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Abstract

Over the last three decades, higher CPU performance has been
achieved almost exclusively by raising the CPU’s clock rate. Today,
the resulting power consumption and heat dissipation threaten to
end this trend, and CPU designers are looking for alternative ways
of providing more compute power. In particular, they are looking
towards three concepts: a streaming compute model, vector-like
SIMD units, and multi-core architectures. One particular example
of such an architecture is the Cell Broadband Engine Architecture
(CBEA), a multi-core processor that offers a raw compute power
of up to 200 GFlops per 3.2 GHz chip. The Cell bears a huge po-
tential for compute-intensive applications like ray tracing, but also
requires addressing the challenges caused by this processor’s un-
conventional architecture. In this paper, we describe an implemen-
tation of realtime ray tracing on a Cell. Using a combination of low-
level optimized kernel routines, a streaming software architecture,
explicit caching, and a virtual software-hyperthreading approach to
hide DMA latencies, we achieve for a single Cell a pure ray tracing
performance of nearly one order of magnitude over that achieved
by a commodity CPU.
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1 Introduction

In the last decades, most increases in CPU performance came from
raising the CPU’s clock rate (to nowadays more than 3.6 GHz).
This rise in clock rate was made possible through an exponential in-
crease in the circuits available on the die (a process widely known
as Moore’s law [15]). On one hand, this increase in circuits al-
lowed for putting more and more computational units into hard-
ware: while first CPUs were rather simple, they gradually evolved
to have floating point units, SIMD units, complicated branch pre-
diction, etc. More importantly, however, a higher integration den-
sity implies shorter circuit paths on the chip, which allows for
higher clock rates. Together, these two factors have laid the founda-
tion for the staggering increase in serial (i.e., single-threaded) CPU
performance that could be witnessed over the last few decades.

Nowadays, this exponential increase of serial CPU performance
seems to slowly come to a grinding halt. First, for single-threaded
CPUs there is a diminishing return in having more transistors: while
early CPUs could be improved by adding more computational units,
e.g. integer or floating point units, it is increasingly difficult to ex-
tract enough instruction level parallelism out of the serial instruc-
tion stream to keep these additional units busy. Second, memory
speed is not rising as fast as clock speed, so cache misses become
ever more costly; as a result, more and more die space has to be
spent on complex branch prediction, out-of-order execution, large
caches, etc just to sustain such high clock rates at all. Finally, power
and heat dissipation become an ever more challenging problem.

Thus, CPU designers are currently looking for alternatives to
the approach of simply raising the clock rate to increase compute
power. In particular, they are looking at “streaming” (or “broad-

band”) architectures1 to hide memory latencies, at exposing par-
allelism through SIMD units, and at multi-core architectures. At
least for specialized tasks such as triangle rasterization, these con-
cepts have been proven as very powerful, and have made modern
GPUs as fast as they are; for example, a Nvidia 7800 GTX offers
313 GFlops [16], 35 times more than a 2.2 GHz AMD Opteron
CPU. Today, there seems to be a convergence between CPUs and
GPUs, with GPUs—already using the streaming compute model,
SIMD, and multi-core—become increasingly programmable, and
CPUs are getting equipped with more and more cores and stream-
ing functionalities. Most commodity CPUs already offer 2–8
cores [1, 9, 10, 25], and desktop PCs with more cores can be built
by stacking and interconnecting smaller multi-core systems (mostly
dual-processor boards). Commodity GPUs have even more cores
(e.g., a ATI Radeon X1900 has 48 SIMD pixel processors), making
it likely that this will continue.

One newer, more radical design is the Cell processor. Instead of
slowly evolving towards a streaming SIMD multi-core architecture,
the Cell processor was designed from scratch with these concepts
in mind. As such, it is located somewhere in-between a CPU and
a GPU, offering a 200 GFlops per 3.2 GHz Cell (which is compet-
itive with a GPU), while in terms of programmability being much
closer to a CPU than to a GPU. The Cell processor bears an inter-
esting potential in particular for realtime ray tracing. Ray tracing
is well-known to benefit from parallelism [17, 18], and most of the
more recent ray tracing algorithms are already capable of exploiting
SIMD operations [30, 21, 27, 28].

Despite its huge potential, as we detail below the Cell is quite
different from more conventional CPUs, and mapping existing ray
tracing knowledge to it is more complicated than just re-compiling.
In this paper, we investigate how a ray tracer can efficiently be
mapped to the Cell. In particular, we have to deal with how to map
the ray tracing algorithm to the individual cores, how to design the
kernel operations to run fast on a Cell core, and how to deal with
the Cell processor’s unique approach of accessing memory.

1.1 Outline

The paper starts with a description of the Cell processor in Sec-
tion 2, discussing its unique architecture and the differences to con-
ventional CPU architectures. Section 3 illustrates the impact of the
Cell’s unique architecture in terms of fast ray tracing, in particu-
lar discussing the efficiency of different implementation approaches
and other fundamental high level design decisions. Based on these
high-level decisions, efficient software-managed caching and opti-
mized ray tracing kernels (based on bounding volume hierarchies)
are presented in Section 4 and Section 5. In order to hide mem-
ory latency, Section 6 presents an implementation of fast software-
based hyperthreading, which extends the fast ray tracing kernel.
Besides an optimized kernel for ray tracing, Section 7 introduces a
framework for efficient shading, which in combination with the op-
timized parallelization framework of Section 8 makes complete ray
tracing possible in realtime. Note that for secondary rays, the cur-
rent implementation does only support shadow rays. We summarize
and discuss our approach in Section 9, and conclude in Section 10.

1A streaming compute model is one in which small kernels operate on
entire streams of data items, such as shading a stream of fragments [13].



2 The Cell Broadband Architecture

Before discussing how to map ray tracing to the Cell processor,
we first discuss the unique features of this architecture, in particu-
lar where it differs from traditional CPU architectures. One of the
most important differences to conventional multi-core CPUs is that
the Cell is not a homogeneous system with multiple copies of the
same core [11]. Instead, it is a heterogeneous system, consisting of
one 64bit PowerPC core (PPE) and eight “synergistic co-processor
elements” (SPEs), each of which contains a “synergistic processing
unit” (SPU) (see Figure 1). The SPE differs from standard CPU
core as well, in that it is much smaller, and exclusively designed
for streaming workloads. In its intended use, the Cell’s SPEs do
the ’real’ work in a data parallel or streaming (pipeline) manner,
while the PPE core performs synchronization tasks and executes
non-parallizeable code.

