
Eurographics Symposium on Parallel Graphics and Visualization (2017)
J. C. Bennett, A. Telea (Editors)

Progressive CPU Volume Rendering with Sample Accumulation
W. Usher1,2 J. Amstutz2 C. Brownlee2 A. Knoll1 I. Wald2

1SCI Institute, University of Utah 2Intel Corp.

(a) SAVR, 1 frame (b) SAVR, 16 frames (c) SAVR, 32 frames

(d) 1TB DNS
Figure 1: (a-c) Progressive refinement with Sample-Accumulation Volume Rendering (SAVR) on the 40GB Landing Gear AMR dataset using a
prototype AMR sampler. The SAVR algorithm correctly accumulates frames to progressively refine the image. After 16 frames of accumulation
the volume is sampled at the Nyquist limit, with some small noise, by 32 frames the noise has been removed. SAVR extends to distributed
data, in (d) we show the 1TB DNS dataset, a 10240×7680×1536 uniform grid, rendered interactively across 64 second-generation Intel R©

Xeon Phi
TM

“Knights Landing” (KNL) processor nodes on Stampede 1.5 at a 6144×1024 resolution. While interacting, our method achieves
around 5.73 FPS.

Abstract
We present a new method for progressive volume rendering by accumulating object-space samples over successively rendered
frames. Existing methods for progressive refinement either use image space methods or average pixels over frames, which
can blur features or integrate incorrectly with respect to depth. Our approach stores samples along each ray, accumulates
new samples each frame into a buffer, and progressively interleaves and integrates these samples. Though this process requires
additional memory, it ensures interactivity and is well suited for CPU architectures with large memory and cache. This approach
also extends well to distributed rendering in cluster environments. We implement this technique in Intel’s open source OSPRay
CPU ray tracing framework and demonstrate that it is particularly useful for rendering volumetric data with costly sampling
functions.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Picture/Image Generation—Display
algorithms

1. Introduction

Over the last decade, with growing computing power, direct vol-
ume rendering has become increasingly interactive and widespread.
However, large, entropic or unstructured volume data, higher-order
reconstruction filters, and costly classification can still hamper per-
formance and image quality. The typical approach to reducing the
cost per frame in order to remain interactive is to decrease the sam-
pling rate along a ray. However, since the volume rendering inte-
gral is noncommutative, old samples must be thrown away when
new higher frequency samples are computed. Consequently, most

progressive refinement schemes for volume rendering either re-
compute redundant samples prior to blending or employ separate
image-space progressive rendering.

In this paper, we introduce an approach for sample-space pro-
gressive refinement in the context of direct volume rendering. In
the spirit of Ohbuchi and Fuchs [OF91], we separate the evaluation
of interpolated samples from the integration of samples, and imple-
ment progressive refinement by accumulating volume samples over
successive frames. Each frame adds new samples to a list of sam-
ples, stored in a streaming- and vector-friendly format, and then

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association. Intel, Intel Core, Xeon,
and Xeon Phi are trademarks of the Intel Corporation in the U.S. and other countries. Other
product names and brands may be claimed as property of others.

Usher et al. / Progressive CPU Volume Rendering with Sample Accumulation

re-integrates this list of samples every frame. With this approach,
after N rays with M samples each, we have the equivalent of a sin-
gle ray with N ×M samples, converging to the equivalent image
as a single finely sampled frame, see Figure 2 and Figure 3. Our
contribution is an analysis of this approach in practice in a mod-
ern parallel volume rendering system. Our method is independent
of how samples are computed and is thus applicable to any volu-
metric data type that can return a sample for a 3D point in space,
such as structured volumes, adaptive mesh refinement data, radial
basis function particle data, unstructured volumetric data, or other
representations. We show this technique can be extended to both
image-parallel and data-distributed sort-last rendering on a cluster
with no additional communication or impact on scalability.

One drawback of this approach—the memory required to store
the samples—is feasible with modern HPC nodes and workstation
memory budgets, and in fact mostly disappears in an image-parallel
or data-distributed rendering context, where each node stores only
the samples it needs for its portion of the image and dataset. The
sample accumulation volume rendering method we propose in this
paper:

• Performs correct progressive refinement of volumetric data
while allowing transfer function changes during refinement

• Is capable of rendering any sample-able volumetric data
• Extends well to distributed rendering on a cluster.

2. Related Work and Background

Direct volume rendering (DVR) is a method for directly render-
ing a 3D scalar field through a process of sampling, classification,
and integration [DCH88, Sab88, Lev88]. In recent years, ray cast-
ing [Lev88] has become the dominant method, displacing other
approaches such as slicing [CN93] and splatting [Wes90]. State-
of-the-art GPU volume rendering systems now employ ray casting
or ray-guided approaches [BHP15,HBJP12,CNLE09]. To improve
interactivity, LOD approaches have been employed in several pop-
ular GPU volume renderers such as Voreen [MSRMH09] and Para-
View [Aya15]. Generally, these approaches reduce the number of
samples (or slices) by some fixed fraction when the user moves the
camera, resulting in visible artifacts, and then render a higher qual-
ity version when interaction has ceased. Image-space progressive
rendering of volume data was first explored by Levoy [Lev90], and
more recently by Frey et al. [FSME14] for time-sensitive applica-
tions (i.e., video streaming).

Ray casting approaches have generally sought to minimize
the computational costs of volume rendering through methods
such as space-skipping, early ray-termination, data bricking, and
instruction-level optimization of the sampling process [PPL∗99,
KTW∗11]. Levoy presented a refinement technique that sub-
sampled at the pixel level, with successive frames filling in empty
pixel regions of an image [Lev90]. Multi-resolution refinement
techniques employ hierarchical representations of the volume, with
subsequent frames rendering finer resolution representations of the
data [LH91]; however, these require preprocessing the data and
additional storage. OSPRay’s CPU volume ray caster [WJA∗16]
currently employs a combination of bricking, space-skipping,
early ray-termination, and SIMD-level optimizations of the in-

terpolation routine via the open source Intel R© SPMD compiler
(ISPC) [PM12].

