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ABSTRACT
Even though the speed of software ray tracing has recently been
increased to interactive performance even on standard PCs, these
systems usually only supported triangles as geometric primitives.
Directly handling free-form surfaces such as spline or subdivision
surfaces instead of first tessellating them offers many advantages
such as higher precision results, reduced memory requirements,
and faster preprocessing due to less primitives. However, exist-
ing algorithms for ray tracing free-form surfaces are much too slow
for interactive use.

In this paper we present a simple and generic approach for ray
tracing free-form surfaces together with specific implementations
for cubic Bézier and Loop subdivision surfaces. We show that our
approach allows to increase the performance by more than an or-
der of magnitude, requires only constant memory, and is largely
independent on the total number of free-form primitives in a scene.
Examples demonstrate that even scene with over one hundred thou-
sand free-form surfaces can be rendered interactively on a single
processor at video resolution.

Categories and Subject Descriptors
I.3.3 [Computer Graphics]: Ray Tracing, Free-Form Surfaces

1. INTRODUCTION
Free-form surface representations such as splines, NURBS, or sub-
division surfaces are an essential and powerful tool for describing
3D shapes within a computer. Together with triangle meshes these
free-form representations form the basis for modeling geometry
in almost all graphics applications. While CAD systems are still
mostly based on splines, the popularity of subdivision approaches
increases particularly in the entertainment industry due to its better
support for modeling organic shape such as human body. As a con-
sequence it becomes more and more important to directly render
these shapes fast and in high quality.

Direct rendering of free-form surfaces reduces the memory re-
quirements and preprocessing cost by not having to generate and
store the many tessellated triangles. It also allows for improving
geometric precision and image quality by eliminating artifacts due
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to insufficient tessellation. Finally, free-form surfaces often come
with trimming curves that cut out irrelevant parts of the surface in
the parametric domain. Robust tessellation with trimming curves
suffers from the handling of complex special cases and cannot be
performed quite in realtime yet [2].

To our knowledge all commercial rendering systems tessellate
free-form surfaces before rendering because it is more efficient to
optimize the code for a single type of primitive. Recently, graphics
chips were extended with hardware support for some limited form
of free-form surfaces (e.g. TrueForm from ATI [11]). However,
these hardware features simply tessellate free-form surfaces very
early in the graphics pipeline and still render only triangles.

1.1 Ray Tracing Free-Form Surfaces
Instead of tesselating the free-form surface for rasterization pur-
poses, another alternative is to directlyray tracethe surface. One
significant advantage of ray tracing is that it can directly handle a
wide range of geometric primitives including free-form primitives
such as splines and subdivision surfaces. However, all existing al-
gorithms are far from interactive performance and the high com-
plexity of their implementation does not suggest that performance
could be improved significantly.

In this paper we present a simple and generic approach for in-
teractively ray tracing free-form surfaces based on recursive sub-
division and efficient pruning of irrelevant subtrees of the recur-
sion tree. In particular we present implementations of this approach
for two surface types: cubic Bézier splines, and Loop subdivision
surfaces. We also discuss support for B-splines and higher order
splines surfaces.

While we do not introduce any new algorithm we demonstrate
that a careful selection of suitable algorithms together with op-
timized implementations allows for drastically increased perfor-
mance. With this increase in efficiency and performance we are
now able to achieve interactive ray tracing performance even for
complex scenes with many curved surfaces. The main advantage
of the new approach is the simple and robust strategy that enables
a streamlined and fast implementation.

We also present a detailed analysis of the approach and its per-
formance on current processors. We show that using a fixed sub-
division depth is more robust, requires only a small and constant
amount of memory, avoids complex crack prevention algorithms,
and is usually faster than applying tests for adaptive subdivision.
An optimized kd-tree limits the number of primitives that have to
be considered per ray, which allows for handling highly complex
models with more than a hundred thousand free-form primitives.
Finally the approach integrates elegantly into existing ray tracing
frameworks. Even on a single PC processor we achieve interactive
frame rates at video resolution even for non-trivial scenes.



2. PREVIOUS APPROACHES
In the last two decades researches have proposed many approaches
for direct ray-tracing of free-form surfaces on CPUs and custom
hardware. In the following we briefly discuss the most common
approaches.

