
Distributed Interactive Ray Tracing of Dynamic Scenes

Ingo Wald Carsten Benthin Philipp Slusallek
Computer Graphics Group, Saarland University

{wald,benthin,slusallek }@cs.uni-sb.de

Figure 1: Examples of dynamic scenes interactively ray traced with our method: a.) Hierarchical animation in the “BART Robots” scene, b.)
Unstructured motion in the “BART Museum”, c.) “BART Kitchen”, d.) one thousand instances of two kinds of complex trees (rendered with
shadows), more than ten million triangles total. All pictures are live screenshots from our system running interactively on a cluster of PCs.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing, Animation, Color, shading,
shadowing, and texture; I.3.2 [Graphics Systems]: Graphics
Systems—Distributed/network graphics; I.3.3 [Graphics Systems]:
Picture/Image Generation—Display algorithms;

Keywords: Interactive Ray Tracing, Distributed Rendering, Dy-
namic Scenes, Scalability and Performance

Abstract

Recently developed interactive ray tracing systems combine the
high performance of todays CPUs with new algorithms and imple-
mentations to achieve a flexible and high-performance rendering
system offering high-quality, but nonetheless interactive 3D graph-
ics. However, due to its history in off-line rendering, interactive ray
tracing is usually limited to static scenes and simple walkthroughs.
In order to become truly interactive ray tracingmustefficiently sup-
port dynamic scenes.

In this paper, we present a simple and practical method that al-
lows to interactively ray trace dynamic scenes in a distributed PC
cluster environment. Our method separates the scene into indepen-
dent objects with common properties concerning dynamic updates
— similar to OpenGL display lists and scene graph libraries. Three
classes of objects are distinguished: Static objects are treated as
before, objects undergoing affine transformations are handled by
transforming rays, and objects with unstructured motion are rebuilt
whenever necessary.

We present performance and scalablity results of our system us-
ing a variety of test scenes stressing a wide range of dynamic be-
haviour.

1 Introduction

Methods for creating computer generated images can be broadly
classified into two different approaches, both with different
strengths and weaknesses. On one side, triangle rasterization is easy
to build in hardware, is cheaply available on todays graphics cards,
and clearly dominates todays interactive graphics market. On the
other side, ray tracing is well-known for achieving superior image
quality, but is also infamous for its high computational cost, and has
therefore traditionally been used only for off-line rendering.

Recently, the speed of ray tracing has been improved to interac-
tive rates, e.g. [Wald et al. 2001a; Parker et al. 1999; Wald et al.
2003]. For a number of applications, interactive ray tracing even
starts to challenge the dominating role of triangle rasterization: Due
to its logarithmic behavior in scene complexity, ray tracing becomes
increasingly efficient for complex environments [Wald et al. 2001b;
Wald et al. 2002a]. It also offers a much more flexible image gener-
ation algorithm than rasterization, supporting features that are often
hard to achieve with rasterization hardware, including arbitrary pro-
grammable shading and exact shadows, reflections, and refractions.
Recently, even full global illumination has been computed at inter-
active rates [Wald et al. 2002b; Benthin et al. 2003]. New hardware
architectures for real-time ray tracing are currently beeing investi-
gated [Purcell et al. 2002; Carr et al. 2002; Schmittler et al. 2002].

Today, approaches to interactive ray tracing range from super-
computers [Parker et al. 1999] over PC clusters [Wald et al. 2001a;
Wald et al. 2003; DeMarle et al. 2003], to special-purpose hard-
ware [Schmittler et al. 2002] and implementations on GPUs [Pur-
cell et al. 2002]. Even though it is not yet clear which of these dif-
ferent approaches eventually prove to be the most successful, they
indicate that in the not too far ahead future, interactive ray tracing
will probably play a bigger role in interactive 3D graphics.

1.1 Ray Tracing in Dynamic Environments

Even though ray tracing is a relatively old and well-understood
technique, its use for interactive applications is still in its infancy.
Ray tracing research so far almost exclusively concentrated on ac-
celerating the process of creating asingleimage, which could take
from minutes to hours. Most of these approaches relied on doing
extensive preprocessing by building up complex data structures to
accelerate the process of tracing a ray. This preprocessing was then
amortized over the remainder of a frame.

This approach was very successful for off-line computations,

where the cost for building the data structures was negligible com-
pared to the cost for the actual rendering phase. At interactive frame
rates however, this approach is not feasible any more.

As such, building the acceleration data structure becomes the
bottleneck due to its super-linear behavior with respect to scene
complexity. In dynamic scenes, where the acceleration structure
needs to be rebuilt for every frame, this preprocessing alone would
often exceed the total time available per frame in an interactive set-
ting.

Even worse, this preprocessing phase cannot easily be paral-
lelized. Though the actual ray tracing phase can be parallilized
trivially, such preprocessing usually has to be performed on each
client, and thus does not parallelize. This poses a major problem for
interactively ray tracing dynamic scenes, as virtually all of todays
interactive ray tracing systems have to rely on massive paralleliza-
tion to achieve interactive frame rates [Wald et al. 2001b; Parker
et al. 1999; DeMarle et al. 2003].

Therefore, it is not surprising that all of those systems mainly
concentrate on the actual ray tracing phase and do not target dy-
namic scenes. Without methods for interactively modifying the
scene, however, interactive ray tracing will be limited to simple
walkthroughs of static environments, and can therefore hardly be
termed truly interactive, as realinteraction between the user and
the environment is possible.

