
1

Coherent Multiresolution Isosurface Ray Tracing
Aaron Knoll, Charles Hansen, and Ingo Wald

Scientific Computing and Imaging Institute
University of Utah

Salt Lake City, Utah 84112
Email: {knolla|hansen|wald}@sci.utah.edu

Abstract— We implement and evaluate a fast ray tracing
method for rendering large structured volumes. Input data is
compressed into an octree, enabling residency in CPU main
memory. We cast packets of coherent rays through a min/max
acceleration structure within the octree, employing a slice-
based technique to amortize the higher cost of compressed data
access. By employing a multiresolution level of detail scheme
in conjunction with packets, coherent ray tracing can efficiently
render inherently incoherent scenes of complex data. We achieve
higher performance with lesser footprint than previous isosurface
ray tracers, and deliver large frame buffers, smooth gradient
normals and shadows at relatively lesser cost. In this context, we
weigh the strengths of coherent ray tracing against those of the
conventional single-ray approach.

I. INTRODUCTION

Interactive rendering of large volumes is an ongoing prob-
lem in visualization. Adaptive isosurface extraction techniques
are CPU-bound, and render a piecewise linear mesh that
locally differs from the implicit interpolating surface on the
source data. GPU direct volume rendering delivers consistently
real-time frame rates for moderate-size data; but GPU memory
imposes a limit on the volume size. Although large data access
can be achieved through out-of-core techniques, for complex
scenes the direct volume rendering algorithm has difficulty
rendering a precise isosurface, given a limited number of slices
for sampling a high-resolution scalar field.

Ray tracing, though also dependent on the CPU, is not
limited to polygonal geometry, and can render implicit sur-
faces that are locally correct with respect to input data. Ray
tracing also scales well to large data, particularly when scene
complexity is high relative to the number of rays that must
be cast to fill a frame. Finally, rendering on the CPU allows
for access to full system memory, and greater control over
hierarchical data structures than with current GPU hardware.
This flexibility enables use of an adaptive-resolution octree,
which we can use as both a natively compressed data format
and an acceleration structure for rendering. Previous work ray-
traced large octree volumes interactively, but on substantial
workstation hardware [1]. In this work, we optimize isosurface
ray tracing with a coherent octree traversal technique, then
employ a multiresolution level of detail scheme to ensure
coherence and hence performance.

II. RELATED WORK

Extraction: The conventional method for isosurface ren-
dering has been extraction via marching cubes [2] or some
variant; paired with z-buffer rasterization of the resulting mesh.
Wilhelms and Van Gelder [3] proposed a min/max octree
hierarchy that allowed the extraction process to only consider

cells containing the surface. Livnat & Hansen [4] improved
this concept with a view-dependent frustum culling technique.
Westermann et al. [5] further extended it to adaptive extraction
of multiresolution (though not compressed) octree volume
data. Liu et al. [6] cast rays through an octree to deter-
mine visible “seed” cells for isosurface extraction. Livnat &
Tricoche [7] combined extraction with point-based rendering,
allowing high-frequency regions of voxels to be represented
by splats, and delivering smooth results without relying on
adaptive LOD methods.

Direct Volume Rendering: An alternative to isosurfacing is
direct volume rendering (DVR), e.g. Levoy [8], commonly
implemented on graphics hardware by compositing slices of a
3D texture, e.g. Cabral et al. [9]. LaMar et al. [10] proposed
a multiresolution sampling of octree tile blocks according to
view-dependent criteria. Boada et al. [11] proposed a coarse
octree built upon uniform sub-blocks of the volume, and a
memory paging scheme. Large data has been addressed via
block-based adaptive texture schemes (e.g. Kraus & Ertl [12]),
and out-of-core processing of an octree hierarchy of wavelet-
compressed blocks (e.g. Guthe et al. [13]).

Ray Tracing Volumes: Interactive isosurfacing of large
volumes was first realized in a ray tracer by Parker et al. [14],
using a hierarchical grid of macrocells as an acceleration
structure. A single ray was tested for intersection inside
a cell of eight voxel vertices, solving a cubic polynomial
to find where the ray intersects the interpolant surface in
that local cell. Parallel ray tracing allowed for full use of
main memory on supercomputers or workstations. DeMarle
et al. [15] extended the system to clusters, allowing arbitrarily
large data to be accessed via distributed shared memory.

Recent works in coherent ray tracing [16], [17], [18] com-
bined highly-optimized coherent traversal with SIMD prim-
itive intersection to deliver up to two orders of magnitude
increase in frame rate, allowing interactive ray tracing on a
single processor. For faster isosurface ray tracing, the ray-cell
intersection test was adapted to a SIMD SSE architecture by
Marmitt et al. [19]. Then, using implicit kd-trees, Wald et
al. [20] implemented a coherent isosurface ray tracing system.

Knoll et al. [1] implemented a single-ray traversal scheme
for rendering compressed octree volume data. By employing
one structure for both the min/max acceleration tree and the
voxel data itself, the authors were able to render large volumes
given limited main memory. While octree volume traversal
incurred some penalty from looking up compressed data within
the octree, it performed competitively with the best-known
techniques employing either single rays or packets.

2

III. COHERENT RAY TRACING OF VOLUME DATA USING
LEVEL OF DETAIL

The primary goal of this work is to optimize ray tracing
of octree volumes, and ideally to deliver interactivity on
commodity CPU’s. Our main vehicle for such performance
gains is coherence. The general premise is to assemble rays
into groups, or packets, when they share common charac-
teristics. In the case of ray casting, a packet consists of a
group of neighboring rays with common origin. Then, rather
than computing traversal and intersection per ray, we perform
these computations per packet. High coherence occurs when
rays in a packet behave similarly, intersecting common nodes
in the efficiency structure or common cells in the volume.
In our context, this behavior depends on both dataset and
camera. Since our application employs constant-width packets,
coherence is a function of scene complexity.

Large Data and Incoherence: Coherent ray tracing poses a
significant caveat: large volume data are more complex, and
thus less coherent, than small volumes. Successful coherent
systems have been optimized for relatively small dynamic
polygonal data [18], [17] in which many rays intersect com-
mon primitives. For sufficiently complex scenes, where each
ray intersects a different primitive, intersection costs at least as
much as it would in the single-ray case. Worse yet, coherent
traversal may induce more intersection tests than a single-
ray traversal. In this scenario, a coherent system may perform
worse than a single-ray tracer. On scenes with poor coherence,
coherent isosurface ray tracing using conservative 2x2 ray
packets [20] has produced performance generally on par with
a single-ray system [1].

Coherence via Level of Detail: Our solution to the problem
of poor coherence in complex scenes is a multiresolution
level of detail scheme. The premise is simple: when data is
sufficiently complex to hamper coherent ray tracing, we render
a coarser-resolution representation. This is accomplished by
lazy enforcement of a fixed ratio of voxels to pixels during
octree traversal. The octree volume is inherently suited as a
multiresolution LOD structure; coarser-resolution voxel data
can be stored in interior nodes at practically no extra cost.
Moreover, one can build a multiresolution volume with an
embedded efficiency structure and multiple levels of detail,
all for a fraction of the footprint of the original uncompressed
data. To render a coarser level of detail, one simply specifies a
“stop depth”, or a cut, that is less than maximum octree depth.
Then, the ray tracer omits both traversal and intersection of
subtrees below this stop depth, instead intersecting larger cells
at the coarser depth. As more rays intersect a common, wider
cell, coherence, and therefore speedup, is achieved.

