
Getting Rid of Packets
– Efficient SIMD Single-Ray Traversal using Multi-branching BVHs –

Ingo Wald� Carsten Benthin� Solomon Boulos†

� Intel Corporation †Stanford University

Figure 1: The BART robots scene (71.7K triangle, 1 quad light), rendered with primary rays only, forced 2-bounce reflections, soft shadows (16
light samples), and a 2-bounce path tracer (16 samples per pixel). Though slower than aggressive packet/frustum techniques for the primary ray
case, our single-ray based method is more efficient for the less coherent soft shadows and path traced images.

ABSTRACT

While contemporary approaches to SIMD ray tracing typically rely
on traversing packets of coherent rays through a binary data struc-
ture, we instead evaluate the alternative of traversing individual rays
through a bounding volume hierarchy with a branching factor of 16.
Though obviously less efficient than high-performance packet tech-
niques for primary rays, we demonstrate that for less coherent sec-
ondary ray distributions this approach is at least competitive with
(and often faster than) typical packet traversal techniques.

1 INTRODUCTION

Commodity hardware architectures continue to offer more com-
pute performance every year, but increasingly rely on thread par-
allelism and ever wider SIMD units to deliver that performance.
For ray tracing, exploiting thread parallelism is straightforward us-
ing screen-space parallelization. Exploiting SIMD units, however,
is more complicated, and requires changing the core algorithms.

The standard technique for using SIMD in interactive ray trac-
ing is to generate, trace, and shade packets of rays. For coherent
rays (i.e., rays that want to traverse the same nodes and intersect
the same primitives), packet tracing usually achieves both very high
SIMD utilization and bandwidth reductions – both of which are cru-
cial to exploiting the hardware’s full potential. Packet techniques
have been shown to work well for a wide variety of acceleration
structures and primitive types; and have also been shown to not be
restricted to primary rays, but to also work for (reasonably coher-
ent) shadow and reflection rays.

On the flip-side, packet techniques become inefficient as the rays
becomes less coherent. Even if there is coherence, the manner in
which rays are grouped into packets has a crucial impact on per-
formance. For example, consider computing soft shadows with 64
samples per light for a 64 ray input packet. To name only the most
straightforward approaches, one could either shoot a separate 64-
ray packet from each of the 64 surface points or connect all 64 sur-
face points to one light sample each (and iterate 64 times to produce
64 light samples). Alternatively, one could trace a giant packet of

64× 64 = 4K rays. Other groupings make sense, too, but already
the complications are manifest (we have not even discussed what to
do when the incoming ray packet hit differing geometry or shaders).

In addition, packet tracing requires a large amount of regularity
that complicates the actual shader/renderer code. For example, the
importance sampling techniques used by many high-quality ren-
derers choose a varying number of light samples for every surface
sample, with some light sources receiving only a single sample (or
none at all), while others receive lots of samples. For any technique
that relies on “coherent” packets of exactly the “right” number of
rays, supporting this kind of irregularity is, to say the least, an un-
solved problem. It should be no surprise that packets remain unused
in high-quality offline renderers.

Eventually, it might turn out that rendering algorithms like path
tracing will simply not perform well on SIMD architectures regard-
less of modifications. On the other hand, it is also possible that
packet tracing will, in practice, be “good enough” for the rendering
algorithms that the average user will run on such hardware architec-
tures. That notwithstanding we believe it is important to not simply
hope for the best, but rather to reconsider alternatives to relying on
packets—even if such techniques are likely to be slower for cases
where packet tracing excels.

In this paper, we investigate the use of bounding volume hierar-
chies with branching factors equal to the architecture’s SIMD width
of a wide-SIMD hardware architecture (in this paper, we assume a
SIMD with of 16). Instead of relying on packets, we trace every ray
individually, and exploit SIMD parallelism by always testing every
ray against 16 nodes or 16 triangles. We demonstrate that with a
properly built bounding volume hierarchy (BVH) and a front-to-
back traversal algorithm, this approach is somewhat slower than
aggressive packet techniques for primary rays, but that it is at least
competitive with packet techniques soon as packet coherence drops,
while at the same time restoring a renderer’s ability to trace individ-
ual and possibly incoherent rays.

2 BACKGROUND

SIMD Architectures. Modern high-performance hardware archi-
tectures feature two distinct features: parallelism through many
cores/execution units, and a SIMD-way of execution inside each
core. The number of cores typically is in the few dozens (e.g., 16
cores on a 4-way 4-core Harpertown workstation, and 16 “cores”

on a GTX8800. Current SIMD width for CPUs is 4 [9] (increas-
ing to 8 in the near feature [10]) and recent GPUs provide an even
higher SIMD width using their parallel floating point units. For
the remainder of this paper, we will assume a SIMD width of 16,
though the same approach would also fit other SIMD widths (a sim-
ilar approach for a 4-wide SIMD architecture has been concurrently
investigated in [4]).

SIMD Packet Tracing. Exploiting SIMD means performing the
same basic operation on multiple data elements. In ray tracing, the
most common SIMD operations are node traversal, primitive inter-
section, and shading. One of the most widely used techniques for
SIMD ray tracing today is packet tracing, in which all these opera-
tions – traversal, intersection, and shading – are executed in parallel
on a set of coherent rays called a “ray packet”. Packet tracing was
originally proposed by Wald et al. [28] for triangular scenes and
kd-trees, but has since been applied to a wide variety of primitive
types, acceleration structures, and hardware architectures.

For shading, this way of processing the hit points/fragments
seems quite natural; it is exactly what current GPUs do, too, and
in practice it seems to work rather well. For node traversal and
triangle intersection, always performing the same operation on dif-
ferent rays is more tricky. As rays diverge they choose to follow
differing paths down hierarchical data structures, especially if the
rays are traversing different regions of the scene. This is similar
to branch divergence in shaders, however, with a deep acceleration
structure the number of branches compounds quickly. Neverthe-
less, current high-performance ray tracers assume that the amount
of branch divergence is low enough that SIMD packet tracing will
provide sufficient benefit.

Larger Packet Techniques. SIMD packet tracing can only provide
as much benefit as the SIMD width of the machine. In addition to
these hardware-related benefits, using packets larger than the SIMD
width also allows for algorithmic benefits that actually avoid certain
operations, typically by performing some conservative full-packet
rejection tests based on bounding frusta, bounding rays, or interval
arithmetic [5, 19, 20, 24, 26]. All of these techniques rely on high
ray coherence to deliver benefits over SIMD packet tracing.

Coherence Techniques. As the distribution of rays becomes inco-
herent, SIMD packet tracing quickly suffers from low SIMD uti-
lization, eventually using only a fraction of the hardware’s poten-
tial. For large packet techniques, incoherent rays can lead to per-
forming more computations than single ray code would have per-
formed. The problem with packet techniques is that they do not
answer the question where the coherent packets come from in the
first place, and thus rely on the shading/rendering engine to pro-
duce good packets—which more often than not means they have to
have exactly the right size (big enough to provide gains, yet small
enough to avoid overhead), and a sufficient amount of coherence.

