
Compressed-Leaf Bounding Volume Hierarchies
(originally submitted, un-shortened version)

Carsten Benthin Ingo Wald Sven Woop Attila T. Áfra
Intel Corporation

Figure 1: Four example scenes used for evaluating our method: San Miguel (10.5M triangles), Powerplant
(12.7M triangles), Villa (38.3M triangles), and the Boeing model (350M triangles).

ABSTRACT

We propose and evaluate what we call Compressed-Leaf
Bounding Volume Hierarchies (CLBVH), which strike a bal-
ance between compressed and non-compressed BVH layouts.
Our CLBVH layout introduces dedicated compressed multi-
leaf nodes where most effective at reducing memory use, and
uses regular BVH nodes for inner nodes and small, isolated
leaves. We show that when implemented within the Embree
ray tracing framework, this approach achieves roughly the
same memory savings as Embree’s current compressed BVH
layout, while maintaining almost the full performance of its
fastest non-compressed BVH.

KEYWORDS

ray tracing, bounding volume hierarchy, compression

1 INTRODUCTION

The key to improving fast ray tracing is the use of acceleration
data structures. Though indispensable for performance, such
structures require both time and memory to be built and
stored. In particular, the memory overhead of the acceleration
structure can be a significant factor for large scenes.

One way to reduce this memory overhead is to compress
the acceleration data structure. Compression works partic-
ularly well for BVHs, which naturally lead to conservative,
incremental encoding. This can significantly reduce the size
of the acceleration structure (often halving the size of BVH
nodes), at the cost of introducing additional overheads.

This is the authors’ version of a paper that has been accepted at
(and thus, is to be published at) High Performance Graphics 2018
(HPG’18). Please note, however, that the version that is to appear at
HPG is going to be a significantly shortened version of this author’s
copy (which is basically the paper as originally submitted). As such,
this author’s version here may contain additional version that may not
appear in the final version; but the newer and official version of this
work is the short paper that is to appear at HPG18.

In the case of BVHs, these overheads fall into three cate-
gories: First, there is the obvious cost of decompressing each
BVH node during traversal; second, in particular for hierar-
chical encoding schemes, the need to track parent information
slightly complicates the traversal; and third, conservatively
quantizing each node’s bounds results in less tight bounding
boxes compared to uncompressed ones, resulting in a small
increase in the number of nodes and primitives that have to
be traversed and intersected, respectively.

On GPUs, the savings in node bandwidth may completely
offset the additional ray traversal overhead; on CPUs some
overhead typically remains. However, even with the increased
traversal cost, for memory limited applications this trade-off
between ray traversal performance and memory use can be
appealing.

In this paper, we propose and evaluate an approach to
BVH compression that improves upon fully-compressed wide
BVHs by introducing a new dedicated node type for com-
pressed multi-leaf nodes where applicable, while using fast,
uncompressed BVH nodes for interior nodes and isolated
individual leaf nodes.

Typically, wide BVHs use a data layout where all of an
individual node’s N children are stored together in a consec-
utive block, typically in a SoA data layout. This allows for
addressing all of a parent’s N children with a single pointer
and aids vectorization, but slightly confuses the terminology
of what a “node” in a wide BVH actually is. Throughout the
paper we will refer to each group of N siblings as a N-wide
multi-node, with each sibling consisting of N individual nodes.
We refer to the lowest level of individual nodes as leaf nodes,
each logically containing one bounding box and a pointer to
the actual leaf data.

The fundamental insight behind our compression approach
is that almost all of the savings of BVH compression comes
from compressing the leaf nodes, which in 8-wide BVHs make



Benthin et al, Compressed-Leaf BVHs (extended author’s version)

up the majority of nodes, while most of the traversal over-
head comes from traversing the interior nodes. Consequently,
we focus on compressing just the leaf nodes, by introduc-
ing dedicated compressed multi-leaf nodes. Our approach
achieves similar or better compression to fully-compressed
BVHs, while having nearly the same traversal performance
as uncompressed BVHs, as no decompression is required to
traverse interior nodes.

