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Abstract
For more than a decade now, interactive graphics has been shaped by triangle rasterization technology and the
corresponding OpenGL graphics API. Since recently, however, interactive ray tracing is becoming a reality, and
is slowly becoming available on several different hardware platforms. Due to its superior scalability, usability and
efficiency, it is likely to play an increasingly important role in future interactive graphics applications.
Though it would be desirable to drive this technology with a well-known API such as todays quasi-standard
OpenGL interface, this would be complicated due to OpenGL’s tight coupling to rasterization technology, which
makes it less suitable for ray tracing. In this paper, we propose a new application programming interface called
OpenRT. This new API is designed to be as similar to OpenGL as possible, while emphasizing the strength of
interactive ray tracing. While being as simple to learn and use as OpenGL, OpenRT offers all the advantages of ray
tracing, like implicit visibility culling, instantiation, the freedom to shoot arbitrary rays, and fully programmable
shading.

1. Introduction

Interactive computer graphics has become an important part
in such fields as science, engineering, and entertainment to
mention only a few. Tremendous progress in development of
graphics hardware made interactive rendering performance
widely available even on standard PCs.

Although every new generation of graphics hardware
provides richer features and improved performance, high-
quality image generation is still dominated by offline ren-
dering systems, which in contrast usually are far from being
interactive.

1.1. Rasterization

The majority of today’s interactive rendering systems builds
on rasterization-based techniques. These approaches process
polygons independently of each other by projecting them
onto the image plane. Once a triangle isissued, it is im-
mediately transformed and lighted, clipped, rasterized, and
z-buffered. After all these operations have been performed,
the rasterizer can move on to the next triangle.

As each triangle is processed purely locally and without
relation to any other triangle, this process can be efficiently

performed in a pipelined manner, which results in theraster-
ization pipeline.

While this purely local pipeline model allows for highly
efficient hardware implementations, the absence of global
information has certain drawbacks: First, the approach is
inherently linear in the number of triangles, as each trian-
gle has to be processed on its own. Even more importantly,
the renderer has to rely on purely local information when it
comes to shading. Hence producing high-quality images re-
quires multiple rendering passes and on top of that extensive
manual tuning. Although recent graphics hardware features
programmable processing units, multi-pass rendering is still
required e.g. to produce shadows. Even then physically-
accurate global lighting effects such as multiple reflections
and refractions let alone diffuse interreflections are beyond
the capabilities of such rendering tricks.

1.2. Ray Tracing

Conversely, most architectures incorporating sophisticated
illumination performray tracing. Ray tracing closely mod-
els the physical process of light propagation by shooting
imaginary rays into the scene to be visualized4. As a con-
sequence, there is a number of advantages over rasterization
algorithms:
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Physical Correctness.The ability to shoot arbitrary rays
allows to accurately compute global and advanced light-
ing and shading effects, such as shadows, reflections, and
refractions on arbitrary surfaces even in complex environ-
ments (see Figures1a and1d).

Plug and Play Shading. Furthermore, ray tracing automat-
ically combines shading effects from multiple objects in
the correct order. This allows for building the individual
objects and theirshaders(a function that characterizes the
light leaving a point to be shaded as a function of the light
arriving there) independently and have the ray tracer au-
tomatically take care of correctly rendering the resulting
combinations of shading effects (see Figure1b).

Complex Scenes.Finally, it efficiently supports huge mod-
els with billions of polygons as it exhibits logarithmic
time complexity with respect to scene size, i.e. the number
of primitives in a scene5. This efficiency is due to inher-
ent pixel-accurateocclusion cullingand demand driven
andoutput-sensitiveprocessing that computes only actu-
ally visible results (see Figures1c and1d).

However, ray tracing techniques have also been infamous
for their extensive rendering times, since millions of rays
have to be intersected with the virtual scene’s geometry. In
order to obtain interactive frame rates highly optimized im-
plementations are necessary in conjunction with significant
computational horse power.

That interactive ray tracing is in fact possible was first
demonstrated by Muuss et al.8 and Parker et al.12 using mas-
sive parallelization on large shared memory supercomput-
ers. By employing algorithmic improvements together with
low-level optimizations tailored to the capabilities of mod-
ern CPUs Wald et al.19 were able to achieve high ray tracing
performance even on a single processor. They also showed
how efficient parallelization can be implemented on com-
modity PC clusters exhibiting linear scalability21. More re-
cently, Schmittler et al.17 and Purcell et al.15 demonstrated
the feasibility of efficient hardware support either by using
dedicated ray tracing chips or utilizing the features of pro-
grammable GPUs respectively.