In this paper, we propose a method to efficiently support dynamic
scenes in a distributed interactive ray tracing system. The main goal
of our method is to offer good performance and high scalability –
in both frame rate and in the number of CPUs – in a distributed
PC cluster environment. While our method has been specially de-
signed for a distributed architecture, it should be directly applicable
to other architectures, e.g. [Schmittler et al. 2002; Purcell et al.
2002]. In fact, many of the remaining limitations of our system
would diminish in a non-distributed environment.

2 Previous Work

Ray tracing has first been used by Appel [1968], and has been
adopted and extended by many other researchers, e.g. [Whitted
1980; Cook et al. 1984; Glassner 1989]. Since then, speeding up
ray tracing has attracted much attention, and has lead to dozens of
algorithms. Most of these algorithms rely on reducing the required
ray/object intersection tests by building anacceleration structure
over the scene’s geometry

[Glassner 1989; Havran 2001].
Quite recently, ray-tracing has been accelerated to the point

where interactive frame rates can be achieved at least for moder-
ate screen resolutions. By exploiting the inherent parallelism of
ray-tracing Muuss [1995] and Parker et al. [1999; 1998] achieved
interactive ray tracing performance on shared memory supercom-
puter systems by massive parallelization and low-level optimiza-
tions. Wald et al. [2001a] have then shown that interactive ray-
tracing performance can also be obtained on inexpensive, off-the-
shelf PCs. As long as the scene remained static, this system has
been shown to scale well in a distributed memory environment us-
ing commodity PCs and networks [Wald et al. 2001b].

Unfortunately, all these systems are closely tied to acceleration
structures that have been designed for static environments, thus lim-
iting interactive ray tracing systems to simple walkthroughs of static
scenes. Some methods have been proposed for the case where pre-
defined animation paths are known in advance, e.g. [Glassner 1988;
Gröller and Purgathofer 1991]. These however are not applicable to
our target setting of totally dynamic, unpredictable changes to the
scene. Little research is available for truly interactive systems.

Excellent research on ray tracing in dynamic environments has
recently been performed by Lext et al. with the BART project [Lext

et al. 2000]. They provide an excellent analysis of the problems
arising in dynamic scenes. Based on this analysis, they proposed a
representative set of test scenes designed to stress the different as-
pects of ray tracing dynamic scenes. ThisBART benchmark suite
provides an excellent tool for evaluating and analyzing a dynamic
ray tracing engine, and will be used extensively in our experiments.
In their research, the behavior of dynamic scenes was classified into
two inherently different classes: One form ishierarchical motion,
where a whole group of primitives is subject to the same transfor-
mation. The other class isunstructured motion, where each triangle
moves without relation to all others. For a closer explanation of the
different kinds of motion, see [Lext et al. 2000].

In a first step, Parker et al. [1999] excluded moving primitives
from their acceleration structure and checked them individually for
every ray. This of course is only feasible for a small number of
moving primitives.

Another approach would be to efficiently update the accelera-
tion structure whenever objects move. Because objects can occupy
a large number of cells in an acceleration structure this may require
costly updates to large parts of the acceleration structure for each
moving primitive. To overcome this problem, Reinhard et al. [2000]
proposed a dynamic acceleration structure based on a hierarchical
grid. In order to quickly insert and delete objects independently of
their size, larger objects are being kept in coarser levels of the hi-
erarchy. As a result, objects always cover approximately a constant
number of cells, thus allowing to update the acceleration structure
in constant time. However, their method resulted in a rather high
overhead, and also required their data structure to be rebuilt once in
a while to avoid degeneration. Furthermore, their method mainly
concentrated on unstructured motion, and is not optimal for hierar-
chical animation.

Recently, Lext and Akenine-Moeller [2001] proposed a way for
quickly reconstructing an acceleration structure in a hierarchically
animated scene. Though their method was developed indepen-
dently, it is closely related to the way that our method handles hier-
archical animation. To our knowledge, their method has never been
used in an interactive context.

3 Our Approach

Our approach is motivated by the same observations as Lext et
al. [2001] of how dynamic scenes typically behave: Large parts of a
scene often remain static over long periods of time. Other parts of a
scene undergo well-structured transformations such as rigid motion
or affine transformations. Yet other parts are changed in a totally
unstructured way. This common structure within scenes can be ex-
ploited by maintaining geometry in separateobjectsaccording to
their dynamic properties, and handling the different kinds of mo-
tion with different, specialized algorithms that are then combined
into a common architecture.

Each object can consist of an arbitrary number of triangles. It has
its own acceleration structure and can be updated independently of
the rest of the scene. Of course, an additional top-level acceleration
structure must then be maintained that accelerates ray traversal be-
tween the objects in a scene. Each ray then first starts traversing this
toplevel structure. As soon as a leaf is found, the ray is intersected
with the objects in the leaf by simply traversing the respective ob-
jects local acceleration structures.

Forstatic objects, ray traversal works as before by just traversing
the ray with our usual, fast traversal algorithm.

For hierarchical animation, the ray in world-space has to be in-
tersected with an object that has been transformed with an affine
transformation. For affine transformations, however, it is a well-
known fact that exactly the same result can be reached by not
transforming the object, but instead intersecting the inversely trans-
formed ray with the untransformed object [Lext and Akenine-

Moeller 2001]. This slightly increases the per-ray cost (e.g. for
the transformation), but totally removes the reconstruction cost for
hierarchically animated objects.

To enable this scheme, all triangles that are subject to the same
set of transformations (e.g. all the triangles forming the head of the
animated robot in Figure

Figure 2: Robots (left), with color-coded objects (right). Triangles
of the same color belong to the same object.