Nishita et al. [13] describes an iterative algorithm called Bézier
Clipping to compute intersections between a ray and a Bézier patch
by identifying and cutting away regions of the patch that are known
not to intersect the ray. More general spline surfaces, e.g. NURBS
surfaces, are first converted into Bézier patches. Later Campagna
et al. [1] improved and optimized the approach.

Wang et al. [18] combined Newton Iteration and Bézier-clipping
and used the coherence of neighboring rays to speed up Nishita’s
algorithm by roughly a factor of three.

Martin et al. [10] presented a framework for integrating ray-
tracing of trimmed NURBS into existing rendering architectures.
Paying attention to building a robust and general framework their
approach did not target interactivity.

Kobbelt et al. [7] suggested the necessary theory for implement-
ing robust and adaptive ray tracing of subdivision surfaces based
on bounding envelopes. It requires the costly computation of min-
imum and maximum values of the basis function for each vertex
influencing the patch. The algorithm is easy to implement but is
slow and becomes more complicated when dealing with edges or
creases due to a high number of special cases.

An adaptive technique for ray tracing subdivision surfaces was
discussed by Müller et al. [12]. She processes the ray in parametric
space after first projecting it onto a base triangle. This approach
must deal with many special casees at patch boundaries due to
adaptive refinement and thus is still rather slow.

In addition to pure software-based approaches, researchers have
also proposed dedicated hardware designs for ray tracing free-form
surfaces. Lewis et al. [8] presented a design of a pipelined archi-
tecture for ray Bézier patch intersection. However, no ray tracing
hardware for splines is available yet.

Parker et al. [14] implemented realtime ray tracing using a mas-
sively parallel approach that also supported free-form primitives.
They used Newton iteration as intersection algorithm combined
with a bounding volume hierarchy. However, the best performance
is still achieved through tessellation of free-form surfaces.

2.1 Discussion
Tessellation of free-form surfaces for rendering has been tolerable
because ray tracing performs well even with the large numbers of
triangles generated due to itsO(logn) complexity with respect to
scene size. However, tessellation still requires large amounts of
memory for storing all generated triangles, which increases pre-
processing cost and reduces cache performance.

The good performance of Wald et al. [16, 17] was achieved through
simplifying and streamlining the basic algorithms, which allowed
for an optimized implementation that exploits the performance fea-
tures of today’s processors. To achieve similar results for free-form
surfaces we have to identify and eliminate the bottlenecks of previ-
ous approaches.

Existing direct ray-tracing methods can be classified into two dif-
ferent categories: the first category [10, 13, 18] computes the exact
hit point by executing analytical or iterative algorithms whereas the
second category [7, 8, 12] adaptively or uniformly refines the free-
form surfaces on-the-fly during the ray-tracing process itself and
eventually intersects the ray with a linear approximation to the re-
fined surfaces.

The limitations of the first category lie in the required algorith-
mic complexity of computing and isolating the correct root of a

high-order polynomial. This is prone to numerical problems and
requires careful handling of many special cases. This approach of-
fers little instruction level parallelism while the complex control
flow makes it unsuitable for modern processors in general and pro-
hibits the use of data level parallelism in particular.

The second category of algorithms typically uses a recursive re-
finement algorithm: If the ray might intersect the current primitive,
refine it into a set of new primitives and recurse for each of them.
Because these operations are usually considered very costly, unnec-
essary recursion is avoided through an adaptive termination criteria
looking at the error between the primitive and a (typically) linear
approximation [12, 13].

Unfortunately, the test whether to perform adaptive refinement is
also rather costly. In particular it must ensure that cracks between
neighboring primitives at different refinement levels are avoided or
filled with additional surfaces. In particular, at each refinement step
the approach must either conditionally move vertices or insert new
primitives. This implies a complex control flow for handling these
special cases, additional memory, and costly updates of non-trivial
book-keeping data structures [12].

On today’s processor architectures such code is likely to cause
costly cache misses, miss-predicted branches, and might even re-
quire system calls for memory allocation. All of this limits perfor-
mance significantly.

3. OUR APPROACH
In our approach we explicitly avoid any complex algorithms and
take a similar approach as in Wald et al. [?, 16, 17]: We sim-
plify and streamline the code as much as possible in order to allow
for better optimizing the resulting implementation. While such a
“brute force” approach might seem less elegant than clever adap-
tive refinement tests to avoid computation in the first place, it can
dramatically outperform them on today’s CPU architectures.

For our technique we adopt the well-known, simple, and generic
divide and conquer approach consisting of the following fourcore
operationsthat must then be optimized.

