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Abstract
For almosttwo decadesresearchers havearguedthat ray tracingwill eventuallybecomefasterthan therasteri-
zationtechniquethat completelydominatestodaysgraphicshardware. However, this hasnot happenedyet.Ray
tracing is still exclusivelybeingusedfor off-line renderingof photorealistic imagesand it is commonlybelieved
that ray tracingis simplytoocostlyto everchallenge rasterization-basedalgorithmsfor interactiveuse. However,
there is hardly anyscientificanalysisthatsupportseitherpointof view. In particular there is noevidenceof where
thecrossover pointmightbe, at which ray tracingwouldeventuallybecomefaster, or if such a pointdoesexistat
all.
Thispaperprovidesseveral contributionsto thisdiscussion:Wefirstpresenta highlyoptimizedimplementationof
a ray tracerthat improvesperformanceby more thanan order of magnitudecomparedto currentlyavailableray
tracers. Thenew algorithm makesbetteruseof computationalresourcessuch as cachesand SIMD instructions
andbetterexploits image andobjectspacecoherence. Secondly, weshowthat this software implementationcan
challenge and evenoutperformhigh-endgraphicshardware in interactive renderingperformancefor complex
environments.We alsoprovidean brief overview of thebenefitsof ray tracingover rasterizationalgorithmsand
point out thepotentialof interactiveray tracingbothin hardware andsoftware.

1. Intr oduction

Raytracingis famousfor its ability to generatehigh-quality
imagesbut is alsowell-known for long renderingtimesdue
to its high computationalcost.This cost is dueto the need
to traversea scenewith many rays, intersectingeachwith
the geometricobjects,shadingthe visible surfacesamples,
andfinally sendingtheresultingpixelsto thescreen.Dueto
thecostassociatedwith ray tracingthe techniqueis viewed
almostexclusively asan off-line techniquefor caseswhere
imagequality mattersmorethanrenderingspeed.

On theotherhandray tracingoffersa considerablenum-
berof advantagesoverotherrenderingtechniques.Basicray
casting,i.e.samplingthescenewith individualrays,is afun-
damentaltaskthatis thecoreof alargenumberof algorithms
not only in computergraphics.Otherdisciplinesusethesa-
me approachfor exampleto simulatepropagationof radio
waves11, neutrontransport,anddiffusion33. Anotherexam-
ple is DARPA’s large “Data Intensive Systems”(DIS) pro-
ject 10, which is mainly motivatedby the needto speedup
ray tracingfor computingradarcrosssections.

But evenif weonly concentrateonrenderingapplications,
ray tracing offers a numberof benefitsover rasterization-

Figure1: Interactiveraytracing:Theoffice, conferenceand
SodaHall modelscontainroughly40k,680k,and8 million
triangles,respectively. Using our software ray tracing im-
plementationon a singlePC (Dual Pentium-III, 800 MHz,
256MB)at a resolutionof 5122 pixels,thesescenesrender
at roughly3.6, 3.2, and 1.6 framesper secondusingboth
processors.

basedalgorithmsthat dominatetodaysalgorithmstargeted
at interactive 3D graphics:

OcclusionCulling and Logarithmic Complexity Raytra-
cing enables efficient rendering of complex scenes
throughits built in occlusionculling aswell as its loga-
rithmic complexity in thenumberof sceneprimitives.
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Flexibility Ray tracingallows us to traceindividual or un-
structuredgroupsof rays.Thisprovidesfor efficientcom-
putationof justtherequiredinformation,e.g.for sampling
narrow glossyhighlights,for filling holesin image-based
rendering,andfor importancesamplingof illumination42.

Efficient Shading With ray tracing,samplesareonly sha-
dedafter visibility hasbeendetermined.Given the trend
towardmoreandmorerealisticandcomplex shading,this
avoidsredundantcomputationsfor invisiblegeometry.

Simpler ShaderProgramming Programmingshadersthat
createspeciallighting andappearanceeffectshasbeenat
thecoreof realisticrendering.While writing shaders(e.g.
for the RenderManstandard3) is fairly straightforward,
adoptingtheseshadersto beusedin thepipelinemodelof
rasterizationhasbeenverydifficult 31. Sinceraytracingis
not limited to this pipelinemodelit canmake direct use
of shaders16� 38.