While this simple trick of transforming rays instead of triangles
elegantly avoids any reconstruction cost for hierarchical motion, it
does not work forunstructured motion, as there the acceleration
structure has to be rebuilt for every frame. Even so, if triangles
under unstructured motion are kept in a separate object, the BSP re-
construction cost can be localized to only those triangles that have
actually been transformed in an unstructured way. The local ac-
celeration structures of such objects are discarded and rebuilt from
the transformed triangles whenever neccessary. Even though this
process is costly, it is only required for objects with unstructured
motion and does not affect any of the other objects. Our method
allows to specify several different objects with unstructured motion
in the same scene. Thus, only those objects have to be rebuilt that
have actually been changed.

Additionally, object BSP reconstruction could be doneon de-
mand, i.e. only as soon as a ray actually requests intersection with
such an object. This would further reduce the cost of this recon-
struction step.

Even though our method totally avoids any BSP reconstruction
cost for hierarchically animated objects, hierarchical animation still
invalidates the toplevel BSP, and as such makes it very likely that
this toplevel structure has to be rebuilt every frame. However, the
cost for rebuilding this toplevel BSP only depends on the number of
objectsin a scene, and is totally independent of the actual number of
triangles contained in these objects. As such, even multi-million-
triangle objects can be transformed with negligible cost. Further-
more, the toplevel BSP usually contains only rather few objects
(in the order of a few hundred) that allow to quickly rebuild that
structure without major impact on the total systems performance.
Additionally, we use highly optimized algorithms for building and
traversing the toplevel BSP.

4 Implementation

Before discussing the actual algorithms for quickly building and
traversing acceleration structures, we first give a brief overview of
how objects may be specified by an application. This description is
based on the proposed OpenRT API for interactive ray tracing [Di-
etrich et al. 2003]. Similar to OpenGL, OpenRT operates on a very
low level that allows it to be used from almost any application or
scene graph library. For this paper we concentrate on only the small
aspect of OpenRT relevant for dynamic scenes.

4.1 OpenRT API

Using our method is similar to the way optimized applications make
use of OpenGL [Neider et al. 1993]: Primitives are grouped into

display lists depending on their (dynamic update) properties. All
triangles inside display lists can then be transformed efficiently by
adjusting the transformation stack before calling the display list.
Triangles with unstructured motion would simply not be kept in a
display list, but rather be rendered directly in immediate mode.

With OpenRT, an application operates in a very similar way, by
usingobjectsinstead ofdisplay lists. The main difference between
them is that OpenRT objects do not allow for side effects. In both
cases, it is the application that needs to organize its geometry ac-
cordingly. Instead of using immediate mode for primitives with
unstructured motion, special objects are used that may be redefined
whenever necessary. As with OpenGL display lists, the exact way
that the primitives are grouped into different objects can affect per-
formance. For scenegraph-like applications, however, this grouping
is often trivial.

The OpenRT API for defining geometry is very similar to
OpenGL: Objects are defined by calls tortGenObjects, rtNewOb-
ject, and rtEndObject, which closely correspond to the OpenGL
functions for specifying display lists. This similarity simplifies
porting of OpenGL based applications. Within an object, primitives
are then specified using functions likertBegin/End(RTTRIANGLE)
and rtVertex3f(), with all the functionality for transformations
(e.g. rtRotatef()) and matrix stack handling (e.g.rtPushMatrix())
being supported.

After an object has been defined, it can be instantiated any time
with a call to rtInstantiateObject()(corresponding toglCallList()
using the transformation currently on the transformation stack.
Each suchinstanceof an object consists of a reference to the orig-
inal object and of the transformation applied to it. These instances
are then organized in a toplevel hierarchy as depicted in Figure

Transform ObjID

Transform ObjID

Transform ObjID

ObjIDTransform

Instance List Object List

BSP

BSP

BSPGeometry

Geometry

Geometry

Top−level

(of Instances)
BSP

Figure 3: Two-level hierarchy as used in our approach: A top-level
BSP contains references to instances, which contain a transforma-
tion and a reference to an object. Objects in turn consist of geom-
etry and a local BSP tree. Multiple instances can refer to the same
object with different transformations.

4.2 Object Construction and Traversal

During traversal of the data structure, rays have to be intersected
with objects. As described above, each object consists of a set of
geometric primitives as well as its own acceleration structure for
fast traversal within that object.

Within each object, traversal is identical to traditional ray trac-
ing in a static environment. Consequently, we use exactly the same
algorithms for building and traversing that acceleration structure.
In our case, we use exactly the BSP tree, data structures, and algo-
rithms described in [Wald et al. 2001a].

For both static objects and for those with hierarchical motion,
the local BSP tree must only be built once directly after object def-
inition. Thus, the time for building these objects is not an issue,
allowing us to use sophisticated and slow algorithms for building
the acceleration structures1 already used in [Wald et al. 2001a].

1Though the object (and thus its BSP) remains static in its local coordi-
nate system, its instance in the world coordinate system can still be trans-

An extensive study of such algorithms can for example be found
in [Havran 2001].

4.3 Fast Handling of Unstructured Motion

The mentioned algorithms for creating highly optimized BSP trees
(e.g. with sophisticated cost-functions) may require several seconds
even for moderately complex objects. Thus, they are not applica-
ble to unstructured motion, where the object BSP has to be rebuilt
every frame (and thus in fractions of a second). For these cases we
trade traversal speed for construction speed by using less expensive,
simple heuristics for BSP plane placement, and by using different
quality parameters for BSP construction.