Special-case volume rendering systems have employed sep-
arated approaches similar to ours. On the GPU, Nelson et
al. [NLKH12] used the OptiX ray tracing engine to traverse a high-
order spectral finite element volume and separate CUDA kernels
to sample and integrate. Sakamoto et al. [SKKK09] perform sort-
free progressive refinement of tetrahedral element volumes by ren-
dering points with probability equal to the opacity of the sample,
avoiding the cost of storing all the samples at the cost of requir-
ing many iterations to converge. Orthomann et al. [OKK10] used a
similar two-pass approach for sampling SPH/RBF volumes on the
GPU. On the Intel R© Xeon R© processor and Intel R© Xeon Phi

TM
co-

processor (KNC), Knoll et al. [KWN∗14] employed a similar two-
pass algorithm per-packet for fast rendering of RBF volume data.
Storing samples along the ray and deferred integration have been
previously employed on the GPU in the form of volumetric depth
images [FSE13] for more flexible classification, batch rendering,
and in situ (co-processing) visualization [FFSE14]. Our approach
bears some resemblance to “deep A-buffer” approaches [Car84,
CICS05] and “deep images” [LV00], and to visualization preview
approaches such as explorable images [TCM10] and ParaView Cin-
ema [OAJ∗16]. There are some differences: our approach computes
deep samples per packet as opposed to over the entire frame buffer,
and most importantly none of these works have leveraged progres-
sive sampling in object space. However, this technique could be
useful for the applications of those works.

The specific method proposed in our work is similar to the ray
cache of Ohbuchi and Fuchs [OF91] and the sample buffer intro-
duced by Ke and Chang [KC93]. Both methods perform similar
refinement to ours by storing samples along a ray; our technique
extends these methods to SIMD and distributed rendering in a mod-
ern volume renderer that generalizes to different types of data with
different filters. There are some differences as well: in our approach
we perform a new pass of samples through the entire volume and
do not store approximate or lower resolution samples. Moreover,
our work seeks to show the tradeoffs of these methods in practice,
and expose where they may be helpful for large-scale visualization.

2.1. Volume Rendering

In Equation (1), a Riemann sum of the volume rendering integral is
shown, where N is the number of samples taken along the ray and t
is the distance between each sample [KM05]. C(x) and α(x) com-
pute the color and opacity at distance x along the ray. The product
of (1−α(j · t)) terms attenuates samples further along the ray by
the opacity of closer ones, modeling light absorption by the volume.
The accuracy of the discretization is dependent on the step size t.
The ideal sampling rate is at the Nyquist frequency of roughly twice
a voxel, but in practice is often several times the size of a single
voxel to maintain interactive framerates with large or costly data.
For final renderings the sampling rate is increased to the Nyquist
limit, at the cost of interactivity.

L =
N

∑
i=0

(
C(i · t)α(i · t)

i−1

∏
j=0

(1−α(j · t))

)
(1)

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

Usher et al. / Progressive CPU Volume Rendering with Sample Accumulation

(a) (b)

(c) (d)
Figure 2: Convergence of DVR (a), DVR with adaptive sampling
and preintegration (b), and our method (c) vs. ideal sampling (d)
on the Richtmyer–Meshkov dataset. (a-c) Use a sampling step of 8
voxels, the adaptive sampling in (b) refines to a 0.5 step size where
needed. After 16 frames (a-c) have taken an equivalent number of
samples as (d), one frame of DVR with two samples per voxel. (d)
Renders the image in 752ms while our method (c) takes 3.357s for
the 16 frames; however, it is important to note (c) provides better
interactivity during rendering at a mean framerate of 4.77 FPS, vs.
1.33 FPS for (d), on a KNL.

To achieve smooth rendering, progressive refinement is done by
averaging M frames following Equation (1), which results in Equa-
tion (2). Each frame is computed by traversing a new ray with a
different starting offset through the volume, with the goal of taking
a new unique set of samples with each ray. We multiply total radi-
ance by 1/M to unbias opacity (note that irrespective of a correct
blend order, separately-integrated samples (1−α(j · t)) result in
over-weighting of each sample per frame). Moreover, as usual, in-
sufficient sampling of volumes with high-frequency data or transfer
functions results in missing features, as shown in Figure 2.

LDVR =
1
M

M

∑

(
N

∑
i=0

(
C(i · t)α(i · t)

i−1

∏
j=0

(1−α(j · t))

))
(2)

2.2. Distributed Rendering

Data parallel rendering in the context of large volume datasets
has been widely studied, producing work covering data distribu-
tion, rendering, and compositing. Early work by Hsu and Ma et
al. [Hsu93, MPHK94] distributes bricks of the volume data among
multiple processes, with each process rendering an image with its
assigned data. These partial images are then composited together
to produce the final frame in a sort-last compositing step. An-
other approach employed be DeMarle et al. [DPH∗03] uses image-
parallel work distribution where each node is assigned a subset of

(a) (b)
Figure 3: Convergence of our method (a) vs. vs. ideal sampling (b)
on the Cosmic Web particle RBF model. (a) Uses a sampling step
of 80 “voxels” to remain interactive, (b) is one frame of DVR at the
ideal sampling rate of two samples per “voxel”. After 160 frames
of accumulation (a) has taken an equivalent number of samples as
(b). Although (a) takes a total of 156.8s and (b) takes 62.76s for the
single fully sampled frame, our method provides better interactivity,
averaging 0.98 FPS vs. 0.0159 for (b) on a KNL.

the framebuffer to render and creates a distributed shared memory
buffer to make the volume available to all nodes. On each node the
data is fetched from remote nodes as needed and cached locally
into an octree for rendering.

