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Figure 1: Examples of scenes built using our parallel grid rebuild: a) Thai Statue (10M triangles). b) 125,000 marbles randomly distributed inside a cube (10M
triangles). c) Hand (16K triangles). d) Scalability impact of the grid rebuild time on total rendering performance, on a 16-core machine. Data is given for both a
non-parallelized grid rebuild, as well as for the sort-middle parallel construction technique evaluated in this paper.

ABSTRACT

We describe and analyze several ways to parallelize the rebuild of
a grid acceleration structure used for interactive ray tracing of dy-
namic scenes. While doing so, we also analyze memory system
performance on a multi-core multi-processor system. In particular,
we present a scalable sort-middle approach that uses a minimum
amount of synchronization, scales to many CPUs, and becomes
performance limited only by memory bandwidth. This algorithm is
capable of rebuilding grids within a fraction of a second, enabling
interactive ray tracing of large multi-million triangle scenes.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing;

Keywords: interactive ray tracing, dynamic scenes, scalability and
performance, sort middle, parallel build, grid

1 INTRODUCTION

There has been recent progress in interactive ray tracing of fully
animated scenes by making the traversal of the grid acceleration
structure an order of magnitude faster. This is accomplished by
using the coherent grid traversal algorithm and by quickly rebuild-
ing the entire grid each frame [15]. While grid rebuild time for
small to moderate scenes is fast enough that only a single proces-
sor is needed for grid rebuilding, for larger scenes the grid rebuild
time became the dominant cost. For example, the 10 million trian-
gle Thai Statue required almost an entire second to rebuild. This
paper describes methods for parallelizing the grid rebuild so that
large scenes can be rebuilt and ray traced at interactive frame rates,
and by extension, small to medium sized scenes can perform even
faster. With the current trend of multi-core CPUs and industry pro-
jections that parallelism is the key to performance in the future, this
technique becomes especially important.

Traditional ray tracers are regarded as “embarrassingly parallel”,
and in fact, the first interactive ray tracers made heavy use of this
property [10, 17]; however, recent work in interactive ray tracing

of dynamic scenes has made updating the acceleration structures,
either BVH or grid, as important as the actual ray tracing [7, 15, 14].
However, updating the acceleration structures in parallel, especially
for many CPUs and at interactive frame rates, is nontrivial and has
not been shown for more than 2 CPUs. Our parallel grid rebuild
scales to a large number of CPUs before becoming performance
bound by the memory architecture.

2 BACKGROUND

2.1 Fast Ray Tracing

While the first interactive ray tracers utilized grids [10], algorith-
mic developments for traversal schemes based on kd-trees [17, 11]
have significantly improved the performance of ray tracing. Packet-
based ray tracing [17] creates groups of spatially coherent rays
that are simultaneously traced through a kd-tree: each ray in the
packet performs each traversal operation in lock-step. This packet-
based approach enables effective use of SIMD extensions on mod-
ern CPUs, increases the computational density of the code, and
amortizes the cost of memory accesses across multiple rays. Packet
tracing has also lead to a new frustum based traversal algorithm
for kd-trees [11] in which a bounding frustum guides the traver-
sal of ray packets, rather than considering each ray individually.
The cost of a traversal step is thus independent of the number
of rays bounded by the frustum and encourages large ray packets
to achieve lower per-ray cost. The frustum based technique has
recently been extended to bounding volume hierarchies [14] and
multi-level grids [15], both of which support dynamic scenes.

Dynamic Scenes and CGT The Coherent Grid Traversal [15] al-
gorithm is able to interactively ray trace fully dynamic scenes by
rebuilding the multi-level grid from scratch for each frame and
quickly traversing the multi-level grid using a frustum-bounded
packet. As in [15], we use a 2-level grid consisting of a top level
macro cell grid built on top of the regular grid. Because the accel-
eration structure is rebuilt every frame, there are no restrictions on
the nature of the motion in a dynamic scene, but the grid rebuild
performance becomes the performance limiting factor. The grid re-
build is extremely fast for small to medium sized scenes, but the
cost is linear in the number of triangles and it becomes too slow to
allow for interactive ray tracing of multi-million triangle scenes.



Figure 2: The 282k triangle Conference Room exhibits a wide range of trian-
gle shapes, sizes, and locations.

Grid Rebuild The grid rebuild consists of three steps: clearing
the previous grid cells and macro cells of previous triangle refer-
ences; inserting the triangles into the grid cells that they intersect;
and building the macro cells. As in [15], we use the following opti-
mizations.

