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Figure 1: a-c) Illustrations of the tetrahedral mesh point location kernels evaluated in this paper. a) Our reference method builds a BVH over

the tets and performs both BVH traversal and point-in-tet tests in software (black) using CUDA. b) rtx-bvh uses an RTX-accelerated BVH

over tets and triggers hardware BVH traversal (green) by tracing infinitesimal rays at the sample points, while still performing point-tet tests

in software (black). c) rtx-rep-faces and rtx-shrd-faces use both hardware BVH traversal and triangle intersection (green) by

tracing rays against the tetrahedras’ faces. d) An image from the unstructured-data volume ray marcher used to evaluate our point location

kernels, showing the 35.7M tet Agulhas Current data set rendered interactively on an NVIDIA TITAN RTX (34 FPS at 10242 pixels).

Abstract

We explore a first proof-of-concept example of creatively using the Turing generation’s hardware ray tracing cores to solve a

problem other than classical ray tracing, specifically, point location in unstructured tetrahedral meshes. Starting with a CUDA

reference method, we describe and evaluate three different approaches to reformulate this problem in a manner that allows it to

be mapped to these new hardware units. Each variant replaces the simpler problem of point queries with the more complex one

of ray queries; however, thanks to hardware acceleration, these approaches are actually faster than the reference method.

1. Introduction

GPUs started out as relatively simple devices which only accelerated
certain parts of the triangle rasterization pipeline, but have since
evolved into massively parallel processors with a wide range of
applications. The primary driver behind these rapid architectural
advancements was—and still is today—graphics, and in particular
gaming. However, the raw computational capability available on
GPUs has always attracted researchers to look at creative ways of
harnessing these capabilities outside of graphics. In the early days
of (GP)GPU compute this was done by re-formulating the problem
at hand into a rendering problem, in a way that it could make use of
the respective GPU generation’s most powerful units. On prior GPU
generations, work has leveraged the texture units, register combiners,
early shader cores, etc. (see, e.g., [LM01, RS01b, RS01a]).

Research in this area was very active in the early 2000’s, but
calmed down once GPUs became freely programmable through high-
level languages such as CUDA and OpenCL. When most of a GPU’s
computational power is available through programmable shader

cores, CUDA and OpenCL provided the easiest way to leverage the
hardware’s capabilities to solve general problems.

Nevertheless, GPUs still contain a significant amount of dedi-
cated hardware resources which offer the potential to accelerate
workloads beyond general purpose CUDA compute. Specifically,
NVidia’s latest GPU architecture, Turing [NVI18b], adds two new
hardware units which fit this description: Tensor Cores for AI and
machine learning; and ray tracing cores for bounding volume hierar-
chy (BVH) traversal and ray-triangle intersection. A first proof of
concept using the Tensor Cores to accelerate general computation
was recently shown by Haidar et al. [HTDH18].

In this paper, we investigate and evaluate using Turing’s other new
hardware unit—the ray tracing cores—for an application beyond ren-
dering. Specifically, we consider how these can be used to accelerate
the task of point location in tetrahedral meshes (i.e., given a point p

and a tetrahedral mesh m, find the tetrahedron t containing p). We
evaluate four different strategies with varying degrees of RTX hard-
ware acceleration, and show that it is possible to effectively use the
ray tracing cores for this problem. Though this problem has applica-
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tions well beyond interactive volume visualization, we demonstrate
a first example use case of our RTX-accelerated point location ker-
nels by using them to accelerate a prototype sample-based volume
ray marcher for unstructured meshes.

2. RTX Beyond Ray Tracing

The overarching goal of this paper is to investigate and evaluate
different ways of leveraging the RTX hardware to accelerate tetrahe-
dral mesh point location kernels. In the following sections, we will
describe four different kernels (also see Figure 1), starting with a
reference CUDA kernel which traverses a BVH without any RTX
acceleration at all (Section 3); followed by a kernel that uses the
RTX hardware for BVH traversal (Section 4); and two different
kernels (Section 5) that exploit both hardware BVH traversal and
hardware ray-triangle intersection. In Section 6 we evaluate these
kernels on artificial benchmarks and a proof-of-concept volume ray
marcher for unstructured meshes.