2. An Interactive Ray Tracing API

With the recent advances in interactive ray tracing, it seems
likely that ray tracing will play a larger role in future inter-
active graphical applications. Thus, there naturally arises the
need for a flexible and powerful yet easy to use program-
ming interface, which provides an abstraction layer between
the application and the underlying ray tracing library.

2.1. Previous Work

Ideally, one would simply adopt an already standardized,
widespread and well-known graphics interface. Currently,
there already exists a number of APIs covering various kinds

of abstraction levels. However, none of these is well suited
for interactive ray tracing.

Pixar’s well-known RenderMan13 API is oriented to-
wards high-quality rendering and has been successfully used
for ray tracing. Unfortunately it is missing support for inter-
active applications. Choosing a high-level API from scene
graph libraries such as OpenGL Performer16, OpenInven-
tor 22 or OpenSG11 would be difficult because of their large
number and the fact that each of them is used mostly for a
specific application domain. Instead, we have chosen to pro-
vide a low-level API in the spirit of OpenGL on which we
could then layer any high-level scene graph interface. At first
sight OpenGL9, 1 itself seems suitable due to its popularity
as well as its flexibility. However, as we will see below, it is
too tightly coupled to the rasterization pipeline.

2.2. OpenRT

APIs appropriate for interactive ray tracing are simply not
yet available. Because considering only extensions to ex-
isting interfaces might have caused to much limitations, we
decided to come up with a new ray tracing specific design,
which we calledOpenRT. Though design and development
of OpenRT are not yet finalized, it is already used in practice.
Currently, it is used to drive the Saarland University’s Real-
Time Ray Tracing system19, 21. This implementation demon-
strates the capabilities of the new API: As can be seen from
Figure1, OpenRT allows to drive applications ranging from
physical simulation, over arbitrary programmable shading,
to highly complex scenes, and even interactive lighting sim-
ulation in huge models. However, the OpenRT API is not
limited to this specific implementation, but is currently also
being evaluated to drive other ray tracing systems, such as
for example the SaarCOR architecture17.

As the name suggests, OpenRT is syntactically oriented
towards OpenGL as a simple, easy-to-use, well-known, and
widely accepted programming interface. While staying as
close as possible, OpenRT is neither a simple extension
nor a subset of OpenGL due to the fundamental differences
between rasterization and ray tracing as outlined in Sec-
tions1.1and1.2.

2.3. Relation to OpenGL

In this section we will now take a closer look at the similar-
ities and differences between OpenRT and OpenGL.

2.3.1. Rendering semantics

Resulting from OpenGL’s rasterization-based pipeline archi-
tecture, two basic operations are performed: Drawing some-
thing and changing the state that determines how drawing
is performed. OpenGL includes two drawing modes. During
immediate modeeach triangle that has been fully specified
is sent to the pipeline and gets rasterized right away with
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Figure 1: Examples of rendering complex and dynamic scenes in real time using our OpenRT API. From left to right: (a) A
car headlight with physically-correct glass simulation, (b) An office environment with procedural shading, a lightfield, and
a volume object, (c) An outdoor scene consisting of roughly one billion triangles featuring shadows and transparency, and
finally (d) interactive global illumination in a scene with 37.5 million triangles. All examples make use of individual rendering
front-end applications, each built on top of the OpenRT API driving our interactive software ray tracing engine.

respect to the currently active state (e.g. the current textur-
ing state like filter and wrapping modes). Later changes to
this state will only affect successive triangles and rendering
a new frame requires sending all primitive data anew. Al-
though these semantics could also be applied by combining
a raycastingprocess with z-buffering similar to the REYES
Image Rendering Architecture3, it would limit the rendering
system to local illumination.