We implement our method in OSPRay [WJA∗16], which pro-
vides functionality for image-parallel rendering with duplicated
data, and data-distributed volume rendering with sort-last com-
positing. In the image-parallel case, the scene being rendered is
copied onto the nodes and each is responsible for rendering a sub-
set of the image tiles. OSPRay’s data-distributed DVR renderer is
an extension of segmented ray casting [Hsu93] where bricks of vol-
ume data are assigned to nodes. Each node is then responsible for
rendering the tiles to which its bricks project and compositing some
subset of tiles.

3. SAVR – Sample-Accumulation Volume Rendering

Sample-Accumulation Volume Rendering (SAVR) decouples the
evaluation (sampling) and integration of samples for the purpose
of progressive refinement. With this decoupling, SAVR increases N
in Equation (1) to correctly refine its approximation of the integral
over successive rendered frames. As shown in Figure 2 and Figure 3
our method converges to the equivalent of the Nyquist limit sam-
pled image while remaining interactive during rendering. However,
in order to refine the integral properly, all samples taken by pre-
vious rays are retained in memory to update the approximation by
recomputing Equation (1) for each frame with a finer sampling of
the integral.

An overview of the algorithm is given in Algorithm 1. For each
frame, a new set of samples are accumulated along each ray, start-
ing from offsets taken from a precomputed Halton sequence (lines
7-13). These samples are merged into a buffer of previously taken
samples. The buffer of all samples for the pixel, list, is maintained
in sorted order by depth along the ray. The merge process is a vari-
ant of merge sort, which works well in practice because the sample
depths from the two merged buffers are already partially sorted.
To produce a color for each pixel, we color and blend all the ac-
cumulated samples by traversing the list in order and applying the
transfer function.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

Usher et al. / Progressive CPU Volume Rendering with Sample Accumulation

Algorithm 1 The SAVR algorithm.

1: function RENDERPIXEL(ray, volume, t f cn)
2: if ISVIEWCHANGED() then
3: list ← {}
4: end if
5: tNear← FINDENTRY(ray, volume)
6: tFar← FINDEXIT(ray, volume)
7: t ← tNear + GETOFFSET()
8: samples← {}
9: while t < tFar do

10: s← TAKESAMPLE(volume, ray, t)
11: APPEND(samples, s)
12: t ← ADVANCE(ray, t)
13: end while
14: MERGE(list, samples)
15: color← BLENDALL(list, t f cn)
16: return color
17: end function

We note that both evaluation and integration of samples are data-
parallel problems relying on coherent ray casting of neighboring
pixels. These characteristics make it much easier to map SAVR
to SIMD hardware than other multi-sampled ray-based techniques
such as multi-hit ray tracing, allowing us to avoid the more compli-
cated sorting and integration methods found in multi-hit ray tracing
kernels [AGGW15]. Moreover, we store all samples along the ray
from entry to exit per packet of rays, distinguishing this approach
from similar frame-wide methods on the GPU [NLKH12].

SAVR allows changes to the transfer fuction used for integra-
tion without the need to retake samples. In Algorithm 1, the call to
blendAll can use different transfer functions, should the applica-
tion want it to be changed. In typical DVR techniques, the progres-
sive refinement accumulation must be restarted when a new transfer
function is introduced because the refinement is performed on the
final blended colors instead of the samples themselves. Our algo-
rithm is also independent of how samples are taken in takeSam-
ple and can be used with more advanced sampling schemes such
as adaptive sampling, or sample other volumetric data types like
adaptive mesh refinement volumes or unstructured particle RBF
models.

4. Implementation

The SAVR algorithm is agnostic toward hardware platform and
to the choice of data distribution, tasking, and compositing algo-
rithms. In practice, its effectiveness depends on the size and type of
data, transfer function, relative costs of sampling and classification,
lighting, and implementation choices. We describe the latter in this
section.

4.1. Single Node SAVR

The SAVR algorithm itself is implemented using ISPC [PM12]
within the OSPRay [WJA∗16] framework, to take advantage of vec-
tor instructions on Intel Xeon and Intel Xeon Phi processors. Our
initial implementation utilized scalar code within ISPC (serializing

with the foreach_active statement), and we found the vector-
ized ISPC version provided approximately 3× speed-up over the
scalar code with AVX2. We observe that volume rendering with
ray casting is a relatively coherent problem, where vectorization is
important for good performance. Our evaluations are with the ISPC
vectorized implementation on each platform.

In OSPRay, a renderer implements a renderSample method
that receives a packet of rays for sampling and shading. Packets are
a machine vector width number of rays and are traced by OSPRay
in Z-order through a tile. For each Z-order packet in the tile, we
store the depth and sample pairs for the rays in the packet in an
array. Each index in this array are the M samples for the ith sample
point for each ray in the packet, where M is the vector width of the
target CPU. With this streaming and vectorization friendly layout,
operations to load/store all samples at index i are made with a single
vector load/store instead of separate scalar load/stores or gather/s-
catters. Each ray also stores a small header tracking the number of
samples currently in its buffer for determining when it is full. We
could also optionally track the effective sampling rate of the ray
and use this to determine when each pixel is finished.

To reduce the number of sample buffers allocated, and thus the
memory required by our method, buffers are allocated on demand
by a cache for each image tile that views a portion of the volume.
This cache allocates the sample buffers for an entire tile once a
packet requests to write to a buffer in a tile that has not yet been
allocated.

4.2. Image-Parallel SAVR

In image-parallel volume rendering, the volume data is replicated
on each node, and work is divided across multiple nodes by par-
titioning the image tiles to be rendered among the workers. When
rendering work is distributed among multiple nodes in this way,
each node needs to store the buffers only for the portion of the
framebuffer it renders, reducing memory requirements per-node.
This reduction is handled transparently by our caching system. In
image-parallel rendering OSPRay assigns different image tiles to
the workers, each worker only samples rays in its assigned tiles
and thus only requests buffers from the cache which it needs for
those tiles.