Corr ectnessBy default raytracingcomputesmostlyphysi-
cally correctreflections,refractions,andshading.In ca-
se the correct resultsare not requiredor are too cost-
ly to compute,ray tracing can easily make use of the
sameapproximationsusedto generatetheseeffects for
rasterization-basedapproaches,suchas reflectionor en-
vironmentmaps.This is contraryto rasterization,where
approximationsare the only option and it is difficult to
evencomecloseto realisticeffects.

Parallel Scalability Ray tracingis known for being“tri vi-
ally parallel” aslong asa high enoughbandwidthto the
scenedatabaseis provided.Giventheexponentialgrowth
of availablehardwareresources,raytracingshouldbebet-
terableto utilize it thanrasterization,whichhasbeendif-
ficult to scaleefficiently 12. However, theinitial resources
requiredfor a ray tracingenginearehigherthanthosefor
a rasterizationengine.

Coherence is thekey to efficient rendering.Dueto thelow
coherencebetweenrays in traditional recursive ray tra-
cing implementations,performancehasbeenratherlow.
However, aswe show in this paper, ray tracingstill offers
considerablecoherencethatcanbeexploitedto speedup
renderingto interactive levelsevenon a standardPCs.

It is due to this long list of advantagesthat we belie-
ve ray tracing is an interestingalternative even in the field
of interactive 3D graphics.Thechallengeis to improve the
speedof ray tracingto the extent that it cancompetewith
rasterization-basedalgorithms.It seemsthatsomehardware
supportwill eventuallybeneededto reachthisgoal,however
in thispaperweconcentrateonapuresoftwareimplementa-
tion.

While it is certainlytruethat ray tracinghasa high com-
putationalcost,its low performanceon todayscomputersis
alsostronglyaffectedby thestructureof thebasicalgorithm.
It is well-known thattherecursivesamplingof raytreesneit-
herfits with thepipelineexecutionmodelof modernCPUs
nor with theuseof cachingto hidelow bandwidthandhigh
latency whenaccessingmainmemory28.

Many researchprojectshave addressedthetopic of spee-
ding up ray tracing14� 15 by variousmethodssuchasbetter
accelerationstructures,fasterintersectionalgorithms,paral-
lel computation34� 8, approximatecomputations6, etc.This
researchhasresultedin a largenumberof improvementsto
thebasicalgorithmandis documentedin theray tracingli-
teratureof thepastdecades.

In our implementationwebuild onthispreviouswork and
combineit in a novel andoptimizedway, payingparticular
attentionto caching,pipelining,andSIMD issuesto achieve
more than an order of magnitudeimprovementin ray tra-
cing speedcomparedto otherwell-known ray tracerssuch
asRayshadeor POV-Ray. As a result we areable achieve
interactive frameratesevenonstandardPCs(seeFigure1).

We start this paper with a description of our high-
performanceray tracingengine,discussinggeneraloptimi-
zationstrategies(Section2), a vectorizedintersectionalgo-
rithmusingIntel’sSSESIMD instructions,whichis working
onpacketsof rays(Section3),asimpleandefficientBSPtra-
versalalgorithmsthatalsoworksonraypackets(Section4),
andfinally aSIMD shadingimplementation(Section5).The
performanceof our ray tracingengineis thenevaluatedin
Section6.

Wethenuseourraytracingenginetoshow thatraytracing
is particularlywell suitedfor efficient renderingof complex
models(Section7). We evaluatetheperformanceandscala-
bility of ourraytraceronanumberof modelsrangingfrom a
few ten-thousandup to 8 million triangles.Wealsocompare
oursoftwareray traceragainsttheperformanceof OpenGL-
basedrasterizationhardwaresuchasalow-costNvidiaGPU,
a SGI Octaneworkstation,anda SGI ONYX-3 graphicssu-
percomputer. We show thateventodaytheperformanceof a
softwareray traceron a singlePC canchallengededicated
rasterizationhardware for complex environments.Additio-
nally, we show early resultsof distributedray tracingusing
a few desktopPCsthat outperformsthe graphicshardware
above for complex scenes.

1.1. PreviousWork

Even thoughray-tracingis asold as1968 4� 20� 43� 9, its use
for interactiveapplicationsis relatively new. RecentlyParker
et al. 28� 29� 30 demonstratedthat interactive frameratescould
beachievedwith a full-featuredray traceron a largeshared
memorysupercomputer.

