
Ingo Wald / AMR Iso-Surface Extraction

A Simple, General, and GPU Friendly Method for Computing Dual
Mesh and Iso-Surfaces of Adaptive Mesh Refinement (AMR) Data

Ingo Wald

a) b) c)

Figure 1: a) Given an arbitrary set of invidiual AMR cells (that could come from either block-structured or octree AMR data) out method
provides an easy, programmatically simple, and trivially parallel way of computing all cells of the dual mesh (b), which can then, for example
be fed into the Marching Cubes case tables to produce a crack-free polygonal iso-surface. c) A 130 million triangle iso-surface (||vorticity||
field, ρ = 1000) of the NASA Exajet model, which consists of 626M individual AMR cells (with holes, and without any apparent hierarchy).
Computing this surface with a CUDA implementation of our method took 8.4 seconds on a NVIDIA RTX 8000 GPU.

Abstract
We propose a novel approach to extracting crack-free iso-surfaces from Structured AMR data that is more general than previous
techniques, is trivially simple to implement, requires no information other than the list of AMR cells, and works, in particular,
for different AMR formats including octree AMR, block-structured AMR with arbitrary level differences at level boundaries,
and AMR data that consist of individual cells without any existing grid structure. We describe both the technique itself and a
CUDA-based GPU implementation of this technique, and evaluate it on several non-trivial AMR data sets.

1. Introduction

Adaptive Mesh Refinement (AMR) was first introduced by Berger
et al. [BO84, BC89], and has since become one of the most widely
used methods for scientific simulation codes. Its base idea is that
a initially coarse domain subdivision gets adaptively refined based
where the simulation has the most need for finer discretization—
which significantly reduces the number of discretization elements
(and thus, memory storage) required to reach a certain accuracy.

Visualizing such data often requires the computation of a polyg-
onal iso-surface over this data; this can then be rendered, typi-
cally color-mapped with one or more additional attributes. Unfortu-
nately, computing crack-free iso-surfaces can be challenging due to
the irregular nature of the AMR cells; in particular, the dual mesh of
a structured AMR data set is a unstructured mesh that in the general
case can contain unstructured elements ranging from tetrahedra to
non-rectangular hexahedra with curved sides.

Today, the best known method for computing crack-free iso-
surfaces of AMR data is what we call the “stitching” method by
Weber et al. [WKL∗03, WCM12]: this method walks the brick
boundaries, and stitches these with unstructured elements that are
picked by using pre-computed case tables. This method is widely
used, but relies on certain assumptions—in particular, that the in-
put is block-structured AMR with no more than one level differ-
ences at block boundaries—that are not always met even for block-

structured AMR, and not at all for octree-AMR. Furthermore, the
non-trivial case tables make this method challenging to implement.

An alternative—but apparently less well known—solution to this
problem was introduced by Moran at al. [ME11], who observe that
placing epsilon-sized boxes around all vertices of the input mesh,
and “snapping” the corners of those epsilon boxes to the centers of
the cells they lie in (for which they use a cell location kernel that
walks the brick hierarchy), will produce exactly the unstructured
cells of the dual mesh. This method is more general, but apparently
little known, arguably because it is mentioned only as an aside in a
paper with an otherwise different focus.

Contributions. In this paper, we propose a method that—though
originally developed independently—can be viewed as a simpler
re-formulation of the Moran method. In particular, using a well-
defined integer labeling scheme for both cells and dual cells our
method avoid Moran’s epsilon-offsetting, and reduces their cell lo-
cation kernel to simple binary search of integer indices; it is easy
to implement, trivially parallelizable on a per-cell basis, and lends
itself naturally to a GPU implementation. Like Moran’s method,
our method works on both octree AMR and structured AMR data
(including arbitrary level differences and “holes” in the model),
and can be used for either dual-mesh and/or iso-surface generation.
We also detail a CUDA reference implementation of this method
(which will be shared with this paper), and demonstrate that this

ar
X

iv
:2

00
4.

08
47

5v
1

 [
cs

.G
R

]
 1

7
A

pr
 2

02
0

Ingo Wald / AMR Iso-Surface Extraction

can extract crack-free iso-surfaces of even complex AMR data sets
in a matter of seconds (see Figure 1).

