
Eurographics Symposium on Point-Based Graphics (2005), pp. 1–8
M. Pauly, M. Zwicker, (Editors)

Interactive Ray Tracing of Point-based Models
Ingo Wald Hans-Peter Seidel

MPI Informatik, Saarbrücken, Germany
{wald,hpseidel}@mpi-inf.mpg.de

Figure 1: Several examples of interactively ray tracing point-based scenes: Interactive ray tracing of point-based scenes: a) ”Iphigenia”
head, each point represented by a disc. b) The splats blended to an implicit function and intersected using an acceleration structure
(6.8 f ps@512×512pixels). c) The full model (15.9 f ps@512×512pixels). d) A complex scene of 24 Iphigenias (24 million points) with
phong shader and shadows (∼ 2 f ps@640×480pixels). e) Iphigenia, displayed interactively with a (precomputed) global illumination
solution (∼ 4 f ps@400×600pixels). All frame rates are measured on a single PC.

Abstract
Point-based methods have recently gained significant interest, as their simplicity and independence of connectiv-
ity make them a simple and powerful tool in both modelling and rendering. Still, their use for high-quality and
photorealistic rendering is still in its infancy, in particular for interactive applications. This paper describes a
framework for interactively ray tracing point-based models based on a combination of an implicit surface rep-
resentation, an efficient surface intersection algorithm, and a specially designed acceleration structure. Using
this framework allows for interactively ray tracing even highly complex models on a single PC, including global
illumination effects and the interactive visualization of a 24-million-point model with ray traced shadows.

1. Introduction

In recent years, point-based methods have gained significant
interest. In particular their simplicity and total independence
of topology and connectivity make them an immensely pow-
erful andeasy-to-use tool for both modelling and rendering.
For example, points are a natural representation for most
data acquired via measuring devices such as range scan-
ners [LPC∗00], and directly rendering them without the need
for cleanup and tessellation makes for a huge advantage.

Second, the independence of connectivity and topol-
ogy allow for applying all kinds of operations to the
points without having to worry about preserving topol-
ogy or connectivity [PZvBG00, OBA∗03, PKKG03]. In par-
ticular, filtering operations are much simpler to apply to
point sets than to triangular models. This allows for ef-
ficiently reducing aliasing through multi-resolution tech-
niques [PZvBG00, RL00, WS03], which is particularly use-
ful for the currently observable trend towards more and more
complex models: As soon as triangles get smaller than indi-
vidual pixels, the rationale behind using triangles vanishes,
and points seem to be the more useful primitives.

1.1. Ray Tracing and Global Illumination on PBMs
Albeit their growing importance, using point-based mod-
els (PBMs) for high-quality and photorealistic rendering is
still in its infancy, in particular for interactive applications.
Nowadays, point-based models are rendered almost exclu-
sively via splatting them into a Z-buffer. This operation cor-
responds naturally to rasterization for triangles, and shares
many of its advantages – namely, simplicity – and deficien-
cies. In particular, it gets costly for complex models, and
high-quality shading effects such as shadows, reflections, or
even global illumination are hard to achieve at all.

Computing such global effects also on point based models
eventually requires ray tracing. As both rays and points are
“singular” primitives, this requires one to either trace “thick”
rays (such as cones, beams, etc [Ama84, SJ00, WS03]), or
to somehow make the points cover a finite area (using, e.g.,
disks, ellipses, or spheres [RL00]; or via blending them to an
implicit function [AA03a, OBA∗03]). Unfortunately, both
variants are quite costly. Additionally, most of the recent
progress towards fast and realtime ray tracing [Wal04] have
bypassed point-based models, as these so far have concen-
trated exclusively on supporting triangles.

In this paper, we present a framework for interactively

submitted toEurographics Symposium on Point-Based Graphics (2005)

2 Wald et al. / Interactive Ray Tracing of Point-based Models

ray tracing even highly complex point-based models using
a combination of an implicit surface representation, an ef-
ficient surface intersection algorithm, and a specially modi-
fied acceleration structure. Using this framework allows for
interactively ray tracing even highly complex models of sev-
eral million points on a single PC, including global effects
like shadows and even (precomputed) global illumination.

2. Previous Work

Point-based methods have a long history in computer graph-
ics. In this paper we will concentrate on (interactive) point
based rendering and ray tracing. For an overview of using
point-based representations in acquisition and modelling,
see for example the recent survey by Kobbelt at al. [KB04].