OpenRT’s ray tracing back-end on the other hand involves
global lighting and therefore requires a more object-oriented
approach: The user specifies geometricobjects, which en-
capsulate primitives and are organized in an efficient low-
level scene graph. Light transport simulation can be explic-
itly defined using programmable shader plugins. Geometric
objects are then bound to shader objects that contain spe-
cific attributes e.g. material colors. This comes close to the
retained modeof OpenGL where primitives are stored in
display listsin a compiled form. The binding of individual
shader instances may be regarded aslocal state changes, but
two issues have to be kept in mind: First of all OpenGL dis-
play lists also depend on global state changes and can be
rendered differently even if remaining unaltered themselves.
Secondly, because geometry and shader instances are linked
by references, manipulating shader parameters will affectall
primitives affiliated with them. Apart from environmental
settings (e.g. atmospheric effects like fog), shader attributes
provide the only way to affect geometric appearance.

Even though these semantic differences require careful at-
tention during porting of existing OpenGL applications, es-
pecially scene graph packages like OpenInventor should not
cause problems as they typically too incorporate an object-
oriented point of view.

2.3.2. Multi-pass Rendering vs. Programmable Shading

It has already been mentioned in Section1.1 that
rasterization-based systems like OpenGL may approximate
more complex lighting situations by applyingmulti-pass
rendering techniques. Blending enables applications to com-
bine images resulting from multiple drawing passes. How-

ever, these approximations are always much coarser than ray
tracing solutions, as e.g. reflection mapping methods often
do not account for inter-object reflections.

Of course, ray tracing is also capable of multi-pass proce-
dures, yet they are not required due to the ability to sim-
ulate physically-correct lighting during one single render-
ing step. It has already been mentioned in the previous sec-
tions that specialized shader routines are responsible for
this task. OpenRT provides a fully programmable shading
model, making it possible to directly implement shaders for
most optical effects. Writing such a shader is straightforward
and much easier than hand tuning complicated OpenGL
code. For example, adding reflection is one of the basic tasks
of ray tracing. It only requires the shader to shoot one addi-
tional ray and can be specified by just a few lines of code as
we will see in more detail in Section3.2.5.

Independently written OpenRT shaders may also be si-
multaneously assigned to individual geometric objects in a
simple plug and play manner. The desired effects are auto-
matically combined and simulated in the correct order dur-
ing ray tracing (see Figure1b).

In our current software implementation OpenRT handles
user programmable shading via loadable shader libraries.
Shading routines may be coded and compiled separately and
are dynamically linked at run-time. C/C++ serves as pro-
gramming language and thus offers high-level language sup-
port. Our implementation features diverse shader types rang-
ing from simple Phong models as used by OpenGL, pro-
cedural effects (e.g. marble) up to global illumination al-
gorithms including path tracing or photon mapping. Future
hardware implementations might have limited programma-
bility but this is not a restriction of the API but rather of the
underlying hardware and it would only affect shader code
but not the application.

2.3.3. Objects and Instantiation

As pointed out in Section2.3.1 OpenGL and OpenRT
rendering semantics are quite different. As a consequence
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OpenRT does not offer immediate mode rendering. Nev-
ertheless its object definition scheme behaves mostly like
OpenGL’s display list handling. Primitives are grouped into
objects, providing a collection of geometry. Once an object
has been fully defined an acceleration structure is built, in-
evitable for efficient ray surface intersection calculations.
Note, however, that there are neither state changes nor side
effects; objects serve as simple geometry containers and
primitives can never be specified outside an object.

Similar to OpenGL display lists, objects have to be instan-
tiated in order to be effective. Nevertheless there remains the
difference that visibility computations will only take place
once all objects have been specified. On the other hand, in-
stancing works most efficient for a ray tracer. Not only that a
single object can be reused multiple times, but because of in-
herent occlusion culling no overdraw operations take place,
there may be thousands of instances without suffering a ma-
jor hit in rendering performance.

2.3.4. Fragment and 2D Operations

OpenRT serves as a pure 3D graphics library. However, sev-
eral low-level OpenGL applications (e.g. games) also use
2D imaging and additionalfragmentoperations like sten-
cil tests, alpha tests, blending etc. to perform special effects
like masking certain image regions or alpha-blending (e.g.
explosions). Fragments, i.e. the output of OpenGL’s actual
rasterization stage can be regarded as partial color results in
analogy to radiance values that travel along single rays and
therefore contribute to a pixel’s final color.

OpenRT does not offer a direct equivalent to these opera-
tions but according to the just mentioned analogy they could
be performed by programmable shaders, although this might
sometimes be un-intuitive. For example, blending could be
realized using transparently textured polygons.