This reduction in memory requirements enables end applications
to be more flexible in tuning the number of samples stored in each
buffer and to render larger images. In an extreme case of 4K render-
ing (4096× 2160) with 2048 samples per buffer, 145GB of space
is required for the samples alone. If rendering work is distributed
among 16 nodes in this scenario, each node would need to store
only 9.06GB of the sample buffers, easily fitting into the memory
budgets of recent HPC nodes or even in a KNL’s MCDRAM or
GPU’s VRAM.

The sorting and blending of samples in the SAVR algorithm is
independent per ray-packet, and since packets are localized to tiles,
SAVR introduces no extra communication and thus no decrease
in scalability over existing image-parallel direct volume rendering
techniques.

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

Usher et al. / Progressive CPU Volume Rendering with Sample Accumulation

4.3. Data-Distributed SAVR

OSPRay supports a method of sort-last tile-based compositing
[WJA∗16]. Volume data is partitioned into disjoint blocks, typi-
cally one per node, and assigned to worker nodes for rendering.
Each block projects to some subset of the tiles in the frame buffer
which the worker is then responsible for rendering. As tiles are fin-
ished, they are handed off to a sort-last compositing algorithm to
combine the worker’s results into the final image.

Similar to the image-parallel case, only tiles onto which a node’s
data projects are rendered, and the resulting reduction in memory
requirements is similar as well, though somewhat less predictable
due to reliance on the underlying data distribution. Some nodes
may render overlapping tiles, where each has a subregion of the
data projecting to the tile. In this case the nodes can use smaller
buffers respective to their data region’s depth along the camera axis,
effectively splitting the memory cost of storing the samples for that
region of data.

Although not explored in this paper, implementations have the
flexibility to send the volume samples themselves, if the added
bandwidth requirement is acceptable. Such techniques may allow
for global sample blending operations to be performed. On demand
paging of remote data from other nodes as needed could also be
implemented with our technique, with more data being streamed
as needed over the course of several frames to alleviate costly data
transfers. These options are left for future work.

5. Results

We evaluate the convergence of our method’s progressive refine-
ment and performance compared to naïve “unsorted” DVR with a
large sampling step size of 8 voxels (80 on Cosmic Web) and DVR
sampling at the Nyquist limit of two samples per voxel to render the
same quality as SAVR, listed as “Ideal Sampling”. Though incor-
rect from the standpoint of order-dependent integration, unsorted
DVR provides an upper bound on performance given a certain step
size.

To demonstrate the flexibility of our approach, we run on a va-
riety of different volumetric datasets, as well as an AMR volume
dataset using a prototype AMR sampling method and a particle
RBF model of cosmology data. The latter two datasets are costly
to sample, and are where our method is most applicable, as men-
tioned in Figure 3. In the case of uniform grid volumes with tri-
linear interpolation the sampling can be cheap enough that render-
ing at the ideal sampling rate gives acceptable performance. The
datasets used for benchmarking are shown in Figure 4. The uni-
form grid volumes use fast trilinear interpolation, whereas comput-
ing a sample for the RBF model requires a costly k-d tree query
and combination of Gaussians. We also measure performance in
image-parallel and data-distributed volume rendering applications
and demonstrate that SAVR extends well to these contexts.

Our benchmarks were run on the Stampede 1.5 KNL partition
and Lonestar5 cluster at the Texas Advanced Computing Center.
Single node performance for a Stampede 1.5 KNL node and for
a Lonestar5 node is shown in Table 1. Evaluation of single node
performance and convergence quality can be found in Section 5.1,

image-parallel and data-distributed performance are discussed in
Section 5.2.

5.1. Single Node Performance

For the purposes of classification, we break the SAVR rendering
sequence into three phases: interacting, accumulating, and filled.
These phases can be seen in Figure 5a and Figure 5b, which show
our method’s quality and performance dependence on the number
of samples stored per ray.

In the interacting phase, the user is moving the camera and we
keep only a single pass of samples, as each new camera position
invalidates our previous set. At this stage, the rendering quality of
our algorithm is similar to that of DVR. Additionally, the merging
of samples after traversal is not required, and we find performance
is around 2× to 3× slower than unsorted DVR, see max FPS for
unsorted and SAVR columns in Table 1. This reduction in perfor-
mance is at least partially due to loss of early ray termination in
our current implementation. However, without removing the ability
to interactively change the transfer function while refining, using
early ray termination would give incorrect results. Another option
to address this issue would be to use unsorted DVR when interact-
ing, and switch to SAVR when the camera motion has stopped.

In the accumulating phase, the user has stopped moving the cam-
era, and samples are accumulated each frame to refine the render-
ing. Here SAVR drops in framerate as the sample merging step im-
pacts performance. There are different options for implementing
this merge, and it should be possible to alleviate this performance
issue in the future by using a faster sorting method. Further, for
non-uniform grid volumes and unstructured data this merging step
is less expensive relative to sampling as shown on the Cosmic Web
and Landing Gear benchmarks in Table 1. This decrease can be
seen in Figure 5a and Figure 5b where we start accumulating at
frame 20, and the framerate decreases as the merge becomes in-
creasingly expensive over a greater number of accumulated sam-
ples.

As the sample buffers fill to capacity, the algorithm switches
to the filled phase. In this phase the sample accumulation stage
is skipped, and the previously accumulated samples are used to
compute the pixel color. This is shown in Figure 5a and Figure 5b
where after some number of frames of accumulation the framer-
ate improves, depending on how many samples are being blended
each frame. Optionally the end application could detect when the
volume is sampled sufficiently and stop rendering new frames, e.g.
after reaching the vertical line in each plot.