Points as display primitives have already been used in ’85
by Levoy and Whitted [LW05]. Since then, most approaches
have been targeting the efficient and/or high-quality ren-
dering of point-based models by various forms of splat-
ting [PZvBG00, RL00, ZPvBG01, CH02, WK04]. In con-
trast to splatting-based approaches, we want to ray trace the
point sets. As both points and rays are singular primitives,
the intersection of a ray with a point has zero probability,
which leaves only two options for ray tracing points: Either
to grow the primitives such that they cover a non-differential
surface, or, alternatively, to trace “thick” rays in the form of
cylinders, cones or beams.

Following the second of these approaches, Schaufler et
al. [SJ00] have traced cylinders, and have computed the in-
tersection depending on the local density of the points along
the “ray”. Unfortunately, this operation is quite expensive,
and may lead to inconsistencies as the outcome of the sur-
face intersection depends on the direction of the ray.

Another approach of tracing tracing thick rays has been
proposed by Wand et al. [WS03], who trace (anisotropic)
ray cones into a multi-resolution hierarchy, thereby directly
computing effects like anti-aliasing or blurry reflections
without the need for stochastic sampling. However, tracing
cones is is usually far from interactivity. Quite generally,
“thick ray” approaches suffer from the fact that such ex-
tended rays tend to traverse large portions of the acceleration
structure, and visit lots of primitives.

The alternative to growing the rays is to grow the prim-
itives such as to cover a non-differential area. In its most
simple form, this means replacing each point by a disk or
ellipse, which in turn corresponds to splatting with flat shad-
ing. Though conceptually quite simple, this approach leads
to shading artifacts in particular at the silhouettes, and where
different primitives intersect each other (see Figure 2).

These artifacts can only be removed by defining a
smooth and continuous surface. To this end, Adamson
et al. [AA03b, AA03a] have proposed an implicit surface
model that equips points with a spherical support that allows

Figure 2: Using disks as primitives (top row) vs. Adamsons
implicit surface model also used in our approach (second
row). From left to right: Iphigenia model with 2,000, 32,000
and 1,000,000 splats, respectively. Whereas the disks result
in shading artifacts, the implicit surface is smooth and con-
tinuous. The effect of a non-continuous surface such as disks
is further emphasized when adding highlights or shadows
(bottom row). Artifacts persist even in the highest resolution
available (see zoom of the nose).

for “blending” overlapping splats together to a smooth sur-
face (see Figure 2). We will eventually use the same surface
model as well, and will discuss it in more detail below. Note
that a similar approach has also been proposed by Ohtake at
al. [OBA∗03], in the form of MPU Implicits.

3. Interactive Ray Tracing of Point Based Models

As discussed above, ray tracing points sets requires one to
either trace thick rays, or to extend the points to cover a
surface. In our experience, tracing thick rays significantly
complicates the traversal, and is too costly for interactiv-
ity. For this reason, we have ruled out thick rays, and have
opted on the second approach. In particular, tracing “usual”
rays allowed for taking benefit from vast experience in fast
ray tracing that has been developed for polygonal ray trac-
ing [Wal04].

Having decided on using thin rays, ray tracing a point set
can be broken down into the following sub-problems:

1. What surface representation to use,
2. How to efficiently compute the surface intersection,
3. What acceleration structure to use, and how to construct

it optimally to achieve minimal cost.

In the following, we will discuss these issues step by step.

submitted toEurographics Symposium on Point-Based Graphics (2005)

Wald et al. / Interactive Ray Tracing of Point-based Models 3

3.1. Surface Model

Given today’s extremely high ray tracing performance for
polygonal models [Wal04], our first attempt towards point
based ray tracing was to extend an existing realtime ray
tracer, and to extend it to support disk primitives as well.
Most of the existing knowledge on fast ray tracing could
be directly applied to this new framework as well, includ-
ing fast traversal [WSBW01], construction of high-quality
kd-trees [Wal04, Hav01], parallelization, etc. Though this
yielded relatively good performance results, the rendering
quality was not acceptable, in particular close to silhouette
edges, or in highly curved regions (see Figure 2).