2. Related Work

Cell-centered AMR was first introduced by Berger and
Oliger [BO84] and Berger and Colella [BC89], and in one or
another form today is used in a wide range of scientific simulation
codes such as, for example, Chombo [CGL∗00], Flash [FOR∗00],
LAVA [KBH∗14], Rage [GWC∗08], and many others. In particular,
though originally introduced in the form of block-structured AMR
where different-resolution grids are layered on top of each other,
today there are different variants ranging from block-structured
to octree-style AMR. Though the actual structure of the resulting
AMR mesh can vary wildly between those codes, they all follow
certain rules in that refinement happens in power-of-two factors,
with data values defined only for the center of each cell, and with
certain rules regarding how refined cells have to align to coarser
ones [BO84, BC89].

One of the first approaches to visualize AMR data was pro-
posed by Weber et al [WKL∗03], who proposed to first construct
the dual mesh, and extract an iso-surface from that the Marching
Cubes [LC87] case tables. To construct the dual messh Weber pro-
posed to walk along the boundaries of the input bricks, and “stitch-
ing” across level boundaries with elements such as tetrahedra, pyra-
mids, using a case table of some 36 different cases to determine
which element shape(s) to pick at any given point. Notwithstanding
some refinements (e.g., [WCM12]) this method has remained the
de facto standard method for nearly two decades; its main downside
is that it requires some existing grid hierarchy, and in particular, that
models not contain any cases where more than two different levels
abut, as this would require significantly more complex case tables.

A significantly less known technique for computing this dual
mesh was proposed by Moran et al. [ME11], in the context of com-
puting an interpolant for high-quality AMR volume rendering. In
their paper, Moran et al. observe that there is a one-to-one corre-
spondence between vertices in the AMR mesh and unstructured
cells in the dual mesh on one hand, and input cell centers and dual
mesh vertices on the other—and that the dual mesh can thus be
constructed by surrounding each input mesh vertex with a tiny box
whose vertices then get snapped to the centers of the cells they lie
in. To do this snapping they proposed cell location kernel that walks
a hierarchy of AMR bricks. Though more general than Weber’s,
this technique seems significantly less known, arguably because it
was not primarily proposed for iso-surface extraction. Though de-
veloped independently—and with slightly different rationale—our
method is similar in spirit, and may actually best be viewed as a
simpler re-formulation of this technique.

A way of computing a indexed triangle mesh from a set of
“fat” triangles has been previously proposed by Bell [Bel10],
with a follow-up improvement by Miller et al. [MMM14]. The
concept of dual contouring has also been used, for example, by
Nielsen [Nie04], Schaefer et al. [SW04], Kitware [SGLZ11], and
Carrard et al [CLP12].

3. Terminology and Prerequisites

Though we use a different way of creating the dual mesh, at the root
out method works the same way as proposed by Weber: First con-
struct the dual mesh, then use that to extract the iso-surface. The
key contribution of this paper is the formulation of how the dual
mesh is constructed. To do this we first introduce a simple termi-
nology for logical AMR cells, dual cells, and levels, with which the
final method can be expressed in but a few lines of code.

3.1. Cells, Dual Cells, and Terminology used in this Paper

Throughout this paper we adopt a terminology where differentiate
between logical and actual AMR cells, where logical cells refer
to any cell that an AMR refinement count potentially produce, and
actual cells as those logical cells used by an actual AMR data set.
Due to the nature of AMR, all logical cells of any given refinement
level form an infinite structured grid, which we call a “level”. In
particular, throughout this paper we assume that level 0 is the finest
level, with a cell size of 1; level 1 is the next coarser level with
cell size of 2, etc. I.e., cells on level l have a cell size of 2l , and
have coordinates that are multiples of 2l . To identify cells we refer
to them through four coordinates (i, j,k; l), with (i, j,k) being that
cell’s lower-left corner, and l the level on which it lives. Ie, each
logical cell C(l)

i, j,k spans the space (i, j,k)− (i + 2l , j + 2l ,k + 2l)

and is centered at Ĉ(
i, j,kl) = (i+2(l−1), j+2(l−1),k+2(l−1)).