2 RELATED WORK

Acceleration structures for ray tracing have a long history;
a survey on the general concepts can be found in Havran’s
thesis [4]. Today, most ray tracers use some sort of BVH,
typically with a branching factor of 4 or 8, and in some
cases 16 [2, 3, 7, 9, 10]. While in the past each ray tracer
implemented its own acceleration structures and traversal
methods, the last few years have seen the emergence of
commonly accepted ray tracing libraries such as Embree
for CPUs [10], and OptiX for GPUs [7], both of which use
wide BVHs.

BVHs combine a hierarchical data structure with conser-
vative bounding volumes, and thus lend themselves naturally
to hierarchical, incremental encoding. Expressing each child
node’s bounding box relative to the bounds of its parent
allows to quantize these child boxes, thereby representing
them with fewer bits. During traversal these boxes are then
decompressed on-the-fly by dequantizing them relative to
the previous traversal step’s bounding box. This concept
of incremental encoding was first proposed by Mahovski et
al. [6], and has since been extended even to compressing the
geometry itself [8].

The downside to hierarchical encoding is that tracking
the respective decompressed parent boxes on the stack is
costly, and complicates traversal. At least for wide branch-
ing BVHs—where such information can be amortized over
multiple child nodes—this can be avoided by having each
multi-node store not only the quantized child boxes, but also
the single full precision parent box that the N quantized child
boxes are relative to. This of course reduces the effective-
ness of compression, but makes for much simpler and faster
traversal. This approach has recently been adopted on both
CPUs [10] and GPUs [11], and has even been proposed for
dedicated ray tracing hardware [5]. In particular, while orig-
inally proposed mainly for reducing memory footprint, the
reduced memory bandwidth requirements have been found
to significantly increase performance on both GPUs [11] and
dedicated hardware [5].

As proposed by Segovia et al. [8], the concept of encoding
children’s bounding boxes relative to their parents can be
extended to encoding primitives relative to the child nodes
they are located in. In this paper, we will only focus on
compressing the BVH data, leaving the geometry itself un-
touched.

3 COMPRESSED-LEAF BVHS

Our method is driven by two key insights: First, that at
least in the case of 4- or 8-wide BVHs, compressing only

leaf nodes can yield most of the benefits of compressing all
nodes, while minimizing the downsides; and second, that in
wide BVHs it is often possible to find entire groups of leaf
nodes that, when considered together, allow for even more
memory savings than for interior nodes, by defining a special
multi-leaf node type and compressing this. For the sake of
brevity, throughout the rest of the paper we will only consider
8-wide BVHs (BVH8), which have recently seen wide adoption
on both CPUs [10] and GPUs [11].

With regard to the first insight, we observe that in a binary
BVH half of the nodes are leaf nodes, in a BVH8 this ratio
rises to over 80%. Furthermore, even in a shallow BVH8 a ray
will typically traverse multiple inner nodes per visited leaf
node, so assuming the overhead due to decompression and
less-tight bounding boxes is the same for inner and leaf nodes,
most of the traversal overhead will be generated by the inner
nodes. Consequently, compressing only the leaf nodes will
provide most of the memory savings, yet come with little of
the traversal overhead.

The caveat to this argument is that for a BVH8 compressing
only leaf nodes is not that easy, because every “node” in such
a BVH is actually a multi-node of 8 individual nodes, each
of which could be either a leaf or an inner node. However,
our second insight is that the individual node types found
in an 8-wide multi-node in practice are not random, and
it is in fact relatively easy to build BVHs such that most
(though certainly not all) leaf nodes end up in multi-nodes
that contain only leaf nodes (Section 4.3).