The second approach we tried was based on the observa-
tion that the shading artifacts in the disk-approach are mostly
due to two issues: Disks “sticking through” other disks they
are intersecting, and shading discontinuities due to a dis-
continuous surface normal. In order to remove those prob-
lems, we experimented with cutting off those parts of the
disks that stick through others by suitable modifications to
the primitive intersection code. If that had been successful,
a smooth appearance could have been achieved by smoothly
interpolating the normal from neighboring splats. Unfortu-
nately, this approach was largely unsuccessful as well, as the
modified intersection code was highly nontrivial, very costly,
and numerically unstable. In particularly the latter led to thin
hole and crack artifacts that were not tolerable.

3.1.1. Adamson and Alexas Implicit Surface Model

Finally, we experimented withsmoothlyblending the in-
dividual splats together, and finally arrived at Adamson et
al.’s implicit surface model [AA03b]: Each primitive splat†

Si = (pi ,ni , r i)N
i=1 is defined by its positionxi , its normalni ,

and its radius of influencer i . Inside this radius of influence,
the point is surrounded by a weight function

wi(x) = W(
||x− pi ||

r i
),

whereW(r) is a decreasing weight function, usually a (trun-
cated) Gaussian, a spline, etc. In our experiments, a simple
hat function

W(r) =
{

1− r ; r < 1
0 ;r ≥ 1

has shown to yield reasonable results.

Once thepi , ni , r i , andW are defined, for each pointx∈
<3 we can define a weighted average of the position

p̄(x) = ∑wi(x)pi

∑wi(x)
,

† Note that we call these primitives “splats” even though they are
are obviously not used as such. This naming convention was chosen
to emphasize that a splat is more than only a “point”, but – though
being defined by position, normal, and radius – is also not a disk.

and normal

n̄(x) = ∑wi(x)ni

∑wi(x)

of the surrounding splats. These define a local plane approx-
imation, which in turn allows for defining an implicit func-
tion

f (x) = (x− p̄(x))n̄(x),

whose root is a smooth, continuous surface.

3.2. Surface Intersection

In this surface model, each splat only has a small, local sup-
port. Thus, during each evaluation off (x), only a small num-
ber of splats will actually have a non-zero contribution. In
particular, large parts of the ray interval will not overlap any
splat at all, and cannot have an intersection. Thus, efficient
intersection requires skipping the regions where there is no
overlap, and to always only consider those splats that poten-
tially have any influence at all. Therefore, we build a kd-tree
over the model, such that each cell of the kd-tree stores a
reference to all the splats whose support overlaps it. The ex-
act way that kd-tree is built is very important, and will be
discussed in more detail below in Section 3.4.

3.2.1. Fast Ray/Implicit Surface Intersection

Once a kd-cell is encountered while traversing a rayR(t)
through the kd-tree, the ray has to be intersected (only) with
the splats overlapping that cell, and computing an intersec-
tion requires finding the closest root off (t) := f (x = R(t)).
The obvious approach of using an iterative procedure (like
e.g., Newton-iteration or the method outlined in [KB04])
unfortunately turned out to be numerically problematic, in
particular close to silhouettes. Instead, we regularly sam-
ple the ray interval: Takingk samplest0, t1, ... along the
ray, there is a surface intersection if there is ani with
sign(f (ti)) 6= sign(f (ti+1)). In that case, we linearly inter-
polate the hitpoint betweenti and ti+1, depending onf (ti)
and f (ti+1), respectively. Obviously, only samples in the in-
terval [tnear, t f ar] in which the ray overlaps the current cell
have to be considered. This interval is already known from
kd-tree traversal without any further effort [Wal04].

Though the above surface model is quite simple, it also is
computationally expensive. For that reason, we have spent
significant time in optimizing the intersection code. Apart
from low-level optimizations (like storing precomputed di-
visions etc.), a particularly interesting optimization is to ex-
change the functionf for a simpler one with the same root.
To this end, we takeW(x) = ∑wi(x) and define

F(x) = W2(x) f (x) (1)

= (W(x)x−∑wi(x)pi)∑wi(x)ni . (2)

Except for thosex whereW(x) = 0 (i.e., where no single
splat overlapsx, and wheref was undefined, anyway),F

submitted toEurographics Symposium on Point-Based Graphics (2005)