All logical level-l-cells form an infinite grid of 2l-sized cells,
which implied a similar logical dual grid of dual cells D(l)

i, j,k, which

we define as spanning from Ĉ(l)
i, j,k to Ĉ(l)

i+1, j+1,k+1.

Using this terminology any given AMR data set A can then be
descibed by which actual cells it contains, and what data value(s)
these cells carry. Note in particular that we do not assume any ex-
isting block structure or hierarchy; just that we know which cells
(i, j,k; l) a given data set contains.

3.2. Efficient Cell Location

Given such a data set, in the later stages of our algorithm we as-
sume that there will be a fast cell location operator SNAP(C) that
finds, for any given set of cell coordinates (i, j,k; l), the actual in-

put cell Ĉ(l′)
i′, j′,k′ that contains the coordinates (i, j,k), or, if no such

actual data set cell exists, a special “does not exist” indicator ∅.
Note in particular that the actual cell for the queried coordinates
(i, j,k; l) does not have to have these logical cell coordinates, but
can absolutely be on either a finer or coarser level.

In our implementation we implement this operator by first sort-
ing the set of input cells by their integer coordinates (i, j,k),
and by determining the maximum number of levels L. With this
sorted array we can then quickly check if the data set con-
tains a given cell with coordinates C(l)

i, j,k by simply running a
binary search, for which in our implementation we use thrust’s
thrust::lower_bounds [BH12].

For any given integer position (i, j,k) we can then find the actual
cell containing these coordinates—if it exists—by simply iterat-
ing over all levels; for each level l we first project (i, j,k) to valid

Ingo Wald / AMR Iso-Surface Extraction

(a) (b) (c) (d) (e) (f) (g)

Figure 2: A 2D example of snapping various finest-level logical dual cells to actual cells (see text for a distinction between logical and
actual cells). a) in a uniformly fine region, the vertices of fine duals snap to themselves, producing an actual fine dual. b-d) in a uniformly
coarse regions, fine duals snap to a coarser real dual cell (b), degenerate lines (c), or degenerate points, depending on where they lie. e-g)
fine(r) dual that straddle level boundaries snap to degenerate lines (e), triangles (f), or trapezoids (g). Ignoring all obviously degenerate
cases (lines and points), snapping all logical duals produces exactly the actual dual mesh.

(a) (b)

(c) (d)

Figure 3: Illustration of snapping at different levels, on a sample
mesh with 3 levels. a) the mesh with all finest-level dual cells (dot-
ted red) b) the result of snapping all finest-level duals (which is the
full dual mesh), with those shapes snap from at least one level-0
cell in green, and all others in blue. c) The same mesh, with level-
1 duals. d) The result of snapping these and discarding all shapes
that snapped to a vertex finer than level 1; which is clearly the same
dual mesh for all regions level 1 and coarser.

level-l cell coordinates by zeroing the lower l bits of i, j, and k,
then perform the binary search. If any tested level finds an actual
cell with these coordinates this is the cell we have been looking
for; otherwise we return a ∅. Of course, if we have a good guess
on what level the queried cell might be on we can test this level
first, saving some additional searches. Note in particular that we
never need any floating-point coordinates, epsilons, or hierarchies,
only pre-sorted integer cell coordinates. Furthermore, we make no
distinctions between “inner” and “boundary” cells whatsoever; all
cells are treated exactly the same, simplifying the algorithms and
aiding parallelism.

4. Computing the Dual Mesh using Degenerate Dual Cells

Using this terminology and “cell location” kernel we now make
the same argument as already made by Moran et al, namely, that
snapping the vertices of logical dual cells to the centers of the actual
cells they lie in will produce exactly the unstructured dual cells.

4.1. Conceptual Construction on the Finest Level

To illustrate the latter, let us first consider the 2D case, and at least
for now, let us consider all(!) finest-level dual cells. In Figure 2 we
have illustrated several cases on how an originally square-shaped
finest-level dual snaps in different regions of a data set: In a finest-
level region that square just snaps to itself (a); in coarser regions
it either snaps to a larger square (b), to a line (c), or a point (d),
depending on whether the dual square covers a coarser cell vertex
(b), straddles and edge (c), or lies within a coarser cell (d).