Our method optimizes for this case by introducing a new
compressed multi-leaf node type which replaces these all-leaf
multi-nodes (see Listing 1), while leaving both inner and
isolated leaf nodes unchanged. Moreover, as we know that all
children of these compressed multi-leaf nodes are leaves we
can do additional optimizations. In particular, we can store
the data the child leaves would have pointed to right after
the node itself in memory, eliminating the (otherwise hard
to compress) child pointers from those nodes, and providing
even more potential for compressing the resulting treelet-like
structures (see Section 4.5).

In summary, our resulting BVH—which we call a Compressed-
Leaf BVH (CLBVH)—has two multi-node types: regular BVH8
multi-nodes containing 8 individual nodes, each of which
could be a regular inner node, or a regular individual leaf
node, just as in Embree’s original BVH8 multi-nodes; and
our new compressed multi-leaf node which stores (up to) 8
individual leaves, in compressed form (also see Listing 1).

Since we will use a surface area heuristic (SAH) [? ] BVH
builder it is theoretically possible to contrive degenerate
inputs where most leaves would end up in mixed multi-nodes,
and result in very few of our compressed multi-leaf nodes
being created. In practice, it is relatively easy to get the
vast majority of leaves to end up in compressed multi-leaf
nodes (see Section 4.3), and since we can actually compress
these nodes better than a traditional compressed 8-wide BVH
(QBVH8), we typically end up with the same and sometimes
even slightly better compression ratios.



Benthin et al, Compressed-Leaf BVHs (extended author’s version)

4 IMPLEMENTATION

We implement and evaluate the previously discussed strategy
within a modified version of Embree 3.0.

4.1 Node Compression and
Decompression

In Embree’s BVH8 data layout, each multi-node contains 8
bounding boxes and 8 (64-bit) child pointers (see Listing 1).
For each individual node in such a multi-node, the childRef

value encodes whether the node is an inner or leaf node; as
well as the pointer. For inner nodes the pointer refers to
another BVH8 multi-node; for leaves it points to the leaf’s leaf
data, the list of primitive data belonging to the leaf. Exactly
what primitive data is stored in a leaf depends on the BVH
type: for triangles, it is either a list of triangle4 structures,
fully pre-gathered vertices of four triangles in SoA layout;
or a list of triangle4i with four triangles’ worth of vertex
indices.

Embree’s fully compressed QBVH8 structure employs a sim-
ilar approach to Ylitie et al. [11]. In the QBVH8 layout, the 8
child bounding boxes are expressed relative to the parent’s
bounding box, and quantized to 8-bit fixed point values. Each
QBVH8 multi-node stores the parent bounding box in the form
of its start and extent, stored as two 3-dimensional single
precision vectors (2×12 bytes). Each child’s bounding box is
stored as 2×3 bytes, for the box’s lower and upper bounds,
requiring 48 bytes for all 8 children. Including the 8 child
pointers, this sums to a total of 136 bytes, slightly more than
half an uncompressed BVH8 multi-node. Note that this layout
differs from [11], as the extent is stored in full precision; this
provides tighter bounds but requires more space.

Listing 1: Illustration of the three BVH node types.
Top: Embree’s regular BVH8 nodes contain 8 point-
ers and float boxes (256 bytes). Middle: Embree’s
quantized QBVH8 nodes contain 8 pointers, 8 quan-
tized bounding boxes, and 6 floats to specify the
dequantization domain (136 bytes). Bottom: At the
leaf level, our method introduces an even smaller
compressed BVH node type (72 bytes)—knowing it
will only contain leaf nodes—and omits the pointers
by storing the primitive data right after the node
itself.