One way of solving that problem would be to mix
OpenGL and OpenRT calls: In a first pass, OpenGL func-
tions could be used to control the way that primary rays are
issued, e.g. by using stencil buffers to define which pixels
should be traced and by using clipping planes to clip the pri-
mary rays. Then, the ray tracer could use this information to
compute the required pixels, setting both the color value and
the z-buffer value for each pixel. Finally, an OpenGL pass
could perform 2D imaging operations, like copying pixels,
or activating alpha-blending to achieve the desired imaging
effects.

3. The OpenRT Application Programming Interface

A complete interactive ray tracing system typically consists
of three different processing parts: The application itself,
shader programs, and the ray tracing core. User interaction,
scene specification and display are handled by the front-end
application, shaders implement surface dependent light re-
flection/scattering calculations, while the ray tracing core is

responsible for actually transporting light within the scene.
Consequently, the OpenRT API comprises three different
sub-interfaces.

3.1. Interface Organization

First, the coreOpenRT application interfaceis designed to
allow an application to specify geometry, objects, transfor-
mations, texture objects, and so on, in a way similar to
OpenGL. Secondly, theOpenSRT programmable shader in-
terfaceprovides ways to specify and load shading programs,
and enables the application to communicate with them via
shader parameters. Finally, theOpenRTS shading language
controls core access by shaders.

As the actual shading language is but slightly coupled
with the rest of the API, using another shading language
(such as a variant of CG10, RenderMan13, or similar) should
be possible without major changes. In the remainder of this
paper we will concentrate on the core API. Due to brevity of
space, we can just outline the major components of OpenRT.

3.2. A Brief Tour of OpenRT

For sake of rendering performance most ray tracing (and
also rasterization) engines exclusively operate on triangles.
Therefore, we have chosen to restrict our API to also support
only polygonal primitives. Thus, in most cases for specifying
geometry we can directly use the same syntax as OpenGL,
except that the usual “gl” prefix has been changed to “rt”.
Even though OpenRT sometimes uses different semantics,
even inexperienced OpenGL programmers should easily un-
derstand the examples presented in the following sections.

3.2.1. Geometry and Transformations

OpenGL supports a lot of functionality to specify ge-
ometric primitives and most of these functions can di-
rectly be adopted by OpenRT. So an application may
issue its geometry in exactly the same way by im-
plementing customaryrtBegin()/rtEnd() statements
with all their usual primitive types likeRT_TRIANGLE,
RT_TRIANGLE_FAN, RT_POLYGONetc. After a primi-
tive mode has been chosen vertices are created by the fa-
miliar calls such asrtVertex3f() , rtNormal3f() ,
rtColor3f() , or rtTexCoord3f() where all OpenGL
vertex attributes namely position, surface normal, color, and
textures coordinates are available. Apart from these standard
parameters, OpenRT also allows to keep arbitrary additional
data with each vertex as per-vertex shader data.

Unlike OpenGL, OpenRT currently maintains only two
transformation stacks to coordinateRT_MODELVIEWand
RT_TEXTUREmatrices. As expected, matrix modes are se-
lected by invokingrtMatrixMode() . However, no pro-
jection mode likeGL_PROJECTIONexists. Rather than
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backward projecting every single object, a ray tracer ex-
plicitly producesprimary rays which are actuallyprojec-
tors i.e. projection rays that emanate from acenter of pro-
jection and cross aprojection plane. These rays are cre-
ated by so-calledcamera shaderswhich are also capable of
simulating complicated camera models including depth-of-
field and other lens effects. Even without a projection ma-
trix mode, camera parameters may be easily specified by
rtPerspective() andrtLookAt() . It should also be
pointed out that the ModelView matrix does not include
viewing transformations because they are inherently handled
by camera shaders.

Regardless of particular matrix modes OpenRT fea-
tures the full set of OpenGL matrix operations such
as rtScalef() , rtRotatef() , rtTranslatef()
including rtMultMatrixf() , rtLoadIdentity() ,
rtPushMatrix() , rtPopMatrix() etc.

3.2.2. Geometry Objects

Section2.3.1outlined that OpenRT does not offer immediate
mode rendering. As a ray tracer simulates the flow of light
it needs to efficiently access geometric primitives multiple
times during the generation of a single image frame. There-
fore, OpenRT defines persistent geometry objects encapsu-
lating primitives, similar to an OpenGL display list that is
defined once, and can then be reused efficiently.