A particularly important cost factor for BSP tree construction is
the subdivision criterion of the BSP. This criterion typically consist
of a maximum tree depth and a target number of triangles per leaf
cell. Subdivision continues on cells with more than the target num-
ber of triangles up to the maximum depth. Typical criteria specify 2
or 3 triangles per cell and usually result in fast traversal times – but
also in deeper BSPs, which are more costly to create. Particularly
costly are degenerate cases, in which subdivision can not reduce the
number of triangles per cell, for example if too many primitives oc-
cupy the same point in space, e.g. at vertices with a valence higher
than the maximum numbers of triangles.

In order to avoid such excessive subdivisions in degenerate re-
gions, we modified the subdivision criterion (for unstructured ob-
ject BSPs): The deeper the subdivision, the more triangles will be
tolerated per cell. We currently increase the tolerance threshold by a
constant factor for each level of subdivision. Thus, we generally ob-
tain significantly lower BSP trees and larger leaf cells than for static
objects. Even though this slows down the traversal of rays hitting
such objects, this slowdown is more than made up by the signifi-
cantly shorter construction time. With these compromises on BSP
construction, unstructured motion for moderate-sized objects can
be supported by rebuilding the respective object BSP every frame.

4.4 Efficient Traversal

Having a separate acceleration structure for every object allows for
efficiently intersecting each ray with its geometry. We also use a
BSP tree for the top-level acceleration structure (Figure

As with the original implementation, a ray is first clipped to the
scene bounding box and is then traversed iteratively through the
top-level BSP tree. As soon as it encounters a leaf cell, it sequen-
tially intersects the ray with all instances in this cell: For each in-
stance, the ray is first transformed to the local coordinate system of
the object. The transformed ray is then intersected with the object
using the original algorithms. The cost of intersecting a ray with
the same instance multiple times can efficiently be avoided with
mailboxing [Havran 2001].

As our traversal and intersection algorithms do not require nor-
malized ray directions, transforming a ray is relatively cheap, as no
costly re-normalization of the transformed rays is necessary. The
ray-matrix multiplications themselves can very efficiently be done
using SSE [Int 2002].

Of course, our method also works with our fast SSE packet
traversal code. The only caveat is that this packet traversal code re-
quires that all rays directions in a packet have the same signs [Wald
et al. 2001a]. As a rotation can change these signs, an additional
check has to be done after each transformation, and such a packet
might sometimes have to be split up. However, this is trivial to
check and work around, and happens rarely. As such, its cost is
negligible.

formed with affine transformations.

4.5 Fast Top-Level BSP Construction

While traversing the top-level BSP requires only minor changes to
the original implementation, this is not the case for the construction
algorithm. A scene can easily contain hundreds or thousands of
instances (see Figure

Fortunately, the task of building the top-level BSP is simpler than
for object BSPs: Object BSPs require costly triangle-in-cell com-
putations, careful placement of the splitting plane, and handling
of degenerate cases. The top-level BSP however only contains in-
stances represented by an axis-aligned bounding box (AABB) of
its transformed object. Considering only the AABBs, optimized
placement of the splitting plane becomes much easier, and any de-
generate cases can be avoided.

For splitting a cell, we follow several observations [Havran
2001]:

1. It is usually beneficial to subdivide a cell in the dimension
of its maximum extent, as this usually yields the most well-
formed cells.

2. Placement of the BSP plane only makes sense at the boundary
of objects contained within the current cell. This is due to
the fact that the cost-function can be maximal only at such
boundaries.

3. It can been shown that the optimal position for the splitting
plane lies between the cells geometric center and the object
median.

Following these observations, the BSP tree can be built such that
it is both suited for fast traversal by optimized plane placement, and
can still be built quickly and efficiently: For each subdivision step,
we try to find a splitting plane in the dimension of maximum ex-
tent (observation 1). As potential splitting planes, only the AABB
borders will be considered (observation 2). To find a good splitting
plane, we first split the cell in the middle, and decide which side
contains more objects, i.e. which one contains the object median.
From this side, we choose the object boundary closest to the center
of the cell. Thus, the splitting plane lies inbetween cell center and
object median, which is generally a good choice (observation 3).

As each subdivision step removes at least one potential splitting
plane, termination of the subdivision can be guaranteed without fur-
ther termination criteria. Degenerate cases for overlapping objects
cannot happen, as only AABB boundaries are considered, and not
the overlapping space itself. Choosing the splitting plane in the
described way also yields relatively small and well-balanced BSP
trees.

For our simplified problem, this simple heuristic is usually al-
most as good as a surface area heuristic (SAH, see [Havran 2001]),
but much faster to evaluate. Thus, we get an optimized toplevel
BSP that can be traversed quickly, while still offering a fast and
efficient construction algorithm.

The whole algorithm for toplevel BSP reconstruction can be ex-
pressed in only a few lines of pseudo-code:

BuildTree(instances,voxel)
for d = x,y,z in order of maximum extent

P = {i.mind, i.maxd|i ∈ instances}
if (‖P‖ = 0) continue;
c = center of voxel
if (more instances on left side of c than on right)

p = max({p ∈ P |p < c})
else

p = min({p ∈ P |p >= c})
Split Cell (instances,cell) in d at p into

(leftvox,leftinst),(rightvox,rightinst)
l = BuildTree(leftinst,leftvox);
r = BuildTree(rightinst,rightvox);
return InnerNode(d,p,l,r);

end for
no valid splitting plane found

return Leaf(instances)