1 // BVH8 multi -node: 192+64=256 bytes
2 struct BVH8MultiNode {
3 // one float box per child
4 box3f childBounds [8];
5 // child pointers (to nodes _or_ primitives)
6 uint64 childRef [8];
7 };
8 // QBVH8 multi -node: 24+48+64=136 bytes
9 struct QBVH8MultiNode {

10 // shared de-quantization start and extent
11 vec3f start , extent;
12 // 8 child boxes , in 8-bit fixed -point
13 box3ui8 childBounds [8];
14 // child pointers (to nodes _or_ primitives)
15 uint64 childRef [8];
16 };
17 // Compressed multi -leaf BVH node: 24+48=72 bytes

18 struct CLBVHMultiNode {
19 // shared de-quantization start and extent
20 vec3f start , extent;
21 // 8 child boxes , in 8-bit fixed -point
22 box3ui8 childBounds [8];
23 // implicit pointer
24 // primitive data stored right behind this node
25 LeafPrimData childPrims [0];
26 };

Decompressing a QBVH8 node is done for each traversal
step by computing the lower bound (and similarly, the up-
per bound) as QBVH8.starti + (float)QBVH8.loweri ∗
QBVH8.extenti. On a CPU this requires 8 logical instruc-
tions per dimension and box: 2 loads (start, extent), 2 byte-
to-int load and up-conversion (for lower and upper bounds),
2 int-to-float conversions, and 2 multiply-adds. The decom-
pression can be done for all 8 quantized child bounding boxes
in parallel using SIMD instructions, resulting in an overhead
of around 24 instructions for a single ray-node intersection
test, making it at least more than twice as expensive as for
an uncompressed BVH8 node.

4.2 Introducing Compressed Multi-Leaf
Nodes

The main limitation of the existing QBVH8 multi-nodes is
that the eight 64-bit pointers cannot easily be compressed,
limiting the level of compression that can be achieved. We
address this by explicitly targeting only multi-nodes that
contain only leaves, in which case we know that the eight
pointers all refer to leaf data. We exploit this by storing
the referenced primitive data directly after the QBVH8 node
itself (see Listing 1), allowing us to replace 64-bit pointers
with 8-bit offsets. In fact, in cases where the builder can
guarantee to always produce exactly one triangle4 per leaf
we can remove these 8-bit offsets, and compute each leaf’s
child pointer implicitly.

We use the same layout and compression/decompression
scheme as the QBVH8 nodes for storing the compressed multi-
leaf node bounding boxes. Inner nodes are almost completely
unchanged, the only modification required is that the child
pointers that point to a leaf need one more bit (e.g. the LSB
of the pointer) to encode what kind of leaf it points to, an
isolated leaf node, or our compressed multi-leaf node.

By eliminating the primitive pointers for the leaf nodes our
compressed multi-leaf node requires only 72 bytes. Compared
to an uncompressed BVH8 multi-node (256 bytes) this yields
a compression factor of over 3×.

4.3 Builder Modifications

Since our scheme will only compress multi-nodes made up
of only leaf nodes, its effectiveness will depend significantly
on how common such nodes are. Fortunately, for wide BVHs
such nodes turn out to be the more common leaf node type.
While it is possible to get isolated leaves when small groups
of triangles are far away from the bulk of the scene’s triangles,
in which case a good SAH builder will most certainly separate
them. However, the far more common case is that at some
point the number of triangles in a sub-tree contains less



Benthin et al, Compressed-Leaf BVHs (extended author’s version)

Table 1: Detailed memory usage (in MB), traversal statistics, and render performance (in MRays/s) for
our CLBVH relative to Embree’s regular uncompressed BVH8 and fully compressed QBVH8 variants; for
two typical configurations: highest performance (SBVH+pre-gathered triangle data), and lowest memory
consumption (BVH+triangle indices).