We optimize the grid clearing step by iterating through the previ-
ous macro cells and only clearing the grid cells that have their cor-
responding macro cell filled. This allows us to quickly skip large
empty regions without performing expensive memory reads to de-
termine if a cell is empty. The macro cells are not explicitly cleared
because they are overwritten at the end of the grid rebuild step.

Rather than performing a more expensive triangle-in-box test [1]
to exactly determine which cells are occupied by a triangle, we op-
timize the triangle insertion step by inserting the triangles into all
the cells overlapped by the triangle’s bounding box. This conser-
vative requirement allows the insertion step to run several times
faster, while only slowing down rendering by a few percent when a
mailbox algorithm is employed. For instance, the conference room
exhibits a wide range of triangle sizes (see Figure 2), and using
the triangle-in-box test decreases the number of triangle references
from 1.24 million to 0.83 million; however, the rendering time only
improves from 339ms to 330ms, and the serial rebuild time almost
triples from 82ms to 245ms. Thus, the total rebuild and render time
become slower. One improvement is to only apply the triangle-
in-box test for triangles that span many cells since they are more
likely to benefit from the exact test. Yet, even if we only test tri-
angles that span at least 200 cells, the rebuild time only improves
to 118ms, which is still too slow. Another reason for not includ-
ing the triangle-in-box test is that since it slows the rebuild only
through computational overhead, always including the test would
improve parallel scalability but would not improve the total per-
formance since it requires no additional memory accesses. Also,
although the more precise triangle-in-box test does result in fewer
cells being written (with a consequent reduction in memory traffic),
in practice the minor reduction in memory traffic does not offset the
large computational cost for the systems we tested.

The macro cell build is optimized by iterating through the macro
cells and checking the grid cells in each macro cell until a cell is
found with a triangle. At this point, the macro cell can be marked
as full before proceeding to the next macro cell.

2.2 Parallel Computers

Ray tracers have traditionally leveraged the “embarrassingly paral-
lel” nature for static scenes to achieve interactive frame rates; thus,
relegating interactive ray tracing to the domain of super computers
and clusters. Recently, the combination of Moore’s law and algo-
rithmic advances have allowed for personal computers with only a
single CPU to catch up with the first interactive ray tracers that ran
on super computers. Fully dynamic ray tracers have taken advan-
tage of this by using serial algorithms to update the scene.

Multi-Core Architectures While algorithmic improvements
might continue at the same rate, it is unlikely that individual
CPU performance will do so. Instead, parallelism will most
likely drive future computer performance improvements, with the
greatest gains stemming from the addition of multiple cores to the
processor. In fact, this is already occurring, personal computers are
now (circa 2006) shipping with dual cores, quad core processors
are expected for start of 2007, the IBM Cell processor has 1
general purpose core and 8 special purpose cores, and special
purpose processors, such as some GPUs, can have 48 or more
cores. There has also been an increase in the number of processors
on a computer, with many personal computers currently having
two processors and high end workstations currently supporting
up to 8 processors, each of which can be multi-core. This means
that ray tracers on future personal computers must be parallelized
in order to take advantage of the faster hardware. While this
is not a problem for static scenes, which are “embarrassingly
parallel”, the current algorithms for handling dynamic scenes must
be parallelized and able to run on many CPUs.

Distributed Memory, SMP, and NUMA There are several ways
to build a multi-processor machine. The three most common are
Symmetric Multi-Processing (SMP) systems, Nonuniform Memory
Access (NUMA) systems, and distributed memory systems which
are usually implemented as computer clusters. SMP and NUMA
are shared memory systems where all the processors are able to
access the same memory; distributed memory systems, on the other
hand, are not able to share memory at the hardware level and instead
must use the relatively slow network connections and software level
support. On an SMP system, the computer has a single memory
controller and memory bus shared by all of the processors. For
memory intensive applications, this quickly becomes a bottleneck
as the number of CPUs is increased. NUMA solves this problem
by splitting the system into nodes made up of both processors and
memory, and connecting these nodes by a fast interconnect. Each
node operates like a small SMP system, with a processor capable
of very fast access to the local memory on its node, regardless of
how many other nodes are in the system, while access to memory
on another node happens at slower speeds. As long as a program
is written to use only local node memory, the program should scale
well on a NUMA system to any number of nodes.

While ray tracers have been written for clusters [16], and mem-
ory can be shared through a network connection [5], the parallel al-
gorithms in this paper are too memory intensive to work efficiently
on clusters. We thus assume a modern system which is NUMA
based with nodes that are SMP based. In the benchmarks below,
we use a machine based on 8 AMD Opteron processors, in which
each processor contains multiple (2) cores and a single memory
controller.