All four kernels use the same interface: Given a tetrahedral mesh
and an arbitrary 3D point, determine which tetrahedron that point is
in and return it to the user. For each kernel we look at two variants:
one that returns just the ID of the tet containing the point, and
one that returns a scalar field value for the query point (either by
interpolating a per-vertex scalar, or looking up a per-cell scalar, as
provided by the data set). If the point is not contained in a tet, the
kernels return -1 or −∞, respectively.

Similarly, the input to each kernel is the same. The tetrahedral
mesh consists of an array of float3 vertices and an array of int4
tetrahedra indices. For the scalar field kernel, an additional float
array of per-vertex or per-cell scalars is also provided. Extension
to non-tetrahedral primitives should be possible, but for the sake of
brevity will not be investigated in this paper.

We implement our kernels within OptiX [PBD∗10], which added
support for Turing’s RTX capabilities in version 6. We do assume
basic familiarity with both OptiX and RTX, and refer the user to the
latest OptiX Programming Guide [NVI18a] and the Turing whitepa-
per [NVI18b] for reference. Other than portability, one advantage
of OptiX is that it uses CUDA under the hood, which allows us to
evaluate our CUDA-only reference method within the same frame-
work as our RTX optimized methods. We also make use of OptiX’s
template support to guarantee code consistency (i.e., point-in-tet
testing, the volume renderer’s ray marching, integration, and transfer
function lookup code, etc.) across our kernels.

For the point-in-tet test we use the 3D version of Cramer’s method
to compute the four barycentric coordinates of p, and test if they
are all nonnegative. If all are positive the four values can then, if
desired, be used for interpolating the per-vertex scalar values.

3. Non-RTX Reference: cuda-bvh

To provide a non-RTX reference method we first implemented a
software-based tet-mesh point query in CUDA. Our implementation
is similar to how such queries are done in OSPRay [WJA∗17], using
the method described by Rathke et al. [RWCB15]. Similar to Rathke
et al., we build a BVH over the tetrahedra; however, instead of their
uncompressed binary BVH, we use a four-wide BVH with quantized

child node bounds, similar to Embree’s QBVH8 layout [WWB∗14].
We note that this choice of BVH was not motivated by any expected
performance gain or memory use optimization, but simply because
an easy-to-integrate library for this BVH was readily available. The
BVH is built on the host using this library, after which it is uploaded
to the GPU by loading it into an OptiX buffer.

Though we use this reference method within our OptiX frame-
work, the kernel itself does not use any OptiX constructs whatsoever,
and could be used from arbitrary CUDA programs. To find the tetra-
hedron containing the query point the kernel performs a depth first
traversal using a software managed stack of BVH node references,
immediately returning the tet once it is found. Our implementation
is similar to the following pseudocode:

1 int pointLoc_reference(vec3f P)

2 stack = { rootNode };

3 while (!stack.empty())

4 nodeRef = stack.pop();

5 if (nodeRef is leaf)

6 if (pointInTet(P, (tetID=nodeRef.getChild())

7 return tetID;

8 else foreach child : 0..4

9 if (pointInBox(P, nodeRef.getBounds(child))

10 stack.push(nodeRef.getChildRef(child));

11 return -1; /* no containing tet */

4. rtx-bvh: Exploiting RTX for BVH Traversal

While the reference method is reasonably efficient, it does not use
the RTX hardware at all. To do so, we first have to re-formulate our
problem in a way that it fits the hardware; i.e., we have to express
point location as a ray tracing problem.

Staying conceptually close to our reference implementation, we
can use OptiX to build an RTX BVH over the tetrahedra by creating
an optix::Geometry with the given number of tets and a bounding

box program that returns the respective tet’s bounding box. Once
we put this geometry into an optix::GeometryInstance (GI) and
attach an optix::Acceleration we know that OptiX will build an
RTX acceleration structure over the tets.

Although now armed with a hardware accelerated BVH, one prob-
lem remains: the hardware only knows about tracing rays, not points!
Thus, we must find a way to express our query points as “rays”. For-
tunately, we can simply view each query point as an infinitesimally
short ray, and use an arbitrary direction (e.g., (1,1,1)) and vanish-
ingly small ray interval (ray.tmax = 1e− 10 f ) to express this to
OptiX. When we call rtTrace on such a “ray” the hardware will
traverse the BVH and must visit the tetrahedra potentially overlap-
ping the ray to find an intersection. To find the tetrahedra containing
the query point, we attach an intersection program to our geometry
which executes our point-in-tet test and, when the containing tet is
found, stores the result in the per-ray data (Figure 2).