Along level boundaries, the shapes produced by snapping get
more diverse, but still follow the same concept: in 2D, snapping a
finest-level dual that straddles a level boundary can also produce a
triangle (e) or trapezoid (f) along a simple boundary between only
two levels; and a general quadrilateral if more than two different
levels are involved (g). In 3D exactly the same construction ap-
plies, except that the shapes produced get even more diverse by
adding another dimension: generally speaking, in the simple case
inside a homogeneous regions 2D squares becomes 3D cubes, but
along boundaries triangles and trapezoids can become tetrahedra,
pyramids, wedges, or general hexahedra. Some of these shapes are
non-trivial, as some of the hexahedra, wedges and pyramids can
have faces that are non-flat bilinear patches.

In particular, we point out that this snapping does not make any
assumptions as to how many different levels are involved, how big
the level differences are, etc. Obviously, if any of the vertices does
not snap to any actual cell the shape is not part of the dual mesh,
and can be ignored.

4.2. Efficient Construction

Though constructing the dual mesh by snapping all finest-level
cells does indeed work, for complex models it would be very
inefficient to do so: for example, for the NASA Landing Gear
Model outlined in Figure 4, the logical finest-level grid contains
131K × 131K × 65K cells, translating to roughly 1.1 quadrillion
finest-level duals that we would need to snap.

However, as already pointed out by Moran et al. all that is re-
quired to find all shapes is that the snapped shapes cover all ver-
tices of the input mesh. We further observe that every vertex of the
input mesh is by definition one of the eight vertices of an actual
cell C(l)

i, j,k, and as such, at the center of one of the eight logical dual

cells D(l)
i+∆i, j+∆ j,k+∆k (∆i,∆ j,∆k ∈ {0,1}) that cover this cells. This

suggests that all we have to do is to generate, for each actual input
cell C(l)

i, j,k, the coordinates of its 8 dual cells, and snap those.

Ingo Wald / AMR Iso-Surface Extraction

4.3. Avoiding Duplicates

This method of snapping every actual cell’s eight duals is simple
and correct, but since dual cells are generally shared among many
different actual cells would naively generate each output cell sev-
eral times. One way to avoid this would be to explicitly tag vertices
that have already been processed, but this would require additional
bookkeeping that would complicate the algorithm and in particular
hamper parallelism.

Fortunately, we can easily avoid duplicates using a set of three
simple rules that disambiguate which logical dual cell D is allowed
to produce the shape:

rule #1 if any of the corners of the dual does not snap to any actual
cells, then this dual does not produce a valid shape at all

rule #2 if any of the corners of dual cell snaps to a finer level, then
that same shape will already be produced on that finer level, and
will not be emitted.

rule #3 if any of the eight vertices of D(l)
i, j,k snaps to a cell

(i′, j′,k′)′ that is on the same level l, but has with coordinates
lower than (i, j,k), then that same shape will already be produced
by dual D(l)

i′, j′,k′ , and will not be emitted.

These conditions are trivial to test with just a few integer compares,
and guarantee that every dual shape will get emitted exactly once.

4.4. Pseudo-Code

Though the previous sections was intentionally verbose, the result-
ing algorithm is intriguingly simple. For each of a cell’s 8 dual cells
we construct the eight vertices, snap them, and reject the generated
shape if it violates any of the previous three simple rules:

void doCell(i,j,k,l) {
Cell self(i,j,k,l);
for (int di,dj,dk in (0,1))

doDualCell(self,i+di,j+dj,k+dk,l)

void doDualCell(self,i,j,k,l) {
// the eight vertices we’re snapping to:
Cell vertex[2][2][2];
for (int di,dj,dk in (0,1))

Cell v = snap(i+di,j+dj,k+dk);
if (v == invalidCell)

// dual reached outside the mesh -> reject
return;

if (v.level < l)
// dual cell straddles to a finer level,
// finer cell will generate this -> reject
return

if (v.level == l && v < self)
// ’v’ will generate the same dual,
// and is smaller that we are -> reject
return

// store this vertex:
vertex[dk][dj][di]

// now *have* a (potentially degenerate) dual cell:
emitDualCell(vertex[][][]);

We observe that the entire construction is completely parallel,
without any locks or synchronization whatsoever. In our actual
CUDA implementation (see below) we launch one thread per each
of the 8 dual cells for any of the inputs, and simply run the above
code, using the fast cell location kernel outlined above.

