler, and Lucas C. Wilcox (ICES, the

University of Texas at Austin) and Paul Navrátil and Greg Abram

(TACC). Hardware for development and testing was graciously

provided by Nvidia Corp. This work is supported in part by NSF:

CGV Award: 1314896, NSF:IIP Award: 1602127, NSF:ACI Award:

1649923, DOE/SciDAC DESC0007446, CCMSC DE-NA0002375 and

NSF:OAC Award: 1842042.

REFERENCES

[1] R. T. Biedron, J. R. Carlson, J. M. Derlaga, P. A. Gnoffo, D. P. Hammond,

W. T. Jones, B. Kleb, E. M. Lee-Rausch, E. J. Nielsen, M. A. Park, et al.

Fun3d manual: 13.6. 2019.

[2] H. Childs. Visit: an end-user tool for visualizing and analyzing very large

data. 2012.

[3] D. Ganter and M. Manzke. An analysis of region clustered bvh volume

rendering on gpu. In Computer Graphics Forum, volume 38, pages 13–21.

Wiley Online Library, 2019.

[4] A. S. Glassner. An introduction to ray tracing. Elsevier, 1989.

[5] S. Green. Nvidia cloth sample. 2003. download.nvidia.com/

developer/SDK/Individual_Samples/samples.html#

glslphysics.

[6] C. Gribble. Multi-Hit Ray Tracing in DXR. In E. Haines and T. Akenine-

Möller, editors, Ray Tracing Gems: High-Quality and Real-Time Render-

ing with DXR and Other APIs. 2019.

[7] G. Gu, D. Kim, J. M. Pereira, and R. Raidou. Accurate and memory-

efficient gpu ray-casting algorithm for volume rendering unstructured grid

data. In EuroVis (Posters), pages 77–79, 2019.

[8] A. Haidar, S. Tomov, J. Dongarra, and N. J. Higham. Harnessing GPU

Tensor Cores for Fast FP16 Arithmetic to Speed Up Mixed-precision Iter-

ative Refinement Solvers. In Proceedings of the International Conference

for High Performance Computing, Networking, Storage, and Analysis

(Proceedings of Supercomputing ‘18), 2018.

[9] E. Haines and T. Akenine-Möller. Ray Tracing Gems: High-Quality and

Real-Time Rendering with DXR and Other APIs. Springer, 2019.

[10] M. P. Howard, J. A. Anderson, A. Nikoubashman, S. C. Glotzer, and

A. Z. Panagiotopoulos. Efficient neighbor list calculation for molecular

simulation of colloidal systems using graphics processing units. Computer

Physics Communications, 203:45–52, 2016.

[11] T. Kim and M. C. Lin. Visual simulation of ice crystal growth. In

Proceedings of the 2003 ACM SIGGRAPH/Eurographics symposium on

Computer animation, pages 86–97. Eurographics Association, 2003.

[12] A. Knoll, R. K. Morley, I. Wald, N. Leaf, and P. Messmer. Efficient particle

volume splatting in a ray tracer. In Ray Tracing Gems, pages 533–541.

Springer, 2019.

[13] J. H. Krüger and R. Westermann. GPU simulation and rendering of volu-

metric effects for computer games and virtual environments. In Computer

Graphics Forum, volume 24, pages 685–694. Amsterdam: North Holland,

1982-, 2005.

[14] E. S. Larsen and D. McAllister. Fast Matrix Multiplies Using Graph-

ics Hardware. In Proceedings of the 2001 ACM/IEEE Conference on

Supercomputing, 2001.

[15] A. Maximo, R. Marroquim, and R. Farias. Hardware-assisted projected

tetrahedra. In Proceedings of EuroVis’10, 2010.

[16] K. Moreland and E. Angel. The FFT on a GPU. In Proceedings of the

ACM SIGGRAPH/EUROGRAPHICS conference on Graphics hardware,

pages 112–119. Eurographics Association, 2003.

[17] N. Morrical, W. Usher, I. Wald, and V. Pascucci. Efficient space skipping

and adaptive sampling of unstructured volumes using hardware accelerated

ray tracing. October 2019.

[18] P. Muigg, M. Hadwiger, H. Doleisch, and E. Groller. Interactive Vol-

ume Visualization of General Polyhedral Grids. IEEE Transactions on

Visualization and Computer Graphics, 2011.