In analogy to OpenGL’sglGenLists() , objects
are allocated byrtGenObjects() . A new object is
then opened usingrtNewObject() followed by prim-
itive definitions as presented in the last section. Finally,
rtEndObject() has to be invoked, which additionally
triggers construction of the object’s acceleration structure.

3.2.3. Instantiation

Just like with display lists (if usingGL_COMPILE), sim-
ply specifying an object does not automatically include
it into the actual rendering process. After definition, ob-
jects first have to beinstantiated similar to OpenGL’s
glCallList() . To avoid confusion, the appropriate func-
tion has been namedrtInstantiateObject() be-
cause no immediate rendering occurs.

In fact, an instance is just a reference to a geometry ob-
ject, combined with an associated transformation. Specifica-
tion of such transformations is done using the same matrix
functionality as for specifying primitives. Note, that as a side
effect of this approach multiple instantiations are natively
supported. Reusing a display list several times is also pos-
sible with OpenGL, but suffers from the disadvantage that
the object has to be rerasterized with every activation.A ray
tracer only has to handle geometry that is actually visible.

It is also possible to manage dynamic affine transforma-
tions by simply replacing the matrix of an instance with the
help of rtSetInstanceXfm() . For more complicated
changes an object has to be deleted and rebuilt.

3.2.4. Shading And Lighting

As discussed above, OpenRT does not support a fixed ma-
terial and lighting model but exclusively uses shaders to
determine the appearance of geometric surfaces. Therefore
glMaterial() functions are not available. Instead, an ap-
plication controls shaders via the OpenSRT programmable
shader interface, similar to the Stanford shader API14, 7.

Shader Specification.All shaders are dynamically loaded
from shared library files that may also comprise several in-
dependent classes;srtShaderFile() selects the file to
load as well as the requested shader class. To create an in-
stancesrtCreateShader() must be called afterwards.
Each such shader object has to be assigned a unique ID by
which it can be referenced later. Once created, a shader is
also bound, so that all subsequently defined primitives will
use this instance as a surface shader. Other shaders my be
bound later again by invokingsrtBindShader() .

Shader Parameters.When a shader class is being loaded,
a set of parameters that is needed by the shader
code to perform its lighting calculations is declared via
rtsDeclareParameter() . Such data may be located in
different scopes: Parameters declared asPER_SHADERare
encapsulated inside shader instances. This typically involves
settings which do not change over a shader’s surface like
numerical precision values (e.g. maximum recursion depth).
Features declared asPER_TRIANGLEare stored with indi-
vidual triangles (e.g. color information). Finally, if declared
as PER_VERTEX, a parameter belongs to a single vertex
(e.g. special texture coordinates).

Another important declaration argument is a unique iden-
tifier string, under which an application can refer to the pa-
rameter’s value. The user can then register handles to so ex-
ported shader data, and is able to alter it with a call to a
genericsrtParameter{1234}{ifdv}() method. Of
course, one has to know the names and types of the desired
parameters.

Algorithm 1 presents a simple example of how a shader is
being used: After first loading the shader class from a shared
object file, the application program registers handles to the
exported parameters. Then it instantiates a shader object and
finally sets diffuse color values and a texture ID, which is
needed by the shader program for texture lookup. (see also
Section3.2.6).

Light, Environment and Camera Shaders. OpenRT also
offers light, environment, and camera shaders, i.e. custom
programs for calculating light source characteristics, en-
vironment illumination and per-pixel postprocessing, re-
spectively. For these shader types the initialization pro-
cess works similarly. Instead of binding a shader to ge-
ometry, it can also be declared to act as a light, envi-
ronment or camera shader by callingsrtUseLight() ,
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Simple.cpp:

struct SimpleShader : public RTShader {
RTfloat diffuse[3]; // diffuse color
RTint texture; // texture ID

RTvoid Register() {
// export shader parameters
rtsDeclareParameter("texture",

PER_SHADER,memberoffset(texture),
sizeof(texture));

rtsDeclareParameter("diffuse",
PER_SHADER,memberoffset(diffuse),
sizeof(diffuse));

}
RTvoid Shade(RTState *state) {

RTfloat color[3], reflect[3], normal[3];
RTState reflection;

rtsFindShadingNormal(state,normal);

// calculate diffuse term
DiffuseTerm(color,diffuse,normal);