Instead of a memory cache, each SPE has 256KB of “local store”
memory. Direct access to main memory from the SPE is not possi-
ble. Instead the SPE can explicitly perform (asynchronous) DMA
transfers to or from main memory. The local store has to accommo-
date both data and code. The SPEs have their own reduced RISC-
like instruction set, where each instruction is a 32bit word with
a fixed execution latency of 2-7 cycles (double precision floating
point instructions are not considered here).

Compared to standard CPUs, each SPU has a rather large uni-
fied register file of 128 × 128bit SIMD registers. Most of the SPE
instructions are SIMD instructions, in particular for performing
multimedia and general floating-point processing. These instruc-
tions are more flexible than e.g. Intel’s SSE/SSE2/SSE3 instruc-
tion sets [7] and include, for example, three-operand instructions
with throughput of one SIMD multiply-add per cycle, allowing for
a theoretical peak performance of 25.6 (single-precision) GFlops
on a 3.2 GHz SPE. Each SPE has two pipelines, each specialized
for a certain type of instructions (load/store vs. arithmetic). This
allows for dispatching two (independent) instructions in parallel,
achieving a theoretical throughput of 6.4 billion SIMD instructions
per second per SPE. Besides the special instruction set, the SPE has
no branch prediction as known from standard CPU cores. Instead a
branch hint instruction is supported which helps the SPE to predict
if a certain branch has to be taken or not.

Both PPE and SPEs are in-order processors. As the 256KB local
store of the SPE has a fixed access latency (of 7 cycles), in-order
instruction execution is a suitable simplification: The compiler can
predict memory access and therefore schedule the instructions for
maximum performance. However, in-order execution on the PPE
with its standard 32 KB L1 and 512 KB L2 cache harms mem-
ory intensive applications, making the core less powerful compared
to standard CPUs with out-of-order execution. In order to reduce
the impact of cache misses, the PPE uses 2-way symmetric multi-
threading [11] which is comparable to Intel’s Hyperthreading [8].

To keep the SPEs supplied with data—and to allow effi-
cient communication between the SPEs—the Cell uses a high-
performance element interconnection bus (EIB). The EIB is capable
of transferring 96 bytes per cycle between the different elements—
PPE, SPEs, I/O interface, and system memory. The DMA engine
can support up to 16 concurrent requests per SPE, and the DMA
bandwidth between the local store and the EIB is 8 bytes per cycle
in each direction. The aggregate bandwidth to system memory is
25.6 GB/s, and the bandwidth between SPEs can be more than 300
GB/s on a 3.2 GHz Cell. SPE-to-SPE transfers are kept within the
EIB, avoiding any main memory transaction.

The minimalistic design of the SPEs (no cache, no branch pre-
diction, in-order execution, . . . ) allows for very high clock rates.
For experiments we had access to a dual Cell-blade evaluation sys-
tem (with 512 MB of XDR main memory) in which the Cells are
clocked at only 2.4GHz. The PlayStation 3 will clock its Cell at
3.2 GHz, and even more than 4 GHz have shown to be possible [4].
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Figure 1: Each Cell consists of a 64bit PowerPC core (PPE) and eight
“synergistic co-processor elements” (SPEs). Each SPE has 256 KB
local store, a memory flow controller (MFC) and an “synergistic pro-
cessing unit” (SPU) with a SIMD processing unit and 128 registers
of 128 bits each. An “element interconnection bus” (EIB) with an
internal bandwidth of more than 300 GB/s (per 3.2 GHz Cell pro-
cessor), is responsible of transferring data between the SPEs. The
maximum bandwidth from the SPEs to main memory is 25 GB/s.

3 Ray Tracing on the Cell

As just shown, the Cell is more powerful than a commodity CPU,
but also quite different. In order to enable efficient ray tracing on
the Cell, the following differences have to be taken care of:

In-order Execution and SIMD Instructions: An SPE executes
the instructions in-order, which means that pipeline stalls, caused
by code dependencies or mispredicted branches, are more expen-
sive than on a CPU with out-of-order execution. To avoid this, the
compiler is responsible for a suitable instruction scheduling and to
untangle code dependency chains. Most of the time the compiler
resolves the dependencies automatically, but sometimes the algo-
rithms have to be (manually) adapted to help the compiler find in-
dependent instruction sequences. These instruction sequences can
then be interleaved to prevent stalls efficiently.

As the SPE’s instruction set is designed for SIMD processing,
most of the instructions operate on multiple data elements at once
(two to sixteen elements depending on element size). As an instruc-
tion has a throughput of one per cycle and a latency between 2-7 cy-
cles, one has to ensure enough independent data to work on. Other-
wise, dependency chains, and therefore pipeline stalls, are unavoid-
able. Unfortunately, the instruction set is sub-optimal for scalar
code, so even simple operations such as increasing an unaligned
counter in memory require a costly read-modify-write sequence.

Memory Access: Each SPE has an explicit three-level memory
hierarchy: a 128× 128bit register file, a 256 KB local store, and
main memory. As the local store does not work as hardware-
managed memory cache, all main memory accesses must be done
explicitly by DMA transfers. Even though the memory bandwidth
of 25.6 GB/s is rather high, each memory access has a high la-
tency of several hundred SPE clock cycles. In order to hide the
latency, the DMA engine supports asynchronous transfers, whose
states can be requested on demand. Even though this setting is ideal
for streaming operations in which huge blocks of data are being pro-
cessed sequentially, it is challenging for a data-intensive application
with irregular memory accesses such as a ray tracer.

Parallel Execution on multiple SPEs: Each Cell has 8 SPEs; a
dual-Cell system has 16. There are different ways of mapping an
algorithm onto such a parallel architecture, and the exact way this
is done will have a significant impact on performance.