[19] P. Muigg, M. Hadwiger, H. Doleisch, and H. Hauser. Scalable Hybrid

Unstructured and Structured Grid Raycasting. IEEE Transactions on

Visualization and Computer Graphics, 2007.

[20] B. Nelson, E. Liu, R. M. Kirby, and R. Haimes. ElVis: A System for

the Accurate and Interactive Visualization of High-Order Finite Element

Solutions. IEEE Transactions on Visualization and Computer Graphics,

2012.

[21] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel

programming with CUDA. Queue, 6(2):40–53, Mar. 2008.

[22] NVIDIA. NVIDIA OptiX 6.0–Programming Guide. https://bit.

ly/2ErCDti, 2018.

[23] NVIDIA. NVIDIA Turing GPU Architecture. https://bit.ly/

2NGLr5t, 2018.

[24] J. Olliff. Efficient adjacency queries and dynamic refinement for meshfree

methods with applications to explicit fracture modeling. 2018.

[25] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E.

Lefohn, and T. J. Purcell. A survey of general-purpose computation

on graphics hardware. In Computer graphics forum, volume 26, pages

80–113. Wiley Online Library, 2007.

[26] S. G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D. Lue-

bke, D. McAllister, M. McGuire, K. Morley, and A. Robison. OptiX: A

General Purpose Ray Tracing Engine. ACM Transactions on Graphics

(Proceedings of ACM SIGGRAPH), 2010.

[27] J. Pineda. A parallel algorithm for polygon rasterization. In Proceedings

of the 15th annual conference on Computer graphics and interactive

techniques, pages 17–20, 1988.

[28] B. Rathke, I. Wald, K. Chiu, and C. Brownlee. SIMD Parallel Ray Trac-

ing of Homogeneous Polyhedral Grids. In Eurographics Symposium on

Parallel Graphics and Visualization, 2015.

[29] A. Reshetov. Cool patches: A geometric approach to ray/bilinear patch

intersections. In Ray Tracing Gems, pages 95–109. Springer, 2019.

[30] M. Rumpf and R. Strzodka. Level Set Segmentation in Graphics Hardware.

In Proceedings of the 2001 International Conference on Image Processing,

2001.

[31] M. Rumpf and R. Strzodka. Using Graphics Cards for Quantized FEM

Computations. In Proceedings of the VIIP Conference on Visualization

and Image Processing, 2001.

[32] J. L. Salmon and S. M. Smith. Exploiting Hardware-Accelerated Ray

Tracing for Monte Carlo Particle Transport with OpenMC. 2019.

[33] R. Sawhney and K. Crane. Monte carlo geometry processing: A grid-

free approach to pde-based methods on volumetric domains. ACM Trans.

Graph., 39(4), 2020.

[34] P. Shirley and A. Tuchman. A Polygonal Approximation to Direct Scalar

Volume Rendering. In Proceedings of the 1990 Workshop on Volume

Visualization, 1990.

[35] J. E. Stone, D. Gohara, and G. Shi. OpenCL: A parallel programming

standard for heterogeneous computing systems. Computing in science &

engineering, 12(3):66, 2010.

[36] M. Ulmstedt and J. Stålberg. Gpu accelerated ray-tracing for simulating

sound propagation in water, 2019.

[37] M. Vinkler, V. Havran, and J. Bittner. Performance comparison of bound-

ing volume hierarchies and kd-trees for gpu ray tracing. In Computer

Graphics Forum, volume 35, pages 68–79. Wiley Online Library, 2016.

[38] I. Wald, G. P. Johnson, J. Amstutz, C. Brownlee, A. Knoll, J. Jeffers,

J. Günther, and P. Navrátil. OSPRay - A CPU Ray Tracing Framework

for Scientific Visualization. IEEE Transactions on Visualization and

Computer Graphics, 2017.

[39] I. Wald, W. Usher, N. Morrical, L. Lediaev, and V. Pascucci. RTX Beyond

Ray Tracing: Exploring the Use of Hardware Ray Tracing Cores for Tet-

Mesh Point Location. In Proceedings of High Performance Graphics,

2019.