The main contributions of this work involve extending a
static-resolution octree volume to multiresolution; devising a
coherent traversal technique for the octree; and leveraging
the traversal technique to reduce the cost of compressed
data access. Ultimately, we present a coherent multiresolution
traversal that delivers interactive ray tracing on a single pro-
cessor with some tradeoff in quality; provides faster rendering
with larger frame buffers on current multicore workstation
hardware; and allows for improved shading techniques that

would be expensive in a conventional non-coherent octree
volume ray tracer.

Fig. 1. Octree volume format illustrated, showing examples of an interior
node, a cap node, and scalar leaves. A scalar leaf is not a separate structure,
but rather a single value embedded inside its parent interior node. Similarly,
cap nodes are not leaves themselves but contain eight scalars at the maximal
depth of the octree. Thus, nodes in this structure are the parents of nodes in
the logical octree.

IV. MULTIRESOLUTION OCTREE VOLUME CONSTRUCTION

An octree volume is an adaptive hierarchical scalar field.
Scalar values are stored at leaf nodes. At maximum octree
depth, these correspond to the finest available data resolution.
Scalars at less than maximum depth store coarser resolutions,
by factors of 8 per depth level. Interior nodes maintain pointers
from parents to children. In our multiresolution LOD appli-
cation, they also contain coarser-resolution representations of
each of their children.

A. Construction Algorithm

Volume data can be natively computed and stored in the
adaptive octree format. Alternately, the octree can be built
from a scalar field in a 3D array. Such a build is detailed by
Knoll et al. [1]; this paper only discusses extensions to the
construction technique that allow for multiresolution. In brief,
construction is a bottom-up procedure in which identical or
similar voxels are merged together into a single voxel within a
parent node. Voxels are logically leaves of the octree. However,
rather than store each voxel in a separate memory structure, we
store every voxel within its immediate parent. This yields two
distinct structures: cap nodes consisting of eight voxels at the
finest resolution; and interior nodes consisting of pointers to
other nodes, which can optionally be single scalar leaf voxels
of a coarser resolution. This format is detailed in Fig. 1.

1) Extension to multiresolution: In multiresolution octree
volume construction, coarser-resolution consolidated voxels
are always computed and stored in interior nodes, regardless
of whether or not they are leaves. Theoretically, a static-
resolution octree volume could use a single array to contain
either a pointer to a child subtree or a coarser-resolution
scalar leaf. In practice however, the memory savings of this
approach were too small to justify the added computation. Our
multiresolution system is constructed identically to the static-
resolution implementation [1], with separate eight-value arrays
for both child pointers and scalar leaves. The only difference is
that non-leaf scalars are actually employed in multiresolution
rendering.

3

2) Min/Max tree computation: The only significant differ-
ence between multiresolution and static-resolution construc-
tion lies in computing the min/max tree. Static-resolution data
requires the min/max pair of a given voxel to reflect the
minimum and maximum of eight scalar vertices constituting
the cell that maps to this voxel (Fig. 2). We do not store a
min/max pair for each finest-level voxel due to the prohibitive
3x footprint. Instead, we compute them for the immediate
parents of the finest voxels (cap nodes in Fig. 1), as shown
in Fig. 3 (top). For multiresolution data, cells may have any
power-of-two width, and we accordingly consider forward-
neighbors at each depth of the min/max tree (Fig. 3, bottom).
As a result, the min/max tree for a multiresolution octree
volume is looser than that of static-resolution data. In practice,
the impact on performance is negligible for the data we test.

Fig. 2. Voxel-cell mapping. Given a scalar-centered voxel (blue outline),
we construct a cell at that location by mapping the scalar to the lower-most
vertex, and assigning forward neighboring scalars to the remaining vertices.
This is equivalent to the dual, but spatially offset to align with the coordinate
frame of the voxel.

Fig. 3. Min/max tree construction from forward neighbors. Top: Each leaf
node must compute the minimum and maximum of its cell, hence account
for the values of neighbors in the positive X and Y dimensions (left). This
yields a min/max pair for the leaf node (right). Neighbors can potentially
exist at different depths of the octree, as is the case for at the blue leaf node.
Bottom: For multiresolution data, we must include wider neighbors at coarser
resolutions into the min/max computation.

V. COHERENT OCTREE VOLUME RAY TRACING

Having constructed a compact octree volume with an em-
bedded min/max acceleration structure, we now turn to the
task of building a coherent ray tracing system. In general, we
seek to optimize for coherence as aggressively as possible,
namely by implementing a vertical SSE packet architecture
and a frustum-based octree traversal similar to the coherent
grid traversal of Wald et al. [18].

A. SSE Packet Architecture

A coherent ray tracer achieves its performance by operating
on groups of neighboring or similar rays in packets. Traversal
iself is in fact fairly orthogonal to the chosen packet structure,
generally requiring only a packet bounding frustum and a
method of iterating over member rays. To exploit coherence
during primitive intersection, we perform computations on
SIMD groups of four rays (frequently referred to as packlets)
and mask differing hit results as necessary. Performing these
SIMD computations requires that we store ray information
vertically within a packet. For example, ray directions are
stored as separate arrays of X,Y,Z components, as opposed
to a single horizontal array of 3-vectors. These vertical arrays
are 16-byte-aligned, permitting us to access a packlet of four
rays at a time in a single SSE register. Similarly, the packet
structure stores aligned SSE arrays of hit results, such as hit
position and normals. When packet traversal and intersection
have completed, we iterate over each SIMD packlet and
shade using the deferred hit information and a given material.
Example pseudocode of a packet structure is given below.

Algorithm 1 Ray Packet Structure
const int NUM_PACKLETS = NUM_RAYS / 4;
struct RayPacket
{

simd orig[3][NUM_PACKLETS];
simd dir[3][NUM_PACKLETS];
simd inv_dir[3][NUM_PACKLETS];

simd hit_t[NUM_PACKLETS];
simd hit_pos[3][NUM_PACKLETS];
simd normal[3][NUM_PACKLETS];

simd hit_mask[NUM_PACKLETS];
};

B. Coherent Traversal Background

As an efficiency structure for ray tracing, the octree affords
several different styles of traversal. With coherent ray tracing,
we are given the choice between depth-first traversal similar
to a kd-tree [21] or BVH [17]; or a breadth-first coherent grid
traversal (CGT) approach [18]. We choose the latter for several
reasons. Our primitives are regular, non-overlapping cells,
similar to large spherical particle data sets for which CGT has
proven effective by Gribble et al. [22]. More significantly, the
breadth-first nature of the CGT algorithm allows for a clever
slice-based technique that amortizes voxel look-up from the
octree when reconstructing the vertices of multiple cells.