Generating packets of coherent rays is trivial for primary rays,
and maintaining the primary rays’ grouping for all future genera-
tions of these rays has been shown to work reasonably well at least
for hard shadows and perfect reflections [22]. By carefully deter-
mining the order in which rays are cast, packet tracing can also be
used to compute indirect diffuse illumination [27], as well as Whit-
ted and Distribution Ray Tracing [1]. Reshetov [18] has shown that
after several bounces of perfectly specular reflections packet uti-
lization drops to essentially a single valid ray per packet, and for
diffuse bounces or ambient occlusion rays, this frequently happens
after even only one or two bounces [25].

Trying to increase the coherence of a given ray distribution was
investigated as early as Pharr et al.’s Memory Coherent Ray Trac-
ing [15], where rays from a path tracer were reordered into a more
coherent sequence by stepping them through a coarse scheduling
grid. While highly successful for reducing disk I/O in out-of-core
ray tracing, it is not clear if the reordering overhead would pay off

for extracting SIMD parallelism. In [25], it was shown that SIMD
utilization can be improved by tracing large packets in breadth-
first manner, and successively discarding rays that become inactive.
Mansson et al. [13] proposed reordering rays via grouping them into
larger batches than their packet size, and then shooting packet sized
subsets of this batch in sequence. None of their proposed heuristics
performed better than SIMD packet tracing in final rendering per-
formance. Similar to Pharr’s approach, Navratil et al. [14] also pro-
posed reordering based on the acceleration structure. The focus was
directed at geometry and ray bandwidth only, and no comparisons
were made with respect to absolute performance or reducing com-
putational costs such as ray-triangle tests. The drawback of all these
reordering approaches is that they require to queue up large num-
bers of rays from which the coherence is to be extracted—which
is likely to be problematic on high-throughput architectures with
small cache sizes.

Node-/Triangle-Parallel SIMD Ray Tracing. The obvious alter-
native to tracing packets is to trace single rays, and always intersect
this individual ray with N different nodes/triangles. In fact, the first
approaches towards SIMD ray tracing that we are aware of [17] did
exactly that, by building kd-trees whose cost function was skewed
to favor large leaves with triangles close to the architecture’s SIMD
width, and then intersecting N triangles at once. This idea however
was then abandoned in favor of packet techniques because of three
reasons: first, kd-trees (the favorite data structure at that time) favor
small leaves, and perform badly for large leaves; second, because
kd-trees are intrinsically binary the same idea cannot be used for
traversal; and third, the approach would not have given any benefit
for shading and ray generation. For these reasons, Wald et al. [28]
then argued that a more efficient way of using SIMD in a (kd-tree
based) ray tracer is to trace, intersect, and shade packets of rays.

Multi-branching BVHs and Single-Ray SIMD Intersection. The
arguments against node-parallel ray tracing may be true for kd-
trees, but do not apply to BVHs. BVHs naturally support higher
branching factors, and the first BVH based ray tracers did, in fact,
use BVHs with a variable number of children per node [6, 21]. Even
the idea of testing multiple BVH nodes in parallel has been pro-
posed before [3], though not in a real-time context.

Concurrently to this paper, the idea of BVHs with branching fac-
tors higher than two has also been investigated by Dammertz et
al. [4]; we will come back to their approach–and contrast it with
ours–in Section 6.4.

3 METHOD OVERVIEW

In this paper, we investigate the use of BVHs with branching fac-
tors of up to 16 (the SIMD width of our target architecture). For
inner nodes, we test 16 nodes in SIMD; for leaf nodes, we intersect
triangles in batches of 16. Due to this SIMD processing, we use
a SIMD-friendly data layout in which all 16 children of the same
node are stored in a structure-of-array (SoA) “multi-node” layout.
Note that this forces every multi-node to contain 16 node slots even
if the parent node has less than 16 children; any unused nodes are
flagged as invalid. The actual true hierarchy is governed by a sur-
face area heuristic that takes the modified traversal and intersection
cost into account. The resulting trees have an average branching
factor and leaf size of 10–12 each (the most often traversed nodes
high up in the tree usually are completely filled), and produce high
SIMD utilization even for single-ray traversal.

We also introduce an efficient SIMD traversal technique for these
BVHs that produces a strict front-to-back traversal with a minimum
of scalar code to determine the traversal order. We acknowledge
that this approach is slower for primary rays for which aggressive
packet techniques excel, but demonstrate that it performs better than
those techniques as soon as incoherent rays like soft shadows or
path tracing are considered.

Though in principle also applicable to SIMD widths other than
16, our implementation is designed for a specific hardware archi-
tecture, and is currently hard-coded for a SIMD width of 16.

4 BUILDING GOOD MULTI-BRANCHING BVHS

Though an efficient traversal routine is key to performance, the ac-
tual way the data structure is built often can have a similar per-
formance impact. To be able to evaluate the quality of a multi-
BVH, we first have to derive a cost function, for which we can use
a slightly modified form of the surface area heuristic (SAH). This
heuristic in fact was originally introduced for BVHs with arbitrary
branching factors, and thus works quite well for our purposes.

The only difference to the standard SAH is that the cost function
for leaves and inner nodes is slightly different. Since we always
perform 16 triangle tests respectively 16 axis-aligned box tests in
parallel for the same ray, intersecting 16 triangles in a leaf now
costs roughly as much as intersecting a single triangle; the same
argument holds true for box tests in inner nodes. Thus, the cost
for intersecting a leaf L with N(L) triangles is proportional to the
number of “chunks” of 16 triangles,

C(L) = Ktrid
N(L)

16
e,

where Ktri is a constant that models the cost of a SIMD triangle test,
and which we will subsequently ignore. As our branching factor
is equal to the SIMD with, the cost for an inner node is constant
independent of the number of children.

Following the traditional assumptions for the surface area heuris-
tic [6, 7], the probability of any node n being traversed by a random
ray is proportional to the node’s surface area SA(n). Thus, the ag-
gregate cost in SIMD triangle intersections and SIMD box tests for
a given multi-BVH can be estimated as

Ctri = ∑
leaves L

SA(L)dN(L)
16

e and Cbox = ∑
multi−nodes M

SA(M).

Based on this global cost estimate, we can evaluate the quality of
any multi-BVH we produce.

4.1 Splitting vs Collapsing
One obvious choice for building multi-branching BVHs is to use
the original Goldsmith-Salmon approach of successive merging of
nodes. However, for binary BVHs this is known to produce rather
poor BVHs, and we could not find any convincing argument that
this should be different for multi-branching BVHs. We have there-
fore not investigated this technique at all.

For binary BVHs, the best known build techniques operate by re-
cursively partitioning a node in top-down fashion until some set of
criteria indicates that a leaf should be built. For our multi-BVH, the
situation gets a bit more complicated, primarily because the cost of
leaf and node intersection are now piecewise constant. Eventually,
we see two promising ways of building multi-BVHs: First, one can
build a binary BVH, and successively collapse it into a multi-way
BVH; and second, one could use a top-down approach that succes-
sively splits in breadth-first order (i.e., always split the “biggest”
node), and that stores a multi-node every time 16 nodes have been
generated.

We originally believed collapsing to be the simpler approach, so
we focus on that first. To do so, we take an existing high-quality
BVH builder (based on SAH-based binning), build a binary BVH,
and copy this binary BVH into our multi-node layout (i.e., every
multi-node has exactly 2 valid and 14 invalid children), which we
can then collapse.