Refinement This operation refines a given primitive into a set of
child primitives. The number of child primitives depends on
the refinement algorithm used (usually 2 or 4). Depending
on the primitive, additional data from its neighborhood must
also be included.

Bounding Box Computation For the following pruning test we
need to quickly compute the extent of a primitive.

Pruning Test This test must quickly discard any primitive that can-
not intersects the ray.

Final Intersection Test After the reaching the fixed predefined re-
finement depth, a final ray/primitive intersection test is ap-
plied to an approximation of the free-from surface.

Note that this generic approach is not limited to a certain prim-
itive representation. In the remainder of the paper we discuss op-
timized implementations for two important types of free-form sur-
faces as examples. However, the approach can easily be extended
to other surface representations as long as efficient implementations
of the above operations are available.

Due to the fixed number of refinement steps cracks cannot be
introduced and no special handling is required. Also note that the
fixed depth is only required for connected components of free-form
surfaces but can still be adjusted for each of them to achieve a LOD



effect, e.g. for objects in the distance. The fixed number of refine-
ment steps has the important advantage of requiring only a fixed
amount of (preallocated) memory.

Because the final ray/primitive intersection tests are performed
only after many pruning and refinement operations we first focus on
efficient algorithms for the latter. We explore ways to take advan-
tage of parallel SIMD (single instruction multiple data) processing
using the SSE [5] instruction set as an example. These extensions
can perform operations on four single precision floating point val-
ues in parallel by executing a single instruction. The use of SIMD
has important consequences for data layout and execution flow [4].

4. INTERSECTION COMPUTATION FOR
CUBIC BÉZIER PATCHES

We start by looking at Bézier patches as they have a fast and sim-
ple refinement algorithm (deCasteljau). They are also used as a
common denominator for other types of spline surfaces such as B-
splines. Because of the properties of SSE mentioned above we
concentrate on bi-cubic splines with 4× 4 control points first and
discuss extensions and generalizations afterwards.

4.1 Data Layout
The data layout for the 16 points is rearranged to be most effective
for the pruning and refinement operations. In particular, instead
of storing control points sequentially as an array of structures we
group each row by coordinates as a structure of arrays (see Fig-
ure 1). This allows for manipulating all four x, y, or z coordinates
of one row via a single instruction. This data layout is optimal for
algorithms operating on rows (i.e. inv direction) but slightly com-
plicates operations on columns.

With this approach each Bézier patch has a compact represen-
tation that requires only 16∗ 3 ∗ sizeo f( f loat) = 192 bytes per
patch. As a result even a non-trivial scene of one thousand free-
form patches such as the head and stingray models in Figure 3 re-
quires only 200-250KB of memory.
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Figure 1: Data layout: For each row we group the data of four
control point by coordinates in a structure-of-array format, to
ensure maximum performance for pruning and refinement op-
erations using SSE.

4.2 Pruning Test
For pruning we use an idea originally proposed by Woodward [19].
We represent the ray as the intersection of two arbitrary orthogonal
planes. The distance of the control points to these planes define a
2D projection along the ray. A patch can be pruned if it completely
lies in one half space of the two planes, which can be easily tested
by looking at the signs of the distances (see Figure 2).

With the given data layout we can compute the necessary dot
products and signs in parallel using only very few SSE instruc-
tions. For each plane we need only 12 parallel multiplications and
12 additions plus 1 instruction for obtaining the sign bits. We tem-

porarily store the computed distances and sign bits for later use by
the final intersection computation (see below).

Figure 2: Pruning test: Each ray is represented as an intersec-
tion of two orthogonal planes. If all control points are located
on the same side of either plane (as in the left example) the ray
cannot intersect the Bézier patch (left).

4.3 Refinement
We refine Bézier patches by splitting them in half along a para-
metric direction using the deCasteljau algorithm. This algorithm
performs simple affine combinations with fixed weights of neigh-
boring control points, making it well suited for parallel SIMD com-
putations. We simply alternate between the parametric directions at
each refinement level.

Subdivision in thev direction can be done in as few as 18 parallel
additions and 18 multiplications. Subdivision in theu direction is
more complicated due to SSE limitations on horizontal operations
within one SIMD register. Additional “swizzling” operations have
to be inserted which moderate impact performance (see Table 1).
Note that the next processor generation will offer improved support
for horizontal operations [6].