Interacting performance is not as high as the sparsely sampled
unsorted DVR; however, our method will converge to the correct
result and here performance is a great improvement over ideally
sampled DVR which renders the same quality result as SAVR. For
challenging data such as the AMR dataset and cosmology RBF
model we reach nearly the same framerate as unsorted DVR, while
converging to a significantly better result. In all cases when moving
the camera, our method remains interactive and only when stopping
motion to focus on a feature and resolve the image does render-
ing performance decrease. When accumulating to the final image
the user is also still able to change the transfer function without

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

Usher et al. / Progressive CPU Volume Rendering with Sample Accumulation

Figure 4: Datasets used for benchmarking and convergence comparisons, from left to right: Magnetic Reconnection (512MB, 5123),
Richtmyer–Meshkov (8GB, 2048× 2048× 1920), DNS (1TB), the Landing Gear AMR dataset (40 GB) [KBH∗14], and an unstructured
particle RBF model of the Cosmic Web early universe simulation with 178.9M particles. The top row shows the far viewpoint images,
marked (F), and the bottom row shows the close viewpoint images, marked (C).

DVR

Dataset SAVR SAVR + Gradients Ideal Sampling Ideal Sampling + Gradients Unsorted

Single Stampede 1.5 node, Intel R© Xeon Phi
TM

7250 processor in cache mode with 96GB of RAM

Magn. Recon. (F) 28.62 (3.36) 16.93 (0.92) 6.78 (6.71) 2.66 (2.62) 59.46 (56.10)
Magn. Recon. (C) 15.40 (2.77) 8.91 (0.73) 4.01 (3.99) 1.49 (1.58) 36.99 (35.43)
R–M (F) 14.72 (5.31) 9.61 (0.83) 6.43 (6.32) 2.23 (2.19) 32.58 (30.94)
R–M (C) 6.67 (3.62) 4.69 (0.60) 3.27 (3.24) 1.18 (1.18) 18.01 (17.28)
Landing Gear (F) 21.78 (6.19) N/A 4.60 (4.54) N/A 36.13 (31.89)
Landing Gear (C) 12.16 (3.99) N/A 2.09 (2.08) N/A 20.05 (18.75)
Cosmic Web (F) 2.63 (2.09) N/A 0.026 (0.025) N/A 2.69 (2.65)
Cosmic Web (C) 1.13 (0.98) N/A 0.016 (0.0159) N/A 1.29 (1.27)

Single Lonestar5 node, dual socket Intel R© Xeon R© E5-2690 v3 processor with 64GB of RAM

Magn. Recon. (F) 19.54 (1.81) 10.02 (0.42) 3.91 (3.88) 1.49 (1.47) 37.41 (36.85)
Magn. Recon. (C) 10.46 (1.44) 5.44 (0.32) 2.18 (2.17) 0.79 (0.79) 22.53 (22.35)
R–M (F) 9.60 (2.95) 6.74 (0.56) 4.51 (4.47) 1.73 (1.71) 22.69 (22.53)
R–M (C) 4.23 (1.93) 3.13 (0.39) 2.22 (2.21) 0.84 (0.84) 11.83 (11.75)
Landing Gear (F) 24.66 (3.71) N/A 4.07 (4.02) N/A 40.35 (38.59)
Landing Gear (C) 11.74 (2.22) N/A 1.71 (1.71) N/A 20.29 (19.81)
Cosmic Web (F) 0.13 (0.12) N/A 0.0195 (0.0191) N/A 0.12 (0.11)
Cosmic Web (C) 0.25 (0.21) N/A 0.0130 (0.0127) N/A 0.25 (0.21)

Table 1: Framerate of DVR methods vs. SAVR. We show the max framerate (interactive phase) and mean in parentheses (expected framerate
across all phases). Ideal sampling is DVR at two samples per voxel, rendering equivalent quality to SAVR’s converged result. Unsorted does
not converge correctly, but provides a useful performance baseline.

needing to recompute the volume samples, allowing for interactive
exploration of the final rendering.

5.2. Distributed Performance

As discussed in Section 4.2, each image tile being rendered with
SAVR is independent of others and as a result SAVR follows scal-
ing trends similar to OSPRay’s existing image-parallel volume ren-
dering. In Figure 6 we compare both the max framerate, our perfor-
mance while interacting, and the median framerate, our expected
performance across all phases, against ideally sampled DVR on the
Landing Gear.

We find that SAVR follows scaling trends similar to DVR and, as

in the single node case, provides better performance than ideal sam-
pling when interacting while not being significantly slower while
accumulating to the final result. The drop in median framerate at
64 workers may be due to some machine or compositing perfor-
mance fluctuations, we found the standard deviation of the frame
time for this run was large (±22 FPS). This case warrants some
further investigation though is likely unrelated to SAVR, as it does
not modify the compositing code used by the renderer.

Our data-distributed implementation of the SAVR algorithm fits
well into OSPRay’s existing sort-last distributed volume rendering,
as described in Section 4.3. In the data-distributed case, we parti-
tion the volume with a grid such that we assign one brick to each

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

Usher et al. / Progressive CPU Volume Rendering with Sample Accumulation

0 5 10 15 20 25 30 35 40

Frame Number

0

2

4

6

8

10

12

14
F

P
S

512 samples/ray
1024 samples/ray
2048 samples/ray
4096 samples/ray

(a) R–M (F)

0 50 100 150 200

Frame Number

0.0

0.5

1.0

1.5

2.0

2.5

3.0

F
P

S

2048 samples/ray
3072 samples/ray
4096 samples/ray
5120 samples/ray

(b) Cosmic Web (F)

(c) 512 s/r (d) 1024 s/r (e) 2048 s/r (f) 4096 s/r

(g) 2048 s/r (h) 3072 s/r (i) 4096 s/r (j) 5120 s/r
Figure 5: Performance and quality vs. number of samples/ray. During the first 20 frames the user is interacting and no accumulation is
performed. From frame 20 on we accumulate samples and see a dip in performance until the buffers are filled. At the vertical line on (a) and
(b) the volume is sampled to the Nyquist limit. (c-j) Show rendered results for both datasets, for R–M 512 or 1024 samples are insufficient to
sample the volume, for Cosmic Web 2048 is insufficient.