5. Application to Iso-Surface Extraction

The construction discussed so far is general, and generates the dual
mesh irrespective of its application to iso-surface extraction. As
done by Moran et al, the resulting dual mesh, could, for example, be
stored, and used to create an interpolant for direct volume render-
ing. However, an even easier application is iso-surface extraction.
For this, the key observation is that though some of the snapped
dual cells may degenerate to wedges, tetrahedra, pyramids, or even
just lines or points we can still treat all of those shapes (even the
degenerate ones) as if they were hexahedra, and simply feed those
into the marching cubes (MC) algorithm.

That some of those hexahedras’ vertices have snapped to the
same cell does not matter for the MC case tables at all: MC gen-
erates all of its surface vertices along edges of the hexahedra that
have one vertex above and one below the desired iso-surface; in
the case where edges snap to a single vertex both endpoints of that
“edge” will by definition be the same, so triangles will never be
generated along collapsed edges. Similarly, even if a face snaps to
a non-trivial shape such as a triangle or even a bi-linear patch we
know that both duals that share this face will have generated it in
exactly the same way, thus the MC tables will place the respective
shape’s vertices along that face at exactly the same locations, thus
guaranteeing that no cracks can occur.

We observe that once again the entire process in our formulation
is intriguingly simple: start one thread per each of the duals of the
N actual input cells, have that thread compute “its” dual cell, and
if found, feed the resulting eight vertices—denegerate or not—into
the standard MC case tables, then simply check which of the up to
three generated triangles have three different vertices. As evidenced
by the accompanying CUDA code the entire algorithm can be for-
mulated in about as many lines of code as taken up by the MC case
tables.

5.1. CUDA Implementation

To demonstrate this application we implemented both our dual-
cell generation and iso-surface extraction in CUDA. We split out
code into the cell location kernel outlines above (Section 3.2), a
kernel that executes the dual cell generation using this snapping
kernel (Section 4), and a kernel that implements the MC case table
for those duals that passed all tests. For the MC step, we used the
case tables and edge tables from VTK [SAH00], and put those into
CUDA _CONSTANT_ memory for fast access.

The kernel then takes the 8 vertices it is fed with, computes the
3D position at the center of each cell, and looks up the respective
cell’s scalar values. Just like in the regular MC case the resulting 8
scalars are used to construct the case table index, which tells us
which triangle vertices to construct on which edges of the hex-
ahedron, and which triangles to emit. Obviously, when MC tags
an edge for creating a vertex, we interpolate this vertex from the
snapped positions, but otherwise there is no difference whatsoever;
in fact, the code is an almost literal copy-and-paste from VTK’s
implementation.

Ingo Wald / AMR Iso-Surface Extraction

stellar cluster wind impact-5700 impact-20060 impact-46112
(flash, block-structured) (xRage, octree-AMR) (xRage, octree-AMR) (xRage, octree-AMR)

4 levels, 77M cells 4 levels, 26M cells 4 levels, 151M cells 4 levels, 270M cells
||v|| field, ρ = 9.5M tev field, ρ = 0.22 tev field, ρ = 0.22 tev field, ρ = 0.025

24.3M triangles, 5.7/14.1 sec 308K triangles, 0.38/0.91 sec 2.3M triangles, 2.3/5.5 sec 5.1M triangles, 3.8/9.4 sec

TAC molecular cloud NASA landing gear NASA exajet
(flash, block structured) (LAVA, block structured) Exa PowerFlow, Octree-AMR

5 levels, 392M cells 13 levels, 249M cells 4 levels, 626M cells
temp field, ρ = 20 ||vorticity|| field, ρ = 4000 ||vorticity|| field, ρ = 1000

4M triangles, 1.1/2.6 sec 52.7M triangles, 3.4/8.9 sec 130M triangles, 8.4/22.2 sec

Figure 4: The data sets we used to evaluate and validate our method, each with the type of input AMR (block structured vs octree AMR), the
code that generated it, number of input cells, generated number of triangles, and timings using our method. Timing data refers to our CUDA
implementation on a RTX 8000 GPU; timings given as X/Y seconds means that it took X seconds for the core surface generation kernel,
and Y seconds total for an entire pipeline including data upload to the GPU, sorting for cell location, two passes for first counting and then
generating the triangles, converting the triangles to an indexed face set, and downloading back to the host.