4 Wald et al. / Interactive Ray Tracing of Point-based Models

has the same root and signs asf . This, it defines the same
surface), but is much simpler, and has no divisions any more,
yielding the simple intersection routine:

bool INTERSECT(Ray R, Splats S[])
float oldF = 0; oldT = t_near;
for (i=0..k-1)

t = Interpolate(i/(k-1),t_near,t_far);
x = origin + t * direction;
W = 0; N = 0; P = 0;
for (each splat S)

w = S.w(x);
if (w == 0) continue;
W += w; N += w * S.n; P += w * S.p;

end
if (W==0) continue; // not contd in any S
F = (W*x - P) * N;
if (F*oldF < 0 /* different signs ! */)

t_hit = Interpolate(oldF/(oldF-F),
oldT,t));

n_hit = ... /* same loop as above */
return HIT;

end
oldF = F; oldT = t;

end
return NO_HIT;

Obviously, the performance of this intersection largely de-
pends on the number of iterations, and on the number of
splats in the leaf. Much of that can be influenced by a proper
choice of the splat radii (see Section 3.3 below) and by a
well-built kd-tree (see Section 3.4 below). The number of
iterations required to reach a certain accuracy depends par-
ticularly on how well the kd-tree encloses the surface, as the
kd-cell width directly affects the sample spacing.

3.2.2. SIMD Acceleration

The intersection can be further accelerated by computing
four f (ti) in parallel using SIMD operations [Int02]. Using a
well-build kd-tree, a constant number ofN = 4 samples are
sufficient, allowing for computing all four samples in a sin-
gle sweep without any iteration at all. Additionally, in SIMD
part of the conditionals can be replaced by cheap min/max
operations, and the sign operations are trivial as well. Taken
together, the computational density of the code is quite high,
and SIMD acceleration provides good results.

Note, however, that using onlyN = 4 sample points inside
the cell – and thus, the ability to use the SIMD variant –only
works if the cell tightly encloses the surface, and is prone to
sub-sampling artifacts if the cells are too large.

3.3. Choosing optimal Splat Radii

The performance of the surface intersection also depends on
the splat radii, as too large splats result in each splat covering
a large volume, i.e., in lots of splats per cell on average. On
the other hand, too small splat radii will result in holes in the

model. Note that the splat radii cannot be changed interac-
tively, as they need to be known during kd-tree construction.

The “optimal” splat radii for our purposes would require

1. that the splats cover the entire surface without holes, and
2. that each splat is as small as possible without violating

the previous condition.

A method to generate such a coverage has recently been pro-
posed by Wu et al. [WK04]: In a first step, a splat is grown
from each input point, such that a certain error tolerance is
met. These splats are then subsampled greedily in a way that
guarantees that complete surface coverage is maintained. Fi-
nally, a global optimization procedure is applied to further
optimize the placement and size of the splats.

Though the purpose of this method originally was to opti-
mally sub-sample a model at any desired resolution, its out-
put perfectly fits our requirements also without using its sub-
sampling capabilities at all. In fact, we did not even have
to re-implement that method, as the authors have graciously
made their already preprocessed data available to us. Obvi-
ously, using the subsampling capabilities directly lend for
a level-of-detail approach also for our approach. This is al-
ready being investigated, but required building a kd-tree that
encodes multiple model resolutions at the same time.

3.4. Building a High-Quality kd-Tree

Though we have already mentioned that we are using a
kd-tree, we have not yet discussed its actual construction
method. This however is quite important, as it has to fulfill
several demands:

1. It should minimize the number of traversal steps, and – in
particular - the number of costly surface intersections.

2. It should enclose the surface as tightly as possible, in or-
der to guarantee that our surface intersection works reli-
ably and efficiently

3. It should minimize the number of splats that have to be
considered per ray, to minimize intersection cost.

The first item can best be achieved by building the kd-
tree using a cost estimation function such as a surface area
heuristic (SAH) [Wal04, Hav01]. This heuristic estiates the
costC of splitting cellV into cellsVl andVr as

C(V) = Ctrav +
SA(Vl)
SA(V)

Cest(nl)+
SA(Vr)
SA(V)

Cest(nr), (3)

whereSA(V) is the surface area of cellV, Cest(n) =Cisec×n
is the (estimated) cost of traversing a child withn primi-
tives,nl andnr are the number of primitives overlappingVl
andVr , respectively, andCisec andCtrav are constants rep-
resenting the cost of a traversal and primitive intersection,
respectively. In order to optimally place the split planes the
SAH needs a good estimate on the extent of the primitives it
considers. Without an explicit representation of the surface,

submitted toEurographics Symposium on Point-Based Graphics (2005)

Wald et al. / Interactive Ray Tracing of Point-based Models 5

this unfortunately is not available. For that reason, we sim-
ply enclose each splat with an axis-aligned box that exactly
encloses it, and apply the SAH to these kinds of “primitives”.