0 10 20 30 40 50 60 70

Number of workers

0

10

20

30

40

50

60

70

F
P

S

Ideal Sampling
SAVR Max
SAVR Median

Figure 6: Image parallel scaling on Stampede 1.5 KNL nodes ren-
dering the far viewpoint of the Landing Gear.

worker for rendering. We compare scaling vs. DVR on the R–M
dataset in Figure 7 and the DNS in Table 2. We find that in the case
of the R–M dataset, we see scaling similar to DVR, as in the image
parallel case. On the DNS dataset, we see better scaling than DVR
when increasing from 32 workers to 64.

The DNS benchmarks demonstrate a large volume being ren-
dered at a high resolution, 1920× 1080, storing 3000 samples per
buffer, which results in demanding memory and compute require-

0 10 20 30 40 50 60 70

Number of workers

5

10

15

20

25

30

35

F
P

S

Ideal Sampling
SAVR Max
SAVR Median

Figure 7: Data distributed on Stampede 1.5 KNL nodes rendering
the far viewpoint of the Richtmyer–Meshkov dataset.

ments. While the volume is large, in the data-distributed case each
worker only needs to store enough samples for its block, reducing
the memory requirements of SAVR. When the number of nodes
is doubled, the amount of volume data for which each is respon-
sible is cut in half, from 30.2GB to 15.1GB, and the number of
tiles to which each brick projects also decreases, reducing mem-
ory demands and work required per node. The interacting framer-
ate (max), and often the median framerate as well, are higher than

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

Usher et al. / Progressive CPU Volume Rendering with Sample Accumulation

Rendering Mode 32 Workers 64 Workers

Far viewpoint

SAVR 9.24 (8.66) 15.81 (8.29)
SAVR + Gradients 6.58 (1.49) 10.01 (1.32)
Ideal Sampling 5.26 (5.16) 5.56 (5.37)
I.S. + Gradients 1.97 (1.92) 2.06 (2.01)
Unsorted DVR 20.69 (15.85) 20.17 (5.28)

Close viewpoint

SAVR 4.28 (3.26) 8.73 (2.62)
SAVR + Gradients 2.84 (0.53) 4.37 (0.43)
Ideal Sampling 1.81 (1.77) 2.02 (1.97)
I.S. + Gradients 0.65 (0.64) 0.72 (0.70)
Unsorted DVR 13.69 (12.67) 14.41 (13.21)

Table 2: Framerate for data-distributed rendering of the DNS on
Stampede 1.5 KNL nodes rendering at 1920×1080. We show both
the max framerate (interactive phase) and the mean in parentheses
(expected framerate across all phases).

DVR at the ideal sampling rate while our method converges to the
same result.

5.3. Limitations and Comparison to Other Approaches

The main performance bottleneck of our current implementation is
the merging algorithm used to maintain the sorted sample buffers,
as shown in the drop at frame 20 in Figure 5a and Figure 5b. This
merge could be parallelized or better vectorized. Alternatively, it
may be possible to not merge the individual ray’s samples at all, but
instead perform an ordered traversal of the samples while blending.
We also find that at larger sample buffer sizes, classification and
blending steps incur significant cost (see the tails of Figure 5a and
Figure 5b at high sample counts).

Moreover, when comparing the framerate of SAVR while inter-
acting, performance does not match unsorted DVR, likely due to
buffer copies when merging samples and loss of early ray termina-
tion, which cannot be implemented without the full set of classified
samples. The maximum required set of samples could be deduced
during sample accumulation for some given transfer function; how-
ever, this optimization would require the sample cache to be recom-
puted upon modifications to the transfer function. Even with these
limitations, however, SAVR remains a compelling method for pro-
gressively rendering large volume data, especially when computing
samples is costly.

We have deliberately evaluated SAVR in the context of uni-
formly sampled volume rendering. It would, however, be de-
sirable to combine this technique with adaptive sampling ap-
proaches, which would better leverage empty space and heteroge-
neous data. Adaptive volume rendering approaches have recently
been added to OSPRay, and have previously proven powerful on
both GPU [LLYM04, HSS∗05] and CPU [KTW∗11]. These adap-
tive techniques are orthogonal to the progressive rendering method
of SAVR; full consideration of these combined approaches remains
as future work.

Out-of-core approaches (see, e.g., the survey of Beyer and Had-

wiger [BHP15]), in particular on GPU architectures, are a com-
pelling alternative to volume rendering of full-resolution data us-
ing the techniques described in our work. In particular, new sparse
octree capabilities on GPUs allow for straightforward adoption of
ray-guided LOD techniques in the spirit of Fogal et al. [FSK13].
Similarly, use of volumetric LOD techniques are orthogonal to our
progressive rendering method. Recent GPU work has shown fram-
erates higher than our approach by combining efficient LOD and
progressive refinement [HBJP12, CNLE09]. An advantage of the
SAVR approach is that it provides a progressive rendering solution
that always operates on native data resolution, assuming the archi-
tecture has sufficient memory. When that is not the case, it would be
possible (and desirable) to pair SAVR with out-of-core techniques,
regardless of the underlying architecture (CPU or GPU).

6. Discussion and Future Work

We have presented sample-accumulation volume rendering, a novel
method for progressive refinement of volume data in object space,
which supports arbitrary structured or unstructured volume data
and extends to both image-parallel and data-parallel distributed
rendering configurations. Unlike naïve averaging and image-space
progressive refinement, our method ensures the refined image con-
verges to the correct result while still maintaining an interactive
framerate and providing a smooth transition from low to high qual-
ity. This technique allows for terascale data to be rendered progres-
sively and interactively on few compute resources, and is particu-
larly well-suited for large-memory CPU architectures.