When collapsing a binary BVH, the simplest method is to col-
lapse from the leaves up, always merging every pair of leaves as

long as they together have less than triangles. Though trivial to im-
plement, this turns out to be a bad idea. For example, if two nodes A
and B have less than 16 triangles when combined (say, NA = 6 and
NB = 7) then all NA + NB = 13 triangles can be intersected for the
same cost as a single triangle. While this simple comparison would
suggest merging the two nodes, the probability of intersecting the
combined node could actually be much higher than before (in the
case that SA(A∪B) > SA(A)+SA(B)).

4.2 SAH-based Collapsing
Instead of collapsing naı̈vely we opted for a more sophisticated ap-
proach: we determine a set of three tree transformations (merging
a child node into the parent node, merging two leaf-node children,
and merging two inner-node children), and greedily execute these
techniques based on the technique’s impact on expected tree cost.

Merging a child node into its parent. We iterate over all the chil-
dren ci of a node n, and determine if we could adopt that node’s
children as our own (i.e., whether N(n)−1+N(ci) <= 16). If this
merge operation is possible, the change in SAH is exactly SA(ci),
since neither ci’s children nor SA(n) change at all, while ci disap-
pears. We determine the child with highest possible gain, and, if
found, collapse it. As merging a child always produces a positive
gain, we perform this technique as often as possible.

Merging two leaf-node children. Once no child can be merged
into the current node, we examine every pair (ci,c j) of leaf-node
children, and determine the impact of potentially merging them.
The change in tree cost is the cost of the previous configuration
(SA(ci)dN(ci)

16 e+ SA(c j)d
N(c j)

16 e) less the cost of the merged node

(SA(ci ∪ c j)d
N(ci)+N(c j)

16 e). We determine the pair with the highest
(positive) gain, and, if found, merge it.

Merging two inner-node children. In some cases, the previous
two techniques can get stuck in a situation where neither can exe-
cute. In fact, we found cases where a certain node has 16 children
(i.e., merging a child is not possible), each of which had only two
leaves that the above heuristic suggested should not be merged. In
this case, it would still make sense to have two 16-leaf children,
thus potentially allowing the parent node to be merged upwards.

To help that to happen, we have added a technique that looks
at every pair (ci,c j) of inner-node children, determines if merging
those would be beneficial, and, determines the pair with maximum
(positive) cost reduction (SA(ci)+SA(c j)−SA(ci ∪ c j)). Since we
perform the merge only if this gain is positive, it is still possible to
get stuck in local minima, but this seems to be quite tolerable.

Taking it all together. Initially, we had assumed it would be bene-
ficial to perform collapsing bottom-up (i.e., recurse first, then apply
the just described collapsing operations). Once again, however, in-
tuition turned out to be wrong, and produces relatively bad trees.
Instead, the algorithm that produces the best trees is to start at the
root, to first maximize the respective node’s branching factor by
pulling up children as long as possible; then to recurse into the chil-
dren; and only at the very end trying to merge pairs of leaf-node
or inner-node children. This corresponds to collapsing inner nodes
top-down and leaf nodes bottom up (which is algorithmically simi-
lar to standard top-down greedy splitting).

Though our method attempts to produce trees with an optimal
cost, a purely SAH based collapsing tends to produce trees with
relatively low branching factors (5–6 on average). While the cost
metric indicates that trees with higher branching factors would not
be faster even though they produce higher SIMD utilization, forcing
higher branching factors has the added benefit of reducing mem-
ory consumption. The low branching factors turned out to be from
nodes near the leaves, so we typically perform an a-priori leaf col-
lapsing before SAH collapse that collapses every sub-tree with at

erw6 (804) office (34K) robots (72K) soda (141K) conference (282K) cruiser (3.6M)

original binary BVH w/ SAH build
num leaf nodes 335 16K 34K 63K 132K 1.75M
num inner nodes 335 16K 34K 63K 132K 1.75M
SAH box cost estimate 445 482 13.6M 1.5K 3806 13.9K
SAH tri cost estimate 190 141 2.0M 368 546 1.6K
avg num active children / node 2 2 2 2 2 2
avg num tris / leaf 2.4 2.13 2.26 2.26 2.1 2.08

after SAH-based collapse
num leaf nodes 74 (-4.5x) 2833 (-5.6x) 6345 (-5.4x) 11.3K (-5.6x) 25K (-3.2x) 318K (-5.5x)
num inner nodes 7 (-48x) 296 (-54x) 759 (-44.8x) 1147 (-55x) 2.8K (-47x) 32.5K (-54x)
SAH box cost estimate box/tri 7.3 (-61x) 21.8 (-22x) 1.37M (-9.9x) 125 (-12x) 449 (-8.5x) 2.06K (-6.7x)
SAH tri cost estimate box/tri 117 (-38%) 110 (-22%) 1.86M (-7%) 278 (-24%) 471 (-15%) 1.49K (-9%)
avg num active children / node 11.4 10.6 9.4 10.9 9.7 10.8
avg num tris / leaf 10.9 12.0 11.3 12.5 11.3 11.5

Table 1: BVH statistics for original binary BVH before collapsing, as well as for the BVH produced through SAH collapsing. The collapsed BVH
consistently has a branching factor of 9.4–11.4 (nodes that do not contain any leaves are always filled), and have significantly lower expected
SAH cost. The number of nodes drops by 45–55x for inner nodes and 4–5x for leaf nodes, indicating a 3–4x reduction in overall memory footprint.

most 16 triangles into a leaf node. The resulting trees can have a
higher expected cost but achieve average branching factors of 10–
12 (rather than 5–6), and consequently require less memory.

Cost-wise, collapsing is rather cheap: though not optimized at
all, on a 2.2GHz Core2 laptop CPU collapsing an existing BVH
requires roughly 12 seconds for the cruiser (3.6M triangles), and
less than half a second for the conference scene (280K tris).

4.3 Top-down recursive splitting
While collapsing produces fairly good trees with reasonable build
times, it still consumes quite a bit of memory and would never be
faster than the initial binary BVH build. Therefore, we also inves-
tigate a top-down greedy splitting technique, which is both surpris-
ingly simple and produces nearly the same tree quality.

The basic algorithm is to always keep a set of “potential” nodes,
each of which corresponds to a sub-tree that is not split, yet. For
each such potential node, we can–using standard binning tech-
niques in the spirit of [8, 16]–determine if there is any good split
for this node. Starting with a single node that contains all triangles,
we can then greedily split the node with the biggest surface area
until either no more split-able nodes are available, or until 16 nodes
have been generated. At this stage, the (up to 16) nodes are stored
in a multi-node; those children without splits are marked as leaves,
and those with valid splits are processed recursively, eventually pro-
ducing new multi-nodes. The final algorithm (see Algorithm 1) has
slightly different branching factors than SAH-based collapsing, but
roughly the same SAH cost. Though producing comparable trees
and faster to build, for the remainder of this paper we will use the
SAH-collapsing method described above.

4.4 Resulting Build Quality
In Table 1, we compare several performance influencing factors (ex-
pected SAH cost, average branching factor, etc) for both the binary
BVH before collapse, as well as for the resulting BVH after the
collapsing has been performed. As can be seen, the collapsing pro-
duces branching factors of 9.4–11.4 (nodes with high SAH close to
the root will typically be full) which we believe is reasonably close
to the optimum. The multi-BVH has consistently 4–5x less leaf
nodes and consistently produces around 11 triangles per node when
the a-priori collapsing of sub-trees with 16 triangles is used. Note
that the branching factor and the number of triangles per leaf will
be a first-order approximation to SIMD utilization during traversal.
This indicates around 70% utilization, which is actually quite good
for incoherent rays (compare, e.g., to the data in [25]).