Their implementationoffersall theusualray tracingfea-
tures,includingparametricsurfacesandvolumeobjects,but
is carefully optimized for cacheperformanceand parallel
execution in a non-uniform memory accessenvironment.
They have proven that ray tracingscaleswell in the num-
berof processorsin a sharedmemoryenvironment,andthat
evencomplex scenesof severalhundredthousandprimitives
couldberenderedat almostreal-timeframerates.
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Pharret al. 32 have shown that coherencecanbe exploi-
ted by completelyreorderingthe ray tracing computation.
They wereable to rendersceneswith up to 46 million tri-
angles.Theirapproachactively managesthescenegeometry
andraysthroughpriority queuesinsteadof relyingonsimple
cachingaswe do. However, their systemwasfar from real
time.

Hardwareimplementationsof ray tracingareavailable40,
but are currently limited to acceleratingoff-line-rendering
applications,anddonot targetinteractive framerates.

2. An Optimized Ray Tracing Implementation

The following four sectionsdescribeour implementation
of a highly optimizedray tracing enginethat outperforms
currentlyavailableray tracersby morethananorderof ma-
gnitude(seeSection6).

We startwith an overview of generaloptimizationtech-
niquesandhow they have beenappliedto our ray tracing
engine,suchasreducingcodecomplexity, optimizingcache
usage,reducingmemorybandwidth,and prefetchingdata.
A similar discussionof optimizationissues– althoughon a
higher-level – canalsobefoundin 39. In thefollowing secti-
onswethendiscusstheuseof SIMD instructions,commonly
availableonmicroprocessorstoday, to efficiently implement
the main threecomponentsof a ray tracer:ray intersection
computations,scenetraversal,andshading.

2.1. CodeComplexity

A modernprocessorhasseveral hardware featuressuchas
branchprediction,instructionreordering,speculative execu-
tion, and other techniques17� 18 in order to avoid expensi-
ve pipeline stalls.However, the successof thesehardware
approachesis fairly limited anddependsto a large degree
on thecomplexity of theinput programcode.Therefore,we
prefer simple codethat containsfew conditionals,and or-
ganizeit suchthat it canexecutein tight inner loops.Such
codeis easierto maintainandcanbewell optimizedby the
programmeraswell as by the compiler. Theseoptimizati-
onsbecomemoreandmoreimportantasprocessorpipelines
getlongerandthegapbetweenprocessorspeedandmemory
bandwidthandlatency opensfurther.

For traversing the scene,we use an axis-alignedBSP-
tree23: Its raytraversalalgorithmis shorterandsimplercom-
paredto octrees,boundingvolumehierarchies(BVH), and
grids.Eventhoughmosteasilyformulatedrecursively, it can
betransformedto a compactiterative algorithm21.

We have alsochosento only supporttrianglesasgeome-
tric primitives.As a result,the inner loop thatperformsin-
tersectioncomputationson lists of objectsdoesnot have to
branchto a differentfunctionfor eachtypeof primitive.By
limiting the codeto triangleswe loselittle flexibility asall
surfacegeometrycan be converted.The sameapproachis

beingusedby mostcommercialray tracers(accordingto in-
formationfrom their developers).While thenumberof pri-
mitivesincreases,this is morethancompensatedby thebet-
terperformanceof theray tracingengine.

For shadingwe needthe flexibility to supportarbitrary
shadersandthusallow for dynamicloadingof shaders.Ad-
vancedshadingfeatureslikemulti-texturing,bump-mapping
or reflectionscould be addedwithout changingthe coreof
the ray tracing engine.Flexibility in the shadingstageis
much lessproblematicthan for intersectioncomputations,
asit is only calledoncefor eachshadingray, while we per-
form anaverageof 40-50traversalstepsand5-10intersecti-
on testsperray.

2.2. Caching

Contrary to generalopinion, our careful profiling reveals
that a ray traceris not boundby CPU speed,but is in fact
bandwidth-boundby accessto main memory. Especially
shootingraysincoherently(asdonein many globalillumina-
tion algorithms)resultsin almostrandommemoryaccesses
andbadcacheperformance.On currentPC systems,band-
width to mainmemoryis typically upto 8-10timeslessthan
to primarycaches.Evenmoreimportantly, memorylatency
increasesby similar factorsaswegodown thememoryhier-
archy. Forexample,ourtriangletestis morethan60%slower
if the datahasto be fetchedfrom main memoryinsteadof
beingin the cache.Memory issuesbecomeeven more im-
portantfor BSPtraversal,wheretheratio of computationto
memorybandwidthis lower, thusmakingit moredifficult to
hidelatencies.