Ideally each node should only use its local memory; but since
a thread can traverse any grid cell and intersect any triangle, the
grid and triangle data must be shared between nodes. We avoid
memory hotspots by interleaving memory allocations in a round-
robin fashion by memory page, across all the nodes that might use
that memory. Otherwise, we make no particular assumptions about
the topology of the underlying architecture and network.



2.3 Parallel Construction of Data Structures

Most fully dynamic ray tracing algorithms make use of either ac-
celeration structure updates [14, 7] or full acceleration structure re-
builds [15, 7]. Of these, only Lauterbach et al. [7] have parallelized
the update and rebuild algorithm. However, while their algorithms
do update the bounding volumes and perform the BVH tree rebuild
in parallel, the authors report that this works because their data is
well balanced and they show results only for a dual Xeon computer.
It is unclear how well this would scale on more processors or for
other scenes.

There has been some research into parallel builds of recursive
tree based acceleration structures, such as kd-trees, BVH trees, and
octrees, albeit at the time they reached non-interactive performance.
Bartz, for instance, showed how to parallelize the construction of
octrees [3], and after optimizing memory allocations, on a 16 CPU
SGI Challenge, Bartz obtained a parallel build efficiency between
30-80% depending on the scene used [2]. Bartz claimed his par-
allel build algorithm would extend to other tree based structures;
however, it is not clear whether two-child trees, such as BVHs and
kd-trees, would scale as well as the eight-child octree which parti-
tions naturally to 8 CPUs.

Benthin parallelized a fast kd-tree build for two threads and was
able to halve the one second build time using two threads for a
100K Bézier patch model [4]. However, as the number of patches
decreased, the scalability also went down, and below 20K patches,
adding a second thread gave almost no noticeable benefit. It is
likely that adding more threads would require large models in order
to continue to scale. It is also unclear whether this would perform
as well with simpler triangle meshes.

3 PARALLEL GRID REBUILD

We rebuild the grid using the same method as [15], except that now
the cell clearing, triangle insertion, and macro cell building phases
have been parallelized. We also distribute the triangle and grid stor-
age by memory page across all nodes being used. We discuss the
parallelization of each of these phases here.

3.1 Parallel Cell Clearing and Macro Cell Build

We parallelize the grid clearing and macro cell building by stati-
cally assigning each thread a continuous section of macro cells. By
making the assignments over continuous sections, we benefit from
cache coherence and a simple iteration over the cells. Furthermore,
since each thread handles its own macro cells, and by extension,
grid cells, there is no need for mutex locking. Unfortunately, the
static assignment and continuous allocation are subject to load im-
balance because some sections of the grid may have more triangles
than others. However, when we tried to improve this by scheduling
small sections of cells round robin to the threads or using dynamic
load balancing, the extra overhead and lack of memory locality re-
sulted in a slowdown for the overall clearing and macro cell build-
ing phases.

3.2 Parallel Triangle Insertion

The triangle insertion step is equivalent to triangle rasterization onto
a regular structure of 3D cells. Indeed, it is the three dimensional
extension to the traditional rasterization of triangles onto 2D pixels.
As such, we can take advantage of the existing general parallel ren-
dering methods, such as those in Chromium [6], to parallelize the
triangle insertion.

In the 3D grid, a triangle that overlaps several cells will be placed
in each of those cells. This is akin to the 2D rasterization of a trian-
gle into multiple pixel fragments. The only difference is that in 2D
rasterization, the fragments are combined together via z-buffering

and blending ops, whereas the grid accumulates them all into a per-
cell list of triangles.

Parallel rendering algorithms are classified into three categories:
sort-first, sort-middle, and sort-last [9]. In sort-first, each processor
is given a portion of the image. The processor determines which
triangles are needed to fill that part of the image by iterating through
all the triangles. Sort-last assigns each processor a portion of the
triangles and determines which pixels those triangles belong in. The
sort-middle approach assigns each processor a portion of the image
and a portion of the triangles to work with. We can borrow these
same concepts and apply them to the grid build, leading to three
basic approaches to parallel grid builds:
Sort-First Build In a sort-first parallel build, each thread is as-
signed a subset of the cells to fill, and then it finds all the triangles
that overlap those cells. For example, for P threads, the grid could
be subdivided into P subgrids. Each thread iterates over all T trian-
gles, discards those that don’t overlap its subgrid, and rasterizes the
rest.