5 Experiments and Results

As the main emphasis of our system lies on efficiently coping with
the distribution issues of a loosely-coupled PC cluster environment,
we will put special emphasis on evaluating the scalability of our
method. To allow for representative results, we have chosen to
use a wide range of experiments and test scenes. Therefore, we
have chosen to use the BART benchmark scenes [Lext et al. 2000],
which represent a wide variety of stress factors for ray tracing of
dynamic scenes. Additionally, we use several of the scenes that
we encountered in practical applications [Wald et al. 2002b], and a
few custom-made scenes for stress testing. Snapshots of these test
scenes can be found in Figure

All of the following experiments have been performed on a clus-
ter of dual AMD AthlonMP 1800+ machines with a FastEthernet
network connection. The network is fully switched with a single
gigabit uplink to a dual AthlonMP 1700+ server. The application
is running on the server and is totally unaware of the distributed
rendering happening inside the rendering engine. It manages the
geometry in a scene graph, and transparently controls rendering via
calls to the OpenRT API. All examples are rendered at video res-
olution of 640 × 480 pixels. Ray tracing is performed with costly
programmable shaders featuring shadows, reflections, and textur-
ing.

5.1 BART Kitchen

Figure 4: Two snapshots from the BART kitchen. a.) OpenGL-like
ray casting at> 26 fps on 32 CPUs. b.) full-featured ray tracing
with shadows and 3 levels of reflections, at> 7 fps on 32 CPUs.

The Kitchen scene contains hierarchical animation of 110.000
triangles organized to 5 objects. It requires negligible network
bandwidth and BSP construction overhead. Overlap of bounding
boxes may results in a certain overhead, which is hard to measure
exactly but is definitely not a major cost factor.

The main cost of this scene is due to the need for tracing many
rays to evaluate shadows from 6 point lights. There is also a high
degree of reflectivity on many objects. Due to fast camera motion
and highly curved objects (see Figure

We achieve interactive frame rates even for the large amount of
rays to be shot. A reflection depth of 3 results in a total of 3.867.661
rays/frame. At a measured rate of 912.000 rays traced per second
and CPU in this scene, this translates to a frame rate of 7.55 fps on
32 CPUs. Scalability is almost linear (see Table

CPUs 2 4 8 16 32
OpenGL-like 3.2 6.4 12.8 25.6 > 26
Ray Tracing 0.47 0.94 1.88 3.77 7.55

Table 1: Scalability in the Kitchen scene in frames/sec.

5.2 BART Robots

Figure 5: BART Robots: 16 robots consisting of 161 objects ren-
dered interactively. a.) Simple ray casting at> 26 fps on 32 CPUs.
b.) Full ray tracing at> 8 fps at 32 CPUs.

The Robots scene mainly stresses hierarchical animation: 16
Robots move through a complex city with hierarchical animation
of their body parts that are organized into 161 different objects. All
dynamic motion is hierarchical with no unstructured motion at all.
Therefore, the BSP trees for all objects have to be built only once,
and only the top-level BSP has to be rebuilt for every frame.

Using the algorithms described above, rebuilding the top-level
BSP is very efficient taking less than one millisecond. Furthermore,
updating the transformation matrices requires only a small network
bandwidth of roughly 20 kb/frame for each client.

CPUs 2 4 8 16 32
OpenGL-like 2.8 5.55 10.8 21 > 26
Ray Tracing 0.54 1.07 2.15 4.3 8.6

Table 2: Scalability in the Robots scene in frames/sec.

With such a small transmission and reconstruction overhead, we
again achieve almost linear scalability (see Table

5.3 BART Museum

The museum has been designed mainly for testing unstructured mo-
tion and is the only BART scene featuring non-hierarchical motion.
In the center of the museum, several triangles are animated on pre-
defined animation paths to form differently shaped objects. The
number of triangles undergoing unstructured motion can be config-
ured to 64, 256, 1k, 4k, 16k, or 64k. Even though the complete
animation paths are specified in the BART scene graph, we do not
make use of this information. User controlled movement of the tri-
angles – i.e. without knowledge of future positions – would create
the same results.

num tris 64 256 1k 4k 16k 64k
reconst.time < 1ms 2ms 8ms 34ms 0.1s > 1s

bandwidth/client 6.4k 25.6k 102k 409k 1.6M 6.5M

Table 3: Unstructured motion in different configurations of the mu-
seum scene. Entries specify reconstruction time for the object BSP,
and data sent to each client for updating the triangle positions.

As expected, unstructured motion gets costly for many triangles.
Building the BSP tree for the complex version of 64k triangles al-
ready requires more than one second (see Table

Furthermore, the reconstruction time is strongly affected by the
distribution of triangles in space: In the beginning of the anima-
tion, all triangles are uniformly and almost-randomly distributed
in space. This is the worst case for BSPs, which are best at han-
dling uneven distributions, and construction is consequently costly.
During the animation, the triangles organize themselves to form a
single surface. This results in much faster reconstruction time. The
numbers given in Table

Apart from raw reconstruction cost, significant network band-
width is required for sending all triangles to every client. Since we
use reliable unicast (TCP/IP) for network transport, using 4096 tri-
angles and 16 clients (32 CPUs), requires to transfer roughly 6.5
Mb (16 clients× 408kb, see Table

This scene also requires the computation of shadows from two
point lights as well as large amounts of reflection rays. All of the
moving triangles are reflective and incoherently sample the whole
environment (see Figure

OpenGL-like 1 2 4 8 16
Robots 2.8 5.55 10.8 21 26(?)
Kitchen 3.2 6.4 12.8 25.6 26(?)
Terrain 1.3 2.5 4.8 8 15
Museum/1k 2.7 5.4 10.2 19.5 26(?)
Museum/4k 2.5 4.5 7.5 4.5 2.5
Museum/16k 1.6 2.4 1.7 1 0.5

Ray Tracing 1 2 4 8 16
Robots 0.54 1.07 2.15 4.3 8.6
Kitchen 0.47 0.94 1.88 3.77 7.55
Terrain 0.9 1.77 3.39 6.5 12
Museum/1k 0.6 1.2 2.4 4.8 9.3
Museum/4k 0.55 1.1 2.2 4.2 2.5
Museum/16k 0.45 0.9 1.65 0.98 0.53

Table 4: Scalability of our method in the different test scenes. “?”
means that the server’s gigabit network connection is completely
saturated due to the transfer of RGB color data, and thus no higher
performance can be achieved. The numbers in the upper table cor-
respond to OpenGL-like shading, the lower ones are for full ray
tracing including shadows and reflections.