Sincedatatransferbetweenmemoryandcacheis always
performedin entirecachelinesof 32bytes,theeffectivecost
whenaccessingmemoryis not directly relatedto the num-
berof bytesread,but thenumberof cacheline transfers.As
ageneralresultweneedto carefullylay outdatasuchthatit
makesbestuseof theavailablecachesanddesignour algo-
rithmssothatwe canefficiently hidelatency by prefetching
data,suchthat it is alreadyavailable in a cachewhen it is
neededfor computations.

Wecarefullyaligndatato cachelines:Thisminimizesthe
additionalbandwidthrequiredto loadtwo cachelinessimply
becausesomedatahappento straddleacacheline boundary.
However thereareoften trade-offs. For instanceour trian-
gle datastructurerequiresabout37 bytes.By paddingit to
48 byteswe trade-off memoryefficiency andcacheline ali-
gnment.

We keepdatatogetherif andonly if it is usedtogether:
E.g.only datanecessaryfor atriangleintersectiontest(plane
equation,etc.) arestoredin our geometrystructures,while
datathatis only necessaryfor shading(suchasvertex colors
and normals,shaderparameters,etc.) is storedseparately.
Becausewe intersecton averageseveral trianglesbeforewe
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find an intersection,we avoid loadingdatathat will not be
used.

Given thehugelatency of accessingmainmemoryit be-
comesnecessaryto load datainto the cachebeforeit will
be usedin computationsandnot fetch it on demand.This
way thememorylatency canbecompletelyhidden.Most of
todaysmicroprocessorsoffer instructionsto explicitly pre-
fetchdatainto certaincaches.However, in orderto usepre-
fetchingeffectively, algorithmsmustbesimpleenoughsuch
that it caneasilybe predictedwhich datawill beneededin
thenearfuture.

2.3. Cachesand Mailboxes

We also separateread-only, e.g. preprocessedtriangle da-
ta, from read-writedata such as mailboxes 15. If a mail-
box would be storedwith the triangledataas in the origi-
nal proposal,anentirecacheline would bemarkedchanged
eventhoughonly asingleintegerhasactuallybeenmodified.
This becomesa hugeproblemin a multi-threadedenviron-
ment,whereby constantlychangingmailboxeseachproces-
sorkeepsinvalidatingcachelinesin all otherprocessors.

Theseproblemscan easily be resolved by employing a
simplehashingmechanism:eachthreadcomputingintersec-
tionshasasmallhashtableof entriesof theform (triangleId,
rayId). A mailbox lookup thensimply consistsof checking
thecorrespondinghashtableentry. Sincea goodscenetra-
versalalgorithmresultsin only a few triangleintersections
perray, thehash-tablecanbekeptsmall.

Similarly we do not needan elaboratehashfunction but
simplemaskingof the triangleid will do. Due to thesmall
amountof memoryusedandthefrequentaccessesto its ent-
ries,thehashtablewill stayin thefirst level cachesmostof
the time. Occasionalredundantintersectionsof objectsdue
to hashcollisionsarefaroutweighedby thevastlyimproved
memory-performance.This mechanismis simpleenoughto
beimplementedby only a few linesof code.

2.4. Coherencethr oughPacketsof Rays

The mostimportantaspectof acceleratingray tracingis to
exploit coherenceasfaraspossible.Ourmainapproachis to
exploit coherenceof primaryandshadow raysby traversing,
intersecting,andshadingpacketsof rays in parallel.Using
this approachwe canreducethe computetime of the algo-
rithm by usingSIMD instructionson multiple raysin paral-
lel, reducememorybandwidthby requestingdataonly once
perpacket,andincreasecacheutilization at thesametime.

2.5. Parallelism thr oughSIMD Extensions

Several modernmicroprocessorarchitecturesoffer SIMD
extensions,which allow to executethe samefloating point
instructionsin parallelon several(typically two to four) da-
ta values,therebyyielding a significantspeedupfor floating

point intensiveapplicationsincluding3D graphics.Suchex-
tensionsalso containinstructionsfor explicit cachemana-
gementlike prefetching.Examplesof suchextensionsare
Intel’s SSE19, AMD’ s 3dNow! 1, andIBM/Motorola’s Al-
tiVec26.