3.1 Programming Model

The first design decision to consider is how to map the ray tracing
algorithm to the multiple SPEs. In a heterogeneous approach, each
SPE runs a different kernel, and the results are sent from one SPE
to another. In a homogeneous approach, each SPE runs a full ray
tracer, but on different pixels. Traditional multi-core architectures
favor the latter, but traditional streaming architectures are usually
intended to be used in the heterogeneous way (also see [13, 20, 6]).

The work performed by a ray tracer can be broken into the fol-
lowing tasks: generating primary rays, traversing rays through a
spatial index structure, intersecting the rays with geometric primi-
tives, and shading the corresponding intersection points, including
the generation of secondary rays and their recursive evaluation.

One way of mapping ray tracing to the Cell is to have each SPE
perform only one of these tasks, and to send its results to the SPE
that performs the next task in the chain. For example, one SPE
could generate primary rays which are then sent to one or more
SPEs doing the traversal, which in turn send ray-triangle intersec-
tion tasks to other SPEs. In fact, the Cell’s architecture is able to
support such a streaming workload: the high inter-SPE bandwidth
(of up to 300GB/s) lets the SPEs communicate with each other; and
the asynchronous DMA transfers allow for transferring one SPE’s
output to another while both operate on the next block of data in the
stream. In principle, mapping a ray tracer to such an environment is
possible, and has been demonstrated for both Smart Memories [6]
and GPUs [20].

The streaming approach works best if the individual tasks can be
cascaded and if there is a steady flow of data from one task (i.e.,
SPE) to the next (as in video or speech processing, or in scien-
tific computations) [31]. A ray tracer, unfortunately, has a much
more complex execution flow: the traversal unit does not pass re-
sults unidirectionally to the intersection unit, but also has to wait
for its results; the shader not only shades intersection points, but
can also trigger additional rays to be shot; etc. Such dependency
chains require one task to pause and wait for the results of another,
creating stalls. In addition, this approach makes it hard to balance
the load of different SPEs, as the relative cost of traversal, intersec-
tion, shading, etc., varies from pixel to pixel. As soon as one SPE
in the chain becomes a bottleneck, it starves the other ones.

To a certain degree this starvation can be avoided by buffering the
SPEs’ in- and outputs in main memory, and then frequently switch
the kernels each SPE executes depending on what tasks need to be
done most. This implies a non-trivial system design (synchroniza-
tion, load-balancing, etc), and also poses significant strain on the
memory system (whose bandwidth is more than an order of mag-
nitude lower than the inter-SPE bandwidth). Even though 25 GB/s
seem plentiful, we target several dozen frames per second, each
frame requiring at least one million rays of at least 32 bytes each,
and reading/writing each ray several times when passing it from
task to task might easily create a bottleneck.

The above considerations have led us to follow an approach typi-
cally used on conventional shared-memory multiprocessor architec-
tures: each SPE independently runs a full ray tracer, and paralleliza-
tion is achieved by SPEs working on different pixels (see Section 8).
Having each SPE work independently ensures less communication
between SPEs, and avoids exchanging intermediate results with ei-
ther other SPEs or main memory. In addition, it avoids dependency
chains between different SPEs’ in- and outputs, and facilitates high
SPE utilization. On the downside, having each SPE run a full ray
tracer forces us to operate the SPEs in a way they are not designed
to be used: in particular, each SPE may access any data in the scene
database, in random-access manner. As the local store is too small
to store the entire scene, this requires appropriate ways of accessing
and caching the scene data, as well as means to handle the resulting
SPE-memory dependencies.

3.2 Spatial Index Structure and Traversal Method

Having decided on the programming model, the next decision is
which spatial index structure to use. Efficient ray tracing requires
the use of efficiency data structures, such as bounding volume hier-
archies (BVHs) [22], Grids [2], or kd-trees [12]. In particular, trac-
ing coherent packets of rays [30]—possibly accelerated by looking
at the packet’s bounding frustum [21]—has been shown to be an im-
portant factor in reaching high performance [26, 3]. Tracing pack-
ets of rays allows for amortizing memory accesses over multiple
rays, allows for efficiently using SIMD extensions, and increases
the compute-to-memory access ratio. Though already important for
a conventional CPU, these advantages are even more important for
a Cell, which depends on dense SIMD-code, and for which memory
accesses are even more costly than for a standard CPU.

Though originally invented for kd-trees [26, 21, 3] such coher-
ent traversal schemes are now also available for grids [28], and
for BVHs [27]. As grid and BVH allow for handling dynamic
scenes, we focus on these two. Among those, the Grid is more
general in the kind of animations it supports, and its more regular
structure would nicely fit a streaming architecture. For example, a
straightforward extension of the technique proposed in [14] would
allow for prefetching the grid cells before traversing them. How-
ever, the BVH currently seems to be faster than the grid, more suit-
able for complex scenes, and somewhat more robust for secondary
rays [27]. We have therefore chosen to use a BVH (with 8×8 rays
per packet), but most of our ideas generalize to a grid as well.

Compared to a kd-tree, a BVH offers several advantages that are
particularly interesting for a Cell-like architecture: a BVH will have
fewer memory accesses and a higher compute-to-memory access
ratio, because it has fewer nodes than a kd-tree, and more arith-
metic to be done per node. In addition, a BVH references each
triangle exactly once, which—if the triangles are stored in the cor-
rect order—allows for directly referencing the triangles without an
additional indirection through a triangle ID list per leaf.

4 Cell-specific Traversal and Intersection

As mentioned in Section 3.2, our system closely follows the traver-
sal proposed in [27], and the traversal algorithm and triangle inter-
section are exactly the same. Nevertheless, the Cell is not like the
CPUs that the original traversal and intersection framework was
designed for. Therefore, special optimizations have to be done to
efficiently map these routines to an SPE.

4.1 BVH Traversal

Branch mispredictions on the Cell are costly. Unfortunately, the
BVH traversal proposed in [27] has two conditionals in its inner
loop, both of which have a 40-45% chance of being taken: to reduce
ray-box tests, one does not test each ray against every node, but first
performs two tests that can often decide the traversal case without
having to look at all the individual rays. First, one tests the first ray
that hit the parent node, and immediately descends if it hits; if not,
the node is tested against the packet’s bounding frustum, leading to
an immediate exit if the frustum misses the box.