Even with all these effects – unstructured motion, shadows, and
highly incoherent reflections in the animated triangles – the mu-

Figure 6: Unstructured motion in the BART museum: Up to 64,000
triangles are moving incoherently through the museum. Note how
the triangles reflect the entire environment.

seum can be rendered interactively: Using 8 clients, we achieve 4.8
fps for 1024 triangles and still 4.2 fps for 4096 triangles at video
resolution (see Table

5.4 Outdoor Terrain

The Terrain scene has been specially designed to stress scalability
with a large number of instances and triangles. It contains 661 in-
stances of 2 different trees, which correspond to more than 10 mil-
lion triangles after instantiation. A point light source creates highly
detailed shadows from the leaves (see Figure

The large number of instances results in construction times for
the top-level BSP of up to 4 ms per frame. This cost — together
with the transmission cost for updating all 661 instance matrices
on all clients — slightly limits the scalability for a large number of
instances and clients (see Table

Figure 7: Terrain scene with up to 1000 instances of 2 kinds of
complex trees (661 instances in the shown configuration, as some
trees have been interactively moved off the terrain). Without instan-
tiation, the scene would consist of roughly 10 million triangles. a.)
Overview of the whole scene, b.) Detailed shadows from the sun,
cast by the leaves onto both floor and other leaves.

6 Discussion

The above scenes have been chosen to stress different aspects of
our dynamic ray tracing approach. Together with the terrain ex-
periment, our test scenes contain a strong variation of parameters –
from 5 to 661 instances, from a few thousand to several million tri-
angles, from simple shading to lots of shadows and reflections, and
from hierarchical animation to unstructured motion of thousands of
triangles (for an overview, see Figure

Transformation Cost For mainly hierarchical animation, the
core idea of our method was to trade the cost to reconstruct the data
structure for the cost to transform the rays to the local coordinate
system of each object. This implies that every ray intersecting an
object has to be transformed via matrix-vector multiplications for
both ray origin and direction (for every object encountered), poten-
tially resulting in several matrix operations per ray. As our system
shoots up to a million rays per second on an AthlonMP 1800+ CPU,
this can amount to hundreds of thousands of matrix-vector multipli-
cations. For example, theterrain androbotsscenes at640 × 480
pixels require 1.6 and 1 million matrix ops, respectively. Further-
more, additional transformations are often required during shading,
e.g. by transforming the shading normal or for calculating proce-
dural noise in the local coordinate system.

However, the cost for these transformations in practice is rather
small. Even for a straight-forward C-code implementation, a
matrix-vector operation costs only 23 cycles on an AMD AthlonMP
CPU, which is rather small compared to the cost for tracing a ray
(which is in the order of several thousand cycles). Using fast SSE
code [Int 2002] reduces this cost even further, and makes the trans-
formation overhead almost negligible.

Unstructured Motion As could be expected, the Museum
scene has shown that unstructured motion remains costly for ray
tracing. A moderate number of a few thousand independently mov-
ing triangles can easily be supported, but larger numbers still lead
to high reconstruction times for the respective objects (see Table

To support such scenes, algorithms for faster reconstruction of
dynamic objects have to be developed. Note that our method could
also be combined with Reinhards approach [Reinhard et al. 2000]
by using his method only for the unstructured objects. Even then,
lots of unstructured motion would still create a performance prob-
lem due to the need to send all triangle updates to the clients. This
is not a limitation of our specific method, but would be similar for
any kind of algorithm in a distributed environment.

Bounding Volume Overlap One of the stress cases identified
in [Lext et al. 2000] wasBounding Volume Overlap. In fact, this
does creates some overhead, as in the overlap area of two objects,
both objects have to be intersected sequentially by a ray – even a
successful intersection in the first object may be invalidated by a
closer one in the other object.

Even though it is easy to construct scenarios where this would
lead to excessive overhead, it is rarely significant in practice. In
fact, bounding volume overlapdoeshappen inall our test cases,
but has never shown to pose a major performance problem. In
fact, overlapping objects are exactly what happens all the time with
bounding volume hierarchies (BVHs) [Haines 1991], which have
also proven to work rather well in practice.

Teapot-in-a-Stadium Problem The teapot-in-a-stadium prob-
lem is handled very well by our method: BSPs automatically adapt
to varying object density in a scene [Havran 2001]. This is true
for both object and toplevel BSPs. In fact, our method can even
increase performance for such cases: If the ’teapot’ is contained in
a separate object, the shape of the ’stadium’ BSP is usually much
better, as there is no need any more for several BSP subdivisions to
tightly enclose the teapot.

Over-Estimation of Object Bounds Building the top-level
BSP requires an estimate of the bounding box of each instance in
world coordinates. As transforming each individual vertex would
be too costly, we conservatively estimate these bounds based on the
transformed bounding box of the original object.