// modulate with texture
rtsApplyTexture(state,texture,color);

// trace reflection ray
rtsReflectionRay(&reflection,state,normal);
rtsTrace(&reflection);
rtsGetColor(&reflection,reflect);

// calculate reflective term
ReflectiveTerm(color,reflect);

rtsReturnColor(color);
}

};

Application.cpp:

int main(int argc, char *argv[]) {
const RTuint SIMPLE_DIFFUSE = 0;
const RTuint SIMPLE_TEXTURE = 1;
...
srtShaderFile(0,"Simple",NULL);
srtParameterHandle("diffuse",SIMPLE_DIFFUSE);
srtParameterHandle("texture",SIMPLE_TEXTURE);
...
srtCreateShader(1);
srtParameter3f(SIMPLE_DIFFUSE,1,0,0);
RTint texID = LoadTexture("tex.ppm");
srtParameter1i(SIMPLE_TEXTURE,texID);
...

}

Algorithm 1: A simple shader. TheRegister() function
declares two parameters: A diffuse color vector and a texture
ID. The Shade() callback then uses these parameters to
compute a local color for the incident ray, and finally adds
reflection to it. Inside themain() part some simple code
loads the given shader, declares handles to its parameters,
and sets the parameters to appropriate values.

srtUseEnvironment() or srtUseCamera() with
the respective instance IDs. Currently supported are a single
environment and one camera shader as well as an arbitrary
number of light shaders.

3.2.5. Shading Language

All shaders are currently written in C++ working on top of
our OpenRTS shading language API. Each shader is derived
from a base classRTShader , and has to implement a num-
ber of callback functions: Typically aRegister method to
register the shader and to declare its parameters, and also a
Shade callback, which incorporates the actual light trans-
port calculation routines. Algorithm1 shows a simple sur-
face shader that uses our shading language to acquire data
from the renderer (e.g. the surface normal), to shoot reflec-
tion rays, and to return the final color value that is visible
along an incident ray. Note, however, that we do not con-
sider the actual shading language to be an integral part of
the OpenRT API. Other shading languages like CG10, Ren-
derMan13 etc. should be possible to support as long as the
same concepts (like shader parameters) are being used.

3.2.6. Texturing

In contrast to OpenGL – which knows both texture ob-
jects and immediate texturing – the use of texture ob-
jects is mandatory in OpenRT. Regarding their definition,
however, we have adopted exactly the same syntax as in
OpenGL: Texture objects first have to be allocated by calling
rtGenTextures() , can later on be (re)bound using
rtBindTexture() and get their pixel data specified via
rtTexImage{12}D() , with all the usual texture formats
being supported (RT_RGB, RT_INTENSITY etc.). Cur-
rently, only 1D and 2D textures are included, but 3D texture
implementation is straightforward.

Texture parameters can also be set exactly like in OpenGL
using rtTexParameteri() . All OpenGL texture pa-
rameters are available, e.g. wrapping modes (RT_CLAMP,
RT_REPEATetc.) and also minification/magnification filter
modes including linear filtering and MIP maps.

Once a texture object has been created, a reference is
passed to a shader by sending the ID of the texture object
to a shader parameter of typeRTint . The shader code can
then access the texture using the given ID. Of course, an ar-
bitrary number of textures can be assigned to each shader
using individual parameters. Similarly, each of these tex-
tures can have different types, resolutions, formats, filter
modes etc. The usual way to access a texture is to execute
rtsApplyTexture() along with the texture’s ID. This
call automatically considers all the specified parameters of
the texture, and accordingly modifies the color “fragment”
given to it (e.g. replacement, modulation, or addition). Note,
that a shader can bypass this mechanism, and may directly
read individual texels from the texture using its own mode
settings.

c© The Eurographics Association 2003.



Dietrich, Wald, Benthin, Slusallek / The OpenRT Application Programming Interface

3.3. A Detailed Example Application

After having outlined the most basic concepts of OpenRT,
we can discuss their actual application on a simple example
(see Algorithms2 and3):

Algorithm 2 first specifies a new geometry object contain-
ing a vertex-colored RGB cube along with a shader of class
VertexColor applied to it. First, this code loads
the shader class from a shared object file (by using
srtShaderFile() ) and creates an instance of this shader
(srtCreateShader() ). Then, a new geometry object is
allocated (rtGenObjects() ) and opened for definition
(rtNewObject() ). After setting the correct transforma-
tions (rtMatrixMode() etc.), some vertex-colored poly-
gons are placed inside (rtVertex3f() , rtColor3f()
etc.). Upon finalizing the object definition, the routine re-
turns the object’s ID, by which it can be referenced later for
instantiation. In fact, this example looks almost exactly the
same as defining a display list in OpenGL.