1) Coherent Grid Traversal Algorithm: The original CGT
algorithm departs from single-ray grid traversal in that it
considers full slices of cells contained within a ray packet’s
bounding frustum, as opposed to marching across individual
cells. The algorithm first determines the dominant X,Y,Z axis
component of the first ray in each packet. This is denoted
~K, and the remaining axes are denoted ~U and ~V . Then, we
consider the minimum and maximum u and v coordinates
at the k = 0 slice, and note that the increment du,dv for a
single unit along the march axis ~K is constant. We store
this increment in a single SSE packed floating point unit,

4

Fig. 4. Coherent Grid Traversal. The classic CGT algorithm traverses a
packet of rays through a grid slice by slice along a major march axis ~K,
incrementing each subsequent slice extents by the differential of the bounding
frustum along the non-major axis ~U , as well as the third axis ~V in the 3D
case. This illustration numbers the grid cells in the order of their traversal.
Unlike the single-ray DDA grid algorithm, cells may be traversed in arbitrary
~U ,~V order; however the ~K order is invariably front to back.

duv = [dumin,dvmin,dumax,dvmax]. Next, we determine the first
and last k slice where the packet frustum intersects the volume.
We begin at the u,v extents, euv = [umin,vmin,umax,vmax], the
minimum and maximum of enter and exit points on that slice
of cells. To intersect primitives, we truncate these values to
integers and iterate over all cells in that given ~U ,~V range. To
march to the next slice, we add the constant increment. Thus,
a non-hierarchical grid march is accomplished with a single
SIMD addition and a SIMD float-to-integer truncation. The
2D analog of this algorithm is illustrated in Fig. 4.

2) Macrocell Hierarchical CGT: The original CGT pa-
per [18] implemented a two-level hierarchy, with a single layer
of macrocells each corresponding to 6 grid cells. For small
polygonal data, this was generally sufficient. As the smallest
volume we test is 3023, a more robust hierarchy could be
desirable for our application. We extended the CGT algorithm
to arbitrary number of macrocell layers similarly to Parker
et al. [23], and found that a recursive 23 macrocell hierarchy
– equivalent to a full octree – consistently yielded the best
performance for volumes larger than 2563. The macrocell
traversal employs an array stack structure to avoid recursive
function calls: this stores the u,v slice and increment for all
macrocell levels, the current slice within the current macrocell
level, and the next slice at which to return to parent macrocell
traversal. When all rays in a packet have intersected or the
packet exits the root macrocell level, traversal terminates.
The approach is that of a recursive grid sharing common
coordinate space on the given volume dimensions, in which
each macrocell block is a multiple M of its children. Thus,
child coordinates are always an M-multiple of parent macrocell
coordinates. Child macrocells, or the volume cells themselves,
are traversed when any macrocell in a given slice is non-
empty – specifically, when our desired isovalue is within
that macrocell’s min, max range. Then, the packet frustum
traverses full slices of that macrocell level’s children. This
algorithm is illustrated in Fig. 5.

Fig. 5. Coherent Octree Traversal via Implicit Macrocells. Our hierarchical
grid employs recursively superimposed macrocell blocks, with each parent
containing 23 children, for alignment with the octree volume. We depict
a 3-deep hierarchy, with blue, yellow and green extents corresponding to
macrocell layers from coarsest to finest. Macrocells are only traversed when
they contain our desired isovalue, as illustrated by the “surface” at the dotted
line. With an octree, macrocells are implicit, and their min/max pairs are
retrieved from the octree volume via hashing.

C. Implicit Macrocell Grid Traversal of Octree Volumes.

Our octree volume traversal is effectively coherent grid
traversal of an implicit macrocell hierarchy, in which min/max
pairs are retrieved from octree interior nodes instead of
macrocells. Rather than repeatedly multiplying grid coordi-
nates by the macrocell width M, octree nodes at all depths
share a common coordinate space [0,2dmax], where dmax is
the maximum depth of the tree. Some macrocell traversal
computation can be optimized for the binary subdivision of the
octree. When recursing from a parent to traversing children,
the macrocell grid multiplies the k-slice by the macrocell width
M; in the octree M = 2, a bitwise left-shift. Computing the next
macrocell slice requires a simple +2 addition. Figs. 5, 6, and 7
illustrate traversal; refer to Algorithm 3 in the Appendix for
pseudocode.

1) Mapping Macrocells to Octree Nodes: Traversing im-
plicit macrocells over an octree requires particular attention,
as a single coarse scalar leaf node in the octree may may cover
multiple finer-level implicit macrocells. Given an implicit
macrocell coordinate, we seek the deepest octree child that
maps to it. We then use the min/max pair in the parent
node, corresponding to that child, to perform the isovalue
culling test. As lookup is costly, we store the path from
the octree root to the current node along the u,v-minimal
ray of the frustum. We then use neighbor-finding as detailed
in [1] to inexpensively traverse from one node to the next.
Hierarchically recursing from a parent node to a child requires
a single lookup step in the octree.

2) Default Slice-Based Traversal: At shallow levels of the
octree, the packet frustum typically traverses a single common
macrocell. At deeper levels, the u,v extents encompass mul-
tiple macrocells, so we must neighbor-find numerous octree
nodes. By default, macrocell CGT stops iterating over a slice
when any node is non-empty, and proceeds to traverse slices
of children nodes. This ensures that traversal is performed
purely based on the packet frustum as opposed to individual

5

rays, and preserves the breadth-first coherent nature of the
algorithm. Unchecked, it also causes numerous unnecessary
octree lookups and ray-cell intersection tests. To mitigate this,
we implement the two following optimizations.

Fig. 6. Slice extent clipping optimizations. Top: We first clip slices of deepest
macrocells, corresponding to cap nodes of the octree at depth dmax − 1. We
narrow the u,v slice extents by omitting macrocells with ranges outside our
value; only the shaded cells containing our isovalue are considered. Bottom:
Having done this, we intersect individual rays in the packet with the bounding
box of each finest-level slice of cells. “Inactive” rays that have already hit the
surface are omitted. This allows us to further constrict the u,v slice extents
before intersecting a ~K-slice of cells.

3) Clipping the Cap-Level Macrocell Slice: To avoid un-
necessary intersections and octree hashing, we clip the u,v
slice corresponding to the deepest-level macrocells, one level
above actual cell primitives. To do this, we iterate over the
min/max pairs corresponding to the finest available octree
depth. When traversing at maximum resolution, the deepest
macrocells correspond to cap nodes (Fig. 1). Within this
iteration, if a macrocell contains our isovalue, we compute
new slice extents based on the minimum and maximum u,v
coordinates. If the macrocell is empty, we omit it from extent
computation. The effect is to clamp the u,v slice so that it
more tightly encloses nodes with the desired isovalue (Fig. 6,
top).

4) Clipping the Cell Slice to Active Rays: To further reduce
the number of cell primitives in a slice, we intersect individual
rays with the world-space bounding box formed by the current
u,v slice. When rays have already successfully hit a cell, they
are “inactive” and can be safely ignored even if they intersect
the slice bounding box. This enables us to considerably
shrink the u,v extents, simply by computing the minimum and
maximum of the enter and exit hit coordinates of active rays
(Fig. 6, bottom).

D. Cell Reconstruction from Cached Voxel Slices

Having clipped the primitive-level slice to as small a u,v
extent as possible, we are ready to perform ray-cell inter-
section. Our ray-tracing primitive is a cell with eight scalar
values; one at each vertex. However, the data primitives in our
octree volume are voxels. Using the same duality employed
by min/max tree construction, we map octree voxels to the
lower-most vertex of each cell (Fig. 2). Our task now is
to reconstruct cells efficiently from the octree, exploiting
coherence whenever possible.

Fig. 7. Slice-based cell reconstruction algorithm. To find the eight vertices
of each cell, rather than neighbor-find seven forward-neighbors per voxel,
we exploit our slice-based traversal to look up and cache ~K-slices of voxels.
Thus we exploit coherence to reduce the overall cost of data access. Above,
we illustrate five successive slices, with like colors representing where voxel-
caching can be used to avoid repeat neighbor-finding. As evident from lighter-
colored voxels at the upper right of each slice, we require the voxels at the
umax + 1,vmax + 1 extents to reconstruct a cell. Similarly, we can re-use the
previous cell’s k+1 slice to at least partially construct the subsequent ~K-slice.