These two tests cover around 80-90% of the traversal cases, mak-
ing an efficient implementation mandatory. As a serial execution of
the two tests introduces dependency chains and therefore pipeline
stalls, we perform the two tests in parallel, while postponing the
branches as far as possible. Moreover, the branches are arranged
in such a way, that mispredicted branches occur only for the third
traversal case. The parallel computation completely avoids depen-
dency stalls and increases the double instruction dispatch rate to
35%, yielding total costs of 51 cycles (without a misprediction-
stall), which is an 10-20% performance improvement, compared
to a serial test execution. The average cycles-per-instruction (CPI)
ratio for the code is 0.65, where 0.5 is the optimum.



4.2 Triangle Test

For the packet-triangle test, we use the algorithm proposed in [26,
3]: this test is particular suited for SIMD processing, and in addi-
tion, stores all data required for the triangle test in a single memory
location. As proposed in [27], we also use a SIMD frustum culling
step to detect if the frustum completely misses a triangle.

As with the BVH traversal, the triangle test was originally de-
signed for a x86 CPU, and the Cells in-order execution model re-
quires some changes to remain efficient. The triangle test consists
of four individual tests: one first tests the distance to the triangle’s
embedding plane, and then computes and tests the three barycen-
tric coordinates of the point where the ray pierces the plane. On a
x86 CPU, the best performance is achieved if each of these tests is
immediately followed by a branch that skips the remaining compu-
tations if it failed. On the Cell, these branches cause dependency
chains and frequent branch misprediction stalls, which cause the
same code to run quite inefficiently. To avoid these, we remove all
branches, always performing eight SIMD tests (i.e., 32 rays) in par-
allel, and updating the results branch-free via conditional moves.

With these modifications, we can intersect a packet of 64 rays in
only 520 cycles, or 8.125 cycles per ray on average. In particular
the Cell’s large number of registers is quite helpful: while on an
x86 CPU even a single test can lead to register spilling, the SPE’s
128 registers allow for unrolling the intersection test eight times,
which yields a double instruction dispatch of 37.5% and a CPI ratio
of 0.71. Moreover, all required triangle data can be held in regis-
ters, without having to re-load—and re-shuffle—the triangle data
for every new batch of rays in the packet.

5 Explicit Caching of Scene Data

The downside of our chosen programming model is that each SPE
now requires access to all scene data, which does not fit into local
store. As main memory accesses can only be performed by DMA
transfers, we emulate caching by creating small self-maintained
memory caches within the SPE’s local store.

The lack of a hardware-supported cache means that all cache
logic has to be performed (using serial code) in software, which
is costly. In addition, cache misses result in high-latency DMA
transfers, and are quite costly. Even cache hits require a short in-
struction sequence to obtain the data, increasing access latency of
cached data. Fortunately, caching of scene data in a ray tracer has
shown to yield high cache hit rates [23, 24, 32] and cache accesses
can be additionally amortized over an entire packet of 8×8 rays.

5.1 Types of Caches

Instead of a unified memory cache, we follow the approach re-
cently used for designing ray tracing hardware [23, 32], and use
specialized caches for each kind of scene data. Having specialized
caches allows for fine-tuning each individual cache’s organization
and granularity. Due to the DMA transfer granularity, all cache
granularities must be powers of two. For the kd-tree based hard-
ware architectures, three types of caches are required: node caches,
triangle caches, and item list caches. A BVH references each trian-
gle exactly once, and item lists can be completely abandoned.

BVH Node Cache. Each BVH node stores minimum and maxi-
mum box extent, a pointer to the first child (for inner nodes) or first
triangle (for leaves), and some additional bits. These can be stored
within a 32-byte data structure, which is also a power of two. In
addition, we know that a BVH—in contrast to a kd-tree—always
has to test both children of a node. We therefore do not cache indi-
vidual BVH nodes, but instead use a 64-byte granularity and cache
pairs of BVH node siblings. Compared to caching individual BVH
nodes, this yields a roughly 10% higher cache hit rate.

Triangle Cache. As mentioned above, we use the triangle test
proposed in [26], which uses a precomputed record of 12 words
(48 bytes) for the triangle test. This data is fully sufficient for the
intersection test, so no additional caches for triangle connectivity
or vertex positions are required, which greatly simplifies the cache
design. As 48 is not a power of two, we chose the triangle cache’s
cache line size to be 64 bytes. The excess 16 bytes are then used to
store indices to the three vertices respectively normals and an index
to global shader list. These are not required for the intersection test,
but are required when shading the intersection points.

Cache hit ERW6 Conference VW Beetle
rates (in %) (804 tris) (280k tris) (680k tris)

4-way DM 4-way DM 4-way DM
BC (128) 99.8 99.4 95.7 91.2 87.6 84.4
BC (256) 99.9 99.7 98.0 94.4 91.6 88.3
BC (512) 99.9 99.9 98.5 96.9 93.5 91.6
BC (1024) 99.9 99.9 98.7 97.8 94.1 93.2
TC (128) 98.1 96.8 71.0 61.5 45.1 39.8
TC (256) 98.4 97.4 80.0 74.8 50.9 45.8
TC (512) 98.7 98.4 86.7 82.7 55.1 50.4
TC (1024) 98.7 98.7 89.2 86.5 57.2 53.9

Table 1: Cache hit rates for 4-way associative (4-way) vs direct
mapped (DM) caches for BVH nodes cache (BC) and triangle cache
(TC). Measured with casting primary rays at a resolution of 10242

pixels, 8×8 rays per packet, and a default setting of 256 BC entries
(17KB), and 256 TC entries (17KB).

5.2 Cache Organization and Efficiency of Caching

Ray traversal offers a high degree of spatial coherence, and even
a simple direct mapped cache offers high cache hit rates (see Ta-
ble 1). A four-way associative cache (with a least-recently-used
replacement policy) provides an additional 1-5% higher cache hit
rate but requires significantly more complex logic, which increases
cache access latency. As a cache access has to be performed in
every traversal step, better performance can be achieved with a di-
rect mapped cache, even though it has a somewhat lower hit rate.
Though we use a BVH instead of a kd-tree, our cache statistics in
Table 1 show nearly identical results to those reported in [23, 32],
showing similarly good cache hit rates.