The main drawback of our approach, the memory required to
store samples and additional time required to sort them, is less of a
concern in a distributed setting; moroever our method scales sim-
ilarly to standard DVR techniques. SAVR is also independent of
how samples are computed, and does not prevent one from taking
advantage of more advanced adaptive sampling schemes or LOD.

Although we have focused our evaluation of SAVR on CPU ar-
chitectures, there is nothing inherent in our method that prevents
it from being applied in a GPU volume rendering context. Recent
GPUs such as the Tesla P40 have 24GB of memory, and a single
one could handle small to medium datasets at reasonable frame-
buffer sizes, and switch to data-distributed or image-parallel ren-
dering to handle larger data or framebuffers. We leave exploring
GPU implementation possibilities for future work.

Finally, we would like to examine possibilities for reducing the
memory required by SAVR. Even though the cost per node is re-
duced in distributed environments, on many current HPC nodes
with limited memory it can still be an issue. Although the Stam-
pede 1.5 KNL nodes have 96GB of RAM, this amount is high by
HPC standards. Reducing memory requirements further would al-
low SAVR to be used in more memory-constrained environments,
and may improve performance due to reduced memory bandwidth.

7. Acknowledgements

The authors would like to thank Paul Navrátil and the Texas Ad-
vanced Computing Center (TACC) for providing early access to the
Stampede 1.5 KNL partition. The Landing Gear was created using

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

Usher et al. / Progressive CPU Volume Rendering with Sample Accumulation

NASA’s LAVA computational framework [KBH∗14] and was gra-
ciously provided by Mike Barad and Cetin Kiris, NASA Ames.

This work was supported in part by NSF: CGV: Award:1314896,
NSF CISE ACI-0904631, DOE/Codesign P01180734, DOE/S-
ciDAC DESC0007446, CCMSC DE-NA0002375, and PIPER:
ER26142 DE-SC0010498. Additional support comes from the In-
tel Parallel Computing Centers program. This material is also
based upon work supported by the Department of Energy, Na-
tional Nuclear Security Administration, under Award Number DE-
NA0002375.

References
[AGGW15] AMSTUTZ J., GRIBBLE C., GÜNTHER J., WALD I.: An

Evaluation of Multi-Hit Ray Traversal in a BVH using Existing First-
Hit/Any-Hit Kernels. Journal of Computer Graphics Techniques (JCGT)
4, 4 (2015), 72–88. 4

[Aya15] AYACHIT U.: The Paraview Guide: A Parallel Visualization Ap-
plication. Kitware, Inc., 2015. 2

[BHP15] BEYER J., HADWIGER M., PFISTER H.: State-of-the-Art in
GPU-Based Large-Scale Volume Visualization. In Computer Graphics
Forum (2015), vol. 34, Wiley Online Library, pp. 13–37. 2, 8

[Car84] CARPENTER L.: The A-buffer, an antialiased hidden surface
method. ACM Siggraph Computer Graphics 18, 3 (1984), 103–108. 2

[CICS05] CALLAHAN S. P., IKITS M., COMBA J. L. D., SILVA C. T.:
Hardware-assisted visibility sorting for unstructured volume render-
ing. IEEE Transactions on Visualization and Computer Graphics 11,
3 (2005), 285–295. 2

[CN93] CULLIP T. J., NEUMANN U.: Accelerating Volume Reconstruc-
tion with 3D Texture Hardware. 2

[CNLE09] CRASSIN C., NEYRET F., LEFEBVRE S., EISEMANN E.: Gi-
gavoxels: Ray-guided streaming for efficient and detailed voxel render-
ing. In Proceedings of the 2009 symposium on Interactive 3D graphics
and games (2009), ACM, pp. 15–22. 2, 8

[DCH88] DREBIN R. A., CARPENTER L., HANRAHAN P.: Volume Ren-
dering. In ACM Siggraph Computer Graphics (1988), vol. 22, ACM,
pp. 65–74. 2

[DPH∗03] DEMARLE D., PARKER S., HARTNER M., GRIBBLE C.,
HANSEN C.: Distributed Interactive Ray Tracing for Large Volume Vi-
sualization. In Proceedings of the IEEE PVG (2003), pp. 87–94. 3

[FFSE14] FERNANDES O., FREY S., SADLO F., ERTL T.: Space-time
volumetric depth images for in-situ visualization. In Large Data Analysis
and Visualization (LDAV), 2014 IEEE 4th Symposium on (2014), IEEE,
pp. 59–65. 2

[FSE13] FREY S., SADLO F., ERTL T.: Explorable volumetric depth
images from raycasting. In 2013 XXVI Conference on Graphics, Patterns
and Images (2013), IEEE, pp. 123–130. 2

[FSK13] FOGAL T., SCHIEWE A., KRÜGER J.: An analysis of scalable
GPU-based ray-guided volume rendering. 8

[FSME14] FREY S., SADLO F., MA K.-L., ERTL T.: Interactive pro-
gressive visualization with space-time error control. IEEE transactions
on visualization and computer graphics 20, 12 (2014), 2397–2406. 2

[HBJP12] HADWIGER M., BEYER J., JEONG W.-K., PFISTER H.: In-
teractive volume exploration of petascale microscopy data streams using
a visualization-driven virtual memory approach. IEEE Transactions on
Visualization and Computer Graphics 18, 12 (2012), 2285–2294. 2, 8

[HSS∗05] HADWIGER M., SIGG C., SCHARSACH H., BÜHLER K.,
GROSS M.: Real-time ray-casting and advanced shading of discrete iso-
surfaces. Computer Graphics Forum 24, 3 (2005), 303–312. 8

[Hsu93] HSU W. M.: Segmented Ray Casting for Data Parallel Volume
Rendering. In Proceedings of the 1993 Symposium on Parallel Render-
ing (1993). 3

[KBH∗14] KIRIS C. C., BARAD M. F., HOUSMAN J. A., SOZER E.,
BREHM C., MOINI-YEKTA S.: The lava computational fluid dynamics
solver. In 52nd Aerospace Sciences Meeting (2014), p. 0070. 6, 9