The object just defined is further being used in the second
example. As can be seen in Algorithm3, themain proce-
dure makes use of theOpenRT Utility Toolkit, RTUT. RTUT
(written by Markus Wagner18) provides a window system
independent library that aids the process of creating win-
dows, handling events, communicating with input devices
etc. It provides almost exactly the same functionality as the
OpenGL Utility Toolkit 6 and may be virtually operated the
same way.

Our example invokes RTUT calls for opening a window,
and for registering the display and idle callbacks. This code
is identical to corresponding GLUT code. Of course, usage
of RTUT is not obligatory. It would just as well be possible
to open and use display windows independently of RTUT
helper functions.

After the main window has been successfully created,
the createColorCubeObject() procedure from Al-
gorithm 2 is activated to define an RGB color cube
object. After that, we set up the camera, and enter
the RTUT event loop. As with GLUT, this main event
loop independently calls back the previously registered
Display() and Idle() functions. TheDisplay()
procedure just executesrtutSwapBuffers() , which
displays the current image and triggers rendering of the
next frame. The actual specification of the scene graph
takes place during theIdle() callback: After first clearing
all instances, it creates eight shifted and rotated instances
of the RGB color cube object. Here, transformation calls
(rtTranslatef() , rtScalef() etc.) affect these in-
stances. By changing the ModelView matrix before invo-
cation of rtInstantiateObject() , each of the eight
cubes is positioned at a different place, even though they are
all instances of exactly the same object.

Altogether, this simple example demonstrates the most
important aspects of OpenRT: Definition of geometry ob-

jects and their instantiation, loading shader classes, open-
ing windows and rendering a frame, and finally the use
of transformations to modify both geometry and instances.
This program also shows the syntactic similarity to OpenGL.
Even though Algorithms2 and3 form a “classical” OpenRT
example program, each experienced OpenGL programmer
should be able to read, understand, and if necessary, to ex-
tend it.

#include <openrt/rt.h>
#define VERTEX_COLOR_SHADER_ID 0
#define VERTEX_COLOR_SHADERFILE_ID 1

RTint createColorCubeObject()
{

srtShaderFile(VERTEX_COLOR_SHADERFILE_ID,
"VertexColor",
"libVertexColor.so");

srtCreateShader(VERTEX_COLOR_SHADER_ID);

RTint objId = rtGenObjects(1);
rtNewObject(objId, RT_COMPILE);

rtMatrixMode(RT_MODELVIEW);
rtPushMatrix();
rtTranslatef(-1, -1, -1);
rtScalef(2, 2, 2);

// first cube side
rtBegin(RT_POLYGON);

rtColor3f(0, 0, 0);
rtVertex3f(0, 0, 0);
rtColor3f(0, 1, 0);
rtVertex3f(0, 1, 0);
rtColor3f(1, 1, 0);
rtVertex3f(1, 1, 0);
rtColor3f(1, 0, 0);
rtVertex3f(1, 0, 0);

rtEnd();

// other cube sides
...
rtPopMatrix();

rtEndObject();
return objId;

}

Algorithm 2: Allocating and defining an object containing a
vertex-colored cube. This code fragment loads and activates
a VertexColor shader, allocates a new geometry object,
and puts a vertex-colored cube inside. Finally, the routine
returns the ID of the generated object by which it can be
instantiated later.

4. Summary and Conclusion

In this paper, we have motivated and proposed OpenRT, a
new interactive graphics application programming interface
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based on ray tracing. Though being semantically different,
the new API is designed to be as similar to OpenGL as pos-
sible (see Section3.3as well as Algorithms2 and3).