These boxes work quite well on a coarse scale, but have
the disadvantage that the extent of the surface is signifi-
cantly overestimated, in particular for coarse models with
large radii. This has two disadvantages: First, split planes are
often further apart from the surface than necessary, resulting
in unnecessary traversals and intersections. Second, the au-
tomatic termination criterion of the SAH – which stops fur-
ther subdivision if the expected cost for a split is larger than
the expected cost for making a cell – often terminates subdi-
vision too early, as the children’s cost is overestimated‡.

Obviously, these deficiencies could best be remedied by a
better estimate of the surface’s extent. As no such estimate is
(yet) available, we use several heuristics to improve on them.

3.4.1. KD-Cell Shrinking and Splat Culling

Once the SAH decides not to subdivide the cell any further,
we first try to shrink the cell towards the surface as follows:
First, we calculate the average of the normals of all splats
in the cell. Orthogonal to the dominant dimension of that
normal we then slice the cell intoK equidistant slices.

For each of these slicesV, we estimateFmin = min{F(x∈
V)} andFmax= max{F(x∈V)} by samplingF (see eq. 1)
with randomx∈V. If those values are beyond certain thresh-
olds (i.e., Fmin > ε or Fmax<−ε), this slice is likely not to
contain the surface. Thus, the cell can be shrunk respectively
by inserting a new split plane. In particular, if no slice con-
tained the surface at all (which is perfectly possible), the cell
is completely marked empty. Using this method, much of the
overestimated space can be correctly classified as empty. In
practice, we use 7–13 slices and 100-200 samples per slice.
Clearly, sampling can also lead to missing a “full” voxel due
to undersampling. This happens in particular close to highly
curved regions, but is usually only visible when zooming in
closely, and is usually quite tolerable. Using interval arith-
metic for (conservatively) estimatingFmin and Fmax would
avoid for both getting rid of these artifacts, as well as for
significantly reducing precomputation time. So far however
this is not implemented yet.

After the leaf has been shrunk, it is possible that splats
from the original cell will no longer overlap the shrunken
cell. This will be checked, and those splats get removed.

3.4.2. Encouraging of Splits for Smaller KD-cells

As mentioned above, the overestimation of the surface extent
leads in too early termination of the subdivision procedure.
This effect unfortunately cannot be helped by the above cell

‡ E(n) =Cisec×n assumes the cell to be a leaf. Since the cell might
be subdivided later on, its actual cost can be significantly lower.

shrinking, as the cell shrinking will only shrink the bounds
of a cell to the surface contained within it, but will not further
split the surface itself. Introducing new splits into an already-
shrunk cell is not trivial, either, as good candidates for split
planes are not obvious.

Instead, we artificially encourage splitting by modifying
the cost estimation function. Instead ofCcell(n) = Cisec×n,
we introduce an additional factorE(n), that artificially low-
ers the cost for small cells, yielding

Ccell(n) = Cisec×n×E(n),

In practice, we useE(n) = clamp(1, 95+5n
200), but similar pa-

rameters are possible as well. Note that this term intention-
ally affects only already small cells: The SAH already works
well on the coarse scale, and modifying the cost estimate on
the coarse scale often leads to unexpected results.

3.4.3. KD-Tree Post-Collapse

By design and intention, encouraging splits leads to lots of
small cells, most of which are later on significantly shrunk,
or culled. We therefore perform an additional cleanup pass,
in which splits with two equal siblings – i.e., two empty chil-
dren – get merged by collapsing their parent split node.

4. Results and Applications

Once all individual parts of our method are now together,
we can evaluate its performance. Figure 3 shows two views
of the Iphigenia statue, rendered at 512×512 pixels. These
will be used in the following experiments. All experiments
are performed on a single 2.4GHz dual-Opteron PC.

Figure 3: The Iphigenia model used in our experiments,
available in various resolutions (shown: 125k points). Top:
Full model. Bottom: Zoom towards the head. From left to
right: Diffuse, Phong with highlights, and shadows.

