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CHAPTER 5

Computing Minima and Maxima 
of Subarrays
Ingo Wald  
NVIDIA

ABSTRACT

This chapter explores the following problem: given an array A of N numbers Ai, how 
can we efficiently query the minimal or maximal numbers in any sub-range of the 
array? For example, “what is the minimum of the 8th to the 23rd elements?”

5.1  MOTIVATION

Unlike the topics of other chapters, this particular problem does not directly 
relate to ray tracing in that it does not cover how to generate, trace, intersect, or 
shade a ray. However, it is a problem occasionally encountered when ray tracing, 
in particular when rendering volumetric data sets. Volumetric rendering of data 
sets, whether structured or unstructured volumes, usually defines a scalar field, 
z = f(x), that typically is rendered with some form of ray marching. As with surface-
based data sets, the key to fast rendering is quickly determining which regions of 
the volume are empty or less important, and speeding up computation by skipping 
these regions, taking fewer samples, or using other approximations. This typically 
involves building a spatial data structure that stores, per leaf, the minimal and 
maximal values of the underlying scalar field.

In practice, this chapter’s problem arises because a scalar field is rarely rendered 
directly—instead, the user interactively modifies some sort of transfer function t(z) 
that specifies which color and opacity values map to different scalar field values 
(e.g., to make muscle and skin transparent, and ligaments and bone opaque). In that 
case, the extremal values of a region’s scalar field are not important for rendering. 
Instead, we need the extremal values of the output of our transfer function applied to 
our scalar field. In other words, assuming we represent our transfer function as an 
array A[i], and the minimum and maximum of the scalar field map to array indices ilo 
and ihi, respectively, what we want is the minimum and maximum of A[i] for i ∈ [ilo, ihi].

At first glance, our problem looks similar to computing the sum for a subarray, 
which can be done using summed-area tables (SATs) [3, 9]. However, min() and 
max() are not invertible, so SATs will not work. The remainder of this chapter 
discusses four different solutions to this problem, each having different trade-offs 
regarding the memory required for precomputation and query time.
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5.2  NAIVE FULL TABLE LOOKUP

The naive solution precomputes an N × N sized table, Mj,k = min {Ai, i ∈ [j, k]}, and 
simply looks up the desired value.

This solution is trivial and fast, providing a good “quick” solution (see, e.g., 
getMinMaxOpacityInRange() used in OSPRay [7]). It does, however, have one big 
disadvantage: storage cost is quadratic (O(N2)) in array size N, so for nontrivial arrays 
(e.g., 1k or 4k entries), this table can grow large. In addition to size, this table has to 
be recomputed every time the transfer function changes, at a cost of at least O(N2).

Given this complexity, the full table method is good for small table sizes, but larger 
arrays probably require a different solution.

5.3  THE SPARSE TABLE METHOD

A less known, but worthwhile, improvement upon the full table method is the 
sparse table approach outlined in the online forum GeeksForGeeks [6]. We were 
unaware of this method until performing our literature search (and we did not find 
it discussed elsewhere); as such, we briefly describe it here.

The core idea of the sparse table method is that any n-element range [i. . j] can be 
seen as the union of two (potentially overlapping) power-of-two sized ranges (the 
first beginning at i, the other ending at j). In that case, we do not actually have to 
precompute the full table of all possible query ranges, but only those for power-of-
two sized queries; then we can look up the precomputed results for the two power-
of-two ranges and finally combine their results.

In a bit more detail, assume that we first precompute a lookup table L(1) of all 

possible queries that are 21 = 2 elements wide; i.e., we compute ( ) ( )L A , A1
0 0 1min= ,  

( ) ( )L A , A1
1 1 2min= , and so on. Similarly, we then compute table L(2) for all 22 = 4 wide 

queries, L(3) for all 23 = 8 wide queries, etc.1

Once we have these logN tables L(i), for any query range [lo, hi] we can simply take 
the following steps: First, compute the width of the query as n = (hi − lo + 1). Then, 
compute the largest integer p for which 2p is still smaller than n. Then, the range 
[lo, hi] can be seen as the union of the two ranges [lo, lo + 2p − 1] and [hi − 2p + 1, hi]. 
Since the queries for those have been precomputed in table L(p), we can simply look 
up the values ( )p

loL  and ( )
p

p

hi
L

2 1- +
, compute their minimum, and return the result. A 

detailed illustration of this method is given in Figure 5-1.