1) U,V Voxel Slice Filling: In single-ray and depth-first
traversals, cells are constructed independently, given a lower-
most voxel from traversal, and using neighbor-finding to look
up the remaining seven voxels. However, adjacent cells share
vertices – much neighbor-finding effort is duplicated. With
our octree CGT, we can iterate over an entire slice of adjacent
u,v cells, access each voxel once, and store the results in a
2D array buffer. We add 1 to the maximal u,v slice extent to
account for forward cell vertices in those directions. Then, we
iterate over the u and v components of the slice, performing
neighbor-finding from one coordinate to the next. By iterating
in a scanline, the neighbor-finding algorithm need only find a
common ancestor along one axis, and is slightly cheaper. We
store the voxel results for this slice in a 2D array buffer, and
look up values from this buffer to reconstruct four vertices
of each cell in the slice. The remaining four vertices can be
reconstructed in the same fashion by filling in a second buffer
for the k+1 slice (Fig. 7).

2) Copying the Previous-Step ~K-Slice: In cell reconstruc-
tion, we also exploit voxel coherence along the ~K axis. For
this, we note that vertices on either the front (k) or back (k+1)
slice of each cell are shared from one traversal step to the
next, depending on whether the ~K march direction is positive
or negative. In either case, we can copy an advancing slice
buffer from the previous traversal step into a posterior buffer

6

of the current traversal step (Fig. 7). We must account for
the traversal offset in the minimum u,v coordinates between
the two buffers; and perform neighbor-finding for voxels not
buffered from the previous step, due either to that offset or
different maximal u,v extents.

E. Intersection

With our cached slice buffers, we can iterate over cell
primitives and reconstruct cell vertices. To compute the ray-
isosurface intersection, we iterate over all SIMD packlets,
discarding packlets that are inactive (have already intersected)
according to the per-packlet hit mask. For each packlet,
we first check that each at least one actually intersects the
bounding box of the cell in question, and then proceed to
compute the ray intersection with the implicit isosurface.

For ray-cell intersection, we seek a surface inside a three-
dimensional cell with given corner values (Fig. 2), such
that trilinear interpolation of the corners yields our desired
isovalue. This entails solving a cubic polynomial for each ray;
the hit position is given at the first positive root. Our imple-
mentation uses the Neubauer iterative root finder proposed by
Marmitt et al. [19]. Computation is performed per-packlet. If
any ray in the packet intersects successfully, we compute the
gradient normals for that packlet. We do not defer normal
computation due to the prohibitive cost of reconstructing cell
vertices twice.

VI. MULTIRESOLUTION LEVEL OF DETAIL SYSTEM

Our optimized coherent traversal algorithm significantly
outperforms single-ray traversal on simple scenes; and due
to the lower data lookup cost even exhibits a factor-of-two
speedup moderately incoherent scenes, where more than one
ray in packlet seldome intersects the same cell (Tab. II).
However, coherence breaks down on highly complex scenes,
where rays are separated by multiple cells that are never
intersected. This pathological case is common with far views
of large data sets. (Tab. III). This behavior is detailed more
fully in Section VIII. The purpose of the multiresolution
system is to manage pathological cases posed by large data,
and preserve coherence while sacrificing quality as little as
possible.

A. Resolution Heuristic

1) Stop depth: The general vehicle for the multiresolution
scheme is determining an effective depth at which to stop
traversing children, and instead reconstruct cells to intersect.
Coarser-resolution voxels are explicitly stored in the scalar
leaf fields of interior nodes, regardless of whether a finer-
resolution subtree exists. When the traversal algorithm stops,
cell reconstruction proceeds exactly as it would at the finest
resolution, except given a stop depth dstop it increments the
u,v coordinates by 2dstop instead of simply 1 at the finest
resolution. Moreover, the octree hash scheme operates on
canonical octree space [0,2dmax], regardless of resolution level.

2) Pixel-to-voxel width ratio: A more difficult problem in
formulating the multiresolution scheme is determining which
parts of the scene should be rendered at which resolution.
Generally, we note that when multiple voxels project to the

same pixel, a coarser level of resolution is desirable. LOD
techniques for volume rendering often use a view-dependent
heuristic to perform some projection of voxels to screen-
space pixels, and identify distinct regions of differing resolu-
tions [10]. In the case of ray-casting with a pinhole camera, the
number of voxels that project to one pixel varies quadratically
with the distance from the camera. As aspect ratio is constant,
we may simply consider the linear relation along one axis
~U , namely the increment between each primary ray along ~U ,
du. Then, we can render the coarser resolution at dstop when
du = Qstop∗dV , where dV is the ~U-width of a voxel, and Qstop
is some constant threshold. As the ~U-width of a single pixel,
dP, is simply a multiple of du, we can simply reformulate
our constant as a ratio of pixel width to voxel width dP/dV ,
where Qstop = (du/dP)∗ (dP/dV).

3) Packet extents metric: Ideally, our LOD metric should
be evaluated per packet. An obvious choice would be the du
width of the packet, given by the aforementioned u,v slice
extents. One could render a coarser resolution whenever the
number of cells in a slice at the current resolution surpassed
some threshold. Unfortunately, at the same k-slice, the dupacket
could vary between packets, causing neighboring rays to in-
tersect different-resolution cells, hence resulting in seams. We
desire a similar scheme that allows us to perform transitions
consistently between packets.

Fig. 8. Multiresolution transition slices. We determine transition slices along
the major march axis ~K, transitioning from finer to coarser resolution as slices
progress from the camera origin. For the transitions, we determine the last
k-slice where each resolution level corresponds to a fixed voxel-to-pixel ratio.

4) LOD Mapping via ~K Transition Slices: To ensure con-
sistent transitions from one resolution to the next, we compute
a view-dependent map from resolution levels to world-space
regions along the major traversal axis ~K. We note that the
width of a pixel corresponds to the distance between primary
rays along the ~U and ~V axes, which increases with greater t,
as we move farther from the camera origin. If we consider
a major march direction ~K, we can find the exact k slice
coordinate where any given number of voxels corresponds
to exactly one pixel. This is similar to the per-ray metric
approach, except it solves where du = Qstop ∗dV at a discrete
~K-slice, k. As packets traverse the octree one ~K-slice at a
time, we have a constant world-space LOD map that can be
computed on a per-packet basis.

We multiply the ratio of pixel width to voxel width, dP/dV ,

7

by the power-of-two unit width corresponding to each depth
d of the octree. Then, we solve for the t parameter where this
voxel width is equal to the distance between viewing rays,
ducamera. Finally, we evaluate ~K-component of the direction
ray to compute the ~K-slice where our fixed dP/dV ratio
occurs, ktransition[d]. These mark the transition slices from each
resolution to its coarser parent. The array is computed once
per frame, as in Algorithm 2. The dP/dV constant is thus our
base quality metric; Fig. 12 shows the same scene rendered
using multiresolution and varying dP/dV .