In the following threesectionswe discussin moredetail
how coherentcomputationswith packetsof raysandSIMD
operationscan be usedtogetherto speedup the core of a
raytracer, namelytriangleintersection,raytraversalandsha-
ding.

3. Ray-Triangle Intersection Computation

Optimal ray triangleintersectioncodehaslong beenanac-
tive field of researchin computergraphicsandhasleadto a
largevarietyof algorithms,e.g.Moeller-Trumbore25, Glas-
sner15, Badouel5, Pluecker 13, andmany others24. Before
discussingSIMD implementations,we first describethetri-
angletest usedin our C-codewithout using assembleror
SSEoptimizations.This formsthebasefor our laterdiscus-
sions.

3.1. Optimized Barycentric Coordinate Test

The triangletestusedin our implementationis a modifica-
tion of Badouel’s algorithm5. It first computesthedistance
to the point wherethe ray piercesthe planedefinedby the
triangle,andchecksthatdistancefor validity. Only if thedi-
stancefallswithin theinterval wheretheray is searchingfor
intersections,theactualhit pointH is computedandprojec-
tedinto a 2D-planeperpendicularto a coordinateaxis.

In orderto preventnumericalinstabilities,theplanewith
thelargestangleto thetrianglenormalis chosenfor thepro-
jection.This resultsin threecasesfor the intersectioncom-
putation.Thebarycentriccoordinatesof thehit point H can
thenbecalculatedefficiently in 2D. Basedonthesebarycen-
tric coordinates,it can be decidedwhetherthe ray pierces
thetriangleor not.

For the implementation,we needonly the properlysca-
led2D edgeequationsfor two of thetriangleedges,together
with the planeequationfor the distancecalculation,anda
tagto marktheprojectionaxis.By preprocessingandproper
scalingof theseequations,this informationcanbeexpressed
by 9 floatsplustheprojectionflag.For cachealignmentpur-
poses,we padthat datato a total of 48 bytes.An in-depth
descriptionof theimplementationcanbefoundin 41.

3.2. Evaluating Instruction Level Parallelism

Theimplementationof thebarycentrictriangletestrequires
only few instructionsandoffers almostno potentialfor ex-
ploiting instruction-level parallelism.Optimizing the algo-
rithmsusingtheIntel SSEextensionsresultsin aspeedupof
about20%. It is clearthat this speedupis not sufficient for
interactive ray tracing.
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Bary. Pluecker Bary. speedup
C code SSE SSE4-1

min 78 77 22 3.5
max 148 123 41 3.7

Table 1: Cost(in CPU cycles)for thedifferent intersection
algorithms.41 cyclescorrespondto roughly20 million in-
tersectionspersecondona 800MHzPentium-III.Measured
byusingtheinternalPentium-IIICPUcounters.

As anotheralternative, we alsoevaluateda SIMD imple-
mentationof thePluecker triangletest(see36� 13). Dueto ali-
nearcontrolflow andasomewhathighercomputationalcost,
this triangletestoffersmuchmorepotentialfor instruction-
level parallelism.The SSE implementationis straightfor-
ward and showed good speedupscomparedto a C imple-
mentationof the Pluecker test.However, due to its higher
computationalcostandparticularlyits higherbandwidthre-
quirements,the instruction-parallelPluecker codeis effec-
tively not significantlyfasterthantheoriginal barycentricC
code(seeTable1).

3.3. SIMD Barycentric Coordinate Test

The speedupachieved with the instruction-parallelimple-
mentationsis toosmallto beof significantimpacton rende-
ring time. We thereforewentbackto the alreadyfastbary-
centriccode,anduseddataparallelismby performingfour
ray-triangletestsin parallel.However, this meansto either
intersectoneray with four triangles,or to intersecta packet
of four rayswith a singletriangle.Thelattercaserequiresa
changeto theoverall architectureof theray tracingengine.

Intersectingoneray with four triangleswould requireus
to always have four trianglesavailable for intersectionto
achieve optimal performance.However, voxels of accele-
ration datastructuresshouldcontainonly few triangleson
average(typically 2-3). More importantly, trianglesfall in-
to threedifferentprojectioncaseswith separatecodeeach,
which lowerstheoptionsto usedataparallelismevenmore
andprecludestheuseof thisapproach.