Embree “best speed” (SBVH, triangles only) Embree “least memory” (BVH, triangles only)
(leaves store full pre-gathered primitives) (leaves store only vertex indices)

BVH8 QBVH8 CLBVH (ours) BVH8 QBVH8 CLBVH (ours)
uncompressed fully compressed (fast) uncompressed fully compressed (fast) (compact)

San Miguel
BVH/QBVH memory 152/- -/85.3 -43.7% 53.6/30.5 -44.5% 141/- -/79.5 -43.7% 50.3/28.4 -44.3% 50.3/28.4
leaf data memory 559 559 558 239 239 239 179 -25.1%
total memory 711 645 -9.3% 643 -9.4% 380 318 -16.2% 317 -16.2% 257 -32.3%
travs/isecs per ray 16.8/5.0 17.2/5.2 16.8/5.1 20.4/5.26 20.8/5.58 20.4/5.36 20.4/5.36
MRays/s 113 100 -11.5% 110 -2.5% 88.8 79.7 -11.3% 88.4 -0.4% 79.9 -10.0%

Powerplant
BVH/QBVH memory 178/- -/103 -41.8% 68.5/33.9 -42.3% 151/- -/84.7 -43.7% 56.9/29.2 -42.8% 56.9/29.2
leaf data memory 735 735 733 280 280 280 214 -23%
total memory 913 868 -4.9% 835 -8.5% 481 365 -24.1% 366 -23.8% 301 -37.4%
travs/isecs per ray 11.8/3.7 12.2/4.3 11.7/4.1 16.8/5.0 17.2/5.2 16.8/5.13 16.8/5.13
MRays/s 188 153 -19.0% 181 -4.0% 90.2 76.8 -14.8% 86.8 -3.7% 80.0 -11.2%

Villa
BVH/QBVH memory 625/- -/351 -43.7% 212/133 -45.8% 542/- -/305 -43.7% 185/116 -45.8% 185/116
leaf data memory 2273 2274 2273 899 899 899 762 -15.2%
total memory 2898 2625 -9.4% 2608 -10.1% 1440 1204 -16.4% 1192 -17.3% 1063 -26.2
travs/isecs per ray 15.24/4.82 15.5/5.0 15.2/4.95 17.5/5.56 17.9/5.77 17.5/5.67 17.5/5.67
MRays/s 118 105 -10.7% 115 -2.2% 87.9 81.5 -7.3% 88.1 +.01% 82.2 -6.4%

Boeing
BVH/QBVH memory 5132/- -/2887 -43.7% 1879/1013 -43.6% 4598/- -/2586 -43.8% 1661/915 -44.0% 1661/915
leaf data memory 18942 18942 18941 7640 7640 7640 6206 -18.7%
total memory 24074 21829 -9.3% 21833 -9.3% 12238 10226 -16.4% 10216 -16.5% 8782 -28.2%
travs/isecs per ray 16.0/5.6 16.3/5.9 16.0 / 5.7 25.3/7.96 26.1/8.27 25.3/8.05 25.3/8.1
MRays/s 111.4 98.5 -11.5% 108 -3.3% 68.2 60.4 -11.4% 66.7 -2.2% 63.0 -7.5%

triangles than eight times the number of targeted triangles
per leaf, at which point the builder will almost invariably
generate all leaf nodes.

As a result we require only a simple modification to the
BVH build algorithm to produce our compressed multi-leaf
nodes. We take the existing top-down BVH8 builder and,
whenever it starts building a new multi-node, check whether
the current number of primitives is below a certain threshold.
In our implementation we use N×M as this threshold, where
N refers to the BVH branch factor, and M to the number of
target primitives within a leaf node. For example, Embree
by default targets four triangles per leaf in its BVH8 builder,
so our threshold would be 32. Any time the builder is asked
to build a multi-node with less than this number of triangles
it enters a special code path, in which it will continue the
SAH-based splitting process for as long as the SAH decides
this is useful. It then takes the resulting (at most) 8 leaves
and builds one of our compressed multi-leaf nodes, which
also includes copying that node’s leaf data right behind the
generated multi-node.

In all other cases (i.e., when building a multi-node with
more than 32 triangles) the builder proceeds exactly as before,
first using the SAH to split the group of triangles into at
most 8 sub-sets, and builds a regular BVH8 multi-node from
this. Note that it is perfectly valid for some of the nodes of
this multi-node to become individual leaves if they have less
than the target of four triangles in them.