Algorithm 2 Transition Array Computation
Require: Pixel-width to voxel-width ratio, dP/dV

Per-ray camera offset along ~U axis, ducamera
Ensure: Array of ~K-transition slices, ktransition[]

for all octree depths d ∈ {0..dmax−1} do
voxelWidth[d]⇐ 2dmax−d ∗dP/dV
ttransition[d]⇐ voxelWidth[d] / ducamera
ktransition[d]⇐ korigin + ttransitionkdirection

end for

B. Multiresolution Traversal

Rather than determining the major march axis ~K per packet,
we decide it once per frame based on the direction vector of
the camera. While this causes some packets to perform CGT
on a non-dominant axis, in practice there is no appreciable
loss in performance with a typical 60-degree field of view.

The traversal algorithm determines the initial transition slice
when it computes the first k-slice of a packet, by finding
the first ktransition[d] < k. Then, before recursively traversing
a child slice at the current resolution depth, we check if
kchild >= kd−1, the slice corresponding to transition to the next
coarser resolution. When that occurs, we omit traversal of the
child and perform cell reconstruction. The current resolution
depth is then decremented, and the traversal algorithm seeks
the subsequent coarser-resolution transition slice.

Fig. 9. Color-coded multiresolution. Left: transitions between isosurfaces
are smoothed by substituting coarser-detail voxel values into finer-detail cell
vertices at the transition slice. Right: three transitions along the ~K axis, from
finer to coarser levels of detail, on the Richtmyer-Meshkov data.

C. Smooth Transitions

Isosurfaces are piecewise patches over their respective cells,
and can vary both topologically and locally from one resolu-
tion to the next. As such, discontinuities arise at transition
slices between finer and coarser isosurfaces. While these

discontinuous surfaces are technically “correct” with respect
to each resolution, it is frequently desirable to mask the
multiresolution transition and render a single smooth surface.
To accomplish this, our slice-based reconstruction algorithm
checks if each ~K-slice is equal to the next kd transition slice.
If it is, we look up voxel data from the octree at coarser depth
d−1 as opposed to the current default depth d. This guarantees
identical voxel values on either side of the transition, and thus
continuous surfaces (Fig. 9, left). Exceptions may occur in
cases of gross disparity between each resolution of the scalar
field, where topological differences cause a surface to exist at
one resolution but not the other This is common in highly
entropic regions of the Richtmyer-Meshkov data. In these
cases, it is desirable to omit smooth transitions and expose
levels of detail via color-coding (Fig. 9, right).

VII. SHADING

Our technique affords better flexibility in shading the isosur-
face. One limitation of the octree volume is that data access
for cell reconstruction is expensive, discouraging techniques
such as central-differences gradients that require additional
neighbor-finding. With slice-based coherent traversal, we are
able to amortize the cost of cell reconstruction as shown
previously. Multiresolution allows us to simplify the casting of
shadow rays and illustrate depth cues with less performance
sacrifice.

Fig. 10. Gradient normals, computed on a forward differences stencil
yielding 5.5 FPS (left), and a central differences stencil at 4.7 FPS (right) on
an Intel Core Duo 2.16 GHz with a 5122 frame buffer. The lookup overhead
of a 43 neighborhood of voxels makes central differences extremely costly in
a single-ray or depth-first system. The slice-based coherent scheme delivers
smooth normals with a far lesser penalty.

A. Smooth Gradient Normals

By default, normals are computed using the forward-
differences gradient at the intersection point within the given
cell. The disadvantage of this method is that such gradients
are continuous only within each cell. The isosurface itself is
formed from piecewise trilinear patches with C0 continuity at
cell edges. For a more continuous normal vector field, and
better visual quality, we can compute gradients on a central
differences stencil to ensure C1 continuity along cell edges.

To compute the central differences gradient, we use a stencil
of three cells along each axis; thus 64 cell vertices (voxels)
must be found during reconstruction. In a non-coherent ray
tracer this entails eight times the lookup cost of forward
differences, causing worse than half the forward-differences

8

performance. In our coherent system, we return to the slice-
based cell reconstruction technique to amortize that cost of
neighbor-finding. We simply retrieve two additional rows and
columns of voxels, corresponding to umin − 1,vmin − 1 and
umin + 2,vmin + 2 coordinates. In addition to our existing 2D
array buffers for the k and k+1 slices, we store two additional
buffers corresponding to the k− 1 and k + 2 slices. We then
use this four-wide kernel with a central-differences stencil to
compute the gradient: 1

2 (VX−1,Y,Z) −V(X+1,Y,Z)) along the X
axis, and similarly for the Y and Z axes. Performance with
central differences is typically 15%-30% slower than with
forward differences. Given the improvement in visual quality,
smooth normals are arguably worth the trade (Fig. 10).

Fig. 11. Shadows. By coherently casting shadow rays through a coarser-
resolution version of our data, we achieve higher performance while providing
similar spatial depth cues as shadows cast on the full-resolution volume. With
centrally-differenced gradient normals, the above shadowed scene renders at
3.9 FPS on an Intel Core Duo 2.16 GHz with a 5122 framebuffer; only slightly
slower than without shadows at 5.1 FPS.

B. Shadows
An oft-cited advantage of ray tracing is that shadows can

be computed trivially without adding geometric complexity or
implementing sophisticated multi-pass texturing techniques. In
practice, tracing shadows doubles the cost of casting each ray
that successfully hits an object. Computing shadow rays in a
coherent packet system is more complicated than for a single-
ray tracer, as individual rays must be masked and shadow
packets generated based on the hit results of the primary rays.
Fortunately, point-light shadows may be cast from the light
to the primary hit point, thus they share a common origin
and benefit from coherent optimizations. Our primary goal
being interactivity, we are interested in hard shadows that
may not appear photorealistic, but adequately provide depth
cues to the viewer. As such, we can exploit the level of detail
system to cast faster coherent shadow rays through a coarser-
resolution representation of our volume – for example, using a
shadow ray dP/dV of twice the viewing ray dP/dV. As shown
in Fig. 11, this often yields framerates only 20%-30% slower
with shadows than without.

VIII. RESULTS

We first note the impact of octree volumes on compression
and render-time memory footprint. We then evaluate perfor-

mance of our system by first considering coherent octree
traversal alone, and then analyzing the performance of the
multiresolution system.

A. Octree Construction Results

Octree volumes are remarkable not in the overall com-
pression ratios they achieve, but in their ability to provide
respectable lossless compression, spatial hashing, and effective
ray traversal in a single structure. Tab. I shows compression
achieved for various structured data. Generally, a factor of 4:1
is common with lossless consolidation, but actual compression
depends enormously on the overall entropy of the volume.
Fluid dynamics simulations such as the Richtmyer-Meshkov
and heptane compress well, but noisy medical data can actually
occupy more space in an octree. Segmentation allows us to
meet memory constraints, and isolate data ranges of interest.

DATA ISO- TIME SIZE %
RANGE STEP original octree

heptane full 70 27.5M 3.96M 14
full 152 27.5M 9.5M 33
full 0-152 4.11G 678M 16

RM full 50 8.0G 687M 8.5
full 150 8.0G 1.89G 25
full 270 8.0G 2.48G 30

64-127 270 8.0G 1.81G 22
CThead full 14.8M 12.4M 84
femur full 162M 163M 101

100-163 162M 9.0M 5.5

Tab. I. Compression achieved for various structured data when converted to
octree volumes. The second column represents iso-ranges. Clamping all values
outside a given range delivers additional octree compression, and preserves
lossless compression for values within that range. “Full” indicates the full
0-255 range for 8-bit quantized scalars. Data sizes are in bytes, and include
all features of the octree, including overhead of the embedded min/max tree.