The advantage of sort-first is that each cell is written by exactly
one thread; there is no write combining. Since all shared data is
only read, there are no shared writes at all, requiring synchroniza-
tion only at the end of the algorithm. However, the disadvantage
is that each thread has to read every triangle and at the very least,
has to test whether the triangle overlaps its subgrid, hence, its com-
plexity is O(T + Θ), where Θ is the parallelization overhead. In
addition, load balancing is nontrivial when the triangle distribution
is uneven.
Sort-Last Build This approach is exactly the opposite of sort-
first, in that each thread operates on a fixed set of triangles. The
thread partitions the triangle into fragments and stores the frag-
ments in the appropriate cells. The complexity of this algorithm
is O( T

P +Θ) so it will scale as more threads are added.
The advantage to sort-last is that each triangle is touched by ex-

actly one thread, and this method can easily be load balanced. The
drawback is the scatter write and write conflicts. Any thread can
write to any cell at any time, and different threads may want to
write to the same cell. This results in bad memory performance and
is bad for streaming architectures (which usually support scatter
writes poorly, if at all). In particular, the write combining—multiple
threads might want to write to the same cell at the same time—
requires synchronization at every write, which is bad for scalability.
Alternatively, each thread could write its triangles into its own grid,
and the thread-local grids could then either be merged into a single
grid, without the use of synchronization, or the thread-local grids
could all be individually ray traced.
Sort-Middle Build Sort-middle falls in between the previously
discussed approaches. Each thread is responsible for a specific set
of triangles and grid cells. Each thread iterates over its triangles,
partitions each one into fragments, and routes these to the respective
threads that fill them into the final cells. Like the sort-last approach,
sort-middle also has a complexity of O( T

P +Θ).
The benefits of sort-middle are that it is relatively easy to load

balance, each triangle is read only once, and there are no write con-
flicts. There is no scatter read nor scatter write, which is good for
broadband/streaming architectures. The disadvantage is that it re-
quires buffering of fragments between the two stages. The best way
to realize the buffering is not obvious.

From these three methods, we will consider the latter two in
more detail. As discussed above, for non-uniform primitive distri-
butions, sort-first is problematic to load balance. Since non-uniform
distribution is certainly the case for our applications, load balancing
must be addressed. In addition, our applications have a lot of tri-
angles, and reading each triangle several times is likely to quickly
produce a memory bottleneck. Thus, we will ignore sort-first and
only discuss the other two options below.



4 SORT-LAST APPROACHES

As noted above, each thread works on different triangles. We can
easily do this by statically assigning each thread a section of trian-
gles. For each triangle assigned to a thread, it must find the cells
the triangle overlaps and add the triangle to those per-cell lists. As
a result, all threads have the ability to write to all grid cells, which
requires synchronizing writes to each cell. There are several ways
to do this as described below.

Single Mutex The most straightforward approach to synchroniza-
tion is to use a single mutex for inserting triangles into the cells. A
single mutex results in one triangle insertion at a time, regardless of
what cell it falls inside. This results in an overhead complexity of
Θ = T

M , where M is the number of mutexes. Since we are using only
one mutex, we get a total complexity of O( T

P + T
1 ) = O(T ). There-

fore, using the same mutex for every insertion will quickly cause the
parallel build to break down into a slow serial build. Clearly this is
undesirable for a parallel build, as many of the available resources
are not being utilized.

One Mutex Per Cell Rather than share a single mutex, we can use
a unique mutex for every grid cell to prevent false conflicts from
occurring. The advantage of this method over the naive build is that
locking a mutex for one cell won’t affect any other cell in the grid.
Our complexity now becomes O( T

P + T
M ) = O( T

P + T
T ·λ ), where λ

is the grid resolution factor as defined in [15]. Since λ is usually
around the magnitude of 1, this simplifies to O( T

P ). This method
eliminates most of the lock contention, but pays a considerable cost
for the size of the mutex pool and the memory accesses to it.

Mutex Pool Instead of using a single mutex per cell, it is possible
to use a smaller pool of locks, each of which are mapped to mul-
tiple grid cells. Since each thread always locks only one mutex at
a time, this is deadlock free. We can attempt to maximize some of
the memory coherency issues for the mutexes by sharing a mutex
among neighboring cells. We accomplish this by having a mutex
per macro cell, which is shared by all the cells in a macro cell. In
addition, if we can perform a mutex lock once per triangle instead
of once for each cell the triangle overlaps, then the reduction in mu-
tex locks would further improve performance. Given a list of cells
that a triangle must be inserted into, we perform a mutex lock on
the first cell, insert the triangle into the cell, and then rather than
immediately releasing the lock and reacquiring it for the next cell,
we check to see whether the next cell shares the same mutex as the
current cell and if it does, we do not release the mutex. Once all the
cells for that triangle have been visited, we release the lock. Hold-
ing a lock over several iterations of cells is not expensive since the
only work done in those iterations, aside from the bookkeeping to
determine which macro cell we are in, is the critical section which
requires the mutex. The complexity of this approach is the same as
the one mutex per cell approach.