As the rays traced are vanishingly short we can expect the traver-
sal to visit roughly the same BVH nodes as our reference imple-
mentation, though there is no guarantee that the hardware will visit
only those nodes overlapping the point. Once the containing tet is
found we tell OptiX to report the hit, allowing the hardware to im-
mediately terminate BVH traversal regardless of what else might be
on the traversal stack, as done in the reference implementation. For
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1 rtDeclareVariable(Ray, ray, rtCurrentRay, );

2 rtDeclareVariable(float, prd, rtPayload, );

3 rtDeclareVariable(rtObject, world, , );

4
5 RT_PROGRAM void bounds(float *bounds, int tetID)

6 { *bounds = box3f(vertex[index[tetID].x],...); }

7
8 RT_PROGRAM void intersect(int tetID) {

9 if (intersectTet(ray.origin,tetID,result) &&

10 rtPotentialIntersection(1e-10f)) {

11 prd = result;

12 rtReportIntersection(0);

13 }}

14 __device__ float getSample(const vec3f P) {

15 Ray ray(P, vec3f(1), 0, 0.f, 2e-10f);

16 float prd_result = negInf;

17 rtTrace(world, ray, prd_result,

18 RT_VISIBILITY_ALL,

19 RT_RAY_FLAG_TERMINATE_ON_FIRST_HIT

20 |RT_RAY_FLAG_DISABLE_ANYHIT

21 |RT_RAY_FLAG_DISABLE_CLOSESTHIT);

22 return prd_result;

23 }

Figure 2: Pseudocode for our rtx-bvh method, which performs

the point query by launching an infinitesimal ray from the point and

performs the point-in-tet tests in the intersection program.

performance reasons, we explicitly disable the anyhit and closest hit
programs to save the overhead of calling empty functions.

The rtx-bvh kernel leaves the actual BVH construction and
traversal to OptiX, which will automatically use hardware accel-
erated BVH traversal if available, and fall back to its own soft-
ware traversal if not. Compared to the CUDA reference method,
rtx-bvh leverages the RTX hardware to accelerate BVH traversal,
though it still performs the point-in-tet tests in software (Figure 1b).
Although traversing a ray is more expensive than traversing a point,
the ray traversal is now hardware accelerated, and we can expect to
observe a performance gain over the reference method.

5. Full Hardware Acceleration with RTX Triangles

Though the rtx-bvh method uses hardware accelerated BVH
traversal, it still relies on a software point-in-tet test, limiting the
potential speedup it can achieve. To improve performance further,
we must reduce these tests and eliminate the back-and-forth between
the hardware traversal units and the programmable cores running the
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Figure 3: (a) rtx-rep-faces uses backface culling to avoid

reporting co-planar neighboring faces; (b) however, points outside

any tet can return false positives, as the exterior faces are hidden,

requiring an extra point in tet test for correctness. (c,d) rtx-shrd-

faces does not duplicate faces and thus does not need backface

culling, giving the correct result in both cases.

software point-tet test. Our goal is to be able to make a single call to
rtTrace and immediately get back just the ID of the tet containing
the point, with no software execution required in between.

To achieve this, we first note that each tetrahedron is enclosed
by four faces, meaning that any non-infinitesimal ray traced from
a point within the tet will hit one of these faces. Furthermore, each
face is a triangle, and ray-triangle intersection is accelerated by RTX.
Thus, we can represent the tetrahedra by their faces, and instead of
going back and forth between hardware BVH traversal and software
intersection, can let the hardware perform both the BVH traversal
and ray-triangle intersection. When an intersection is found we will
be given the intersected triangle ID, which we can use to determine
the containing tet.

5.1. Variant 1: RTX-Replicated-Faces

The most straightforward way to implement this idea is to create
a triangle for each face of each tetrahedron, and use a closest-hit

program which looks up which tet the hit triangle belongs to.

This technique is easy to implement, but in practice has some
caveats. First, interior faces are now represented twice, and we need
a way to ensure that the ray only reports the current tet’s face, and not
the co-planar face from its neighbor. We solve this by constructing
the triangles such that they always face inward, and trace the ray
with backface culling enabled (Figure 3a, Figure 5). Ray traversal,
intersection, and backface culling are now all performed in hardware,
and we can simply trace a ray and let the hardware do the work
until the right face is found, eliminating the back and forth between
hardware and software in the previous methods.