1) Further Compression: Generally, our goal is simply to
compress a single data timestep into a manageable footprint for
limited main memory. Sometimes losslessly compressed data
will be slightly too large to meet this constraint. One option
is lossy compression via a non-zero variance threshold, which
behaves similarly to quantization.

A more attractive method, for our purposes, is segmenting
data into interesting ranges of isovalues, and clamping scalars
outside those values to the minimum and maximum of the
range. This allows for lossless-quality rendering of isovalues
within that range. For example, compressing only the 64-127
value range of timestep 270 of the Richtmyer-Meshkov data
allows us to render that range on a machine with 2 GB RAM
(Tab. I). This method is even better suited for medical data
such as the visible female femur, when the user is specifically
interested in bone or skin ranges. The full original CT scan
has highly-variant, homogeneous data for soft tissue isovalues
from 0-100, causing the octree volume to actually exceed
the original data in footprint. However, considering only the
bone isovalues 100-163, we achieve nearly 20:1 compression
(Tab. I). Not coincidentally, such “solid” data segments are
best suited for visualization via isosurfacing (Fig. 14).

9

2) Construction Performance and Filtering: The bottom-
up octree build algorithm is O(N) with regard to the total
number of voxels; nonetheless N can be quite large. Building
a single timestep of the 3023 heptane volume requires a mere
8 seconds; whereas a timestep of the Richtmyer-Meshkov
data takes 45 minutes. The build itself creates an expanded
full octree structure that occupies a footprint of four times
the raw volume size. Thus, building octree volumes from
large data requires a 64-bit workstation. Although an offline
process, parallelizing and optimizing the build would be both
desirable and feasible as future work. In addition, the current
construction algorithm effectively samples coarser resolutions
via recursive clustered averaging. Superior quality could be
achieved with bilinear or higher-order filtering.

3) Memory Footprint Comparison: Octrees generally oc-
cupy 20%-30% the memory footprint of the uncompressed
grid data, including both the multiresolution LOD structure
and min/max acceleration tree. Conversely, storing a full 3D
array for each power-of-two LOD volume would approach
twice the footprint of the original uncompressed volume.
Other ray-tracing efficiency structures such as implicit kd-
trees [20] could require up to twice the full data footprint,
often with an additional overhead of around 15% for cache-
efficient bricking [23]. Thus, octrees compare quite favorably
to competing volume ray tracing structures.

B. Coherent Traversal Results

The main purpose of our slice-based algorithmic enhance-
ments, and indeed of traversal itself, is to minimize the
number of cells that must be intersected. By employing packets
and the breadth-first CGT frustum algorithm, we are able
to dramatically reduce both the computational and memory
access costs of traversal. Finally, when multiple rays in a SSE
packlet intersect the same object, we may effectively perform
up to four intersections for the price of one. For these reasons,
we are able to achieve significant speedups on highly coherent
simple scenes. Even with moderately complex scenes where
a pixel seldom contains more than one voxel, and SIMD
intersection yields little speedup, slice-based reconstruction
effectively doubles performance (Tab. II). Moreover, render-
ing time is strongly correlated with the number of ray-cell
intersections. Code profiling reveals that traversal occupies a
mere 5%-15% of CPU time, compared to well over 70% spent
in cell reconstruction and intersection.

1) Packet size: For performance reasons, our implementa-
tion chooses a static packet size for traversal. This is appro-
priate for our application, as we seek to render isosurfaces
with constant complexity. Later, we enforce this via the pixel
to voxel width ratio in the LOD scheme. Empirically, we find
that packets of 8x8 work best for scenes where one to 4 rays
intersect a common cell. 16x16 packets yield little benefit even
for simple data, and perform poorly on complex scenes of large
data (Tab. III).

2) Incoherent behavior without multiresolution: Complex
scenes reveal the shortcoming of coherent traversal. Because
traversal is not computed on a per-ray basis, but solely from
the packet frustum corners, it frequently looks up cells that

TRAV. LOOKUPS ISECS L/RAY I/RAY FPS
single 314707 166719 1.2 0.64 2.3
packet 1187798 469560 4.5 1.8 0.78
+slice 1187798 469560 4.5 1.8 2.2
+mcell 561889 124221 2.14 0.47 3.9
+cell 270123 120514 1.0 0.47 4.6
+multires 98055 44419 0.37 0.17 7.6

Tab. II. Results from clipping optimizations when ray-casting a moderately
complex scene with low primitive-level coherence, from the heptane fire
dataset (HEP302, Tab. III). We compare single-ray traversal and 8x8 octree-
CGT packet traversal with and without optimizations. +slice: use slice-based
cell reconstruction. +mcell: clip the deepest macrocell slice extents to discard
nodes not containing the isovalue. +cell: clip the cell slice extents to the set
of active rays. +multires: multiresolution scheme, with dP/dV = 1. Tests at
5122 using one core of an Intel Core Duo 2.16 GHz.

SCENE HEP64 HEP302 RM
I/RAY FPS I/RAY FPS I/RAY FPS

single 0.70 1.9 0.64 2.3 3.58 0.57
coherent
2x2 0.26 4.3 0.5 2.84 5.65 0.38
4x4 0.11 9.7 0.45 4.54 7.94 0.33
8x8 0.058 14.4 0.47 4.6 12.4 0.22
16x16 0.041 14.5 0.50 2.81 20.5 0.08

Tab. III. Results with coherence, showing the net number of intersections
per ray and frames per second with a single-ray tracer, and our coherent
system with varying packet sizes. We examine three scenes of increasing
complexity. The leftmost (HEP64) is the 643 downsampled heptane data, and
has high coherence at the primitive level. (HEP302) is the same as in Tab. II: a
moderate case in which few gains are made from intersection-level coherence,
but coherent traversal is beneficial. (RM) is a pathological case for packet
traversal, in which neighboring rays in a packet are separated by numerous
cells. Allowing large data such as this to benefit from coherence requires a
multiresolution scheme. Tests run on a single core of an Intel Core Duo 2.16
GHz, with a 5122 frame buffer and multiresolution disabled.

would have been correctly ignored by a more expensive single-
ray traverser. Our clipping optimizations (Fig. 6) noticeably
alleviate this, as we can see in Tab. II. However, for complex
scenes such as far views of large data, rendering cost is totally
bound by intersection (Tab. III). Ultimately, frustum-based
traversal causes large numbers of cells to be looked up, though
no rays in the packet actually intersect them. This in turn
causes many unnecessary intersection tests to be performed.
Successful intersection tests are no less expensive, as packlet-
cell intersection degenerates to single-ray performance with-
out primitive-level coherence. These higher costs eventually
overwhelm any gains made by the less expensive traversal,
and cause the coherent ray tracer, without multiresolution, to
perform worse than a conventional single-ray algorithm on
sufficiently complex scenes.

C. Multiresolution Results

The combination of multiresolution level of detail and
coherence enables frame rates up to an order of magnitude

10

faster for coherent scenes. With large volume data and small
frame buffers, coherence is less common; but in general it is
possible to decrease dP/dV to achieve interactive frame rates
and interesting, albeit coarser-quality, representations of the
data. For highly entropic large volume data, this behavior is
frequently useful as coarser LODs inherently possess less vari-
ance, thus manifest less aliasing. Fig. 12 illustrates behavior
of the RM data with our LOD system with varying dP/dV.