1 At least logically, we can also assume a table L(0) of 1 wide queries, but this is obviously identical to the input 
array A and thus would not get stored.
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Figure 5-1. Example of the sparse table method: from our 13-element input array A[], we precompute 
tables L(1), L(2), and L(3) containing all 2, 4, and 8 wide queries. Assuming that we query for the minimum 
of the 7-element range [A2. . A8], we can decompose this query into the union of two overlapping 4-wide 
queries ([A2. . A5] and [A5. . A8]). These decomposed queries were precomputed in table L(2). Thus, the 

result is ( ) ( )( ) ( )2 2
2 5min L , L min 3, 4 3= = .
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For a non–power-of-two input range the two sub-ranges will overlap, meaning 
that some array elements will be accounted for twice. This makes the method 
unsuitable for other sorts of reductions such as summation and multiplication; 
for minimum and maximum, however, this double-counting does not change the 
results. In terms of compute cost, the method is still O(1) because all queries can 
be completed with exactly two lookups. In terms of memory cost, there are N − 1 
entries in L(1), N − 3 in L(2), etc., for a total storage cost of O(N logN)—which is a 
great savings over the full table method’s O(N2).

5.4  THE (RECURSIVE) RANGE TREE METHOD

For ray tracing—where binary trees are, after all, a common occurrence—an 
obvious solution to our problem is using some type of range tree, as introduced by 
Bentley and Friedman [1, 2, 8]. An excellent discussion of applying range trees to 
our problem can be found online [4, 5].2

A range tree is a binary tree that recursively splits the range of inputs and, for 
each node, stores the corresponding subtree’s result. Each leaf corresponds to 
exactly one array element; inner nodes have two children (one each for the lower 
and upper halves of its input range) and store the minimum, maximum, sum, 
product, etc. of the two children. An example of such a tree—for both minimum and 
maximum queries—is given in Figure 5-2.

2 Note that those articles use the term segment tree but describe the same data structure and algorithm. This 
chapter adopts the range tree term used by both Bentley and Wikipedia.
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Given such a range tree, querying over any range [lo, hi] requires finding the set of 
nodes that exactly spans the input range. The following simple recursive algorithm 
performs this query:

 1 RangeTree::query(node,[lo,hi]) {

 2     if (node.indexRange does not overlap [lo,hi])

 3         /* Case 1: node completely outside query range -> ignore. */

 4         return { empty range }

Figure 5-2. Illustration of the recursive range tree method. Given input array A (top), we compute 
a binary tree (middle) where each node stores the minimum and maximum of its corresponding leaf 
nodes. Our recursive traversal for a query range (bottom) uses all three cases from the pseudocode: 
gray nodes recurse into both children (case 3), green nodes with dark outlines get counted and 
terminate (case 2), and blue nodes with dashed outlines lie outside the range (case 1).
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 5     if (node.indexRange is inside [lo,hi])

 6         /* Case 2: node completely inside query range -> use it. */

 7         return node, valueRange

 8     /* Case 3: partial overlap -> recurse into children, & merge. */

 9     return merge(query(node.leftChild,[lo,hi]),

10                  query(node.rightChild,[lo,hi])

11 }

Range trees require only linear storage and preprocessing time, which can be 
integer factors less than the sparse table method. On the downside, queries no 
longer occur in constant time, but instead have O(logN) complexity. Even worse, 
recursive queries can incur relatively high “implementation constants” (especially 
on SIMD or SPMD architectures), even with careful data layouts and when avoiding 
pointer chasing.

5.5  ITERATIVE RANGE TREE QUERIES

In practice, the main cost of range tree queries lies not in their O(logN) complexity, 
but rather in the high implementation constants for recursion. As such, an iterative 
method would be highly preferable.

To derive such a method, we now look at a logical range tree from the bottom up, 
as a successive merging of respectively next-finer levels. On the finest level L(0), we 
have the N0 = N original array values, ( )

i iL A0 = . On the next level, we compute the 
min or max of each (complete) pair of values from the previous level, meaning there 
are N1 = ⌊N0/2⌋ values of ( ) ( ) ( )( )i i iL f L ,L1 0 0

2 2 1+= , where f could be min or max; level 2 has 
N2 = ⌊N1/2⌋ such merged pairs from L(1), and so on. For non–power-of-two arrays, 
some of the Ni can be odd, meaning some nodes will not have a parent; this is 
somewhat counterintuitive, but for our traversal algorithm it will turn out just fine.

See Figure 5-3 for an illustration of the resulting data structure, which forms a 
series of binary trees (one tree if N is a power of two, and more otherwise). A node 
n on any level L is the root of a binary tree representing all array values within this 
(sub)tree.
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Given a query range [lo, hi], let us look at all subtrees n0, n1, n2, … whose children 
fall completely within the query but are not part of a larger tree in the range 
(circled in bold in Figure 5-3). Clearly, those are the nodes we want to consider—so 
we need to find an efficient method of traversing those nodes.

To do this, consider the node ranges that our query range spans on each level L; let 
us call these [loL. . hiL]. Now, let us first look at loL. By construction, we know that loL 
can be the root of a subtree only if its index is odd (otherwise, it is another subtree’s 
left child). Whether odd or even, the leftmost index in the next coarser level can be 

Figure 5-3. Illustration of our iterative range tree: given an array of 13 inputs, we iteratively merge 
pairs to successively smaller levels, forming a total of (in this example) three binary trees. For a sample 
query [lo = 2, hi = 8], we must find the three nodes ( )0

8L , ( )1
1L , and ( )2

1L  marked with dark solid outlines. 