5.2. Generation of Output Triangle Mesh

Every time our CUDA kernel runs the MC step, it can produce up to
5 triangles. We use an atomic counter to append each such triangle
to a buffer provided to our kernel, each time checking if the buffer is
actually large enough. As the algorithm is completely deterministic,
this means we can use exactly the same code both for counting
how many triangles will eventually be generated, and for actually
generating them: In a first pass, we execute the algorithm with a
zero-sized outside buffer, which will not write any triangles, but
modify the atomic to tell us how many would have been written. We
then allocate an output buffer of that given size, reset the atomic,
and simply run the same code again.

The result of this pass is a list of a “fat” triangle mesh where each
triangle stores three comlete vertices. If desired, we then transform
this to an indexed face set layout as follows: First, we tagging each
vertex with an int specifying both the triangle it belongs to, and
which of the triangle’s three vertices it is. We then sort this array of
vertices by vertex position (using thrust::sort), which necessar-
ily means that shared vertices will then be in adjacent locations.

Next, we execute a CUDA kernel that for each vertex in that
sorted array, checks if that vertex has a predecessor at the same po-
sition, and returns if this is the case; otherwise, it assigns a unique
index array position to this vertex by increasing another atomic
counter, and writes the vertex to the final vertex array, and the index
to the vertex’s relevant posiiton in the final index array, if such ar-
rays have been provided. As above, we use the same trick of using
the same kernel for both counting and final writing by simply pass-
ing null output arrays in the first pass, then allocating these arrays
based on the atomic counter’s value, and re-run a second time with
the actually allocated arrays.

Pseudo-code for this algorithm is given in Algorithm 5). Obvi-
ously, if one has an upper bound on the number of triangles respec-
tively vertices generated the first of these passes can be omitted; as
can be the entire generation of shared vertex array if a fat triangle
layout is sufficient.

6. Results
To both validate and evaluate our algorithm we have implemented
a variant using both CUDA and thrust (an earlier CPU variant used

Ingo Wald / AMR Iso-Surface Extraction
// get input

thrust::host_vector<Cells> input = readInput();

// upload and sort cells for binary search
// in cell location kernel
thrust::device_vector<Cells> d_cells = input;
thrust::sort(d_cells);

// create empty vertex buffer and atomic counter
thrust::device_vector<int> = d_atomic(1);

// first pass to count tris: run extraction kernel
// with empty output
thrust::device_vector<FatVertex> d_fatVtx = empty;
extractIsoSurfaces<<<8*d_cells.size()>>>

(d_cells,d_atomic,d_fatVtx);

// allocate output array, and rerun
d_fatVtx.resize(3*d_atomic[0]); d_atomic[0]=0;
extractIsoSurfaces<<<8*d_cells.size()>>>

(d_cells,d_atomic,d_fatVtx)

// now have ’fat’ fatVtx, convert to triangle mesh:
// count fatVtx with dummy output arrays
d_atomic[0] = 0;
createIndexedFaces<<<d_fatVtx.size()>>>

(d_fatVtx,d_atomic,null,null)

// allocate output arrays, and rerun
thrust::device_vector<float3> d_vtx(d_atomic[0]);
thrust::device_vector<int3> d_idx(d_fatVtx.size()/3);
d_atomic[0] = 0;
createIdxedFaces<<<d_fatVtx.size()>>>

(d_fatVtx,d_atomic,d_vtx,d_idx)

// download to host, and done
thrust::host_vector<float3> h_vtx = d_vtx;
thrust::host_vector<int3> h_idx = d_idx;

Figure 5: Thrust-based extraction of iso-surface, and generation
of shared vertex array. Our CUDA kernels for extracting the iso-
surface and creating the indexed face list are described in the text.

std::sort for sorting, std::lower_bound for binary search, and
tbb for parallelization), and ran it on a workstation with a Intel
i7-7820x CPU (8 cores, 3.6GHz), 64 GBs or RAM, SSDs, and a
NVIDIA RTX 8000 GPU.