Though the method as described so far works perfectly well for
any query point inside a tet, without further care it may return false
positives for points outside. As shown in Figure 3b, a ray from
a point outside the mesh can travel into a tet and, with backface
culling enabled, will not intersect the boundary face, but rather the
next interior face, incorrectly marking the point as contained in
the boundary tet. To ensure correctness in all cases we perform
an additional point-in-tet test inside the GI’s closest-hit program.
Unlike the reference and rtx-bvh methods this test needs to be
done only once per ray, and thus is relatively cheap, more so when
per-vertex scalar interpolation is desired, as these values will also
be needed for interpolation.

5.2. Variant 2: RTX-Shared-Faces

Instead of replicating shared faces, the obvious alternative is to find
faces shared by neighboring tetrahedra and merge them. Although
this preprocessing step is expensive, the benefits are significant.
The resulting output triangle mesh is much smaller, and no longer
requires special treatment to cull co-planar duplicate faces.

For each face we now store two integers, which specify the IDs
of the tets on its front and back side (or -1 if no tet exists on that
side). In the closest-hit program we use OptiX’s rtIsTriangleHit-
BackFace() to return the correct tet ID based on which side of the
face was hit (Figure 6). As backface culling is no longer needed to
hide co-planar faces, the rtx-shrd-faces method eliminates
the caveats of the rtx-rep-faces method discussed above.

Authors’ Preprint. Final version to appear in HPG 2019.
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Fusion Jets Agulhas Current Japan Earthquake

3 M tets, 622 K verts 12 M tets, 2.1 M verts 35.7 M tets, 6.2 M verts 62.2 M tets, 15 M verts
scalar per-vertex scalar per-vertex scalar per-cell, plus 20.1 M tris scalar per-vertex, plus 257 K tris

Figure 4: Sample images and statistical data for the data sets used in evaluating our kernels. Agulhas and Japan include triangle meshes for

the bathymetry and continent outlines, respectively. These are used during rendering but do not effect the point query kernels.

1 struct Face { int3 index; int tetID; };

2 rtBuffer<Face, 1> faceBuffer;

3
4 rtDeclareVariable(float, prd, rtPayload, );

5 rtDeclareVariable(rtObject, world, , );

6 rtDeclareVariable(float, maxEdgeLength, , );

7
8 RT_PROGRAM void closest_hit() {

9 const int faceID = rtGetPrimitiveIndex();

10 const int tetID = faceBuffer[faceID].tetID;

11 float fieldValue;

12 if (interpolateTet(tetID, ray.origin, fieldValue))

13 prd = fieldValue;

14 }

15 __device__ float getSample(const vec3f P) {

16 Ray ray(P, vec3f(1), 0, 0.f, maxEdgeLength);

17 float fieldValue = negInf;

18 rtTrace(world, ray, fieldValue,

19 RT_VISIBILITY_ALL,

20 RT_RAY_FLAG_CULL_BACK_FACING_TRIANGLES

21 |RT_RAY_FLAG_DISABLE_ANYHIT);

22 return fieldValue;

23 }

Figure 5: Pseudocode kernels for our rtx-rep-faces method.

1 struct Face { int3 index; int2 tetIDs; };

2 rtBuffer<Face, 1> faceBuffer;

3
4 RT_PROGRAM void closest_hit() {

5 int faceID = rtGetPrimitiveIndex();

6 int2 tetIDs = faceBuffer[faceID].tetIDs;

7 int tetID = rtIsTriangleHitBackFace() ?

8 tetID.y : tetID.x;

9 if (tetID < 0) return;

10 // store ID or compute scalar field ...

11 }

Figure 6: The closest_hit program for rtx-shrd-faces .

(getSample() is the same as in Figure 5).

To compute the set of unique faces we define a unique represen-

tation of a given face by sorting its vertex indices. We then use a
std::vector to store the unique faces and a std::map to map from
the unique face representation to a unique face index. In a second
pass we go over faces of each tet to find their unique representation,
and store the tet as the front or back side tet for the unique face,
depending on the face’s orientation.

5.3. Common Implementation Details

Once the set of triangles is generated for each method, the ac-
tual OptiX set-up code is almost identical. We create an op-

tix::GeometryTriangles (GT) for the triangle mesh and assign
the triangle vertices and indices using the GT’s setVertices and
setTriangleIndices methods. The GT is then placed in an op-

tix::GeometryInstance with the respective closest-hit program,
and assigned the buffer of tet IDs computed by the kernel, with
either one or two ints per-triangle.