In order to reduce instruction dependency chains, we apply spec-
ulative execution: In parallel to the cache hit test, the data is specu-
latively loaded from the cache and reformatted for further process-
ing. The potential branch to the miss handler is slightly postponed,
which allows for hiding cache access latency by interleaving the in-
struction sequence with surrounding code. As the cache hit rate is
typically very high, the increased number of instructions executed
in case of a cache miss does not have a significant impact. Due to
the high cache hit rates, we use branch hints to optimize all cache
access branches for hits. Thus, the hit logic is cheap, and a costly
branch miss occurs only in the case of a cache miss.

5.3 Cache Sizes

In addition to the caches, the SPE’s local store must also accommo-
date program code, ray packet data (rays and intersection points),
and some auxiliary buffers. Since local store is scarce, the cache
sizes must be chosen carefully. Table 1 shows that for our three
test scenes a BVH node cache of 256 entries is a good compro-
mise between cache hit rate (> 88%) and memory consumption
(17KB); doubling the cache size increases hit rates by a mere 3%,
but doubles memory consumption. For the triangle cache, the situa-
tion is more complicated. Since triangle intersections are performed
where the rays are least coherent (at the leaves), the triangle cache
has a much lower hit rate, hence a large cache is beneficial. Never-
theless, even where the hit rates are very low—down to 40-55% for



the Beetle scene—even a much larger cache cannot significantly
improve the hit rate: for finely tessellated geometry, triangles are
smaller than the spatial extent spawned by the 8×8 rays in a packet,
and will therefore often be intersected by a single packet only. Even
though the triangle cache’s hit rates of only around 50% look devas-
tating, triangle accesses are rare compared to BVH traversal steps,
so the total impact of these misses stays tolerable. Because of the
costly DMA transfers, a cache hit rate of 50% still ensures a higher
performance than using no cache at all.

5.4 Traversal Performance including Caching

With cached access to scene data, we can now evaluate the per-SPE
performance of our traversal and intersection code on three example
scenes with different geometric complexity (see Section 9.1 for a
detailed description). Table 2 gives performance data per SPE, cast-
ing only primary rays (no shading operations are applied). DMA
transfers invoked by cache misses are performed as blocking op-
erations, making cache misses quite costly. For the rather sim-
ple ERW6 scene—which also features very high hit rates—a sin-
gle SPE (clocked at 2.4GHz) achieves 30 million rays per second
(MRays/sec), the more complex conference and VW beetle scenes
still achieve 6.7 MRays/sec and 5.3 MRays/sec, respectively.

Scene ERW6 Conference VW Beetle
#Traversals Per Packet 18.73 55.33 43.90
#Triangle Isecs/Packet 1.47 5.94 7.21
Traversal Early Exits 44% 40% 34%
Traversal Early Hits 52% 52% 48%
Performance (MRays/sec) 30.08 6.7 5.3

Table 2: Performance per 2.4 GHz SPE, in frames per second for
casting primary rays (no shading) at a resolution of 1024×1024 pixels,
with 8×8 rays per packet, 256 BVH cache entries (17KB) and 256
triangle cache entries (17KB). Triangle intersections means triangle
intersections after SIMD frustum culling. Even though only a small
amount of local store is reserved for caches (<35KB), and all DMA
transfers are performed as blocking operations, a single SPE achieves
a performance of 5-30 million rays per second.

6 Software-Hyperthreading

Though a set of small self-maintained caches within the local store
allows for efficiently caching a large fraction of the scene data, hav-
ing only comparatively tiny caches of 256 entries (for more than
half a million triangles), cache hit rates in particular for the triangle
cache drop quickly with increasing geometric complexity. Being
a streaming processors, the Cell is optimized for high-bandwidth
transfers of large data streams, not for low-latency random memory
accesses. All memory accesses are performed via DMA requests,
which have a latency of several hundred SPE cycles.

The discrepancy between bandwidth and memory latency is not
a phenomenon unique to the Cell processor, but exists similarly for
every one of today’s CPU architectures. One of the most power-
ful concepts to counter this problem is hyperthreading (also known
as simultaneous multi-threading): the CPU works exclusively on
one thread as long as possible, but as soon as this thread invokes
a cache miss, it is suspended, the data is fetched asynchronously,
and another thread is being worked on in the meantime. If thread
switching is fast enough, and if enough threads are available, hyper-
threading can lead to a significant reduction of pipeline stalls and
can therefore lead to higher resource utilization.

Though hyperthreading is most commonly associated with
CPUs, it is also used in other contexts. For example, the RPU [32]
architecture makes heavy use of hyperthreading, and uses 32 simul-
taneous threads per RPU core to hide memory latencies. Similarly,
the same concept has been used in Wald et al. [29], albeit one level
higher up in the memory hierarchy: instead of switching on a mem-
ory access, the system in [29] switched to a different packet if a

Algorithm 1 Pseudo-code for BVH traversal with software-
hyperthreading. Once a cache miss occurs, the current context is
saved, an asynchronous data transfer is invoked, and the traversal
continues by restoring the next (not yet terminated) packet.

packetIndex = 0
goto startBVHTraversal
processNextPacket:
repeat

packetIndex = (packetIndex+1) % NUM VHT PACKETS
until !terminated[packetIndex]
RestoreContext(packetIndex)
startBVHTraversal:
while true do

if stackIndex == 0 then
break

end if
while true do

index = stack[–stackIndex]
if InsideLocalStoreBVHCache(index) == false then

SaveContext(packetIndex)
InitiateDMATransfer(index)
goto processNextPacket

end if
box = GetBoxFromLocalStoreBVHCache(index)
if EarlyHitTest(box) == false then

if RayBeamMissesBox(box) == true ——
AllRayPacketsMissBox(box) == true then

goto startBVHTraversal
end if

end if
if IsLeaf(box) then

break
else

stack[stackIndex++] = GetBackChildIndex(box)
index = GetFrontChildIndex(box)

end if
end while
PerformRayTriangleIntersectionTests(box)

end while

network access was required. Other systems use similar concepts
(e.g., [19]).
Though the Cells PowerPC-PPE does support hyperthreading, the
SPEs do not. Still, similar to [29] we can emulate the concept in
software. Having no hardware support for the context switch, a
complete SPE context switch which would include saving all regis-
ters and the complete local store to memory, would be prohibitively
expensive. Therefore, we define a lightweight thread as single 8x8
ray packet, and traverse multiple of them simultaneously. Thus,
only a small data set has to be saved and restored.