The number of inner nodes drops even further, by consistently
around 50x. Though every node now is 16x as large as a traditional
node, the net savings is still significant (we had, in fact, expected a

Algorithm 1 Pseudo-code for top-down splitting. “wants to get
split” involves an SAH binning step

NodeState rootState = {all triangles }
make-multi-node(rootState);

Function makemultinode(NodeState: node to split)
multi-node = { node to split }
while |multi-node| < 16 do

pick non-leaf node with largest SAH that wants to get split
if no node left that wants to get split then

break;
else

split and remove node, insert children into multi-node
end if

end while
for all nodes of multi-node do

if node is non-leaf then
child = make-multi-node(child); {recurse}

end if
end for

higher memory consumption). This significantly lower node count
and memory consumption indicates potential for fast build algo-
rithms, which we have not investigated, yet.

The expected SIMD triangle tests cost goes down (9–38%), but
not significantly; since a binary BVH is very good at reducing tri-
angle tests, this is hardly surprising. The expected cost for SIMD
box tests however drops significantly, from 6.7x for the cruiser to up
to 61x for erw6; for conference and nrcoff the savings in expected
SIMD box tests is around one order of magnitude.

5 SIMD TRAVERSAL AND INTERSECTION

Our Multi-BVH is implemented in an existing ray tracer assum-
ing a 16-wide SIMD target. This codebase already supports packet
traversal (for SIMD-sized packets), a prototypical SIMD stream
tracing in the spirit of [25], and a version of the aggressive Dyn-
BVH traversal algorithm as described in [24]. Since both DynBVH
and SIMD stream tracing rely on packets that are larger than 16
rays, the codebase is designed around large packets that have a fixed
maximum size, but which can be partially and sparsely filled (rays
can be flagged as inactive). On average, 64–256 rays per packet are
being used, though some shaders may trace shadow rays in batches
of 16 per packet (part of which can be inactive). We use the existing
shading framework, but traverse each of the packet’s rays individu-
ally, one after another.

5.1 Traversal Setup
Given an input ray packet, we simply loop over all (active) rays
in that packet and traverse them individually. Each such ray gets
pulled out of the packet, and is immediately replicated into a 16-ray
SoA packet format similar to that used by packet techniques (this
allows the compiler to keep the ray data in registers). This ray is
then fed to the traversal loop, which starts at the root (multi-)node.

5.2 SIMD Node Test
Whenever a ray visits a multi-node, it is tested against that node’s
16 AABBs. This is done using the same SIMD slabs test as used in
the traditional packet techniques: the test performs 16 ray/box tests
in parallel, and doesn’t care whether any of the rays and/or boxes
are the same. The test returns a mask indicating which of the 16
children are hit by the ray.

5.3 Strict Front-to-Back Traversal Order
Based on this valid mask, we now have up to 16 children that
may need to be traversed. Binary BVHs are traditionally traversed
depth-first with an “ordered traversal” that determines the traversal
order of both two children based on the given ray’s direction sign
for the node’s chosen axis.

For our multi-BVH, this method cannot easily be applied, as
picking an a-priori ordering for 16 different boxes is not trivial. Al-
ternatively, we could traverse the nodes in the order of their distance
to the ray origin [11]. This distance is already calculated during the
box test, but determining the order of the intersected boxes would
require a horizontal sort of two SIMD registers, which is not trivial.

Instead of using a stack-based depth-first traversal, we can use
a strict front-to-back traversal based on keeping a unsorted list of
which nodes are currently “active”, as well as the distance to each
node. After every (multi-)node test, the node’s active children are
appended to the list using a fast vector compact operation that com-
pacts the node’s child IDs based on the box test’s overlap mask.

Once a node has been traversed, the next node to be traversed is
selected by scanning the active list for the element with the smallest
distance. Since only a few children for a given node are active and
since the multi-BVH is fairly shallow the list stays very short (it
is rarely longer than 16 elements). Thus, scanning the list for the
shortest element is very fast when scanned in 16-wide blocks at a
time. After the closest node has been selected, we replace it with
the element at the end of the list (again, we do not sort the list).

5.4 Leaf Intersection and Active List Pruning
So far, we have only considered inner node traversal steps. Once
traversal reaches a leaf node, we obviously intersect the triangles in
that leaf (see below), which is relatively straightforward. In ad-
dition, since every triangle intersection step has the potential to
shorten the valid ray distance (if a hit is found, we do not have
to traverse beyond that ray), there is also a good chance that a (suc-
cessful) ray-triangle intersection would result in some of the nodes
in the active list to now be behind the newly found hit distance.

To exploit that fact, we prune such newly deactivated nodes from
the active list by performing a stream compaction on the list. Since
the list can only get shorter, there is no need for temporary memory.
Again, this operation is very fast, as vector compaction is cheap,
and the whole list is typically processed in a single iteration (since
it is usually short).

5.5 Traversal order – Taking it all together
Taken together, using a strict front-to-back traversal order based on
an (unsorted) active list is quite simple, and very efficient. In par-
ticular, though we had feared the list might become prohibitively
long, this is not the case: it is indeed possible to construct a degen-
erate case where the list contains all leaf nodes (i.e., the list length
is only bounded by the number of nodes), but this is a worst-case

Algorithm 2 Pseudo-code for the front-to-back SIMD traversal.
nodeID = root; activeList = empty;
while true do

node = rootNode; activeList = empty;
if node is leaf then

Perform SIMD triangle tests for 16 tris at a time
compact activelist w/ new hit distance

else
(overlapmask,distances) = SIMD box test(node.boxes);
vector compact (node.childIDs,distances) w/ overlapmask
append compacted (node.childIDs,distances) to activelist

end if
if activelist is empty then

return;
else

scan activelist for node w/ minimum distance
replace closest node with last node; shrink list

end if
end while

assumption and in practice does not happen1. On average the list
length is 3–5 elements, and rarely ever gets longer than 16. The
likely reason for this is that even if a node has 16 children (often
less), only few (≈3) of those will actually be active, and only those
will be appended to the list. At the same time, every traversal step
takes one node off that list, and every leaf traversal will perform an
additional pruning. With the trees being as shallow as they are (see
Table 1), the list never grows very large. The operations to manipu-
late this list (compact during prune, and selecting the closest among
16) are very cheap, too, at least on our target architecture. On our
target architecture, we also believe this is less expensive than a full
priority queue approach [11] and performs the same function. The
complete algorithm is depicted in Algorithm 2.

5.6 SIMD Triangle Intersection
Though we have so far neglected this issue, when we reach a leaf
we also have to intersect the triangles stored in this leaf. We iterate
over the leaf’s item list in SIMD chunks of 16, fetch 16 triangle IDs,
gather the resulting triangles and vertices, and perform 16 parallel
triangle tests. The resulting code again is nearly identical to the 16-
rays-one-triangle code, except that after all triangle tests have been
performed, an additional reduction has to be performed (since the
ray may have hit several of the triangles and we have to determine
the closest one). This reduction however is rather simple.