4.1. Overall Performance

Our test model is available in several resolutions: 2k, 32k,
125k, and 1M points. To quantify overall performance, have
measured the performance for each of them with all opti-
mizations turned on:

submitted toEurographics Symposium on Point-Based Graphics (2005)

6 Wald et al. / Interactive Ray Tracing of Point-based Models

(in frames per sec.) 2k 32k 125k 1M

head 10.3 8.3 7.8 6.8
full 30 26.1 22 15.9

With simple GL-like shading per ray, we achieve 6.8–10.3
and 15.9–30 frames per second for the head and the full
statue, respectively. Note that even though it shows much
more points, the entire statue is much faster than the head
only, as significantly fewer pixels are covered.

4.2. Scalability in Model Resolution

As can also be seen from these measurements, model resolu-
tion has only a relatively small impact: While the model size
increases by almost three orders of magnitude, performance
drops only by about 30% for the head view, respectively 50%
for the full model. This is a particularly interesting feature
since model size is still one of the most limiting factors in
splatting based approaches.

As a stress test, Figure 4 shows a scene with 24 Iphige-
nias, totalling 24 million points. Even with additional shad-
ows, we achieve interactive performance of∼2 frames per
second at 640× 480 pixels. Note that – though this is triv-
ially possible – this scene doesnotuse multiple instantiation,
but really consist of 24 million individual points.

4.3. Traversal Statistics

To best understand the good scalability in model size, it is
helpful to have a closer look at traversal statistics. Thus, for
each of the experiments above we have measured the (av-
erage) number of kd-tree node traversal steps, leaf cells en-
countered (including empty ones), computed surface inter-
sections, and number of splats encountered per ray:

view resolution 2k 32k 125k 1M

head traversals 32.0 47.1 50.6 55.2
cells 5.99 9.02 9.47 9.98
intersections 1.07 1.06 0.99 0.97
splats 10.8 7.87 8.03 6.90

full traversals 23.4 30.2 35.2 40.6
cells 4.81 5.77 6.50 7.34
intersections 0.64 0.61 0.62 0.62
splats 6.02 4.76 5.06 4.41

As can be seen, the number of cell intersections – one of the
main cost factors – stays almost constant, and only the num-
ber of traversal steps increases. With increasing resolution,
the lessening effect of surface overestimation evenreduces
the number of intersections.

Effect of kd-tree Optimizations: To roughly quantify the
impact of the kd-tree optimizations outlined in Section 3.4,
we have performed the same experiments also with all kd-
tree statistics turned off, albeit only for one model resolution
(125k):

Figure 4: Two examples from the final system: a) 24 Iphi-
genias (24 million points total), with Phong shading and
shadows. b) Iphigenia with precomputed global illumina-
tion, showing the Iphigenia illuminated from an HDR envi-
ronment map of St.Peters. At640×480and400×600pix-
els, these examples render at∼2 and∼4 frames per second,
respectively, on a single 2.4GHz dual-Opteron PC.

Iphigenia, 125k kd-node kd-cell surf splats
trvsals trvsals isecs visited

head no opt 46.3 8.7 1.6 15.8
opt 50.6 9.5 0.99 8.0

full no opt 32.0 5.9 1.1 10.8
opt 35.2 6.5 0.6 5.06

As expected, by slighly increasing the traversals the kd-tree
optimizations significantly reduce the number of surface in-
tersections and splats considered per ray. Note that “no opt”
already refers to a highly tuned SAH implementation.

Hot-spot Analysis Given the previous data, it is interesting
to see where the individual time is spent. We have therefore
measured how the total rendering time splits up into surface
intersection, traversal, and overhead (ray generation, shad-
ing, etc), respectively (relative numbers, in percent):

Trv:Isec:Other 32k 125k 1M

head 28:48:24 27:49:24 27:53:20
full 18:32:50 18:31:51 18:32:50

Note that these number areverycoarse, due to the simplistic
measurement procedure involved. As can be seen, the over-
all traversal and intersection performance is already high
enough to make ray generation and shading consume sig-
nificant portions of time (up to 50% of total time!).