The models we used for testing are given in Figure 4, and span a
wide range in both model complexity and formats. In particular, we
point out that though Astro, Cloud, and Landing Gear have some
sort of input mesh structure, the Exajet and impact data sets come
as unsorted lists of individual AMR cells to which previous level-
grid based approaches could not immediately be applied. Exajet
also comes with “holes” in the sense that parts inside the airplane
are not covered by any cells; using our method these will automati-
cally be detected as model boundaries (even though some are inside
the model), and handled correctly without any special effort.

As can be seen in the timings in Figure 4 our algorithm is not
real-time, but still pretty fast, taking only a few seconds even for
complex data sets with hundreds of millions of cells, and hundreds
of millions of generated triangles.

7. Summary and Conclusion

In this paper, we have described an intriguingly simple technique
for generating the dual mesh of an arbitrary cell-centered AMR
data set that, though developed independently, may best be viewed
as a simpler and somewhat more general re-formulation of the
epsilon-box snapping method by Moran et al. In particular, the
technique operates by “snapping” the right set of logical dual cells
to actual AMR cells using a fast cell location kernel that itself
operates solely on an array of sorted input cell coordinates. The
method is intriguingly simple to implement, does not make any as-
sumptions on input type or hierarchy structure, parallelizes trivially,
lends itself well to efficient implementation on both CPU and GPU,
and performs well even for highly non-trivial inputs.

Using this technique for generating dual cells we then demon-
strated its application to the easy, fast, and parallel extraction
of crack-free iso-surfaces; resulting in a framework that, using a
CUDA implementation, can generate the iso-surface of even com-
plex AMR data sets in seconds. Arguably the most defining trait of
our approach is its simplicity that doesn’t requiring complex case
tables, and works in all cases including data sets with “holes”, mul-
tiple level boundaries, etc. This simplicity not only facilitates sim-
ple code when implementing it, it also means that the algorithm is
naturally parallel, and thus maps well to both multi-core CPUs and
GPUs.

Future work. In future, we would be very interested in seeing a
implementation of this algorithm within VTK, and, in particular,
within VTK-m [MSU∗16] (to which the algorithms parallel nature
should lend very well), and to have it be used by actual end users of
AMR software. Also, it would be interesting to see if our method
could be integrated into an AMR volume ray tracing framework
to generate an interpolant in the same way as originally done by
Moran et al.

Acknowledgements

The Exajet data set is courtesy Pat Moran, NASA; the Landing
Gear is courtesy Mike Barad (and others), NASA. TAC Molecular
Cloud (“Cloud”) and Princeton Stellar Cluster Wind (“Wind”)
are astrophysics simulations from the Theoretical Astrophysics
Group in Cologne, and Princeton, respectively. LANL Deep Water
Impact (“Impact”) is a simulation of an Asteroid Ocean Impact
computed with xRage, and courtesy of Patchett et al.

We would also like to express our gratitude to Will Usher,
Nate Morrical, Nate Marshak, Stefan Zellmann, Dave deMarle, Pat
Moran, and Gunther Weber, for either help and/or fruitful discus-
sions/feedback while working on this project: It is greatly appreci-
ated!