5.7 Pre-Gathering
One drawback of the 16-wide SIMD triangle test is that the inter-
section code has to gather triangles from up to 16 different mem-
ory locations. This can be avoided by pre-gathering each leaf’s
triangles during building, and then having each leaf store its trian-
gle’s vertices in compact SoA form. This is trivial to implement
and greatly simplifies memory access patterns, but it also increases
overall memory consumption, so whether it pays off probably de-
pends on the application. With leaves now having 10 and more
triangles (see Table 1), it may also make sense to combine our tech-
nique with other techniques like storing self-sufficient meshlets or
triangle strips inside each leaf; but this, too, requires further inves-
tigation.

6 RESULTS

As mentioned before, our approach is designed for the Larrabee ar-
chitecture; since this is not yet physically available, we will focus

1For a similarly artificial case of a completely uniform geometry, the list
length is bounded by O(klogN)), where logN is the depth of the tree.

on statistical traversal results (albeit only for 16-wide SIMD), as
well as on emulator/simulator data. All code can be compiled and
executed on the actual simulators, and simulator runs have been per-
formed on selected experiments to ensure correctness. All images
and statistics have been computed by recompiling the same code
with an emulation library written in standard C++.

Test Scenes. As test scenes, we have chosen the freely avail-
able MGF scenes erw6, office, NRC office, conference, soda
shoppe, and cruiser, as well as the robots scene from the BART
benchmark [12]. These scenes (see Figure 3) span a wide range of
complexity, from 800 triangles in erw6 to over 3.4 million trian-
gles in cruiser. For erw6, office, NRC office, and soda shoppe we
have used the original area light sources (spheres and quads) from
the MGF files; for cruiser, conference, and robots the original light
sources have been replaced with a single area light.

Shaders / Ray Distributions. In terms of ray distributions,
we have chosen an EyeLight shader (N ·V) that traces only pri-
mary rays; a shader that computes two bounces of perfect specular
reflections irrespective of actual surface parameters; a shader that
computes soft shadows; and a path tracer with 2 diffuse bounces
and separate light source sampling (see Figures 1 and 2). The path
tracer setup takes 16 samples per pixel, and combines 4× 4 pix-
els into the same packet (i.e., 256 rays per packet total). All other
shaders use a single sample per pixel, and combine 8×8 pixels (i.e.,
64 rays per packet). Soft shadows are computed with 16 samples
per light source; as there are different ways of doing this we have
added two separate implementations – one that traces a 16-sample
packet for every surface point, and one that traces 16 successive
packet (of 64 rays each) in which every surface point takes one ran-
dom sample per light. The path tracer computes one sample per
light per surface point, and groups shadow rays into one packet per
light source. Each incoming ray is then bounced by taking a ran-
dom direction on the hemisphere, and is bounced exactly two times
(i.e., a maximum path length of three rays). To generate random
samples, we use a simple 48-bit linear congruence generator.

Secondary ray packets can be partially filled (e.g., through
shadow rays facing away from the surface normal); unused ray slots
get masked out, but partially filled packets never get re-ordered,
compressed, or optimized in any other form.

Traversal Methods. In terms of traversal methods, we com-
pare our multi-BVH traversal against both DynBVH-style traver-
sal and SIMD packet traversal (“packet16” traversal). All traversal
methods get fed with the same packets (with up to 256 rays per
packet for the path tracer), but traverse them differently: multi-
BVH traversal traverses each packet ray by ray; packet16 traces
larger packets in batches of 16 rays (without any frustum or interval
optimizations), and DynBVH traces the entire packet with first-hit
tracking and interval arithmetic culling (see [24]). Both packet16
and multi-BVH traversal should be able to keep all ray data in reg-
isters, DynBVH will not. Also note that secondary ray packets are
not always “full”, which particularly hampers the DynBVH traver-
sal.

6.1 Statistical Results per Ray Distribution
The first obvious value to quantify is the number of SIMD box
tests and SIMD triangle tests performed by each traversal method.
Though our single-ray traversal intersects one ray with 16 trian-
gles/nodes rather than 16 rays with the same node/triangle, the op-
erations performed by both variants are almost identical, and are
roughly comparable in cost. There may, of course, be a difference
in memory access cost, as the 1-ray 16-triangle version will collect
16 different triangles, which is not the case for the packet versions.
On the other hand, the multi-BVH traversal will always read 16
BVH nodes “en bloc”, while packet traversal and DynBVH traver-
sal read from multiple cache lines in a less predictable pattern. As

Figure 2: Eyelight shader (primary rays), perfectly specular reflec-
tions (2 bounces), soft shadows (16 samples per light), and path
tracing (2 bounces, 1 sample per light) for the conference scene.

we believe that these two factors will roughly cancel each other out,
we will assume roughly comparable cost for both variants.

The actual numbers for all our scenes, ray distributions, and
traversal algorithms can be found in Tables 2–5. Not unexpectedly,
DynBVH is the most volatile among these techniques, performing
significantly less operations for primary rays and (to a lesser degree)
for the forced specular reflections, but performing up to 6x more tri-
angle tests even than packet traversal for the path tracing case. Our
multi-BVH technique behaves exactly opposite to that, performing
up to 3–4x more operations for primary rays, but for incoherent
rays performs up to 3x less triangle tests than packet traversal, and
up to 19x less than DynBVH traversal. While the large number of
triangle tests for DynBVH is not unexpected (due to its speculative
nature), it turns out that single ray multi-BVH traversal even per-
forms less box tests (3–4x), which we found somewhat surprising.

Note that these numbers do not yet capture other effects such as
the additional interval tests performed by DynBVH traversal (which
we completely ignore here), the fact that DynBVH cannot hold all
rays in registers, or the fact that too large packets may have a nega-
tive impact on first-level cache (256 rays already consume 12 kilo-
bytes!). Also, it does not capture the fact that with the ability to
trace arbitrarily sized packets the renderer might use the same num-
ber of rays more economically (e.g., taking only five samples on a
light rather than 16).

6.2 Memory Bandwidth

Though the number of primitive operations is a first-order approxi-
mation of compute requirements, it does not model the second im-
portant factor that influences performance: bandwidth. Packet trac-
ing reduces memory bandwidth by amortizing each memory access
over all rays in the packet. Though our traversal statistics indicate
that we perform less node traversals and triangle intersections, each
node read from memory is now significantly larger (16x in bytes,
8x in cache lines), and triangle intersection now requires gathering
up to 16 different triangles.

Since this might potentially become a performance problem,
we quantified the memory bandwidth by taking a functional sim-
ulator and running both packet and multi-BVH traversal through

Figure 3: Test scenes used in our experiments. From left to right: erw6 (804 triangles, 1 quad light); office (34K, 2 quad lights, 1 sphere light);
robots (72K, 1 quad light); soda shoppe (141K, 6 sphere lights); nrc-office (222K, 12 quad lights); conference (280K, 1 quad light); and cruiser
(3.6M triangles, 1 quad light). All images are rendered with a two-bounce diffuse path tracer with 1 sample per light and 64 samples per pixel.

cachegrind (a freely available cache simulator [2]) in order to
determine the number of L2 misses.