4.4. Rendering Quality

Apart from performance data, it is also interesting to investi-
gate rendering quality. As the surface is smooth and continu-
ous, rendering artifacts are quite low. For really coarse mod-
els (e.g., 2k resolution), the blending does not work well, in
particular at silhouettes. Also, zooming closely onto the sur-
face shows some high-frequency noise in the normal, proba-
bly a consequence of the simple hat filter used for blending.
As it is only visible from a close distance, it is quite tolera-
ble. For typical model resolutions (125k or more), the overall
quality is quite high, and few artifacts appear, if any.

submitted toEurographics Symposium on Point-Based Graphics (2005)

Wald et al. / Interactive Ray Tracing of Point-based Models 7

Figure 5: Our method applied to the David (1,501,177
points), Dragon (1,309,059 points), and Octopus (465,878
points) models. Note that for the Octopus the radii havenot
been optimized using Wu’s technique, and contains holes. At
512×512pixels on a single dual-Opteron PC, we can ren-
der these models at 10.6, 7.5, and 8.8 frames per second us-
ing simple shading, and 4.1, 5.7, and 4.1 frames per second
using a Phong shader with shadows, respectively.

4.5. Global Effects

Of course, shading is always performed “per pixel”, and
not interpolated from the nearest splats. Arbitrary secondary
rays can be shot, e.g., for computing accurate shadows or
reflections (see Figures 3 and 4).

Apart from “typical” ray traced effects like hard shadows
and reflections, it is interesting to also apply global illumi-
nation effects to point based model. For this purpose, we
have designed a new precomputation-based global illumina-
tion method [WS05] that – similar to Photon Mapping – has
been explicitly designed to be independent of geometry, and
is thus applicable also to point based models.

Figure 4 shows the full-resolution Iphigenia lighted from
an HDR environment map of St.Peters. Using the afore men-
tioned precomputed global illumination method, all kinds
of global illumination effects are present: Direct as well as
indirect illumination, self-shadowing and self-illumination,
color bleeding, highlights, arbitrary BRDFs, etc. As all illu-
mination is precomputed, only a single ray has to be shot per
pixel, and the fully illuminated model can be viewed inter-
actively at∼4 frames per second at 400×600 pixels.

5. Summary and Conclusion

In this paper, we have sketched a complete framework for in-
teractively ray tracing point based models. This framework
consists of a whole suite of different techniques. In partic-
ular, we have decided to trace “thin” rays, which are inter-
sected with a smooth surface that is defined by a combination
of Adamson et al.’s implicit surface model [AA03b, AA03a]
Wu et al.’s near-optimal coverage technique [WK04]. This
is combined with a highly optimized and SIMD-accelerated

intersection code, together with a highly optimized kd-tree
that is particularly built to suit the demands of the chosen
surface representation and intersection computation. Thus,
the power of the approach does not lie in the individual tech-
niques, but in the way that these optimally play together, and
emphasize their respective strengths.

Taken together, these methods allow for interactive ray
tracing performance of 7 to 30 frames per second at 512×
512 pixels, for non-trivial models, on a single dual-2.4GHz
Opteron PC. Additionally, the framework allows for trac-
ing arbitrary rays, thus allowing for high-quality and global
shading effects like shadows, reflections, and even (interac-
tive) global illumination. The framework is fully integrated
into the OpenRT realtime ray tracing system [Wal04], and
can be used with all existing shaders, surface types, paral-
lelization features, etc.

In the near future, we plan to extend our system with a
multiresolution approach, in particular for visualizing much
more complex models. Also, the investigation of dynamic
data structures in the spirit of [AKP∗05] appears interesting.

Acknowledgements

This paper would not have been possible without the support
by Leif Kobbelt, who has graciously made the readily pre-
processed Iphigenia, David, and Dragon models available.
Thanks also to Mark Pauly for the Octoput model and to
Anders Adamson, Marc Alexa, and Johannes Günther for
the helpful discussions. Finally, many thanks also to the re-
viewers for the very detailed and helpful comments.

References

[AA03a] ADAMSON A., ALEXA M.: Approximating and in-
tersecting surfaces from points. InSGP ’03: Proceed-
ings of the 2003 Eurographics/ACM SIGGRAPH sym-
posium on Geometry processing(2003), pp. 230–239.

[AA03b] A DAMSON A., ALEXA M.: Ray Tracing Point Set
Surfaces. InSMI ’03: Proceedings of the Shape Mod-
eling International 2003(2003), p. 272.

[AKP∗05] ADAMS B., KEISER R., PAULY M., GUIBAS L. J.,
GROSSM., DUTRÉ P.: Efficient Ray Tracing of De-
forming Point-Sampled Surfaces. InProceedings of
Eurographics 2005(2005). to appear.