DMA transfers can be declared as non-blocking (i.e., asyn-
chronous) and their state can be requested any time. Each time
a cache miss occurs, an asynchronous DMA transfer is invoked
and the traversal continues execution with the next packet; once
the original packet is resumed, its data will usually be available.

6.1 Implementation

In addition to the ray and intersection data, each packet also re-
quires its own stack. Due to scarcity of local store, only a limited
number of packets can be kept at the same time. In our current
implementation, four packets are being used simultaneously.

In order to suspend and to resume ray packets, all packet-specific
data—the “ray packet context”—has to be saved and restored. In
our implementation, the packet context comprises a pointer to the
corresponding ray packet, a stack pointer, a DMA transfer state,
etc. Pointers can be represented as 32bit integers, and pointers for
the four contexts can be stored within a single integer vector, which
allows for quick insertion and extraction of data.



6.2 Results

As can be seen in Algorithm 1, software-hyperthreading is not triv-
ial, and the context saves and restores carry some significant cost
as well. Still, this cost is lower than the several hundred cycles
that would be incurred by waiting for the memory request to com-
plete. Overall, software-hyperthreading (SHT) gives a noticeable
speedup, as can be seen in Table 3, which compares the perfor-
mance of a caching-only implementation (see Section 5.4) to the
performance achieved when applying SHT to both BVH and tri-
angle cache. As expected, SHT cannot give a noticeable benefit
for small scenes in which only few cache misses occur anyway.
For larger scenes, however, where cache misses become significant,
SHT can achieve a 33% improvement in performance.

Scene ERW6 Conference VW Beetle
Without SHT 30.08 6.7 5.3
With SHT 30.1 7.8 7.0
Speedup 0.01 % 15.7 % 33.5 %

Table 3: Impact of software-hyperthreading (SHT) on per-SPE per-
formance. Performance in frames per second (1024× 1024 pixels,
256 BVH node cache and and triangle cache entries each, no shad-
ing) on a 2.4 GHz SPE. For larger scenes, SHT becomes increasingly
important.

7 Shading

Once being able to trace rays, we have to shade the resulting inter-
section points. Ideally, the Cell would be used as a ray tracing pro-
cessor only, with shading being done on a GPU. In a Playstation 3,
for example, GPU and Cell have a high-bandwidth connection, and
sending rays back and forth would be feasible. In that setup, the
GPU could do what it’s best at—shading—and the Cell would only
trace rays. Since we currently do not have a Playstation 3, yet, we
have to temporarily realize the shading on the Cell.

In the following, we define a set of 8×8 intersection points as an
i-set. Each intersection point within an i-set comprises the triangle
index, the hit point in world space, the shading normal (interpolated
from the three vertex normals), the reference to a surface shader
etc. For the SPE’s SIMD architecture, shading is most efficient if
multiple intersection points are shaded in parallel. Unfortunately,
neighboring rays may have hit different geometry, requiring differ-
ent data to be shaded. Since the smallest SIMD-size is 4, we group
these 8×8 intersection points into 16 intersection packets of 4 rays
each, and work on each of these in a SIMD manner.

Compared to ray packet traversal, parallel shading has a much
more complex control flow, and a significantly more complex data
access pattern. In particular, while traversal always intersects all
rays with the same node or triangle, shading each ray may re-
quire different shading data, which may have to be fetched from
completely different memory locations (material data, vertex posi-
tions, vertex normals,. . . ). Though in principle these accesses could
be completely random, in practice there is at least some degree
of coherence. For instance, neighboring intersection points typi-
cally have the same shader (even if they hit different triangles), and
neighboring rays even frequently hit the same triangle. Since our
SIMD-width is 4—not 64—we always shade four rays at the same
time, and store for each intersection packet a flag whether the four
intersection points refer to the same triangle. This allows for a more
efficient implementation because cache accesses to the scene data
can be amortized over the whole intersection packet.

Smooth shading typically requires a surface normal that is in-
terpolated by the three vertex normals, so an additional cache for
vertex data is maintained while filling in the i-set. All vertex data—
normal, position, and texture coordinates—is stored within a 64
bytes element, allowing to cache all vertex data in one aligned cache

record. In addition to vertex data, we also maintain a cache for ma-
terial data (diffuse and specular color,. . . ).

The actual shading process is split into several steps. First, we
check (by testing the triangle flag) whether rays in the packet have
hit the same triangle, using the information to efficiently gather ge-
ometric data, in particular, the three vertex normals: the data is
loaded once, and then (possibly) replicated across the intersection
packet. As can be seen from Table 4, for the 4-ray packets the prob-
ability of having hit the same triangle is actually rather high.

The second step uses a multi-pass approach for the shading of
an i-set: All different surface shaders, which are referenced within
the i-set, are sequentially executed. Each of these shading passes
works on the full i-set, performing all shading computations for
all 64 intersection points, while using bit masks for invalidation of
non-related intersection points. In order to speed up the sequen-
tial scanning for different surface shaders, each surface shaders in-
validates its shader reference in the i-set after execution, ensuring
that the corresponding surface shader is not executed again. Ta-
ble 4 shows that for the test scenes only 1-2 shading passes per
i-set are required. After accessing the material cache for a shading
pass, no further cache accesses have to be performed, and the in-
tersection points can be efficiently shaded in parallel using SIMD
instructions. Note that the current implementation does not support
software-based hyperthreading for the geometry or material caches.

For secondary rays, we follow the same approach as Boulos et
al. [5]: to generate coherent secondary packets, each 8×8 primary
packet generates one reflection packet (of up to 8×8 rays), multiple
shadow packets (one per light source), etc. In order to simplify mat-
ters, our current implementation uses only a diffuse shading model
with shadows, but without reflection or refraction rays.