In best-case scenarios, our system significantly outperforms
the single-ray tracer. With close camera views of the RM
data and dP/dV = 1, we see order-of-magnitude improvement
(Tab. IV). The coherent technique usually yields modest im-
provements even for scenes with generally poor coherence.
For sufficiently far camera angles viewing complex data,
the single-ray system may actually outperform the coherent
method, when using a LOD dP/dV = 1. For these pathological
cases, we recommend relaxing dP/dV for exploration, or
resorting to single-ray traversal for quality.

Fig. 12. Qualitative impact of multiresolution on the Richtmyer-Meshkov
data at t=270, isovalue 20. Top left to bottom right: single-ray, then coherent
multiresolution with dP/dV of 1,2 and 4. On an Intel Core Duo 2.16 GHz with
a 5122 frame buffer, these render at 0.92, 1.0, 1.9, and 3.6 FPS respectively.
To illustrate LOD transitions, like colors indicate the same resolution.

Coherent traversal handles a difficult scenario for the single-
ray system: a close-up scene deep within the volume, with an
isovalue for which the min/max tree is particularly loose. Such
is the case in the last example of Tab. IV. While single-ray
suffers from data access demand, coherent traversal largely
amortizes these costs and performs comparably to other scenes
with similar complexity.

Another substantial advantage of coherence is that large
frame buffers can be rendered relatively faster. Doubling the
frame buffer dimensions generally causes a factor of four
slowdown in a single-ray tracer; by comparison the packet
system frequently experiences a factor of two or better perfor-
mance decrease, particularly when higher resolution leads to
improved intersection-level coherence as in Fig. 14.

SCENE C.DUO,5122 NUMA,5122 NUMA,10242

single 8x8 single 8x8 single 8x8
50, far 2.5 3.5 17.9 25.1 4.9 7.1
150, far 1.9 2.5 13.6 17.9 3.7 5.8
270, far 1.1 1.1 8.1 7.8 2.4 3.5
50, close 2.0 6.9 14.3 48.5 4.0 16.1
150, close 1.7 8.1 14.2 57.5 4.0 16.7
270, close 0.2 4.7 1.48 33.6 0.5 10.5

Tab. IV. Frame rates of various time steps of the Richtmyer Meshkov data,
on an Intel Core Duo 2.16 GHz laptop (2 GB RAM) and a 16-core NUMA
2.4 GHz Opteron workstation (64 GB RAM). Refer to Fig. 13 for images.

Fig. 13. Richtmyer-Meshkov results. From left to right, timesteps 50, 150
(isovalue 20), and 270 (isovalue 160). Top: various close-up camera views,
illustrating highly coherent scenes. We use dP/dV = 1. Bottom: far views
with the same camera position, exhibiting generally poor coherence.

D. Comparison to Existing Systems
Tab. IV demonstrates performance results on the Richtmyer

Meshkov dataset in comparison to our single-ray implemen-
tation [1]. In the best-case scenario we achieve a factor of 23
faster than single-ray performance, and even in worst cases
the coherent implementation does not exhibit substantially
inferior performance. These numbers compare favorably to
other implementatations. For similar camera positions, we
achieve the same 2 FPS RM data performance on an two-
core Intel Core Duo as DeMarle et al. [15] report on a 64-
processor cluster with a distributed shared memory layer. We
are competitive with Wald et al. [20] for far views, and perhaps
faster for close-up scenes, while generally requiring an order
of magnitude lesser memory footprint.

IX. CONCLUSIONS

We have presented a method for coherent ray tracing of
large octree volume data using a multiresolution level of detail
scheme to improve performance. Octree volume ray tracing
allows for interactive exploration of large structured data on
multicore computers using a fraction of the original memory
footprint. While other spatial structures might deliver greater
compression or faster traversal, the octree strikes a particularly
good balance of these goals. With multiresolution and coherent
traversal, we are able to trade quality for performance and
render at interactive rates. Coherent traversal amortizes the
cost of cell lookup, which allows for faster intersection and
improved shading techniques.

11

Fig. 14. The visible female femur. The original, full 617x512x512 volume
occupies more space as an octree than uncompressed, due to the entropic
nature of soft tissues. Bone, which is more appropriately visualized as an
isosurface, can be represented by 100-163 isovalue segments, and compressed
into an octree volume with a 20:1 ratio, including the multiresolution data and
min/max acceleration structure. For this scene, coherent ray tracing scales well
to large frame buffers. The image renders at 6.0 FPS at 5122, versus 3.1 FPS at
10242 on an Intel Core Duo 2.16 GHz, with central differences and shadows.

Octree ray tracing is not ideal for all volume rendering
applications. For smaller volume data with uniformly high
isovalue variance, an octree can actually occupy more space
than a 3D array, and explicit macrocell-grid or kd-tree traversal
might perform slightly better. However, for small data with
simple shading models a GPU volume renderer would gener-
ally be preferable to an interactive ray tracing solution. Thus,
our method is primarily useful for large volumes, or medium
volumes with numerous timesteps. As large data is the impetus
for ray tracing in the first place, the octree is well suited to
this particular application.

On current dual-core computers, single-ray octree volume
ray tracing [1] performs sub-interactively, albeit at multiple
frames per second. The main goal of this work was to
devise a system that would consistently allow for interactivity.
Overall, we accomplish that: it is always possible to relax
the pixel to voxel width ratio to the point where performance
is interactive. However, doing so often requires visualizing
coarser resolutions than would be ideal. We find a better
application of coherent techniques to be high-quality rendering
of large frame buffers on multicore workstations. This exploits
coherent traversal without resorting to overly aggressive coarse
LODs, and will be interactive on commodity hardware in
the near future. Future improvements to our system could
explore this path. Implementing super-sampled filtering, and
intersecting higher-order implicit primitives defined on wider
cell kernels, could result in extremely high-quality isosurfaces
of large data, for applications where local detail and feature
correctness are critical.

An overarching concern is that level of detail may not
be an ideal solution for such high-quality rendering, and
ultimately performance gains from improved coherence may
not justify the loss in quality. One of the major advantages of
ray tracing, when compared to rasterization, is that rendering
is less bound by geometric complexity. Effectively, complex
scene geometry can be rendered linearly with respect to the
number of rays cast, as opposed to the number of objects in the
scene. As shown by Knoll et al. [1], a single-ray tracer renders
both simple and complex data at roughly equal, though slow,
frame rates. Coherent multiresolution essentially forfeits this
advantage; it instead opts to improve best-case performance of
simple scenes, while attempting to simplify complex scenes to
mitigate worst-case performance. Thus, coherence depends on
level of detail. Without it, complex scenes can easily perform
worse than under a naive single-ray traversal.

The problem of applying coherent techniques to incoherent,
complex scenes is a major obstacle for rendering large data
with packet architectures, and for ray tracing in general. While
the primary focus of our work was a visualization system,
we have sought to at least identify this issue, if not address
it. Multiresolution volumes make an effective testbed for this
problem, as complexity can be easily measured in number of
voxels, and surface geometry retains similar features between
levels of detail. Future work in ray tracing should improve the
behavior of coherent traversal on inherently incoherent scenes.
While difficult, this would be possible if the overall cost of
primitive intersection were substantially reduced.

REFERENCES

[1] A. Knoll, I. Wald, S. Parker, and C. Hansen, “Interactive Isosurface
Ray Tracing of Large Octree Volumes,” in Proceedings of the IEEE
Symposium on Interactive Ray Tracing, 2006.