4.4 Traversal

The BVH traversal method is only marginally affected by
the introduction of our CLBVH multi-nodes. For the purpose
of the tree traversal these multi-nodes are simply treated

as leaves, and the top-down-traversal loop traverses nodes
exactly as before, until it reaches a leaf.

Only in this leaf intersection code does our method require
some slight modifications: If the leaf node reached is a regular
isolated leaf node it is intersected in the same way as before; if
it is a CLBVH node we first decompress it, test the ray against
the 8 children boxes, and then intersect the primitives in
the nodes intersected by the ray. Interestingly, ordering the
compressed multi-leaf node’s intersected children based on
the intersection distance did not provide any benefit. In the
majority of cases only a single node is intersected, so the cost
incurred to sort the nodes does not pay off.

4.5 Compressing Leaf Data

Though our method initially aimed at only compressing multi-
nodes, once we have found these nodes with 8 leaves we can
do more with them. In addition to eliminating the child
pointers we can also realize that a multi-node acts as a mini
“treelet”, with a small set of triangles that in the common
case share common features. For example, triangles within a
CLBVH node are very likely to share vertices or vertex indices,
and properties (e.g., object ID, etc.). This in turn means we
can apply additional (lossless) compression of the primitive
leaf data, by extracting these common features, allowing for
additional compression which was not previously possible in
the original QBVH8.

Though a complete investigation of the range of available
compression options are beyond the scope of this paper, we
have implemented a simple proof of concept where we store
every vertex index used in the 8-wide compressed multi-
leaf node only once, and in each leaf use only 8-bit indices
into this list of 32-bit vertex indices. Further compression is
likely possible, but we find even this approach already yields



Benthin et al, Compressed-Leaf BVHs (extended author’s version)

additional memory savings, (see Section 5), albeit at some
additional decompression cost.

5 RESULTS

To evaluate the performance and memory impact of our
method we use a modified version of Embree 3.0 and the
publicly available protoray path tracer [1]. The renderer was
configured for purely-diffuse path tracing with up to eight
bounces. This was chosen to ensure that the performance
impact of shading would not be unduly masked by shad-
ing cost (in our setup shading costs only ˜15-20% of the
total run-time), while at the same time ensuring realistic ray
distributions.

In terms of hardware, we used a dual-socket Xeon Plat-
inum 8180 workstation with 2×28 cores and 96 GB of memory.
We used four different models as benchmark scenes, with
complexity ranging from 10M to 350M triangles (Figure 1).

Due to the many possible variations Embree’s data struc-
tures can be configured in, testing all of these variants would
be prohibitive. As such, we settled on two configurations
which we believe to be representative of common use cases.
In the “best performance” case we assume the user is not lim-
ited by memory, and chooses all options for best performance;
in particular, in this setup we enable spatial splits and use
the pre-gathered triangle4 layout (that even pre-gathers
vertex data into the leaf data). In the polar opposite “least
memory” case we assume a user that is memory constrained,
and therefore uses the triangle4i primitive layout (which
only stores vertex indices), does not enable spatial splits, etc.

For both of these configurations we report data for: Em-
bree’s default uncompressed BVH8; its existing QBVH8 in which
both inner and leaf nodes are equally compressed; our CLBVH
with regular inner nodes and compressed multi-leaf nodes, but
no additional compression of the primitive data (CLBVH-fast);
and at least for the “least memory” case, our CLBVH with the
additional lossless compression of the indices stored in the
compressed leaves (CLBVH-compact). The final configuration
currently only supports the triangle4i layout, so is included
only for this configuration.

5.1 Comparison to BVH8 and QBVH8

In Table 1, we have compiled a comprehensive list of differ-
ent traversal, memory usage, and performance statistics for
the seven most important configurations (see Table 2 for a
distilled summary).