This somewhat over-estimates the correct bounds and thus re-
sults in some overhead: During top-level BSP traversal, a ray may
be intersected with an object that it would not have intersected oth-
erwise. However, this overhead is restricted to only transforming
and clipping the ray: After transformation to the local coordinate
system, such a ray is first clipped against the correct bounding box,
and may immediately be discarded without further traversal.

Scalability with the number of Instances Apart from un-
structured motion, the main cost of our method results from the
need to recompute the top-level BSP tree. As such, a large number
of instances is expensive, as can be seen in the Terrain scene. Thus,
the number of instances should be minimized in order to achieve
optimal performance. Usually, it is better to use a few, large ob-
jects instead of many small ones. All static triangles in a scene
should best be stored in a single object, instead of using multiple
objects. Still, even the thousand complex instances can be rendered
interactively, and toplevel reconstruction has not yet proven a real
limitation in any practical application. For moderate numbers of
objects, toplevel reconstruction is virtually negligible.

On the other hand, supporting instantiation (i.e. using exactly
the same object multiple times in the same frame) is a valuable fea-
ture of our method, as this allows to render complex environments
very efficiently: With instantiation, memory is required only for

storing the two original trees of the terrain scene and the top-level
BSP, allowing to render even the several million triangles with a
small memory footprint. For OpenGL rendering, all triangles would
still need to be handled individually by the graphics hardware even
when using display lists.

Scalability in a Distributed Environment As can be seen by
the experiments in Section

In the terrain scene, using 16 clients would require to send 676
Kb2 per frame simply for updating the 661 transformation matri-
ces on the clients. Though this data can be sent in a compressed
form, load balancing and client/server communication further adds
to the network bandwidth. Without broadcast/multicast functional-
ity on the network, the server bandwidth increases linearly with the
number of clients. For many clients and lots of updated data, this
creates a bandwidth bottleneck on the server, and severely limits the
scalability (see Table

Total Overhead In order to estimate the total overhead of our
method, we have compared several scenes in both a static and dy-
namic configuration. As there are no static equivalents for the
BART benchmarks, we have taken several of our static test scenes,
and have modified them in a way that they can be rendered in both
a static configuration with all triangles in a single, static BSP tree,
as well as in a dynamic configuration, where triangles are grouped
into different objects that could then be moved dynamically.

For the scenes that are available in both static and dynamic con-
figurations, we find that our method typically creates an overhead
of only about 10 to 20 percent. We believe this overhead to be a
reasonable price for the added flexibility gained through supporting
dynamic, and fully interactive scenes.

7 Conclusions

In this paper, we have presented a simple and practical method
for integrating support for dynamic scenes into an interactive dis-
tributed ray tracing engine. Our method can handle a large variety
of dynamic scenes, including all the BART benchmark scenes (see
Figure

For unstructured motion, our method still incurs a high update
cost per frame, that makes it infeasible for a large number of in-
coherently moving triangles. For a moderate amount of unstruc-
tured motion however (in the order of a few thousand incoherently
moving triangles), it is well applicable and results in frame rates of
several frames per second at video resolution.

For mostly hierarchical animation — as used in almost all of
todays scene graph libraries — our method is highly efficient and
achieves interactive performance even for highly complex models
with hundreds of instances, and with millions of triangles per ob-
ject [Wald et al. 2002a].

With our proposed method, we have been successfully able to
interactively ray trace all the dynamic scenes we have encountered
so far. To our knowledge, this is the first time that it was possible to
interactively ray trace the BART benchmark suite at all. With the
unique advantages of ray tracing — now combined with the flexi-
bility to handle dynamic environments — we believe that realtime
ray tracing is a significant step closer to be a viable alternative to
triangle rasterization for future interactive 3D graphics.

8 Future Work

Currently, the main remaining scalability bottleneck lies in commu-
nicating all scene updates to all clients, making the total bandwidth

2661 instances×16 clients×(4× 4) floats

linear in the number of clients. Thus, future work will investigate to
use network broadcast/multicast to communicate the scene updates.
As almost all of the updated data is the same for every client, this
should effectively remove the network bottleneck.

On the clients, the main bottleneck is the cost for reconstructing
objects under unstructured motion. This could be improved by de-
signing specialized algorithms for cases where motion is spatially
limited in some form, such as for skinning, predefined animations,
or for keyframe-interpolation.

A VRML97 implementation based on our system is already up
and running [Wald et al. 2003], and future work will also include
interfacing to other scenegraph libraries such as OpenInventor. Fi-
nally, it is an obvious next step to integrate our techniques into a
hardware ray tracing architecture such as the SaarCOR architec-
ture [Schmittler et al. 2002].

Acknowledgements

This project has been supported by Intel Corp.

References

APPEL, A. 1968. Some Techniques for Shading Machine Renderings of
Solids.SJCC, 27–45.

BENTHIN, C., WALD , I., AND SLUSALLEK , P. 2003. A Scalable Approach
to Interactive Global Illumination. to be published at Eurographics 2003.

CARR, N. A., HALL , J. D., AND HART, J. C. 2002. The ray engine.
In Proceedings of Graphics Hardware 2002, Eurographics Association,
37–46.

COOK, R., PORTER, T., AND CARPENTER, L. 1984. Distributed Ray
Tracing. InACM SIGGRAPH Computer Graphics, vol. 18, 137–144.

DEMARLE, D. E., PARKER, S., HARTNER, M., GRIBBLE, C., AND

HANSEN, C. 2003. Distributed Interactive Ray Tracing for Large Vol-
ume Visualization. (submitted for publication).