[2] W. E. Lorensen and H. E. Cline, “Marching Cubes: A High Resolution
3D Surface Construction Algorithm,” Computer Graphics (Proceedings
of ACM SIGGRAPH), vol. 21, no. 4, pp. 163–169, 1987.

[3] J. Wilhelms and A. V. Gelder, “Octrees For Faster Isosurface Genera-
tion,” ACM Transactions on Graphics, vol. 11, no. 3, pp. 201–227, July
1992.

[4] Y. Livnat and C. D. Hansen, “View Dependent Isosurface Extraction,”
in Proceedings of IEEE Visualization ’98. IEEE Computer Society,
Oct. 1998, pp. 175–180.

[5] R. Westermann, L. Kobbelt, and T. Ertl, “Real-time Exploration of
Regular Volume Data by Adaptive Reconstruction of Iso-Surfaces,” The
Visual Computer, vol. 15, no. 2, pp. 100–111, 1999.

[6] Z. Liu, A. Finkelstein, and K. Li, “Improving Progressive View-
Dependent Isosurface Propagation,” Computers & Graphics, vol. 26,
no. 2, pp. 209–218, 2002.

[7] Y. Livnat and X. Tricoche, “Interactive Point-based Isosurface Extrac-
tion,” in Proceedings of IEEE Visualization 2004, 2004, pp. 457–464.

[8] M. Levoy, “Efficient Ray Tracing for Volume Data,” ACM Transactions
on Graphics, vol. 9, no. 3, pp. 245–261, July 1990.

[9] B. Cabral, N. Cam, and J. Foran, “Accelerated volume rendering and
tomographic reconstruction using texture mapping hardware,” in VVS
’94: Proceedings of the 1994 symposium on Volume visualization. New
York, NY, USA: ACM Press, 1994, pp. 91–98.

[10] E. LaMar, B. Hamann, and K. I. Joy, “Multiresolution Techniques for
Interactive Texture-based VolumeVisualization,” in Proceedings IEEE
Visualization 1999, 1999.

[11] I. Boada, I. Navazo, and R. Scopigno, “Multiresolution Volume Visu-
alization with a Texture-Based Octree,” The Visual Computer, vol. 17,
no. 3, 2001.

[12] M. Kraus and T. Ertl, “Adaptive Texture Maps,” Proceedings of ACM
SIGGRAPH/Eurographics Workshop on Graphics Hardware, 2002.

[13] S. Guthe, M. Wand, J. Gonser, and W. Straßer, “Interactive Rendering
of Large Volume Data Sets,” in Proceedings of the conference on
Visualization ’02. IEEE Computer Society, 2002, pp. 53–60.

12

[14] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P.-P. Sloan, “Interactive
Ray Tracing for Isosurface Rendering,” in IEEE Visualization, October
1998, pp. 233–238.

[15] D. E. DeMarle, S. Parker, M. Hartner, C. Gribble, and C. Hansen,
“Distributed Interactive Ray Tracing for Large Volume Visualization,”
in Proceedings of the IEEE Symposium on Parallel and Large-Data
Visualization and Graphics (PVG), 2003, pp. 87–94.

[16] A. Reshetov, A. Soupikov, and J. Hurley, “Multi-Level Ray Tracing
Algorithm,” ACM Transaction of Graphics, vol. 24, no. 3, pp. 1176–
1185, 2005, (Proceedings of ACM SIGGRAPH).

[17] I. Wald, S. Boulos, and P. Shirley, “Ray tracing deformable scenes using
dynamic bounding volume hierarchices,” SCI Institute, University of
Utah (conditionally accepted at ACM Transactions on Graphics, 2006),
Tech. Rep. UUSCI-2006-023, 2006.

[18] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. Parker, “Ray tracing
animated scenes using coherent grid traversal,” in Proceedings of ACM
SIGGRAPH 2006), 2006.

[19] G. Marmitt, H. Friedrich, A. Kleer, I. Wald, and P. Slusallek, “Fast
and Accurate Ray-Voxel Intersection Techniques for Iso-Surface Ray
Tracing,” in Proceedings of Vision, Modeling, and Visualization (VMV),
2004, pp. 429–435.

[20] I. Wald, H. Friedrich, G. Marmitt, P. Slusallek, and H.-P. Seidel, “Faster
Isosurface Ray Tracing using Implicit KD-Trees,” IEEE Transactions
on Visualization and Computer Graphics, vol. 11, no. 5, pp. 562–573,
2005.

[21] I. Wald, P. Slusallek, C. Benthin, and M. Wagner, “Interactive Rendering
with Coherent Ray Tracing,” Computer Graphics Forum, vol. 20, no. 3,
pp. 153–164, 2001, (Proceedings of Eurographics).

[22] C. Gribble, T. Ize, A. Kensler, I. Wald, and S. G. Parker, “A coherent
grid traversal approach to visualizing particle-based simulation data,”
SCI Institute, University of Utah (conditionally accepted at ACM
Transactions on Graphics, 2006), Tech. Rep. UUSCI-2006-024, 2006.

[23] S. Parker, M. Parker, Y. Livnat, P.-P. Sloan, C. Hansen, and P. Shirley,
“Interactive Ray Tracing for Volume Visualization,” IEEE Transactions
on Computer Graphics and Visualization, vol. 5, no. 3, pp. 238–250,
1999.

APPENDIX

We provide abbreviated pseudocode for coherent grid traver-
sal of an octree volume. In our implementation, duv and euv
are SSE datatypes, and k is an integer. Cap depth is given as
dcap = dmax − 1. For multiresolution, the algorithm is similar
except we may intersect slices at lesser stop depth than dmax.
Also refer to Figs. 5, 6, and 7 for illustration of this algorithm.

Algorithm 3 Octree CGT algorithm

Require: axes ~K,~U ,~V ; packet P; octree volume OV ; isovalue
Ensure: compute P intersection with OV

for all depths i ∈ {0..dmax} do
duv[i]⇐ [dumin,dvmin,dumax,dvmax] / 2dmax−i

k0[i]⇐ (P enters OV)~K / 2dmax−i

k1[i]⇐ (P exits OV)~K / 2dmax−i

euv[i]⇐ [umin,vmin,umax,vmax] at k0[i],k1[i]
k[i]⇐ k0[i]
knextMC[i]⇐ k[i]+2

end for
d ⇐ 0
while k[d]≤ k1[d] do

if k[d] = knextMC[d] then
d ⇐ d−1
continue

end if
traverseChild ⇐ f alse;
for all u ∈ [umin,umax],v ∈ [vmin,vmax] of euv do

node ⇐ OV.lookup(vec3(k,u,v),d)
if isovalue ∈ [node.min,node.max] then

traverseChild ⇐ true
break

end if
end for
if d = dcap then

clip euv to non-empty cap-level macrocells
end if
if traverseChild = true then

if d = dmax then
clip cell slice euv to active rays
intersect P with slice k[dcap] at euv[dcap]
if all rays in P hit then

return
end if

else
euv[d]⇐ euv[d]+duv[d]
knew[d +1]⇐ 2∗ k[d]
k[d +1]⇐ knew[d +1]
knextMC[d +1]⇐ k[d +1]+2
d ⇐ d +1
continue

end if
end if
euv[dcap]⇐ euv[dcap]+duv[dcap]

end while