[Ama84] AMANATIDES J.: Ray tracing with cones. InSIG-
GRAPH ’84: Proceedings of the 11th annual confer-
ence on Computer graphics and interactive techniques
(1984), pp. 129–135.

[CH02] COCONU L., HEGE H.-C.: Hardware-Accelerated
Point-Based Rendering of Complex Scenes. InPro-
ceedings of the 13th Eurographics Workshop on Ren-
dering(2002), pp. 43–52.

[Hav01] HAVRAN V.: Heuristic Ray Shooting Algorithms. PhD
thesis, Faculty of Electrical Engineering, Czech Tech-
nical University in Prague, 2001.

submitted toEurographics Symposium on Point-Based Graphics (2005)

8 Wald et al. / Interactive Ray Tracing of Point-based Models

[Int02] INTEL CORP.: Intel Pentium III Streaming SIMD Ex-
tensions. http://developer.intel.com, 2002.

[KB04] K OBBELT L., BOTSCH M.: A survey of point-
based techniques in computer graphics.Computers &
Graphics 28, 6 (Dec. 2004), 801–814.

[LPC∗00] LEVOY M., PULLI K., CURLESSB., RUSINKIEWICZ

S., KOLLER D., PEREIRA L., GINZTON M., ANDER-
SON S., DAVIS J., GINSBERG J., SHADE J., FULK

D.: The digital Michelangelo project: 3D scanning of
large statues. InSIGGRAPH ’00: Proceedings of the
27th annual conference on Computer graphics and in-
teractive techniques(2000), pp. 131–144.

[LW05] L EVOY M., WHITTED T.: The use of points as display
primitives. Tech. rep., CS Department, University of
North Carolina at Chapel Hill, 2005.

[OBA∗03] OHTAKE Y., BELYAEV A., ALEXA M., TURK G.,
SEIDEL H.-P.: Multi-level partition of unity implic-
its. ACM Trans. Graph. 22, 3 (2003), 463–470.

[PKKG03] PAULY M., KEISER R., KOBBELT L. P., GROSSM.:
Shape modeling with point-sampled geometry.ACM
Trans. Graph. 22, 3 (2003), 641–650.

[PZvBG00] PFISTER H., ZWICKER M., VAN BAAR J., GROSS

M.: Surfels: Surface Elements as Rendering Primi-
tives. InProc. of ACM SIGGRAPH(2000), pp. 335–
342.

[RL00] RUSINKIEWICZ S., LEVOY M.: QSplat: A Multires-
olution Point Rendering System for Large Meshes. In
Proc. of ACM SIGGRAPH(2000), pp. 343–352.

[SJ00] SCHAUFLER G., JENSEN H. W.: Ray Tracing Point
Sampled Geometry. InProceedings of the Euro-
graphics Workshop on Rendering Techniques(2000),
pp. 319–328.

[Wal04] WALD I.: Realtime Ray Tracing and Interactive
Global Illumination. PhD thesis, Computer Graph-
ics Group, Saarland University, 2004. Available at
http://www.mpi-sb.mpg.de/∼wald/PhD/.

[WK04] WU J., KOBBELT L.: Optimized Sub-Sampling of
Point Sets for Surface Splatting. InProceedings of Eu-
rographics 2004(2004), vol. 23 ofComputer Graphics
Forum, pp. 643–652.

[WS03] WAND M., STRASSER W.: Multi-Resolution Point-
Sample Raytracing. InGraphics Interface 2003 Con-
ference Proceedings(2003).

[WS05] WALD I., SEIDEL H.-P.: High-Quality Global Illumi-
nation Walkthroughs using Discretized Incident Radi-
ance Maps. (submitted for publication), 2005.

[WSBW01] WALD I., SLUSALLEK P., BENTHIN C., WAGNER

M.: Interactive Rendering with Coherent Ray Trac-
ing. Computer Graphics Forum 20, 3 (2001), 153–164.
(Proceedings of Eurographics).

[ZPvBG01] ZWICKER M., PFISTER H., VAN BAAR J., GROSS

M.: Surface splatting. InSIGGRAPH ’01: Pro-
ceedings of the 28th annual conference on Computer
graphics and interactive techniques(2001), pp. 371–
378.

submitted toEurographics Symposium on Point-Based Graphics (2005)