Grid Merge Rather than have each thread write the triangles to a
common grid, which requires at least one synchronization per tri-
angle, we could have each thread write its triangles into its own
thread local grid. Once the thread local grids have been filled, each
thread can be responsible for merging certain sections of the local
grids into the main grid. Or, rather than merging during grid build,
the P grids could simply all be checked during ray traversal, as
in [8, 12]; this would clearly result in a very fast triangle insertion
which should scale very well, since aside from the triangle reading,
all other memory operations would be local to the node, but at the
expense of making ray traversal slower. Furthermore, delaying the
merge would require the macro cell build to look at P grids, so the
macro cell build would end up with a linear complexity. Both ver-
sions require each thread to clear the grid it built, which also results

in a linear complexity for the clear stage. Like the two previous ap-
proaches, the complexity of the triangle insertion is also O( T

P ), but
the other stages become slower, which results in the overall build
and ray traversal time becoming much slower than the other meth-
ods.

5 SORT-MIDDLE GRID BUILD

In our sort-middle approach, we perform a coarse parallel bucket
sort of the triangles by their cell location. Then each thread takes a
set of buckets and writes the triangles in those buckets to the grid
cells. Since each thread handles writing into different parts of the
grid, as specified by the buckets, there is no chance of multiple
threads writing to the same grid cells; thus mutexes are not required.

More specifically, given T triangles and P threads, each thread
takes T

P triangles and sorts these triangles into P thread local buck-
ets (see Figure 3 for an example with P = 4). We choose to sort
based on the triangle’s z cell index modulo the P buckets since that
distributes the triangles fairly equally among the buckets, while still
allowing us to exploit grid memory coherence when inserting the
triangles into the grid because the cells in an xy slice are located in
a contiguous section of memory. Note that a triangle may overlap
multiple cells, resulting in a triangle appearing in multiple buckets.
Once all the threads have finished sorting their T

P triangles into their
P buckets, we need to merge the triangles from the buckets into the
grid. As there are P sets of P buckets, we do this by reordering the
buckets among the threads so that thread i now becomes responsible
for the ith bucket from each thread, that is the bucket whose z index
is z mod P = i. Thread i then adds all these triangles into the grid.
Since thread i now has all buckets with the same z indices (those
for which z mod P = i), thread i will be the only thread writing to
those grid cells.

Mutexes are not required at all as each thread is guaranteed to
be writing to different grid cells. This method removes the mutex
locking overhead, however, the trade off is that it adds extra work
in writing to the buckets. The complexity is also O( T

P ).

6 RESULTS

Unless otherwise noted, we use the 10 million triangle Thai statue
at a grid resolution of 192×324×168 and a macro cell resolution
factor of 6 for our measurements.

We use a 16 core computer composed of 8 nodes, each of which
has a Dual Core Opteron 880 Processor running at 2.4GHz and 8GB
of local memory (a total of 64 GB). Since the cores on a proces-
sor must compete with each other for use of the shared memory
controller, we distribute the threads across the processors so that a
processor will only have both cores filled once all the other proces-
sors have at least one core being used. We also interleave memory
across the nodes that will need to access it.

6.1 Comparison of Build Methods

In order to determine which build method performs best, we com-
pare the sort-middle, sort-last, and the non-parallel build algo-
rithms. As expected, Figure 4 shows that for one thread the non
parallel algorithm performs best, since it has no parallel code over-
head. The mutex based builds show that the penalty for locking a
mutex for every cell a triangle occupies, or even for every macro
cell in the case of the mutex pool, is quite large. The single mu-
tex build performs slightly better than the other mutex builds when
there is only one thread, since the mutex is always in cache. Sur-
prisingly, the sort-middle build performs almost as well as the non
parallel build for one thread, despite the extra overhead of passing
the triangles through an intermediate buffer.