“Best Performance” Configuration. Looking first at only
the “best performance configuration” we see that the QBVH8

and our CLBVH are roughly on par in terms of memory sav-
ings. Our CLBVH does not compress inner nodes, and thus
eventually spends about two thirds of node memory on these
uncompressed inner nodes; however, our leaf nodes are nearly
half the size of the QBVH8 leaf nodes, and as such the to-
tal node memory use is similar in all cases. At this equal
memory footprint, our CLBVH generally performs much better,
reducing the performance impact from 10-20% down to 2-4%.
However, in terms of total memory savings neither method
can save more than about 10% of total memory, as in this

configuration the lion’s share goes into pre-gathered primi-
tive data (“leaf data” in Table 1), which neither of the two
methods can change.

Table 2: Distilled summary of Table 1, directly con-
trasting memory savings and performance impact
for those methods. When compared to the existing
QBVH8 our method either achieves better compres-
sion at same performance, or better performance at
same compression.

“best speed” BVH (spatial splits + pre-gathered vertices)

QBVH8 CLBVH (fast)

mem -4.9% − -9.4% -9.3% − -10.1%

perf -10.7% − -19% -2.2% − -4.0%

“least memory” BVH (no spatial splits, indices only)

QBVH8 CLBVH (fast) CLBVH(compact)

mem -16% − -24% -16% − -24% -26% − -37%

perf -7.3% − -15% -3.7% − +.01% -6.4% − -11%

“Least Memory” Configuration. In the “least memory”
configuration total performance is already significantly lower,
even for the regular uncompressed BVH8, in part because
the loss of spatial splits triggers significantly more traversal
steps and primitive intersections (“trav/isecs” in Table 1),
and because without the pre-gathered vertices the primitive
intersection tests become more costly. It does, however, reduce
memory by roughly 2×, even for the uncompressed BVH8,
primarily due to the significant reduction in leaf primitive
data (though also due to a roughly 10% reduction in total
nodes from not doing spatial splits).

Since leaves in this configuration store only indices, we
can also apply the additional primitive data compression
described in Section 4.5, leading to two different variants of
our CLBVH: CLBVH-fast uses our CLBVH nodes with regular,
uncompressed leaf data, while CLBVH-compact performs the
leaf data compression described in Section 4.5.

When looking at only the QBVH8 and CLBVH-fast variants,
the relative memory savings of both are higher, since they
are no longer as dominated by the leaf data cost. Apart from
this, we see the same outcome as for the best-performance
case: Generally speaking, our CLBVH achieves nearly exactly
the same memory savings as the QBVH8, but at a much lower
performance impact (in fact, in one case we are even slightly
faster than the uncompressed BVH).

When comparing the QBVH8-compact and CLBV-compact

methods the picture is slightly different, but still very positive.
Generally speaking, CLBVH-compact achieves even higher com-
pression than QBVH8, at still (slightly) higher performance.

We conclude that for both the best performance memory
and least memory configurations, our new CLBVH approach is
consistently better than Embree’s current QBVH8, achieving
either better performance at the same compression, or better
compression at the same performance.

“Best Performance” vs “Least Memory”. When com-
paring the fastest uncompressed BVH8 with the least-memory
compressed one we find that CLBVH-fast can save about a
factor of 2.2× in total memory, for a roughly 30-50% drop in
performance, with nearly all the performance drop due to the



Benthin et al, Compressed-Leaf BVHs (extended author’s version)

lower-quality BVH, and hardly any additional cost from our
method (see CLBVH-fast configured for best performance).
For an additional roughly 5% of performance, CLBVH-compact
can save even more memory, reaching, on average, a nearly
3× reduction in total memory.

6 SUMMARY AND DISCUSSION

In this paper, we have proposed a new variant for compressing
BVHs. As with existing compressed BVH types, our CLBVH
allows for trading performance for memory savings; how-
ever, in general our technique is either better-compressing
at the same performance, or better-performing at the same
compression, than Embree’s QBVH8.