Step CPU Cycles
Pruning 86
Refinement(u) 244
Refinement(v) 168
Final Intersection 294-366
Normal 360

Table 1: Number of CPU cycles for each of the core opera-
tions. Note however that the pruning and refinement steps are
executed much more often than final intersection and normal
calculation, and therefore cost most of the total compute time.

4.4 Final Intersection Test
After reaching the maximum refinement depth the control polygon
of the patch is considered as a simple triangular mesh by implic-
itly splitting every quad along its diagonal. Because executing 18
full ray-triangle intersections would be quite costly we reduce this
number by two simple and fast culling tests based on the temporar-
ily stored distances and signs.

We first compute the orientation of a quad with respect to each
plane using simple bit operations: We first compute the signed dis-
tances of the vertices to the plane, and determine their signs. If all
the four signs are equal the quad lies entirely in one half space and
cannot intersect the ray. Otherwise the second test performs a sim-
ple 2D point in triangle test using the stored distances to compute
the barycentric coordinates. In the event of a hit we simply have to
add an offset to the barycentric coordinates according to the loca-
tion of the triangle on the patch to obtain the parametric location of
the intersection point.

For shading computations we also need the surface normal at the
intersection point. To this end we simply perform the normal eval-
uation at this point using a variation of the above fast deCasteljau



Figure 3: A set of NURBS test scenes that have been converted into bi-cubic Bézier patches. The number of Bézier patches is 32, 54,
110, 915, and 1160 (from left to right). See Figure 4 for performance results.

algorithm. Note, that we do not bother to delay the normal compu-
tation until we finally know that the intersection is indeed the right
one (there might still be a closer one along the ray). First of all, our
efficient pruning leads to very few intersection tests per ray any-
way (1.1-2.6 on average, see below). Second, the data is already in
the processor caches resulting in a low overhead for computing the
normal.

4.5 Performance of Core Operations
Table 1 shows the average number of CPU cycles for each of the
core operations including normal computation. All timings were
measured on an Intel Xeon 2.2 GHz processor.

The cycles in the final intersection step vary due to different
numbers of final ray triangle intersection tests that need to be per-
formed. The two entries for refinement correspond to the two possi-
ble subdivision operations, related to theu or v parametric direction
of Figure 1.

The culling tests before the final ray triangle intersection com-
putations are very cheap and highly effective as shown in Table 2,
reducing the number of intersection computations by up to 98% for
complex scenes.

Note that the recursive sequence of pruning and refinement can
easily be implemented using an iterative approach, thus avoiding
function call and other overhead. The implementation used for the
above measurements is carefully implemented but still leaves room
for significant further optimizations. For instance, we currently do
not even reuse refinements already computed for previous rays. We
estimate that performance can still be increased by about a factor
of two.

Scene Teapot Flag Bottle Head Stingray
Tests/ray 1.66 1.13 1.23 2.22 2.63
PT1 (%) 11.18 13.46 11.54 11.19 11.36
PT1+2 (%) 4.27 2.88 2.10 2.51 1.82

Table 2: The two culling steps (PT1 and PT2) before the tri-
angle intersection code very effectively reduce the number of
intersection computations to 2-5 % of the original number of
triangle intersections.

4.6 Trimming Curves
CAD applications usually do not use complete patches for mod-
eling non-trivial geometry as the topological constraints would be
too limiting. Instead the patches aretrimmedby cutting off parts
of the surface. To this end one or moretrimming curvesin the
parametric domain define the valid parts of the surface. For proper
rendering we need to take these trimming curves into account once
an intersection has been found.

For each trimming curve we need to compute a 2D point-in-
curve test. It turns out that a slightly modified versions of the above

refine and prune operations also works for trimming curves. We
translate the trimming curves in the parametric domain such that
the intersection point is at the origin. Then we recursively refine
all curve segments up to a maximum depth unless we prune them
using a modified half space argument. In particular we keep all seg-
ments that overlap the positive x axis. The final result is obtained
by simply counting the number of intersections with the x-axis.

Because this test is only performed once an intersection has been
found, the total overhead for handling trimming curves is only 20-
30%.

4.7 Support for Larger Scenes
So far we concentrated on speeding up a single ray Bézier patch
intersection. For larger scenes containing many free-form patches
(see Figure 3) we need to build a spatial index structure in order to
reduce the number of patches processed per ray.