Figure 3: Given 4 processors, in the sort-middle build, the T triangles are
equally divided among the 4 threads. Each thread has 4 buckets which are
used to sort its T

4 triangles, based on the z cell index modulo 4. After all 4
threads have finished sorting, the threads regroup the buckets and fill in the
grid. Thread i is responsible for the ith buckets of each of the threads and
places all of those triangles into the grid. For example, Thread 0 takes bucket
0 from all 4 threads, Thread 1 takes bucket 1 from all 4 threads, and so on.
Since all i buckets correspond to the same z cell indices, there is no overlap
in what grid cells they are writing to, thus eliminating the need for mutexes.

As we increase the number of threads, we find that using a sin-
gle mutex scales poorly as expected, and also degrades in perfor-
mance significantly as more threads are added. This is mainly due
to our mutex implementation, which requires an expensive system
call when multiple threads try to lock the mutex at the same time.
The mutex per cell, mutex pool, and sort-middle builds, on the other
hand, do scale to the number of threads; however, since the mutex
builds are initially twice as slow with one thread, they are unable
to perform better than the sort-middle build. Since the mutex pool
build requires fewer mutex locks, it performs slightly better than
the mutex per cell build.

6.2 Individual Steps

Examining the individual steps allows us to better understand why
scalability drops as the number of threads increases. Figure 5 shows
how long the fastest and slowest threads take to clear the grid cells,
to build the macro cells, and to perform the two fastest triangle in-
sertion builds: the sort-middle build and the mutex pool build. In-
creasing the number of threads would ideally cause all of the steps
to scale linearly and all of the threads in a step to be equally fast.
However, this is not the case due to poor load balancing and mem-
ory limitations.

We see that for the Thai statue, the grid clearing phase exhibits
rather poor load balancing, with some threads finishing an order of
magnitude faster than the slowest thread. This is easily explained
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Figure 4: Graphs showing the total rebuild performance (clearing + triangle
insertion + macro cell build) for the Thai Statue for: a single mutex, a mutex
per cell, mutex pools, sort-middle, and the default non-parallel rebuild.

by observing that different slices along the z axis contain varying
amounts of empty cells, with the end slices being mostly empty and
the middle cells being mostly full. Since an empty macro cell al-
lows a thread to skip looking at the individual grid cells, this results
in a very fast clear for some threads. We tried other load balanc-
ing methods, such as having the threads traverse the cells in strides
rather than in continuous chunks, and dynamically assigning cells
to threads. While these methods did improve load balancing, the
extra overhead caused the overall time to increase.

While the macro cell build shares the same load balancing and a
similar iteration scheme as the cell clearing, it is able to load bal-
ance fairly well up to 8 threads, after which a limit is encountered,
making some of the threads much slower and the fastest threads
barely faster. If this was due to poor load balancing, then we
would expect a slowdown in the slowest threads to be matched by
a speedup in the fastest threads, but this does not occur. Also note
that the gap is largest at 9 threads, and starts to go down until 16
threads, at which point the threads all take roughly the same amount
of time. This can be explained by noticing that at 8 threads, each
node has only one thread on it, so each thread has an equal amount
of access to all the resources; but at 9 threads, two threads will ex-
ist on one node, so those two threads must share node resources.
By 16 threads, all the nodes once again have an equal number of
threads (2).

The triangle insertion steps load balance fairly well, with some
variation most likely due to threads having triangles that need to
be inserted into more cells than usual. However, most of the vari-
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Figure 5: Graph of individual build steps for Thai Statue. The min, average,
and max thread times help show how the load balancing performs.

ation once again comes from unequal contention of the memory
resources, which can be seen from the increased range of rebuild
times from 9 threads to 15 threads, with 16 threads once again hav-
ing little variation.

6.3 Memory System Overhead

As Figure 5 showed, the different build stages scale at different
rates and none of them scale perfectly. This is due to a combination
of parallel algorithm overhead, poor load balancing, and memory
system bottleneck. We can measure the memory system impact
by placing mutexes around each build stage and only allowing one
thread to run at a time. Figure 6 shows the result of this “contention-
free” build. Notice that the macro cell build scales the worst when
all the threads are contending for resources, but scales extremely
well in the “contention-free” build. The sort-middle triangle inser-
tion also scales extremely well, almost achieving perfect scaling,
when resource contention is removed. This suggests that when all
the threads are working concurrently, the memory traffic is the main
bottleneck, except for the mutex builds which, in addition to being
affected by the same memory penalty, also have a large parallel al-
gorithm overhead due to the mutex locking and unlocking which
cuts the triangle insertion performance in half. Thus, it is extremely
important to make sure the algorithms make memory accesses as
efficiently as possible.