[40] I. Wald, S. Woop, C. Benthin, G. S. Johnson, and M. Ernst. Embree - A

download.nvidia.com/developer/SDK/Individual_Samples/samples.html#glsl physics
download.nvidia.com/developer/SDK/Individual_Samples/samples.html#glsl physics
download.nvidia.com/developer/SDK/Individual_Samples/samples.html#glsl physics
https://bit.ly/2ErCDti
https://bit.ly/2ErCDti
https://bit.ly/2NGLr5t
https://bit.ly/2NGLr5t


Kernel Framework for Efficient CPU Ray Tracing. ACM Transactions on

Graphics, 2014.

[41] I. Wald, S. Zellmann, W. Usher, N. Morrical, U. Lang, and V. Pascucci.

Ray tracing structured amr data using exabricks. IEEE Transactions on

Visualization and Computer Graphics, 2020.

[42] B. Yang and T. A. Laursen. A contact searching algorithm including

bounding volume trees applied to finite sliding mortar formulations. Com-

putational Mechanics, 41(2):189–205, 2008.

[43] S. Zellmann, M. Weier, and I. Wald. Accelerating force-directed graph

drawing with rt cores. In IEEE Visualization (Short Papers), 2020.

arXiv:2008.11235.



Nate Morrical is a PhD student at the Uni-

versity of Utah, and is currently working under

Valerio Pascucci as a member of the CEDMAV

group in the Scientific Computing and Imaging

Institute (SCI). His research interests include

high performance GPU computing, real time

ray tracing, and human computer interaction.

Prior to joining SCI, Nate received his B.S. in

Computer Science from Idaho State University,

where he researched interactive computer graphics and computational

geometry under Dr. John Edwards.

Ingo Wald is a Director, Ray Tracing at

NVIDIA. He got his master’s degree from

Kaiserslautern University, and a PhD from Saar-

land University (both on ray tracing related

topics); and after that served as a Post-Doc at

the MPI Saarbrücken, as a Research Professor

at the University of Utah, and as Tech Lead

for Intel’s software-defined rendering activi-

ties (in particular, Embree and OSPRay). Ingo

has co-authored more than 75 papers, multi-

ple patents, and several widely used software

projects around ray tracing; his interest still revolve around all aspects

of efficient and high-performance ray tracing, from visualization to

production rendering, from real-time to off-line rendering, from hard-

to software, etc.

Will Usher is a Graduate Research Assistant

at the Scientific Computing and Imaging Insti-

tute at the University of Utah, working with

Valerio Pascucci. Before joining the Ph.D. pro-

gram at Utah Will obtained a B.S. in physics

with a minor in computer science at the Uni-

versity of California, Riverside in 2014. His

research interests cover a range of areas in sci-

entific visualization and computer graphics in-

cluding: distributed rendering, virtual reality, in

situ visualization and ray tracing.

Valerio Pascucci is the founding Director

of the Center for Extreme Data Management

Analysis and Visualization (CEDMAV) of the

University of Utah. Valerio is also a Faculty

of the Scientific Computing and Imaging Insti-

tute, a Professor of the School of Computing,

University of Utah, and a Laboratory Fellow, of

PNNL. Before joining the University of Utah,

Valerio was the Data Analysis Group Leader of

the Center for Applied Scientific Computing at

Lawrence Livermore National Laboratory, and

Adjunct Professor of Computer Science at the University of California

Davis. Valerio’s research interests include Big Data management and

analytics, progressive multi-resolution techniques in scientific visual-

ization, discrete topology, geometric compression, computer graphics,

computational geometry, geometric programming, and solid model-

ing. Valerio is the coauthor of more than one hundred refereed journal

and conference papers and has been an Associate Editor of the IEEE

Transactions on Visualization and Computer Graphics.


	Introduction
	Related Works
	General Purpose GPU Computation
	Fixed-Function Hardware
	Programmable Shaders
	Post-CUDA Fixed-Function Hardware

	Unstructured Volume Rendering

	RTX Beyond Ray Tracing
	Kernel Interface
	Input Element Types
	Implementation

	Non-RTX Reference: cuda-bvh
	rtx-bvh: Exploiting RT Cores for BVH Traversal
	Full Hardware Acceleration with RTX Triangles
	RTX-Replicated-Faces
	RTX-Shared-Faces

	Extending to General Elements with Bilinear Faces
	RTX-Shared-Bilinear-Faces

	Common Implementation Details
	Evaluation
	Memory Usage
	Benchmark Performance
	Unstructured Volume Ray Marching
	Power Draw

	Discussion and Conclusion