By choosing a kd-tree we can directly reuse the efficient build-
ing and traversal algorithms known from realtime ray tracing of
triangle meshes [17]. Compared to a kd-tree traversal step the ray
patch processing is considerably more expensive. As a result it is
important to optimize the kd-tree index such that we access as few
patches as possible per ray.

The algorithm for building the kd-tree uses only the axis-aligned
bounding box of a patch and never looks at the patch shape itself.
While this is less accurate it is sufficient and both simple and fast.
Thus building the kd-tree for 100 patches takes less than 40 ms,
and for 1000 patches approximately 200−300 ms. For a moderate
number of patches (< 100) this even allows for supporting anima-
tions and interaction by dynamically updating the patch data and
rebuilding the kd-tree.

For building the kd-tree we use the surface area heuristics (SAH) [3,
?], which places splitting planes according to an area-based cost
functions. This approach usually performs best for triangle based
scenes. However, because adjacent control polygons share control
points the corresponding bounding boxes cannot completely sepa-
rate them, leading to some overhead at patch boundaries.

Scene Teapot Flag Bottle Head Stingray
Patches 32 54 110 915 1160
NO-SAH 3.21 1.14 3.68 29.91 32.18
SAH 2.12 1.14 1.82 4.87 5.01
Reduction % 33.95 0 50.54 83.71 84.43
SAH + MB 1.66 1.13 1.23 2.22 2.63
Reduction % 48.28 0.87 66.57 92.57 91.56

Table 3: Number of input patches and average number of ac-
cessed patches per ray with (SAH) and without (NO-SAH) sur-
face area heuristics for kd-tree construction. Combined with
mail-boxing (MB) the average number of patches accessed per
ray is reduced by up to 92% for complex scenes.



The SAH-based kd-tree is able to reduce the average number of
accessed patches per ray by 33-84% (see Table 3). In addition we
use efficient mail-boxing to avoid multiple intersection computa-
tions for the same ray and patch combinations. This increases the
culling rate to almost 93% for complex scenes, resulting in only 1
to 3 ray-patch intersections on average (see Table 3).

Due to the good culling performance of the kd-tree, the speed
of the core operations translates almost directly to total rendering
performance as shown in Figure 4.

 0

 1

 2

 3

 4

 5

 6

 0  2  4  6  8  10  12  14

fr
am

es
 p

er
 s

ec
on

d

refinement steps

Teapot
Flag

Bottle
Head

Stingray

Figure 4: Performance for Bézier scenes as a function of the
number of refinement steps. All experiments are performed at
a resolution of 640x480 pixels with correct normal computation
and simple diffuse shading on a single Intel Xeon 2.2 GHz pro-
cessor. Even with a very high refinement depth we still achieve
interactive performance.

Note that all experiments were performed at a resolution of 640×
480 pixels with simple shading and correct normal computation on
a singleIntel Xeon 2.2 GHz processor. Most computations are re-
lated to ray tracing as deactivating shading and normal computa-
tion reduces the performance only by 5-15% and 5%, respectively,
or 10-20% in total.

Obviously, total performance depends on the number of patches
Npatchesand on the chosen number of refinement stepsNre f steps.
The corresponding number of triangles that would have to be cre-
ated by an equivalent tessellation would beNpatches×(18×2Nre f steps).
Note that we still achieve more than 1 frame per second for the head
scene with a refinement depth of 14, even though this corresponds
to a tessellated model with 269million triangles.

For increased subdivision depth the performance starts to scale
linearly with depth, because the small parts are mostly flat and only
one of each refined patch remains.

Compared directly to the highly optimized OpenRT ray tracing
engine [16, 17], performance for triangle-based ray-tracing is only
50-70% faster than our approach (see Table 4), with respect the
same number of potential triangles. Note that due to memory re-
quirements is was not possible to render scenes with triangle-based
ray tracing when using more than 8 refinement steps, correspond-
ing to more than 16 Mtriangles.

Note that the overall performance of our approach is largely in-
dependent of total number of Bézier patches in the scene due to the
effect of the kd-tree, early ray termination, and the good pruning
performance during refinement (see Figure 5).