Scene ERW6 Conference VW Beetle
Same tri prob. (in %) 97.18 88.74 78.49
Passes per 8×8 1.005 1.23 1.07
Vertex cache hit (in %) 99.54 96.11 89.35
Material cache hit (in %) 99.99 98.04 99.62

Table 4: Probability of an intersection packet (four rays) sharing the
same triangle, and the cache hit rates for the vertex and material
cache (direct mapped, 1–2 shading passes). Both the vertex cache
and shader cache have 64 entries; all scenes are rendered at 10242

(only primary rays).

8 Parallelization across multiple SPEs

So far, we have only considered how to make ray tracing fast on a
single SPE. However, each Cell has 8 SPEs, and our dual processor
system even has 16 of them. Since we use a homogeneous program-
ming model, and therefore have no SPE-to-SPE communication at
all, from a programmers perspective it makes no difference where
the SPEs are physically located.

Keeping all 16 SPE utilized requires efficient load balancing. We
follow the standard approach of defining the SPE working tasks by
subdividing the image plane into a set of image tiles. From this
shared task queue, each SPE dynamically fetches a new tile, and
renders it. As accesses to this task queue must be synchronized, we
employ the Cell’s atomic lookup and update capabilities: an integer
variable specifying the ID of the next tile to be rendered is allocated
in system memory. This variable is visible among all SPEs, and
each time an SPE queries the value of the variable, it performs an
atomic fetch-and-increment. This atomic update mechanism allows
the SPEs to work fully independently from both other SPEs and
PPE, requiring no communication among those units. The only
explicit synchronization is at the end of each frame, where the PPE
waits to receive an ’end frame’ signal from each SPE.
Figure 2 shows the efficiency of the dynamic load balancing for our
three test scenes, using the same settings as in the previous sections.



For the image tile size, we use 64×64 pixels, resulting in 256 image
tiles per frame. Even though the image tiles are only distributed
across a single frame (which implies synchronization at the frame
end), the approach provides almost linear scalability (without frame
buffer transfer and shading) using up to sixteen SPEs.
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Figure 2: Scalability across several SPEs using dynamic load balanc-
ing based on image tiles. The atomic lookup and update capabilities
of the Cell makes a fast and efficient implementation possible which is
able to provide an almost linear scalability with up to sixteen 2.4 GHz
SPEs. All tests were run with 256 BVH box cache entries and 256
triangle data cache entries.

9 Summary and Discussion

In this paper, we have shown how ray tracing can be efficiently
mapped to the Cell architecture. Using a SIMD-enabled BVH
traversal and specially optimized routines, we achieve a per-SPE
performance of several million rays per second. Access to mem-
ory is handled via explicitly caching scene data, and software-
hyperthreading is used to bridge cache miss latencies. In addition,
a load-balanced parallelization scheme achieves nearly linear scal-
ability across multiple SPEs, thereby using all of the Cell’s compu-
tational resources.

9.1 Comparison to Commodity CPU-based Approaches

In order to evaluate the efficiency of our approach, we have to com-
pare it to alternative approaches. On the Cell processor, no alterna-
tive approaches are available, yet2 and today’s fastest published ray
tracing results have all been realized on commodity CPUs (using
either Pentium-IV CPUs [21, 28], or Opteron CPUs [27]).

To compare against these ray tracers, we have taken some of the
scenes also used in [27] and [28], and have measured their perfor-
mance in our implementation. Table 5 reports the measured we
achieve on a single 2.4GHz SPE, as well as on a single and dual
2.4 GHz Cell processor evaluation system with 8 respectively 16
SPEs. As a baseline for comparisons, we have included a x86-based
implementation of the algorithm proposed by Wald et al. [27]; for
a fairer comparison, we do not use Wald et al.’s code, but a reim-
plementation that performs exactly the same intersection, traversal,
and—in particular—shading computations as on the Cell, but with
Opteron-optimized code (thus achieving roughly the same perfor-
mance as Wald et al.’s system). As we can expect our system’s
performance to increase roughly linearly in clock rate, we have also
extrapolated the performance that would be achievable on a 3.2GHz
Cell with 7 SPEs as used in a Playstation 3.

2Cell-based ray tracing has been demonstrated by Minor et al. [14], but
only for height-field ray casting, not for general 3D ray tracing.

Scene ERW6 Conference VW Beetle
ray casting, no shading
2.4GHz x86 28.1 8.7 7.7
2.4GHz SPE 30.1 (+7%) 7.8 (-12%) 7.0 (-10%)
Single-Cell 231.4 (8.2x) 57.2 (6.5x) 51.2 (6.6x)
Dual-Cell 430.1 (15.3x) 108.9 (12.5x) 91.4 (11.8x)
PS3-Cell 270.0 (9.6x) 66.7 (7.6x) 59.7 (7.7x)
ray casting, simple shading
2.4GHz x86 15.3 6.7 6.6
2.4GHz SPE 14.9 (-3%) 5.1 (-23%) 3.5 (-47%)
Single-Cell 116.3 (7.6x) 38.7 (5.7x) 27.1 (4.1x)
Dual-Cell 222.4 (14.5x) 73.7 (11x) 47.1 (7.1x)
PS3-Cell 135.6 (8.9x) 45.2 (6.7x) 31.6 (4.8x)
ray casting, shading&shadows
2.4GHz x86 7.2 3.0 2.5
2.4GHz SPE 7.4 (+3%) 2.6 (-13%) 1.9 (-24%)
Single-Cell 58.1 (8x) 20 (6.6x) 16.2 (6.4x)
Dual-Cell 110.9 (15.4x) 37.3 (12.4x) 30.6 (12.2x)
PS3-Cell 67.8 (9.4x) 23.2 (7.7x) 18.9 (7.5x)

Table 5: Performance in frames/sec on a 2.4 GHz SPE, a single
respectively dual 2.4 GHz Cell processor system, and a 2.4 GHz x86
AMD Opteron CPU using pure ray casting, shading, and shading
with shadows (at 10242 pixels). Opteron data and 2.4GHz-Cell data
are measured, data for the 7-SPE 3.2 GHz processor (as used in
the Playstation 3) has been extrapolated from that data. For pure
ray casting, our implementation on a single 2.4 GHz SPE is almost
roughly on par with a similarly clocked Opteron CPU. In addition, a
Cell has 7–8 such SPEs, and can be clocked at a higher rate.