Based on cachegrind, the L2 bandwidth for path tracing the
conference scene is indeed higher for the single-ray multi-BVH
traversal than for the packet based binary traversal, but not signif-
icantly so: packet traversal reported 48 million L2 misses (29m
read; 19m write), multi-BVH traversal reported 54m (34m read;
19m write). As the write misses indicate, there are some constant
factors (build, frame buffer writes) that somewhat hide the true im-
pact on traversal bandwidth, but at least compared to overall per-
frame bandwidth a 20% impact on bandwidth seems tolerable.

6.3 Performance Comparison

As our target architecture–Larrabee [23]–is not yet physically avail-
able, all numbers reported so far are based on simulator data. Our
whole system is written in C/C++ using SIMD intrinsics, is then
compiled using a special version of the Intel compiler, and run on
a cycle-accurate simulator. Due to the preliminary state of the tools
we used, however, all results have to be taken with a grain of salt:
In particular, the newer pieces of the code (i.e., multi-BVH and
shaders) are much less mature than the previously existing pieces of
code. This becomes aggravated by the fact that the system has al-
most exclusively been developed in a functional simulator, and has
not yet been duly optimized for the actual hardware/cycle-accurate
simulator.

Since the Larrabee architecture is not yet publicly available, any
actual performance data on it is of a sensitive nature. We therefore
report only relative performance data, with all performance normal-
ized to the multi-BVH traversal performance. Since a simulator run
for full-screen path tracing with multiple rays per pixel can take
a long time in cycle-accurate mode, we have restricted ourselves
to only the conference scene (we believe this to be the most rep-
resentative one), to only a single core (performance usually scales
linearly in number of cores), and to the Eyelight and 2-bounce path
trace shaders. Even then, for path tracing we have not rendered the
full image, but only a fixed number of randomly selected screen
tiles (of course, all traversals render the same tiles).

mBVH packet16 dynbvh
primary rays 1.0 3.0× 3.6×
two-bounce path tracer 1.0 -6% -46%

Table 6: Relative performance for packet tracing, dynbvh traversal,
and our multi-BVH for both primary rays and two-bounce path tracing
in the conference scene. Performance is relative to the multi-BVH,
and is measured on a cycle-accurate simulator (single core).

As can be seen from Table 6, the simulated data does indeed cor-
relate to the statistical performance data: As expected, for primary
rays both packet and dynbvh traversal outperform the multi-BVH
by 3−4×. For path tracing, the situation is different, with the multi-
BVH outperforming DynBVH traversal by almost 2×. Compared
to the plain packet tracer, the performance advantage is slimmer,
however, with our multi-BVH outperforming the chunk traversal
by only a few percent. This relatively low performance is due to
several different effects: First, the multi-BVH is the newest and

least optimized of the three traversals, leaving some room for im-
provement. Second, the simulator reports a significantly lower core
utilization than for both packet and dynbvh traversal, indicating that
the additional memory accesses (likely for the pre-processed trian-
gle data) are hurting (only parts of the image have been rendered,
and the simulator starts with cold caches). Third, as already indi-
cated before the multi-BVH traversal and intersection have to per-
form some horizontal operations that a packet traverser does not,
and those are costly. Fourth, and most importantly, the impact of the
shading cost masks the true impact on traversal efficiency: the path
trace shader is quite complex (including random number genera-
tion, sampling, trigonometric functions, etc) and is not optimized
at all, eventually making the shader cost more than half the total
per-frame time and dwarfing the time spent in ray-triangle and ray-
box tests. Finally, as argued before we believe that freeing shaders
from the burden to produce coherent packets of rays would allow to
simplify and optimize the shaders, which is not factored into these
results (the high cost for the shaders in fact supports this view).

6.4 Comparison to QBVHs
Concurrently to our work, the use of shallow BVHs has also been
investigated by Dammertz et al [4]. In fact, both approaches are sur-
prisingly similar in the data structure and algorithms they propose
as well as in the conclusions they draw. One of the few differences
relates to the traversal order: Dammertz stores the traversal order
per node, and then uses this in a depth-first traversal; which is es-
sentially the same as the “ordered traversal” used for binary BVHs
(see, e.g., [24]). We instead use a strict front-to-back traversal.

The much bigger difference between Dammertz’ approach and
ours is the branching factor: while Dammertz argued for a branch-
ing factor of 4, we use 16. This however is mainly a side effect
of the architecture that the algorithms run on, and 4 is likely to be
the better choice for 4-wide SIMD architecture. Whether 16 is the
right branching factor even on a 16-wide SIMD architecture will
require further investigation: While there are some indications that
branching factors higher than two can be beneficial by themselves,
a branching factor of 16 would arguably be too wide for a SIMD
width of less than 16. In fact, the cost metric we have used suggests
that the optimal branching factor is somewhere between 4 and 8.

Consequently, if there were a method that would use the 16-wide
SIMD to intersect less than 16 triangles (say, four), and that would
do that faster than we currently perform 16 triangle intersections,
then a BVH with a less extreme branching factor might be even
faster. Some obvious approaches would be to use 16-wide SIMD
to test the three dimensions of a 4-wide BVH, or to compute the
three edge tests for four triangles. Such triangles are already being
investigated, but so far are not fast enough; in their absence, we
believe 16 to be the right choice for our architecture.

7 SUMMARY AND CONCLUSION

We have investigated the use of BVHs with branching factors of
16 to efficiently trace rays on a 16-wide SIMD architecture with-
out having to rely on packets. Compared to the speculative BVH
packet traversal, our technique performs significantly worse for pri-
mary rays and coherent ray distributions, but performs better for

less coherent distributions like soft shadows and path tracing. Com-
pared to SIMD packet tracing, the difference is smaller but the new
technique still at least competitive for incoherent rays. Because
our approach does not rely on ray coherence, the single-ray multi-
BVH traversal even performs less SIMD box/triangle tests than the
breadth-first SIMD stream tracing approach proposed in [25].

In addition, our method offers several interesting points for fur-
ther improvements that we have not yet investigated. With signifi-
cantly shallower trees, less nodes, and more triangles per leaf, the
multi-bvh could be built very efficiently, which is promising for
dynamic scenes. For coherent rays, it might also be possible to
combine our approach with existing BVH packet traversal.

Outside of traversal, a renderer that is no longer required to pro-
duce ray packets with specific properties allows to re-establish a
degree of flexibility that was not available for packet-based ren-
derers. Eventually, this should allow to apply our technique in
any ray-based renderer, and with any global illumination algorithm
technique–including techniques such as bidirectional path tracing,
metropolis light transport, or photon mapping. In particular, sup-
porting arbitrarily sized packets should also make it easier to use
adaptive sampling and filtering techniques. For shading, working
on SIMD granularity rather than on larger packets is a big advan-
tage: it allows to keep more data in registers, it simplifies the shad-
ing loop, and it allows rays to be traced as soon as they are generated
rather than having to queue them up into large enough packets.

On the downside, it is at least possible that practical ray distri-
butions will be significantly more coherent than path tracing or ran-
dom light source sampling. Similarly, it could turn out that packet
techniques can be made simpler and more stable than we have as-
sumed in this paper. In either of those two cases, packet techniques
would work much better than we have assumed in this paper, and
would remain the way to go, in which case our technique would
make sense only for rather extreme niche applications.