As an optimization, for both methods we explicitly disable the
any-hit program (RT_RAY_FLAG_DISABLE_ANYHIT). This guaran-
tees to the ray tracer that it can skip calling the any-hit program,
avoiding any back-and-forth between hardware traversal and an
empty software any-hit program.

A key difference of both methods when compared to the rtx-
bvh kernel is that we can no longer use an infinitesimal ray length,
since such short rays would not reach the faces. Although infinite
length rays would intersect the faces, this would necessarily require
the hardware to perform more traversal operations. Even with hard-
ware acceleration, this is expensive. To address this, we compute
the maximum edge length of any tet in the data set, and use this as
the ray’s ray.tmax value. This ensures that rays can reach the right
faces, while limiting the traversal distance.

6. Evaluation

Given these four kernels, we can now evaluate their relative perfor-
mance. All experiments are run on a mid-range workstation with
an Intel Core i7–5930k CPU, 32 GBs of RAM, and one or more of
the GPUs listed in Table 1. In particular, we evaluate on both a con-
sumer and high-end RTX-enabled card (RTX 2080 and Titan RTX
respectively) and, for reference, a pre-Turing Titan V.

Our experiments are run on Ubuntu 18.04 using OptiX 6.0, with
NVIDIA driver version 418.43 and CUDA 10.1. The data sets used
for evaluation cover a range of shapes and sizes (see Figure 4), from
3 to nearly 63 million tets. All but the Jets data set are sparse, in that
only part of the data’s bounding box is covered by tets. For Fusion,
only the torus is covered; in Agulhas, tets only cover “wet” cells
(roughly 50% of the bounding box); and for Japan, only nonzero
cells are included, covering just 7.15% of the bounding box.
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Synthetic Uniform (samples/sec) Synthetic Random (samples/sec) Volume Rendering (FPS, 10242 pix)

fusion jets agulh jpn-qk fusion jets agulh jpn-qk fusion jets agulh jpn-qk
#tets (3M) (12M) (36M) (62M) (3M) (12M) (36M) (62M) (3M) (12M) (36M) (62M)

%of bbox occupied: 54.15% 100% 49.3% 7.15% 54.15% 100% 49.3% 7.15% 54.15% 100% 49.3% 7.15%

Titan V (Volta, no RTX, 5120 cores@1.2 GHz, 12 GB HBM2 RAM)
cuda-bvh 89.7M 1.55G 971M 461M 36.4M 82.4M 83.8M 70.3M 13.98 27.64 24.62 5.15
rtx-bvh 91.8M 1.05G 741M 373M 30.2M 108M 83.6M 68.6M 5.74 13.7 17.3 3.07
rtx-rep-faces 34.7M 407M (oom) (oom) 23.7M 81.5M (oom) (oom) 5.82 8.79 (oom) (oom)

rtx-shrd-faces 59.7M 689M 397M (oom) 35.1M 101M 63.6M (oom) 9.4 13.2 (oom) (oom)

RTX 2080 (Turing, with RTX, 2944 cores@1.8 GHz, 46 RT Cores, and 8 GB GDDR6 RAM)
cuda-bvh 53M 996M 563M 263M 19.7M 60.5M 53.3M 44.1M 8.85 17.2 19.6 3.18
rtx-bvh 98.2M 1.17G 1.03G 525M 24.7M 74.7M 69M 59.6M 6.45 9.78 13.1 3
rtx-rep-faces 253M 1.23G 1.11G (oom) 65.2M 159M 126M (oom) 21.6 22.5 27.9 (oom)

rtx-shrd-faces 354M 1.62G 1.58G 1.28G 76.1M 175M 130M 100M 33.7 27.5 35.4 5.53

Titan RTX (Turing, with RTX, 4608 cores@1.35 GHz, 72 RT Cores, and 24 GB GDDR6 RAM)
cuda-bvh 82.5M 1.39G 799M 384M 30.4M 88.7M 76.5M 62.8M 12.2 22 24 4.44
rtx-bvh 145M 1.67G 1.43G 736M 37.1M 111M 99.5M 83.9M 7.44 11 16.2 3.57
rtx-rep-faces 377M 1.78G 1.67G 1.36G 97M 234M 182M 133M 27.7 27.1 31.9 7.89
rtx-shrd-faces 537M 2.39G 2.31G 1.89G 112M 258M 189M 145M 41 32.1 40.1 7.22

Table 1: Performance results for all our kernels, across all data sets, and across different benchmarks. All experiments use pre-splitting (see

Section 6.1), and are averaged across several runs to reduce launch overhead. (oom) indicates OptiX ran out of memory during the BVH build.