As shown in Table 5, our Cell-based implementation is quite
efficient: on a single 2.4 GHz SPE, our implementation achieves
a performance that is roughly on par with that achieved by one
of the fastest known ray tracing implementations on a full-fledged
Opteron CPU. As our system scales well over the available SPEs,
our dual-Cell evaluation system is then 7-15 times faster than the
AMD Opteron-based system, and the estimated Playstation 3 per-
formance is 5-9 times that of an Opteron CPU.

Applying the profiling features of the Cell Simulator [11] allows
for obtaining a detailed dependency stall analysis on the SPEs. As
the current simulator does not provide a cycle accurate profiling of
DMA transfers, we excluded cache accesses (and the related DMA
transfers) from the analysis. For pure ray casting, roughly 25% of
all cycles are taken by stalls: 11% for mispredicted branches, 10%
by dependency stalls and 4% by branch-hit related stalls. The CPI
ratio for complete BVH traversal is 0.99.

9.2 Shading and Secondary Rays

As can also be seen from Table 5, the Cell-based shading does not
work as good as the traversal and intersection: in particular for more
complex scenes in which rays hit different triangles, even simple
shading becomes costly. For example, while for all test scenes pure
ray casting on a single SPE is roughly as fast as on a AMD Opteron
core, the Opteron is up to twice as fast once shading gets turned
on. This, however, is not surprising, as we have mostly concen-
trated on efficient ray traversal and intersection so far. In particular,
profiling the shading code (using the simulator) shows that 43%
of the cycles required for shading are wasted in stalls: 21.5% for
dependency and 21.5% for mispredicted branches. This is mostly



caused by inefficient instruction scheduling, so we expect that fu-
ture compiler versions in combination with manual optimizations
will provide a significant performance increase for the shading part.
Secondary rays, on the other hand, do not further widen the perfor-
mance gap between x86 and the Cell processor, as they again bene-
fit from the optimized ray traversal kernel. In addition, shadow rays
could be further accelerated using early shadow ray termination,
which hasn’t been applied, yet.

For highly recursive shading and realistic lighting effects it is
still not clear how to efficiently map them to a packet-based shading
framework. First work has already been done [5], and we believe
most of this to be directly applicable. However, the limitation of the
Cell processor, e.g. limited local store size, makes the realization
of complex shading even more challenging.

As a Cell will be used as the CPU for the PlayStation 3, a direct
high-bandwidth connection to the PS3’s GPU will exist. If a suf-
ficiently high ray traversal performance could be achieved and the
shading could entirely be done on the GPU, ray traced effects could
finally be delivered to commodity game consoles.

9.3 Dynamic Scenes

Even though dynamic scenes have not been considered here, we
believe that the Cell processor is perfectly suited to handle the re-
quired algorithms. As shown in [27], handling dynamics requires
a fast update of BVH nodes and triangles, which can be efficiently
mapped to a streaming work model: An SPE loads a chunk of ver-
tices or BVH nodes, works on the data and stores the results back
to memory. Such a streaming approach is perfectly suited, as the
Cell’s EIB ensures a very high memory bandwidth. Additionally,
the memory latency can be efficiently hidden by using double or
triple buffering techniques.

9.4 Caching, Software-Hyperthreading, and Bandwidth

As shown in the previous sections, caching works well for BVH
nodes, but the cache hit rates for triangles quickly drop with an
increasing scene complexity. Under the assumption that enough
memory bandwidth can be reserved, one could abandon the triangle
cache completely. However, for high frame rates the bandwidth
could possibly limit the total performance.

Figure 6 shows that for the complex VW Beetle scene only 12
MB of bandwidth to memory is required. In particular, the largest
part of the bandwidth is taken by loading triangle data (4.7 MB).
Note that for writing the final color as 32bit RGB values to the
frame buffer, 4,096 KB per frame of additional bandwidth is re-
quired. Even though a memory bandwidth of 12 MB per frame
seems to be low, one should keep in mind that the loading is not
performed in large chunks of data, but with small granularities of
16, 32 or 64 bytes. Memory latency has therefore a much higher
impact than memory bandwidth. For this kind of latency-bounded
memory access, software hyperthreading is a useful approach.

Scene ERW6 Conference VW Beetle
BVH node data 24 1,113 3,724
Triangle accel data 43 2,797 4,766
Vertex data 130 1,278 4,303
Shader data 0.03 87 1.53
∑ 202 5,275 12,794

Table 6: Required bandwidth to system memory for loading different
types of scene data (in KB per frame). All scenes are rendered at
10242 pixels using simple shading, and with 256 entries for both BVH
cache and triangle cache. Due to our caching framework, even the
complex VW Beetle requires a mere 12 MB of memory bandwidth
per frame.

9.5 Architectural Improvements

Even though the Cell—and, in particular, the SPEs—have a power-
ful architecture and instruction set, even small extensions to either
of them could further improve its efficiency for ray tracing.

One of the bottlenecks of the current generation is branching.
Only a single branch hint can be specified at a time, and this must
be placed at a certain distance before the branch. This results in
an increased number of branch mispredictions for branch-intense
code. Specifying branch hints for multiple branches in advance
could significantly reduce the misprediction rate.

The shading part requires many data gather operations, e.g. load-
ing four word elements from four different locations in the local
store, where the four addresses are held within a single register. As
each of these word elements does not need to be aligned on a six-
teen byte boundary, a long and costly instruction sequence (scalar
loading) is required to load and arrange the data. Therefore, an
extended load instruction would be very helpful.

10 Conclusion

We have shown how to efficiently map the ray tracing algorithm
to the Cell processor, with the result that a single SPE achieves
roughly the same traversal performance as the fastest known x86-
based systems, and using all of a Cell’s SPEs yields nearly an order
of magnitude higher traversal performance than on an Opteron.

The remaining bottleneck is shading, which requires many cache
accesses, costly data gather operations and a complex control flow,
making the Cell architecture less efficient than a commodity x86
core. Therefore, future modifications should directly concentrate
on a maybe simplified but efficient shading framework.

As the SPEs are exclusively designed for high clock rates, we can
expect future versions of the Cell processor to have a higher clock
rate and an increased number of SPEs. Even the current generation
of SPEs has been reported to run stable at 5.2 GHz[4], so we can
expect a great performance boost from future generations.
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