Though the existing numbers are promising, a lot still remains to
be done. In particular, it is not clear whether 16 is a good choice for
either branching factor or leaf size. Also, packets would still make
sense for coherent ray distributions, but how to do this exactly re-
mains to be investigated. It also remains to be seen how exactly
the different techniques will perform when fully optimized for the
actual hardware, with all effects (number of registers, caches, band-
width) taken into account. The potential to trace individual rays
nearly as fast as packets also suggests that it may be appropriate
to re-think the overall system design of a real-time ray tracer. Fi-
nally, if it is indeed true that even our relatively simple path tracer
is already most costly than tracing the rays (irrespective of traversal
method), then it may also be time to stop trying to further optimize
ray traversal, and to rather concentrate on shading.

REFERENCES

[1] S. Boulos, D. Edwards, J. D. Lacewell, J. Kniss, J. Kautz, P. Shirley,
and I. Wald. Packet-based Whitted and Distribution Ray Tracing. In
Proceedings of Graphics Interface 2007, May 2007.

[2] Valgrind Tool Suite. http://valgrind.org.
[3] P. H. Christensen, J. Fong, D. M. Laur, and D. Batali. Ray tracing for

the movie ‘Cars’. In Proceedings of the IEEE Symposium on Interac-
tive Ray Tracing, pages 1–6, 2006.

[4] H. Dammertz, J. Hanika, and A. Keller. Shallow Bounding Volume
Hierarchies for Fast SIMD Ray Tracing of Incoherent Rays. Render-
ing Techniques 2008 (Proc. 19th Eurographics Symposium on Render-
ing), 2008.

[5] K. Dmitriev, V. Havran, and H.-P. Seidel. Faster Ray Tracing with
SIMD Shaft Culling. Research Report MPI-I-2004-4-006, Max-
Planck-Institut für Informatik, Saarbrücken, Germany, 2004.

[6] J. Goldsmith and J. Salmon. Automatic Creation of Object Hierarchies
for Ray Tracing. pages 14–20, 1987.

[7] V. Havran. Heuristic Ray Shooting Algorithms. PhD thesis, Faculty of
Electrical Engineering, Czech Technical University in Prague, 2001.

[8] W. Hunt, G. Stoll, and W. Mark. Fast kd-tree Construction with an
Adaptive Error-Bounded Heuristic. In Proceedings of the IEEE Sym-
posium on Interactive Ray Tracing, 2006.

[9] Intel Corp. Intel Pentium III Streaming SIMD Extensions. http://-
developer.intel.com/vtune/cbts/simd.htm, 2002.

[10] Intel Corp. Intel AVX. http://softwareprojects.intel.com/avx, 2008.
[11] T. Kay and J. Kajiya. Ray tracing complex scenes. Proceeding of

SIGGRAPH, pages 269–278, 1986.
[12] J. Lext, U. Assarsson, and T. Möller. BART: A Benchmark for Ani-

mated Ray Tracing. Technical report, Department of Computer Engi-
neering, Chalmers University of Technology, 2000.

[13] E. Mansson, J. Munkberg, and T. Akenine-Moller. Deep Coherent
Ray Tracing. Proceedings of the IEEE Symposium on Interactive Ray
Tracing, pages 79–85, 2007.

[14] P. A. Navrátil, D. S. Fussell, C. Lin, and W. R. Mark. Dynamic Ray
Scheduling to Improve Ray Coherence and Bandwidth Utilization.
2007.

[15] M. Pharr, C. Kolb, R. Gershbein, and P. Hanrahan. Rendering com-
plex scenes with memory-coherent ray tracing. In Proceedings of SIG-
GRAPH, pages 101–108, 1997.

[16] S. Popov, J. Günther, H.-P. Seidel, and P. Slusallek. Experiences with
Streaming Construction of SAH KD-Trees. In Proceedings of the
IEEE Symposium on Interactive Ray Tracing, 2006.

[17] A. Reshetov. Personal communication.
[18] A. Reshetov. Omnidirectional ray tracing traversal algorithm for kd-

trees. In Proceedings of the IEEE Symposium on Interactive Ray Trac-
ing, pages 57–60, 2006.

[19] A. Reshetov. Faster Ray Packets-Triangle Intersection through Ver-
tex Culling. Proceedings of the IEEE Symposium on Interactive Ray
Tracing, pages 105–112, 2007.

[20] A. Reshetov, A. Soupikov, and J. Hurley. Multi-level ray tracing algo-
rithm. In Proceedings of SIGGRAPH, pages 1176–1185, 2005.

[21] S. Rubin and T. Whitted. A 3D representation for fast rendering of
complex scenes. In Proceedings of SIGGRAPH, pages 110–116, 1980.

[22] J. Schmittler. SaarCOR - A Hardware-Architecture for Realtime Ray
Tracing. PhD thesis, Saarland University, 2006.

[23] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey,
S. Junkins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Gro-
chowski, T. Juan, and P. Hanrahan. Larrabee: A many-core x86 archi-
tecture for visual computing. ACM Transactions on Graphics, 27(3),
2008.

[24] I. Wald, S. Boulos, and P. Shirley. Ray Tracing Deformable Scenes
using Dynamic Bounding Volume Hierarchies. ACM Transactions on
Graphics, 26(1):6:1–6:18, Jan. 2007.

[25] I. Wald, C. P. Gribble, S. Boulos, and A. Kensler. SIMD Ray Stream
Tracing - SIMD Ray Traversal with Generalized Ray Packets and On-
the-fly Re-Ordering. Technical Report UUSCI-2007-012, 2007.

[26] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker. Ray Tracing
Animated Scenes using Coherent Grid Traversal. In Proceedings of
SIGGRAPH, pages 485–493, 2006.

[27] I. Wald, T. Kollig, C. Benthin, A. Keller, and P. Slusallek. Interactive
Global Illumination using Fast Ray Tracing. Rendering Techniques,
pages 15–24, 2002. (Proceedings of the 13th Eurographics Workshop
on Rendering).

[28] I. Wald, P. Slusallek, C. Benthin, and M. Wagner. Interactive Render-
ing with Coherent Ray Tracing. In Proceedings of EUROGRAPHICS,
pages 153–164, 2001.

scene #tris #lights num SIMD box-tests num SIMD tri tests
mBVH16 packet16 dynbvh stream mBVH16 packet16 dynbvh stream

erw6 806 1 1.22M 1.01M (83%) 282K (23%) 1.00M (82%) 1.17M 390K (33%) 501K (43%) 384K (33%)
nrcoff 222K 12 5.73M 4.95M (86%) 1.45M (25%) 4.88M (85%) 2.00M 650K (32%) 908K (45%) 608K (30%)
conf 280K 1 3.77M 3.39M (90%) 1.05M (28%) 3.25M (86%) 1.86M 518K (28%) 894K (48%) 421K (23%)
office 34K 3 2.07M 1.75M (85%) 522K (25%) 1.70M (82%) 1.62M 832K (51%) 1.13M (70%) 794K (49%)
soda 141K 6 4.12M 2.48M (60%) 735K (18%) 2.42M (59%) 2.08M 966K (46%) 1.40M (67%) 886K (43%)
robots 72K 1 7.81M 5.08M (65%) 1.59M (20%) 4.97M (64%) 1.84M 443K (24%) 648K (35%) 402K (22%)
cruiser 3.6M 1 7.08M 5.37M (76%) 1.70M (24%) 5.26M (74%) 2.26M 703K (31%) 1.06M (47%) 652K (29%)