[KC93] KE H.-R., CHANG R.-C.: Sample buffer: A progressive refine-
ment ray-casting algorithm for volume rendering. Computers & Graph-
ics 17, 3 (1993), 277–283. 2

[KM05] KAUFMAN A., MUELLER K.: Overview of Volume Rendering.
The Visualization Handbook 7 (2005), 127–174. 2

[KTW∗11] KNOLL A., THELEN S., WALD I., HANSEN C. D., HAGEN
H., PAPKA M. E.: Full-Resolution Interactive CPU Volume Rendering
with Coherent BVH Traversal. In Proceedings of the 2011 IEEE Pacific
Visualization Symposium (PacificVis) (2011), pp. 3–10. 2, 8

[KWN∗14] KNOLL A., WALD I., NAVRATIL P., BOWEN A., REDA K.,
PAPKA M. E., GAITHER K.: RBF Volume Ray Casting on Multicore
and Manycore CPUs. Computer Graphics Forum 33 (2014). 2

[Lev88] LEVOY M.: Display of Surfaces from Volume Data. IEEE Com-
puter Graphics and Applications 8, 3 (1988), 29–37. 2

[Lev90] LEVOY M.: Volume Rendering by Adaptive Refinement. The
Visual Computer 6, 1 (1990), 2–7. 2

[LH91] LAUR D., HANRAHAN P.: Hierarchical Splatting: A Progressive
Refinement Algorithm for Volume Rendering. In Proceedings of the 18th
Annual Conference on Computer Graphics and Interactive Techniques
(New York, NY, USA, 1991), SIGGRAPH ’91, ACM, pp. 285–288. 2

[LLYM04] LJUNG P., LUNDSTROM C., YNNERMAN A., MUSETH K.:
Transfer function based adaptive decompression for volume rendering
of large medical data sets. In Volume Visualization and Graphics, 2004
IEEE Symposium on (2004), IEEE, pp. 25–32. 8

[LV00] LOKOVIC T., VEACH E.: Deep shadow maps. In Proceedings of
the 27th annual conference on Computer graphics and interactive tech-
niques (2000), ACM Press/Addison-Wesley Publishing Co., pp. 385–
392. 2

[MPHK94] MA K.-L., PAINTER J. S., HANSEN C. D., KROGH M. F.:
Parallel Volume Rendering Using Binary-Swap Compositing. IEEE
Comput. Graph. Appl. 14, 4 (1994), 59–68. 3

[MSRMH09] MEYER-SPRADOW J., ROPINSKI T., MENSMANN J.,
HINRICHS K.: Voreen: A Rapid-Prototyping Environment for Ray-
Casting-Based Volume Visualizations. IEEE Computer Graphics and
Applications 29, 6 (2009). 2

[NLKH12] NELSON B., LIU E., KIRBY R. M., HAIMES R.: ElVis:
A System for the Accurate and Interactive Visualization of High-Order
Finite Element Solutions. IEEE Transactions on Visualization and Com-
puter Graphics 18, 12 (2012), 2325–2334. 2, 4

[OAJ∗16] O’LEARY P., AHRENS J., JOURDAIN S., WITTENBURG S.,
ROGERS D. H., PETERSEN M.: Cinema image-based in situ analysis
and visualization of MPAS-ocean simulations. Parallel Computing 55
(2016), 43–48. 2

[OF91] OHBUCHI R., FUCHS H.: Incremental volume rendereing al-
gorithm for interactive 3D ultrasound imaging. In Biennial Inter-
national Conference on Information Processing in Medical Imaging
(1991), Springer, pp. 486–500. 1, 2

[OKK10] ORTHMANN J., KELLER M., KOLB A.: Topology-Caching for
Dynamic Particle Volume Raycasting. In Proceedings of Vision, Mod-
eling and Visualization 2010, Siegen, Germany (2010), Eurographics,
pp. 147–154. 2

[PM12] PHARR M., MARK B.: ISPC: A SPMD Compiler for High-
Performance CPU Programming. In Proceedings of Innovative Parallel
Computing (inPar) (2012), pp. 184–196. 2, 4

[PPL∗99] PARKER S., PARKER M., LIVNAT Y., SLOAN P.-P., HANSEN
C., SHIRLEY P.: Interactive Ray Tracing for Volume Visualization.
IEEE Transactions on Visualization and Computer Graphics 5, 3 (1999),
238–250. 2

[Sab88] SABELLA P.: A Rendering Algorithm for Visualizing 3D Scalar
Fields. SIGGRAPH Comput. Graph. 22, 4 (June 1988), 51–58. 2

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

Usher et al. / Progressive CPU Volume Rendering with Sample Accumulation

[SKKK09] SAKAMOTO N., KAWAMURA T., KUWANO H., KOYAMADA
K.: Sorting-free pre-integrated projected tetrahedra. In Proceedings of
the 2009 Workshop on Ultrascale Visualization (2009), ACM, pp. 11–18.
2

[TCM10] TIKHONOVA A., CORREA C. D., MA K.-L.: Explorable im-
ages for visualizing volume data. In PacificVis (2010), Citeseer, pp. 177–
184. 2

[Wes90] WESTOVER L.: Footprint Evaluation for Volume Rendering.
ACM Siggraph Computer Graphics 24, 4 (1990), 367–376. 2

[WJA∗16] WALD I., JOHNSON G., AMSTUTZ J., BROWNLEE C.,
KNOLL A., JEFFERS J., GÜNTHER J., NAVRATIL P.: OSPRay — A
CPU Ray Tracing Framework for Scientific Visualization. IEEE Trans-
actions on Visualization and Computer Graphics PP, 99 (2016), 1–1. 2,
3, 4, 5

c© 2017 The Author(s)
Eurographics Proceedings c© 2017 The Eurographics Association.