NUMA Our 8 dual-core processor computer is a NUMA system
where each processor also contains a memory controller. Normally,
when a memory allocation is made, the OS assigns that memory
to the node that first touches (reads or writes) the memory. Most
grid implementations have a single thread allocate and clear the
grid data in one operation, so most of the grid data will reside in a
single node. Not only will one thread always have fast local access
to the grid data, while the other threads have to remotely access the
memory, but all the threads will have to share a single memory con-
troller. If instead we interleave the memory allocations across the N
nodes that need to access it, we can ensure that 1

N th of the memory
accesses will be to local node memory, and the memory bandwidth
will be spread out among more memory controllers. Figure 7 shows
how interleaving memory allocations across the nodes that need to
access it versus allowing the OS to manage memory allocations,
allows the build steps to scale to many more threads.

This clearly makes a large improvement at pushing back the
memory bottleneck. The macro cell build step, for instance, con-
sists of memory reads from many cells, memory writes to every
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Figure 6: Graph of individual steps for the parallel rebuild, and then for the
same parallel rebuild when each thread is forced to run by itself. Forcing the
threads to run by themselves allows us to simulate build times when there
are no resource contentions.

macro cell, and very little computation. When we allow the OS to
allocate the memory, the macro cell build becomes memory bound
quite quickly; scaling to only two threads before hitting the memory
bottleneck, at which point it cannot run faster despite adding more
processors. From Figure 6 we saw that the macro cell build actually
scales very well if only one thread runs at a time, so we know that
this wall must be due entirely to a memory controller saturating its
memory bandwidth. Sure enough, when we distribute the memory
across all the nodes that might need to access it, the macro cell build
time is able to scale up to 8 threads, at which point every node has
a thread on it. Adding more threads does not add more memory
controllers, limiting scalability due to a memory bottleneck beyond
8 threads.

The other build stages show a similar effect. In the case of the
sort-middle build, not interleaving the memory causes a wall to be
hit after 8 threads, preventing the sort-middle build from benefiting
from more threads, and allowing the mutex pool build to catch up
and surpass the sort-middle build. With memory interleaving on the
other hand, the sort-middle build is able to scale up to all 16 threads
and outperform the mutex pool build. This implies that once the
machine becomes memory bound, it might become advantageous to
switch from the sort-middle build to the mutex pool build because
it requires fewer memory accesses.

6.4 Comparison using other scenes

The Thai statue is a shell of triangles that occupy a small number
of grid cells, so we compare this scene to the 10 million triangle
marbles scene depicted in Figure 1. This scene consists of 125,000
triangulated spheres randomly distributed inside a cube, uses a grid
resolution of 216× 216× 216, and macro cell resolution factor of
6. These two scenes share the same number of triangles, but the
distribution of those triangles is very different, thus allowing us to
see how robust the parallel grid rebuild is to triangle distribution.

Comparing the Thai statue with the marbles scene in Figure 8
shows the interesting property that the build times for the clear-
ing and macro cell building for the two scenes are almost exactly
swapped. For instance, the Thai macro cell build and the marbles
cell clearing times are almost identical, even showing the same fluc-
tuations. This is due to the fact that one scene has almost all the
cells full while the other scene has almost none full. Furthermore,
the cell clearing and macro cell building share the same basic iter-
ation structure and level of computation, except that the clearing is
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Figure 7: Graph comparing interleaved memory allocations across the nodes
to default OS supplied memory allocations.

optimized to skip cells when the macro cell is empty, and the macro
cell build is optimized to skip cells when the cells are full. This
implies that the total time spent clearing and building macro cells
will not vary too much as long as the number of triangles and cells
stays the same.

Both the Thai statue and marbles scenes consist of fairly uniform
triangle sizes, so in Table 1 we also compare rebuild times with the
Conference Room scene which exhibits a large variation in triangle
sizes, shapes, and locations, as seen in Figure 2. The Conference
Room has 283k triangles, uses a grid resolution of 210×138×54,
and a macro cell resolution factor of 6.

Finally, to show that the parallel grid rebuild does not require
large numbers of triangles in order to scale, in Table 1 we also
compare against the 16K triangle hand model, which has a grid
resolution of 72×36×36 and a macro cell resolution factor of 6.
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6.5 Overall Parallel Rendering Performance

Improving rebuild performance by parallelizing the rebuild is only
worthwhile if it ends up improving the overall ray tracing perfor-
mance. Since most animated scenes require rebuilding the grid ev-
ery frame, we measure the total ray tracing time for a frame using
three of the widely different scenes mentioned in the previous sec-
tion.

scene #tris 0 1 2 4 8 16
Thai 10M 955 1019 493 274 170 136
Marbles 10M 1548 1667 748 408 241 207
Conference 283K 89 93 49 34 26 21
Hand 16K 7.3 8.0 4.0 2.4 1.6 1.4

Table 1: Total rebuild times, in ms, for varying amounts of rebuild threads
using the sort-middle build. 0 threads means serial rebuild.