On the performance side, in particular the leaf data decom-
pression, has not yet received as much attention as other parts
of Embree, suggesting some headroom for further reducing
its performance impact.

Many of the ideas outlined in this paper also have potential
beyond the triangle meshes and AABB BVH nodes described
in this paper. For example, oriented bounding boxes (OBBs)
and hair primitives often require a large amount of memory,
and often share common directions with their parents or
siblings; suggesting that having multi-leaf nodes with multiple
of such siblings should allow for some significant compression.

Finally, it would be interesting to evaluate how some of our
memory-performance trade-offs change in a GPU or custom
hardware setting.

REFERENCES
[1] Attila T. Áfra, Carsten Benthin, Ingo Wald, and Jacob Munkberg.

2016. Local Shading Coherence Extraction for SIMD-Efficient
Path Tracing on CPUs. In Proceedings of High Performance
Graphics. Eurographics Association, 119–128.

[2] Holger Dammertz, Johannes Hanika, and Alexander Keller. 2008.
Shallow Bounding Volume Hierarchies for Fast SIMD Ray Tracing
of Incoherent Rays. In Computer Graphics Forum (Proc. 19th
Eurographics Symposium on Rendering). 1225–1234.

[3] Manfred Ernst and Gunter Greiner. 2008. Multi Bounding Volume
Hierarchies. In Proceedings of the 2008 IEEE/EG Symposium
on Interactive Ray Tracing. 35–40.

[4] Vlastimil Havran. 2001. Heuristic Ray Shooting Algorithms.
Ph.D. Dissertation. Faculty of Electrical Engineering, Czech TU
in Prague.

[5] Sean Keely. 2014. Reduced Precision for Hardware Ray Tracing in
GPUs. In Proceedings of the Conference on High Performance
Graphics 2014.

[6] Jeffrey Mahovsky and Brian Wyvill. 2006. Memory-Conserving
Bounding Volume Hierarchies with Coherent Raytracing. Com-
puter Graphics Forum 25, 2 (June 2006).

[7] S.G. Parker, J. Bigler, A. Dietrich, H. Friedrich, J. Hoberock, D.
Luebke, D. McAllister, M. McGuire, K. Morley, A. Robison, and
others. 2010. OptiX: a general purpose ray tracing engine. ACM
Transactions on Graphics (TOG) 29, 4 (2010).

[8] Benjamin Segovia and Manfred Ernst. 2010. Memory Efficient
Ray Tracing with Hierarchical Mesh Quantization. In Graphics
Interface 2010. 153–160.

[9] Ingo Wald, Carsten Benthin, and Solomon Boulos. 2008. Get-
ting Rid of Packets: Efficient SIMD Single-Ray Traversal using
Multi-branching BVHs. In Proc. of the IEEE/EG Symposium
on Interactive Ray Tracing. 49–57.

[10] Ingo Wald, Sven Woop, Carsten Benthin, Gregory S. Johnson, and
Manfred Ernst. 2014. Embree: A Kernel Framework for Efficient
CPU Ray Tracing. ACM Transactions on Graphics 33, 4, Article
143 (2014), 8 pages.

[11] Henri Ylitie, Tero Karras, and Samuli Laine. 2017. Efficient
Incoherent Ray Traversal on GPUs Through Compressed Wide

BVHs. In Eurographics/ ACM SIGGRAPH Symposium on High
Performance Graphics. ACM.


	Abstract
	1 Introduction
	2 Related Work
	3 Compressed-Leaf BVHs
	4 Implementation
	4.1 Node Compression and Decompression
	4.2 Introducing Compressed Multi-Leaf Nodes
	4.3 Builder Modifications
	4.4 Traversal
	4.5 Compressing Leaf Data

	5 Results
	5.1 Comparison to BVH8 and QBVH8

	6 Summary and Discussion
	References