6.1. Memory Usage

We first measured the total memory usage for the various methods,
listed in Table 2. We observe that on Turing our kernels require
significantly less memory than on Volta, especially for the triangle-
based variants. Irrespective of the GPU architecture, we found that
OptiX 6.0 exhibited a significant difference between its final memory
usage, after all data structures had been built, and its peak memory
usage, while these data structures were being built. Although this
overhead is temporary, it was significant enough that some of our
experiments initially ran out of memory on the RTX 2080.

While we expect upcoming versions of OptiX to reduce this build-
time overhead, we have implemented a workaround to reduce it. We
first spatially partition the set of primitives into groups of at most
1 million each, then put each group into its own geometry instance

Volta, no RTX Turing, with RTX

model fusion jets agulh jpn-qk fusion jets agulh jpn-qk
#tets 3M 12M 36M 62M 3M 12M 36M 62M

cuda-bvh (Section 3)
final 725M 921M 2.0G 3.2G 466M 844M 1.9G 3.1G

rtx-bvh (Section 4)
peak (no p/s) 837M 2.4G 6.3G 10.6G 656M 2.1G 5.7G 9.6G
peak (w/ p/s) 725M 1.6G 3.9G 6.5G 504M 1.1G 2.1G 4.4G
final 717M 1.6G 3.8G 6.1G 464M 754M 1.7G 3.1G

rtx-rep-faces (Section 5.1)
#faces 11.9M 49.1M 143M 249M 11.9M 49.1M 143M 249M
peak (no p/s) 2.5G 9.0G (oom) (oom) 1.6G 5.9G 16.9G (oom)

peak (w/ p/s) 2.1G 7.3G (oom) (oom) 1.2G 2.3G 6.1G 11.0G
final 2.1G 7.2G (oom) (oom) 770M 1.8G 5.4G 10.7G

rtx-shrd-faces (Section 5.2)
#faces 5.99M 24.7M 72M 134M 5.99M 24.7M 72M 134M
peak (no p/s) 1.5G 4.9G (oom) (oom) 960M 3.3G 9.3G 16.9G
peak (w/ p/s) 1.3G 4.1G 11.3G (oom) 846M 1.7G 4.4G 7.2G
final 1.3G 4.0G 11.3G (oom) 643M 1.4G 3.9G 6.8G

Table 2: GPU memory cost for our four kernels.“Peak” is the peak

memory used by OptiX during the BVH build (with and without

pre-splitting); “final” is the total memory required after BVH con-

struction. Additional non-volume data, e.g., framebuffer and surface

meshes, are not included.

with its own acceleration structure. These GIs are then put into a
“top-level” optix::Group. As each individual BVH is much smaller
the peak memory usage is lower, allowing even the 8 GB card to fit
all but one experiment. The resulting two-level data structure is fully
supported by RTX, and does not significantly impact performance
(some experiments even performed marginally better).

6.2. Benchmark Performance

To measure just the raw query performance of our kernels we con-
ducted a set of synthetic benchmarks (Table 1). We first performed
these benchmarks by taking uniformly and randomly distributed
sample points within the volume’s bounding box; however, as most
models are sparse many of these samples will not be inside any tet,
making them artificially less expensive to compute. This led to an
unrealistically high average sampling rate for the kernels.

Such a purely spatial sample distribution is not entirely un-
realistic; in fact, it is exactly what our prototype volume renderer in
the next section will generate. Nevertheless, we felt these numbers to
be artificially inflated, and changed to a method where samples are
always placed within valid tets. The uniform benchmark launches
one thread per tet, and takes a sample at its center. The random

benchmark has each thread select a random tet, and sample a ran-
dom position within its tet.

On the pre-Turing Titan V (i.e., without RTX acceleration) we
see that, as expected, performance decreases as we increasingly
use more ray tracing. Tracing a ray is inherently more expensive
than querying a point, and without hardware acceleration it will
be slower. Despite this theoretically higher cost, when run with
RTX acceleration, our kernels not only perform well, but in fact
outperform the reference method significantly—by 1.7−6.5× on
the uniform benchmark and 2.3−3.7× on the random benchmark.