As mentioned in [15], we also need to create the derived data for
the triangle test described in [13]. Since the triangle rebuild shares
some memory reads with the grid rebuild, we can do the triangle re-
build during the triangle insertion stage of the grid build. By doing
so, not only do we remove a large amount of extra memory reads,
we also space out the memory reads with the triangle build compu-
tations, which further reduce the memory pressure and allows the
overall rebuild time to scale from 7x to 9x when using 16 threads.
Even though including the triangle rebuild into the grid rebuild in-
creases the overall performance and allows the grid rebuild to scale
better, we chose not to include this in the other measurements since
the triangle rebuild is not fundamentally required and other primi-
tives might not require any rebuilding.

We measure the overall impact of the parallel grid rebuild by
comparing the various parallel versions to the standard serial grid
rebuild used in [15]; both triangle acceleration structure rebuild and
rendering are parallelized in both versions, only the grid rebuild
method is being varied. Figure 1 shows us how using the paral-
lel grid rebuild allows the overall rendering performance to almost
quadruple. For 16 threads, the Thai statue framerate went from
0.78fps with no parallel grid rebuild to 2.86fps with the parallel
grid rebuild; the Marbles scene went from 0.50fps to 1.97fps; and
the Hand from 78fps to 150fps. The Hand does not scale as well as
the other scenes because it is so small; in fact, even without the grid
rebuild (rendering only) it is only able to scale by 13x when using
16 threads.

7 SUMMARY AND DISCUSSION

We showed how the parallel rendering classifications used for 2D
rasterization could be applied to parallel grid building and presented
several parallel build methods based on these classifications. We
showed that the sort-last approaches require significant thread syn-
chronization, which results in these approaches incurring a large
overhead, resulting in low parallel efficiency. These approaches al-
most double the build time. The sort-first approach is even less
effective since it requires each thread to read all the triangles and
compute which cells they overlap, making this approach expensive
in both computations and memory bandwidth. The sort-middle ap-
proach was shown to have very little overhead over the non-parallel
build, which allowed it to perform better than the other approaches.

Memory bandwidth proves to be a major bottleneck in parallel
grid rebuilds where the amount of computation performed is low
and the amount of data that needs to be processed is high. Even
the simple to parallelize grid cell clearing and macro cell building
stages quickly started to show the memory pressure after just a cou-
ple threads were used. We were able to push back some of the mem-
ory pressure on our NUMA computer by interleaving the memory
allocations across the nodes that access that memory. However, as
we demonstrated with our “contention-free” parallel rebuilds, in-
creasing the memory bandwidth would allow all our parallel rebuild
methods to scale even better. While the sort-middle build did per-
form best on our test computer, it is possible that for a computer
with more limited memory bandwidth, the sort-last approach could
perform better since it requires fewer memory accesses.

As we showed in Figure 1, using a parallel grid rebuild allowed



the overall render speed to quadruple for the two large 10M triangle
scenes and double for the very small 16K triangle scene. Thus, a
parallel grid rebuild is important for any dynamic scene rendered
with a grid when multiple CPUs are available. Since many con-
sumer computers already ship with dual-core processors and some
with two dual-core processors, and furthermore there is a strong
trend towards more multi-core processors, it is imperative that dy-
namic ray tracers be able to take advantage of the extra processor
resources.

With memory bandwidth being the limiting factor, adding more
cores to a chip might result in only minor performance gains if the
memory bandwidth to the chip isn’t also increased. However, if
we compare the IBM Cell processor with 8 special purpose cores
and a memory bandwidth of 25.6GB/s to the dual core Opteron’s
bandwidth of 6.4GB/s, we see that for at least up to 8 cores the
memory bandwidth per core should at least stay the same. Further-
more, since the memory for the 8 cores is all local to the processor,
memory latency will be equally fast for each core, unlike with the
NUMA based system used for these tests. However, the memory
architecture of the Cell would introduce other challenges in this al-
gorithm.

As the number of computational cores in a computer continues
increasing, a parallel grid rebuild algorithm will allow us to take
advantage of these resources to speed up small to medium sized
dynamic scenes, as well as providing scalable performance for large
dynamic scenes.
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