Steps Tris Tri(fps) Bézier(fps) ratio(%)
0 16K 8.16 5.19 57.2
2 65K 7.17 4.24 69.1
4 263K 5.94 3.44 72.6
6 1.05M 4.69 2.84 65.1
8 4.21M 3.67 2.44 50.4

10 16.8M – 2.1 –
12 67.4M – 1.87 –
14 269.8M – 1.65 –

Table 4: Performance comparison (in fps) between triangle-
based ray tracing (OpenRT) and direct ray tracing of Bézier
patches for different subdivision depths, measured in the Head
scene with 915 initial patches, 640x480 pixels, and simple dif-
fuse shading on a single Xeon 2.2 GHz processor. While the
(not yet fully optimized) Bézier code is somewhat slower than
the high-performance triangle code, its performance penalty
on average is only 30-50%. For that tolerable price, it offers
a much more compact representation that allows for rendering
much more complex models, supporting higher accuracy due to
finer tesselation, and animation of the patches without a need
for rebuilding kd-trees for the tesselated triangles.

Figure 5: The overall performance is largely independent of the
actual number of patches and varies only by roughly 20% while
zooming out from a single head model to a view where more
than 125 head models are visible. Each head model consists of
915 subdivision patches and is rendered with four refinement
steps at 1-2 fps on a single processor.

5. SUBDIVISION SURFACES
As a second example we apply the generic ray tracing algorithm to
Loop subdivision surfaces. The very different structure of this im-
plementation suggests that the general approach can also be applied
to other types of curved surfaces.

Subdivision surfaces offer a number of advantages over splines,
a major one being the more general topological structure including
continuity control between adjacent subdivision meshes. Subdi-
vision surfaces have become particularly popular in the animation
industry due to the ability to model organic-like shapes.

The Loop construction is simple and often used in practical ap-
plications [7, 9, 15]. It is an approximating triangular scheme
where the final converged surface in general does not interpolate
the original control points (see Figure 7). Most notable the Loop
surfaces lies in the convex hull of its control mesh, which simplifies
our pruning test.

Subdivision schemes are more difficult to handle than plain Bézier
splines for mainly two reasons: Irregular data structures and over-
lapping control meshes. Irregular data structures are caused by base
meshes that contain extraordinary vertices that can have an arbi-
trary valence — different than the regular value of six. This varying
size of the data structure complicates the data layout as well as the
algorithms dealing with them.

The overlapping control meshes are more problematic and are
the main reason for the reduced performance compared to the Bézier
surfaces. Adjacent Loop patches share a significant part of their



Figure 6: A set of test scenes made up entirely of subdivision surfaces. The number of base triangles is 1,432, 5,672, 5,680, 53,624,
and 277,804 (from left to right). See Figure 9 for performance results.
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Figure 7: Left: Subdivision rules according to the Loop scheme
for edge, interior, and boundary vertices, Right: having only
one irregular vertex (top) allows for a simplified data layout for
the 1-neighborhood

control mesh such that their bounding boxes overlap considerably.
As a result we can prune patches only much later during refine-
ment, increasing the computational cost. We currently compute a
conservative but non-optimal bounding box of all control points for
a patch. This could be improved by known approaches to quickly
compute tighter bounding boxes.

5.1 Data Layout for Subdivision Surface
As just mentioned the data layout is complicated by the fact that
any control points in the base mesh can have irregular topology.
Handling the four different cases of patches with zero to three ir-
regular control points and appropriate data structures would be too
complex and slow.

Instead we distinguish only between fully regular patches and
those with a single irregular control point (see Figure 7). More
complex patches are simply subdivided once, yielding four sub-
patches with a maximum of one irregular vertex each. For each
base triangle we store its three vertices together with its 1-neighborhood.
This results in 12 vertices for regular triangles and 6+val(irreg.vertex)
for irregular triangles.

Because of the different numbers of control points as well as the
non-uniform weighting during refinement, we currently still store
the mesh as an array of structures. While this is less elegant and
less efficient for SIMD instructions (using only 3 of the 4 slots in a
register) we can still operate on an entire control point at once.

5.2 Core Operations
Similar to the pruning test for Bézier patches we need to compute
the signed distance of all control points from each of the two planes.
For each vertex 3 parallel multiplications, 3 additions, and 1 spe-
cial instruction for getting the sign have to be performed. This
results in 2∗ 12∗ 3∗ 2 = 72 operations for a regular triangle and
(6+val(irregularvertex))∗3∗2∗2 operations for an irregular tri-
angle.

Refinement of Loop patches generates four instead of only two
new patches. While this should help in converging to the intersec-
tion point more quickly this advantage is offset by the mentioned
large overlap between the control meshes of adjacent patches.