An interesting outlier in these results is our smallest data set,
Fusion, which sees the worst absolute performance on the synthetic
benchmarks. The tets in the Fusion data set have a much larger
difference between the min and max edge lengths, and are densely
packed around the center line of the torus. As the RTX based meth-
ods use the max edge length as the ray query distance, they will
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traverse many more BVH nodes than required on the Fusion com-
pared to the other data sets, impacting performance on the synthetic
benchmarks.

On the random benchmark we find that, as expected, the poor
coherence of the query points impacts performance on all the kernels
evaluated. Across all the methods we see a decrease on the order of
5−10×; however our RTX accelerated kernels continue to outper-
form the reference. The uniform benchmarks achieve much higher
sample rates on all methods, with our rtx-shrd-faces kernel
achieving on the order of 1− 2 billion samples per-second. This
translates to 1−2 billion rays per-second, which far exceeded our
expectations, as the rays are by no means coherent from a rendering
sense. Our experimental setup actually guarantees that even in the
uniform case no two rays will ever hit the same face.

6.3. Unstructured Volume Ray Marching

To see how these speedups translate to a more challenging applica-
tion, we implemented a prototype volume ray marcher similar to that
presented by Rathke et al. [RWCB15]. For each pixel we march a
ray through the volume’s bounding box and sample it at a fixed step
size, sampling approximately once per-tet. At each sample point the
renderer uses the respective kernel to compute the scalar field value.
The field value is then assigned a color and opacity from a transfer
function stored in a 1D texture, and accumulated along the ray until
the ray’s opacity exceeds 99%. Samples which are not in a tet are
treated as fully transparent. If surface geometry is provided it is
put into an optix::TrianglesGeometry, the renderer then traces
a ray to find the nearest surface intersection and performs volume
integration only up to the surface.

The speedups achieved by our kernels on the synthetic bench-
marks carry over to rendering, with our fastest method achieving
a 1.5−4× speedup over the reference (Table 1). The frame rate is
more dependent on the data size, and in absolute terms decreases
as the data size grows. We note that this is not due to an increase
in cost per-sample, but rather due to our relatively naive volume
ray marcher. The ray marcher uses a fixed step size and does not
implement empty space skipping, thus for large but sparse data sets
it will take a large number of samples which are not contained in a
tet. While each such sample is relatively cheap, in aggregate they are
not. This could be alleviated by adding support for space skipping
or adaptive sampling to our renderer.

6.4. Power Draw

Another noteworthy experiment is to compare the different methods
in terms of power draw. According to nvidia-smi, both cuda-

bvh and rtx-bvh always reach roughly the card’s maximal
power draw (225W for the RTX 2080, 280W for the TITAN RTX).
However, the RTX triangle based kernels consistently draw less
power, averaging around 170W on the RTX 2080 and 230W on
the TITAN RTX. By leveraging new hardware capabilities, our
kernels achieve a 2× or higher performance improvement, while
using around 20% less power.

7. Discussion and Conclusion

Though our results are promising, more work remains to be done.
We have shown one application where the RTX cores can be used
for other purposes; however, we do not know how far this idea will
carry beyond sampling tetrahedral meshes. Some initial results for
other data types appear promising, but require further investigation.
As for the kernels presented in this paper, we have yet to test them
in a real non-rendering application, such as a simulation.

Another caveat is we have only investigated taking individual
samples. Sampling is the most general approach for dealing with
unstructured data and applicable to both rendering and simulations;
however, for rendering specifically, other techniques may be more
efficient (e.g., [Gri19, NLKH12, MHDG11]). Some of our general
ideas may apply to such techniques as well, though this requires
further investigation. Similarly, even in a sample based renderer
the RTX cores may be better used for tasks besides sampling, e.g.,
empty space skipping or rendering surface effects.

Nevertheless, our results are encouraging. Not only did our first
attempt to use the RTX cores for something beyond classical ray
tracing work at all, each of the three kernels evaluated provided im-
provement over the reference, with the fastest methods far exceeding
our expectations. This raises two related but different questions for
current and future hardware architectures. First, what other more
general tree traversal problems might the current iteration of these
hardware units be able to accelerate? And second, how might hy-
pothetical changes to future iterations of these or similar hardware
units change the answer to that question? Our encouraging results
in this work serve to motivate further investigation into general
applications of the RTX hardware.
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