References
[BC89] BERGER M. J., COLELLA P.: Local adaptive mesh refinement for

shock hydrodynamics. Journal of Computational Physics 82, 1 (1989).
1, 2

[Bel10] BELL N.: High-Productivity CUDA Development with the
Thrust Template Library, 2010. 2

[BH12] BELL N., HOBEROCK J.: Thrust: A productivity-oriented library
for CUDA. In GPU computing gems Jade edition. 2012. 2

Ingo Wald / AMR Iso-Surface Extraction

[BO84] BERGER M. J., OLIGER J.: Adaptive mesh refinement for hy-
perbolic partial differential equations. Journal of Computational Physics
53, 3 (1984). 1, 2

[CGL∗00] COLELLA P., GRAVES D., LIGOCKI T., MARTIN D., MODI-
ANO D., SERAFINI D., VAN STRAALEN B.: Chombo software package
for AMR applications design document, 2000. 2

[CLP12] CARRARD T., LAW C., PEBAY P.: A hyper tree grid imple-
mentation for AMR mesh manipulation and visualization in VTK. 21st
International Meshing Roundtable, 2012. 2

[FOR∗00] FRYXELL B., OLSON K., RICKER P., TIMMES F. X., ZIN-
GALE M., LAMB D. Q., MACNEICE P., ROSNER R., TRURAN J. W.,
TUFO H.: FLASH: An adaptive mesh hydrodynamics code for modeling
astrophysical thermonuclear flashes. The Astrophysical Journal Supple-
ment Series 131, 1 (2000). 2

[GWC∗08] GITTINGS M., WEAVER R., CLOVER M., BETLACH T.,
BYRNE N., COKER R., DENDY E., HUECKSTAEDT R., NEW K.,
R.OAKES W., RANTA D., STEFAN R.: The RAGE radiation-
hydrodynamic code. Computational Science & Discovery 1, 1 (2008).
2

[KBH∗14] KIRIS C. C., BARAD M. F., HOUSMAN J. A., SOZER E.,
BREHM C., MOINI-YEKTA S.: The LAVA Computational Fluid Dy-
namics Solver. 52nd Aerospace Sciences Meeting, AIAA SciTech Forum
70 (2014). 2

[LC87] LORENSEN W. E., CLINE H. E.: Marching Cubes: A High Res-
olution 3D Surface Construction Algorithm. In International Conference
on Computer Graphics and Interactive Techniques (1987). 2

[ME11] MORAN P., ELLSWORTH D.: Visualization of AMR data with
multi-level dual-mesh interpolation. IEEE transactions on visualization
and computer graphics 17, 12 (2011), 1862–1871. 1, 2

[MMM14] MILLER R., MORELAND K., MA K.-L.: Finely-Threaded
History-Based Topology Computation. In Eurographics Symposium on
Parallel Graphics and Visualization (2014). 2

[MSU∗16] MORELAND K., SEWELL C., USHER W., LO L.-T.,
MEREDITH J., PUGMIRE D., KRESS J., SCHROOTS H., MA K.-L.,
CHILDS H., ET AL.: Vtk-m: Accelerating the visualization toolkit for
massively threaded architectures. IEEE computer graphics and applica-
tions 36, 3 (2016). 6

[Nie04] NIELSON G. M.: Dual marching cubes. In IEEE Visualization
2004 (2004). 2

[SAH00] SCHROEDER W. J., AVILA L. S., HOFFMAN W.: Visualizing
with VTK: a tutorial. IEEE Computer graphics and applications 20, 5
(2000). 4

[SGLZ11] SHARKEY K., GEVECI B., LAW C., ZAGARIS G.: Visualiza-
tion & Analysis of AMR Datasets. published online, 2011. 2

[SW04] SCHAEFER S., WARREN J.: Dual marching cubes: Primal con-
touring of dual grids. In 12th Pacific Conference on Computer Graphics
and Applications (2004). 2

[WCM12] WEBER G. H., CHILDS H., MEREDITH J. S.: Efficient par-
allel extraction of crack-free isosurfaces from adaptive mesh refinement
(amr) data. In 2012 IEEE Symposium on Large Data Analysis and Visu-
alization (2012). 1, 2

[WKL∗03] WEBER G. H., KREYLOS O., LIGOCKI T. J., SHALF J. M.,
HAGEN H., HAMANN B., JOY K. I.: Extraction of crack-free isosurfaces
from adaptive mesh refinement data. In Hierarchical and Geometrical
Methods in Scientific Visualization. 2003. 1, 2

Appendix

Accompanying Sample Code
Sample CUDA code for the method described in
this paper has been made available via github, on
https://github.com/ingowald/cudaAmrIsoSurfaceExtraction.