Similar to the Bézier case for each ray we read only the control
points of a few patches from memory. All other data is computed
in the tight inner loop of the refinement and pruning algorithm. As
a result all this data stays in the first level cache and the approach
is completely compute bound.

For regular triangles, each refinement operation must compute 3
new interior vertices and 3∗6= 18 new vertices in the 1-neighborhood
of the sub-patches. Each new interior vertex requires 7 multiplica-
tions and 6 additions while the others require 2 additions and 2
multiplications finally resulting in 7∗ 3+ 18∗ 2 = 57 multiplica-
tions and 6∗3+ 18∗2 = 54 additions. For irregular triangles the
number increases according to the valence of the irregular vertex.

Once the maximum recursion depth is reached we essentially
perform the same culling and fast ray triangle intersection tests as
for Bézier patches.

We compute the normal vector at each triangle vertex by evalu-
ating a weighted sum over adjacent vertices. The final normal itself
is a linear combination of the three vertex normals with respect to
the barycentric hit point coordinates.

5.3 Core Performance for Subdivision Patches
Table 5 lists the measured cost of each of the basic operations for
direct ray tracing of subdivision surfaces.

Step Cycles(reg) Cycles(irreg)
Pruning 172 222
Refinement 405 600
Final Intersection 169 169
Normal 450 550

Table 5: Runtime of the basic operations for Loop subdivision
surfaces in CPU cycles.

Compared to the cost of Bézier patches (see Table 1) subdivi-
sion surfaces are significantly more expensive. However, each re-
finement step for subdivision surfaces corresponds totwo steps for
Bézier patches – one in each parametric direction.

5.4 KD-Trees for Larger Scenes
For larger scenes we again need to build a spatial index in order to
reduce the number of subdivision surfaces that need to be accessed.
We currently use the bounding box of the entire control mesh of a
patch for creating the kd-tree similar to the Bézier case. However,
due to the increased overlap between adjacent patches, the kd-tree
cannot separate them as well, resulting in an increased number of
subdivision patches enumerated per ray.

The higher cost is mainly caused by the increased number of
instructions required by the non-optimal SIMD usage. Note also



Figure 8: Free-form surface scenes interactively ray-traced: Bi-cubic Bézier spline surfaces, spline surface with trimming curves,
and Loop subdivision surfaces. Even complex scenes with several hundred thousands of patches can be rendered efficiently and with
minimal memory requirements.

Scene Mech Venus Head Cupid Bunny
Triangles 1.43k 5.67k 5.68k 53.6k 277k
NO-SAH 69.58 46.55 33.58 21.14 52.11
SAH 43.59 34.79 26.23 17.27 45.92
Reduction % 37.35 25.26 21.88 18.30 11.87
With MB 9.18 8.18 5.78 7.22 19.02
Reduction % 78.94 76.48 77.96 58.19 64.51

Table 6: The number of base triangles for each subdivision
scene and the average number of patches accessed per ray.
While the surface area heuristics (SAH) for building the kd-
tree combined with mail-boxing (MB) improves the culling by
up to 78%, we still have to process more patches per ray than
in the Bézier case.

that supporting arbitrary valences results in a cost increase by up to
50% (e.g. for refinement).

The surface area heuristics alone can only reduce the average
number of patches per ray by a moderate 18–37% (see Table 6).
However, many of the false positives can be caught by mail-boxing
raising the rejection rate to 58–78%. Due to the overlap a signifi-
cantly larger number of patches (4-5x) must be handled per ray if
compared to the Bézier case. The performance is reduced propor-
tionally suggesting that better bounding algorithms can speed up
the approach further.

The overall performance for subdivision surfaces as a function of
subdivision depth essentially follows that for Bézier patches (see
Figure 9). It still yields interactive performance for a moderate
number of refinement steps. These measurements suggest that fu-
ture work should focus on computing tighter bounding boxes in
order to significantly reduce the number of patches accessed per
ray.

6. DISCUSSION AND FUTURE WORK
In this paper we presented a simple generic approach for ray tracing
of free-form surfaces. Its main difference to previous techniques is
that we focused on simple and robust algorithms, avoiding complex
control flow for handling of special cases, and efficient mapping of
the code onto today’s processor architectures. For bi-cubic Bézier
patches as well as Loop subdivision surfaces we are able to signif-
icantly improve performance and achieve interactive performance
of a few frames per second even on a single processor.