#include <rtut/rtut.h>
#include <openrt/rt.h>

RTint objId;

void Display()
{ rtutSwapBuffers(); }

void Idle() {
static int rot = 0; rot++;
rtDeleteAllInstances();
for (int i=0; i<8; i++) {

int dx = (i&1)?-1:1;
int dy = (i&2)?-1:1;
int dz = (i&4)?-1:1;

// position individual objects
rtTranslatef(dx,dy,dz);
rtRotatef(4*rot*dx,dz,dy,dx);
rtScalef(.5,.5,.5);
rtInstantiateObject(objId);

}
rtutPostRedisplay();

}

int main(int argc, char *argv[]) {
rtutInit(&argc, argv);
rtutInitWindowSize(640, 480);
rtutCreateWindow("Eight Cubes");
rtutIdleFunc(Idle);
rtutDisplayFunc(Display);

objId = createColorCubeObject();
rtPerspective(65, 1, 1, 100000);
rtLookAt(2,4,3, 0,0,0, 0,0,1);

rtutMainLoop();
return 0;

}

Algorithm 3: An example application displaying eight ro-
tating instances of a vertex-colored cube. Themain() pro-
cedure initializes a display window, defines a vertex-colored
cube object, and activates a perspective camera before start-
ing the main event loop. Inside theIdle() part, eight
transformed instances of the cube are specified.

Although some parts of the API are still under active de-
velopment, it is mostly stable, and is already being used for
several practical applications. To demonstrate the capabili-
ties of OpenRT, we have developed rendering applications
that exclusively use the OpenRT API to drive the interactive
ray tracing back-end. As our interface clearly exposes all the
advantages of ray tracing, these applications are capable of
rendering scenes with virtually any optical effect, as can be

Figure 2: Complex Models: (a) Three power plants contain-
ing 12.5 million individual triangles each, rendering inter-
actively utilizing our API. (b) An outdoor scene consisting
of roughly 28,000 instances of 10 different kinds of sunflow-
ers with 36,000 triangles each, together with several multi-
million-triangle trees, summing up to roughly one billion tri-
angles. The latter scene features complex shaders using tex-
tures, shadows and transparencies.

seen in Figure1b, where even complex features such as vol-
ume and lightfield rendering could be seamlessly integrated
into a scene using programmable shaders. Furthermore, our
system is capable of rendering massively complex models of
more than 12 million individual triangles. Making heavy use
of instantiation, even models consisting of up to one billion
triangles can be rendered (see Figure2).

Being designed to be similar to OpenGL also allows to
easily port existing OpenGL applications to OpenRT. Instead
of using only applications that have been exclusively writ-
ten for OpenRT, we have also taken an existing VRML97
library 2 that was originally based on OpenGL, and have
successfully ported it to OpenRT. As VRML does not origi-
nally support programmable shading, we had to extend this
VRML library to support shaders, after which we can now
render VRML models with more sophisticated lighting.

Figure 3: Left: A shader performing interactive global il-
lumination computations using our own renderer front-end.
Right: The same shader being used from within a ported
VRML97 renderer, displaying a VRML97 animation with full
global illumination.

Another good example for the benefits of using a well
defined API is our interactive lighting simulation applica-
tion 20. The entire lighting simulation code has been imple-
mented as programmable shaders. The first obvious advan-
tage is that this code can totally abstract from issues such as
scene file formats, light source descriptions or even handling
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dynamic scenes, which are all handled transparently through
the shader API. Furthermore, as the global illumination code
is being used like any other shader, it can be accessed from
within different applications. For example, the left image in
Figure3 shows the global illumination shader running in our
own front-end application, whereas the right image shows
the same shader running in the ported VRML browser, ren-
dering a VRML97 animation with global illumination.

5. Future Work

As there is currently only a single implementation of the
OpenRT API available (the Saarland University’s Real-Time
Ray Tracing engine), an obvious next step is to use this
interface also to drive other ray tracing architectures. We
are already working on applying OpenRT to drive the Saar-
COR 17 as well as other architectures (such as GPU-based
systems15).

In terms of the API itself, we are currently investigating
how to seamlessly integrate handling of huge models using
demand-loading and reordering in the spirit of21, which is
not currently being supported. Furthermore, it might make
sense to support other shading languages, like e.g. CG10

or RenderMan13. Especially the use of shading language
compilers seems promising.

Based on our experiences with porting the VRML97 li-
brary we are now investigating how other scene graph li-
braries such as OpenInventor22 or OpenSG11 could be
plugged into OpenRT. Even more important, we are eval-
uating methods for merging OpenGL and OpenRT by modi-
fying OpenRT in a way to use it as an OpenGL extension for
interactive ray tracing.
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