DIETRICH, A., WALD , I., BENTHIN, C., AND SLUSALLEK , P. 2003.
The OpenRT Application Programming Interface – Towards A Common
API for Interactive Ray Tracing. InProceedings of the 2003 OpenSG
Symposium. Available at http://www.openrt.de.

GLASSNER, A. 1988. Spacetime Ray Tracing for Animation.IEEE Com-
puter Graphics and Applications 8, 2, 60–70.

GLASSNER, A. 1989.An Introduction to Raytracing. Academic Press.

GRÖLLER, E., AND PURGATHOFER, W. 1991. Using temporal and spatial
coherence for accelerating the calculation of animation sequences. In
Proceedings of Eurographics ’91, Elsevier Science Publishers, 103–113.

HAINES, E. 1991. Efficiency Improvements for Hierarchy Traversal in Ray
Tracing. InGraphics Gems II, J. Arvo, Ed. Academic Press, 267–272.

HAVRAN , V. 2001.Heuristic Ray Shooting Algorithms. PhD thesis, Czech
Technical University.

INTEL CORP. 2002. Intel Pentium III Streaming SIMD Extensions.
http://developer.intel.com/vtune/cbts/simd.htm.

LEXT, J.,AND AKENINE-MOELLER, T. 2001. Towards Rapid Reconstruc-
tion for Animated Ray Tracing. InEurographics 2001 – Short Presenta-
tions, pp. 311–318.

LEXT, J., ASSARSSON, U., AND MOELLER, T. 2000. BART: A Bench-
mark for Animated Ray Tracing. Tech. rep., Department of Computer
Engineering, Chalmers University of Technology, Goeteborg, Sweden,
May. Available at http://www.ce.chalmers.se/BART/.

MUUSS, M. J. 1995. Towards Real-Time Ray-Tracing of Combinatorial
Solid Geometric Models. InProceedings of BRL-CAD Symposium ’95.

NEIDER, J., DAVIS , T., AND WOO, M. 1993. OpenGL Programming
Guide. Addison-Wesley, Reading, Massachusetts, U.S.A.

PARKER, S., SHIRLEY, P., LIVNAT , Y., HANSEN, C., AND SLOAN , P. P.
1998. Interactive Ray Tracing for Isosurface Rendering. InIEEE Visu-
alization ’98, 233–238.

PARKER, S., SHIRLEY, P., LIVNAT , Y., HANSEN, C., AND SLOAN , P. P.
1999. Interactive Ray Tracing. InProceedings of Interactive 3D Graph-
ics (I3D), 119–126.

PURCELL, T. J., BUCK, I., MARK , W. R., AND HANRAHAN , P. 2002.
Ray Tracing on Programmable Graphics Hardware.ACM Transactions
on Graphics 21, 3, 703–712. (Proceedings of SIGGRAPH 2002).

REINHARD, E., SMITS, B., AND HANSEN, C. 2000. Dynamic Accel-
eration Structures for Interactive Ray Tracing. InProceedings of the
Eurographics Workshop on Rendering, 299–306.

SCHMITTLER, J., WALD , I., AND SLUSALLEK , P. 2002. SaarCOR – A
Hardware Architecture for Ray Tracing. InProceedings of Eurographics
Workshop on Graphics Hardware, 27–36.

WALD , I., BENTHIN, C., WAGNER, M., AND SLUSALLEK , P. 2001. Inter-
active Rendering with Coherent Ray Tracing.Computer Graphics Forum
20, 3, 153–164. (Proceedings of Eurographics 2001).

WALD , I., SLUSALLEK , P., AND BENTHIN, C. 2001. Interactive Dis-
tributed Ray Tracing of Highly Complex Models.Rendering Techniques
2001, 274–285. (Proceedings of the 12th Eurographics Workshop on
Rendering).

WALD , I., BENTHIN, C., AND SLUSALLEK , P. 2002. OpenRT - A Flexible
and Scalable Rendering Engine for Interactive 3D Graphics. Tech. rep.,
Saarland University. http://graphics.cs.uni-sb.de/Publications.

WALD , I., KOLLIG , T., BENTHIN, C., KELLER, A., AND SLUSALLEK ,
P. 2002. Interactive Global Illumination using Fast Ray Tracing.Ren-
dering Techniques 2002, 15–24. (Proceedings of the 13th Eurographics
Workshop on Rendering).

WALD , I., BENTHIN, C., AND SLUSALLEK , P. 2003. Realtime Ray Trac-
ing and its use for Interactive Global Illumination. InEurographics State
of the Art Reports.

WHITTED, T. 1980. An Improved Illumination Model for Shaded Display.
CACM 23, 6 (June), 343–349.

Figure 8: Several example frames from some of our dynamic scenes. From top to bottom: a.) “BART robots” contains roughly 100,000
triangles in 161 moving objects, b.) “BART kitchen”, c.) “BART museum” with unstructured motion of several thousand triangles. Note how
the entire museum reflects in these triangles. d.) The “terrain” scene uses up to 661 instances of 2 trees, would contain several million triangles
without instantiation, and also calculates detailed shadows. e.) The “office” scene in a typical ray tracing configuration, demonstrating that
the method works fully automatically and completely transparently to the shader. f.) Office with interactive global illumination.

	Introduction
	Ray Tracing in Dynamic Environments

	Previous Work
	Our Approach
	Implementation
	OpenRT API
	Object Construction and Traversal
	Fast Handling of Unstructured Motion
	Efficient Traversal
	Fast Top-Level BSP Construction

	Experiments and Results
	BART Kitchen
	BART Robots
	BART Museum
	Outdoor Terrain

	Discussion
	Conclusions
	Future Work