Table 2: Traversal results for primary rays. As expected, our single-ray traversal cannot compete with packet techniques for almost perfect
coherent rays. Though surprisingly close to naı̈ve packet tracing, we perform 2–3 times as many triangle/box tests as DynBVH.

scene #tris #lights num SIMD box-tests num SIMD tri tests
mBVH16 packet16 dynbvh stream mBVH16 packet16 dynbvh stream

erw6 806 1 3.78M 3.20M (85%) 1.14M (30%) 3.16M (84%) 3.60M 1.18M (33%) 1.53M (42%) 1.14M (32%)
nrcoff 222K 12 19.0M 17.1M (90%) 6.67M (35%) 16.7M (88%) 6.99M 2.74M (39%) 4.12M (59%) 2.42M (35%)
conf 280K 1 14.8M 14.6M (99%) 7.65M (52%) 13.4M (91%) 7.09M 3.43M (48%) 6.35M (90%) 2.47M (35%)
office 34K 3 7.12M 6.49M (91%) 2.68M (38%) 6.39M (90%) 5.76M 3.72M (65%) 5.09M (88%) 3.45M (60%)
soda 141K 6 11.7M 9.05M (77%) 4.08M (35%) 8.85M (76%) 7.72M 4.81M (62%) 7.63M (99%) 4.22M (55%)
robots 72K 1 23.6M 18.3M (78%) 8.65M (37%) 17.3M (73%) 6.64M 2.25M (34%) 3.52M (53%) 1.73M (26%)
cruiser 3.6M 1 23.5M 20.4M (87%) 10.1M (43%) 19.5M (83%) 7.57M 3.37M (45%) 5.72M (76%) 2.69M (36%)

Table 3: Traversal results for (forced) specular reflections (two bounces). Though somewhat more costly than primary rays, specular reflections
still perform well with both packet traversal-16 and DynBVH traversal (numbers are aggregate, and include primary and first-generation bounce
rays).

scene #tris #lights num SIMD box-tests num SIMD tri tests
mBVH16 packet16 dynbvh stream mBVH16 packet16 dynbvh stream

Packet-grouping: 16 successive packets (per light) of 64 rays each (1 light sample per hitpoint)
erw6 806 1 17.4M 17.1M (98%) 7.76M (45%) 16.4M (94%) 16.6M 5.90M (36%) 7.34M (44%) 5.40M (33%)
nrcoff 222K 12 368M 341M (93%) 129M (35%) 318M (86%) 156M 64.4M (41%) 98.2M (63%) 53.4M (34%)
conf 280K 1 58.1M 103M (1.8x) 71.7M (1.2x) 79.4M (1.4x) 26.1M 36.5M (1.4x) 61.5M (2.4x) 21.8M (84%)
office 34K 3 111M 134M (1.2x) 64.6M (58%) 95.6M (86%) 45.1M 59.4M (1.3x) 92.1M (2.0x) 38.8M (86%)
soda 141K 6 228M 472M (2.1x) 307M (1.3x) 261M (1.1x) 114M 191M (1.7x) 398M (3.5x) 123M (1.1x)
robots 72K 1 103M 228M (2.2x) 188M (1.8x) 166M (1.6x) 23.2M 46.0M (2.0x) 84.7M (3.7x) 30.1M (1.3x)
cruiser 3.6M 1 83.2M 128M (1.5x) 112M (1.3x) 76.4M (92%) 18.8M 20.3M (1.1x) 49.2M (2.6x) 8.77M (47%)

Surface sample based grouping: 64 Packets of 16 light samples per surface each
erw6 806 1 17.1M 16.6M (97%) 15.9M (93%) 24.2M (1.4x) 16.6M 5.74M (35%) 8.49M (51%) 7.73M (47%)
nrcoff 222K 12 361M 307M (85%) 304M (84%) 325M (90%) 156M 52.4M (34%) 101M (65%) 55.5M (36%)
conf 280K 1 57.9M 98.7M (1.7x) 96.3M (1.7x) 138M (2.4x) 26.1M 34.2M (1.3x) 37.0M (1.4x) 34.9M (1.3x)
office 34K 3 110M 129M (1.2x) 128M (1.2x) 138M (1.3x) 45.1M 56.1M (1.2x) 109M (2.4x) 57.5M (1.3x)
soda 141K 6 225M 461M (2.0x) 459M (2.0x) 491M (2.2x) 114M 180M (1.6x) 337M (3.0x) 188M (1.6x)
robots 72K 1 102M 223M (2.2x) 219M (2.1x) 336M (3.3x) 23.2M 44.7M (1.9x) 46.1M (2.0x) 45.4M (2.0x)
cruiser 3.6M 1 81.8M 122M (1.5x) 118M (1.4x) 104M (1.3x) 18.8M 19.3M (1.0x) 27.1M (1.4x) 11.8M (63%)

Table 4: random samples per area light. For both tested grouping strategies, our single-ray based method performs better than both packet16
and DynBVH traversal except for the two smallest scenes. Note that the multi-BVH traversal shows variations due to the random nature of the
samples, but is otherwise agnostic to the order or grouped of the rays. SIMD stream tracing might actually perform better if all rays were grouped
into one single packet, but would require to re-write the shaders, and to generate prohibitively large packets.

scene #tris #lights num SIMD box-tests num SIMD tri tests
mBVH16 packet16 dynbvh stream mBVH16 packet16 dynbvh stream

erw6 806 1 112M 191M (1.7x) 198M (1.8x) 136M (1.2x) 96.5M 63.4M (66%) 165M (1.7x) 44.0M (46%)
nrcoff 222K 12 1.93B 6.85B (3.5x) 2.81B (1.5x) 673M 1.43B (2.1x) 725M (1.1x)
conf 280K 1 374M 1.21B (3.2x) 1.88B (5.0x) 736M (2.0x) 169M 354M (2.1x) 2.09B (12.4x) 225M (1.3x)
office 34K 3 387M 963M (2.5x) 1.01B (2.6x) 490M (1.3x) 194M 618M (3.2x) 1.97B (10.2x) 278M (1.4x)
soda 141K 6 879M 2.64B (3.0x) 3.13B (3.6x) 1.38B (1.6x) 446M 1.42B (3.2x) 8.65B (19.4x) 980M (2.2x)
robots 72K 1 616M 1.78B (2.9x) 2.19B (3.6x) 951M (1.5x) 155M 370M (2.4x) 1.65B (10.6x) 181M (1.2x)
cruiser 3.6M 1 634M 1.65B (2.6x) 3.02B (4.8x) 809M (1.3x) 183M 340M (1.9x) 2.05B (11.2x) 139M (76%)

Table 5: Traversal results for a two-bounce diffuse path tracer. For diffusely bounced rays, single-ray multi-BVH traversal is superior to both
packet16 and DynBVH traversal except in the trivially simple erw6 scene. Due to its speculative nature, DynBVH traversal actually behaves far
worse than even packet16 traversal, and consistently performs 10–20x more triangle intersections than the single-ray multi-BVH traversal. (nrcoff
results for DynBVH are missing because due to its many light sources the results did not complete in time). In fact, multi-BVH traversal actually
performs less SIMD triangle and box tests than the SIMD stream tracing approach proposed in [25].