Our algorithm starts with lo = 2 and hi = 8 on L(0); it determines that hi is even and should be counted 
(solid circle), and that lo is odd and thus should not (dashed circle). The next step updates lo and hi to 
lo = 1 and hi = 3 (now in L(1)) and correctly counts ( )1

loL  (solid outline) because lo is odd, while skipping 
over ( )1

hiL  because hi is not even (dashed outline). It then does the same for lo = 1 and hi = 1 on L(2), after 
which it steps to lo = 1, hi = 0 on L(3) and then terminates.
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computed as loL + 1 = (loL + 1)/2.3 Similar arguments can be made for the right-side 
index hiL, except that “odd” and “even” get exchanged and that the next index gets 
computed as hiL + 1 = (hi + 1)/2 − 1 (or, in signed integer arithmetic, as (hi − 1) ≫ 1). 
This iterative coarsening continues until loL becomes larger than hiL, at which point 
we have reached the first level that no longer contains any subtrees.4 With these 
considerations, we end up with a simple algorithm for iterating through subtrees:

 1 Iterate(lo,hi) {

 2     Range result = { empty range }

 3     L = finest level

 4     while (lo <= hi) {

 5         if (lo is odd) result = merge(result,L[lo])

 6         if (hi is even) result = merge(result,L[hi])

 7         L = next finer Level;

 8         lo = (lo+1)>>1

 9         hi = (hi-1)>>1 /* Needs signed arithmetic, else (hi+1)/2-1 */

10         return result

11     }

12 }

As noted in the pseudocode, care must be taken to properly handle computation 
of the high index when hi = 0, but following the pseudocode takes care of this. As 
in classical range trees, this iterative method accounts for each value in the input 
range exactly once and could thus be used for queries other than minimum and 
maximum.

With regard to memory layout, we have logically explained our algorithm using a 
sequence of arrays (one per level). In practice, we can easily store all levels in a 
single array that first contains all N1 values for L1, then all values for L2, and so on. 
Since we always traverse from the finest to successively coarser levels, we can 
even compute level offsets implicitly, yielding a simple—and equally tight—inner 
loop. See our reference implementation online, at http://gitlab.com/ingowald/
rtgem-minmax.

3 Here is a brief proof. If loL was a root node in L then it was odd, so this moves it to the next subtree on the right 
side; if not, it moves up to loL’s parent, which is still the leftmost subtree. Either way the index can be computed 
as loL + 1 = (loL + 1)/2.

4 The case where loL and hiL meet at exactly the same node is fine: the value is either odd (and counted on the low 
side) or even (and counted on the high side), and the next step will terminate.
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5.6  RESULTS

Theoretically, our iterative method has the same storage complexity, O(N), and 
computational complexity, O(logN), as the classical range tree method. However, 
its memory layout is much simpler, and the time constant for querying is 
significantly lower than in any recursive implementation. In fact, with our sample 
code this iterative version is almost as fast as the O(1) sparse table method, 
except for tables with at least hundreds of thousands of elements—while using 
significantly less memory.

For example, using an array with 4k elements and randomly chosen query 
endpoints lo and hi, the iterative method is only about 5% slower than the sparse 
table method, at 10× lower memory usage. For a larger 100k-element table, the 
speed difference increases to roughly 30%, but at 15×; lower memory usage. While 
already a interesting trade-off, it is worth noting that randomly chosen query 
endpoints are close to the iterative method’s worst case: since iteration count is 
logarithmic in ∣hi-lo∣, “narrower” queries actually run faster than very wide ones 
performed by uniformly chosen lo and hi values. For example, if we limit the query 
values to ∣hi-lo∣ ≤ N , the iterative method on the 100k-element array changes 
from 30% slower to 15% faster than the sparse table method (at 15× less memory)

5.7  SUMMARy

In this chapter, we have summarized four methods for computing the minima and 
maxima for any sub-range of an array of numbers. The naive full table method is 
the easiest to implement and is fast in query—but suffers from O(N2) storage and 
recomputation cost, which limit its usefulness. The sparse table method is slightly 
more complex but significantly reduces the memory overhead, while retaining 
the O(1) query complexity. The recursive range tree method reduces this memory 
overhead even more (to O(N)), but at the cost of a significantly higher query 
complexity—not only theoretically (at O(logN)) but also in actual implementation 
constants. Finally, our iterative range tree retains the low memory overhead of 
range trees, uses a simpler memory layout, and converts the recursive query into 
a tight iterative loop. Though asymptotically still O(logN), in practice its queries 
perform similar to the O(1) sparse table method, at lower memory consumption. 
Overall, this makes the iterative method our favorite, in particular since both 
precomputation code and query code are surprisingly simple.

Sample code for the sparse table and the iterative range tree methods are 
available online, at https://gitlab.com/ingowald/rtgem-minmax.
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