The performance for Bézier splines is close to that of triangle
meshes, while subdivision surfaces currently still suffer from sub-
optimal kd-trees. This lead to significant overhead during intersec-
tion computations as we have not yet optimized the bounding box
computation for these types of surfaces. Note also, that the current
implementation still leaves significant room for speedup.
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Figure 9: Performance of direct ray tracing of subdivision sur-
face as a function of refinement depth for the scenes shown in
Figure 6. Note that one step here corresponds to two steps in the
Bézier case. The computations include normal evaluations and
diffuse shading and are performed at a resolution of 640x480
on a single Intel Xeon 2.2 GHz processor.

The approach selected here reduces the size of patches by half
in each step. In contrast Bézier clipping can converge faster once
the refined patch becomes flatter. Unfortunately, we have not been
able to include a direct comparison with a similarly level of op-
timization. However, first experiments with implementing Bézier
clipping strongly suggests that its performance will remain signifi-
cantly below our approach even after full optimization. In contrast
to the simple and robust subdivision strategy chosen here, Bézier
clipping requires that in each refinement step all control points are
transformed from Euclidean space to a 1D distance space and that
a convex hull and its intersections with a line are computed there.
In addition it must carefully handle several special cases in the in-
ner loop [1]. Also each subdivision step is twice as expensive as
the surface needs to be trimmed on both sides of the parametric
direction.

Bézier clipping must refine the surface to a finer level on average
because it directly computes the intersection point instead of ap-
proximating with triangles at the end. This means that subdivision
can only terminate once the size of the patch is small enough in
parametric space. Finally, errors are significantly more difficult to
control due to computations in the intermediate coordinate spaces,
in contrast to the simple geometric error control used in our tech-
nique.

The presented approach can easily be integrated into existing ray



tracing systems. This allows to completely reuse all layers above
the core ray-tracing, e.g. the shading framework, distributed pro-
cessing, and others. The algorithm also requires only a constant
and tiny amount of memory in addition to the original surface rep-
resentations for keeping a stack of recursively subdivided patches.
The size of this stack is strictly limited by the maximum recursion
depth.

The use of the kd-tree leads to an algorithm that essentially uses
constant time even for complex scenes (see Figure 8). While the
traversal of the kd-structure requires onlyO(logn) time it is still
a major part of ray tracing scenes with large numbers of triangles
because of the large depth of the tree and the many cells that need
to be traversed. In this case usually less than 30 % of the time are
spent on intersection computations.

In the case of free-form surfaces we have significantly shifted
the computation from traversal to intersection: Our kd-trees are
shallow but intersection computations are costly. Thus even for
highly complex scenes the increased kd-tree traversal cost is hardly
noticeable. Each traversal yields a small number of patches for
intersection testing. This number only depends on the amount of
overlap between visible patches. Also, the cost per intersection
computation varies little. Because the refinement depth is limited
the cost depends only on the orientation of the surface with respect
to the ray.

The use of free-form surfaces reduces the size of the data to rep-
resent geometry compared triangle meshes. For dynamic scenes
this reduces the amount of processing to update the geometry (see
Figure 8) and reduces the network bandwidth for the case of dis-
tributed rendering.

A major issue of the approach is the fact that we do not perform
adaptive refinement, which at first sight seems beneficial for avoid-
ing unnecessary refinements. However, it turns out that the cost of
testing refinement is more expensive as performing the refinement.
We avoid this cost together with the increase of code complexity to
fix potential cracks in areas of different refinement depth.

6.1 Future Work
The missing adaptivity is a price we pay for this decision. We can,
however, still adjust the refinement depth for each object separately
(e.g. depending on its distance from the camera). However, for
highly irregular objects with large flat and highly curved regions
this might be insufficient and could be improved in future work.

CAD systems and animation packages offer many different types
of spline surfaces including B-Splines, NURBS, or other higher or-
der spline model that we do not support directly. In general this of-
fers two options: Approximating the spline by supported primitives
(i.e. bi-cubic splines) or extending the primitive support. For this
paper we have taken the first approach but have to accept some ap-
proximation error. It is unclear yet what would be good techniques
for handling rational or higher order basis functions. Similarly we
have not yet investigated other subdivision schemes.

Finally, it would be useful to investigate the use of packet ray
tracing also for free-form surfaces to better use the significant co-
herence between adjacent rays also during refinement and pruning.
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