In contrastit is muchsimplerto bundlefour raystogether
andintersectthemwith a singletriangle.However, this ap-
proachrequiresus to always have a bundle of four rays
available together, which requiresa completelynew scene
traversalalgorithm,which wediscussin thenext section.

Thedata-parallelimplementationcorrespondsalmostex-
actly to theoriginal algorithmandis straightforward to im-
plementin SSE.A potentialsourceof overheadis thateven
thoughsomeraysmay have terminatedearly, all four rays
have to beintersectedwith a triangle.Informationon which
of the four rays is still active is kept in a bit-field, which
canbe usedto maskout invalid raysin a conditionalmove
instructionwhenthehit point informationis stored.In prac-

tice we obtain almostperfectparallelismfor primary rays
andto a somewhatlesserdegreefor shadow rays.

In our implementation,theSSEcodefor intersectingfour
rays with a single triangle requires86-163 CPU cycles.
Amortizing this cost over the four rays resultsin only 22
to 41 cyclesper intersection,which correspondsto rough-
ly 20 to 36 million ray-triangleintersectiontestpersecond
on a 800 MHz Pentium-III CPU. The observed speedupis
3.5-3.7(seeTable1), andis closeto themaximumexpected
value.Note that this algorithmcould alsobe usedto acce-
lerateotherray tracing-basedrenderingalgorithmssuchas
memorycoherentray tracing32.

4. BSPTraversal

Evenbeforeacceleratingthetriangletest,traversalof theac-
celerationstructurewastypically 2-3 timesascostlyasray-
triangle intersection.As the SSEtriangle intersectioncode
reducestheintersectioncostby morethana factorof three,
traversalis thelimiting factorin our ray tracingengine.Sin-
ceourSSEintersectionprocedurerequiresusto alwayshave
four raysavailablethis suggestsadataparalleltraversalof a
bundleof at leastfour rays.

A wide variety of ray tracing accelerationschemesha-
vebeendeveloped,suchasoctrees,generalBSP-trees,axis-
alignedBSP-trees,regularandhierarchicalgrids,rayclassi-
fication,boundingvolumehierarchies,andeven hybridsof
severalof thesemethods.See37� 15 for anoverview andfur-
therreferences.Our mainreasonfor usinga BSPtreein our
implementationis the simplicity of the traversalcode:Tra-
versinganodeis basedononly two binarydecisions,onefor
eachchild, which canefficiently bedonefor several raysin
parallelusingSSE.If any ray traversesa child, all rayswill
traverseit in parallel.

This is in contrastto algorithmslike octreesor hierar-
chical grids, whereeachof the raysmight take a different
decisionof which voxel to traversenext. Keepingtrack of
thesestatesis non-trivial andwasjudgedto be too compli-
catedto beimplementedefficiently. BoundingVolumeHier-
archieshave a traversalalgorithmthat comesclosein sim-
plicity to BSPtrees.However, BVHs donot implicitly order
their child nodes,which is anotherreasonfor our choiceof
axis-alignedBSPtrees.

4.1. Traversal Algorithm

Beforedescribingour algorithmfor traversalof four raysin
parallel,we first take a look at the traversalof a singleray,
as presentedin 23: In eachtraversalstep,we maintainthe
current ray segment � near� f ar � , which is thepartof theray
thatactuallyintersectsthecurrentvoxel. This raysegmentis
first initializedto � 0 ����� , thenclippedto theboundingboxof
thescene,andis updatedincrementallyduringtraversal.For
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a.)

+

b.)

+

c.)

+

Figure2: Thethreetraversalcasesin a BSPtree:A rayseg-
mentis completelyin frontof thesplittingplane(a), comple-
tely behindit (b), or intersectsbothsides(c).

eachtraversednode,we calculatethedistanced to thesplit-
ting planedefinedby thatnode,andcomparethatdistanceto
thecurrentraysegment.

If theraysegmentliescompletelyononesideof thesplit-
ting plane( f ar 	 d or d 	 near), weimmediatelyproceedto
the correspondingchild voxel. Otherwise,we traverseboth
childrenin turn,with theraysegmentclippedto therespecti-
ve child voxel. Thisavoidsproblemsfor raysthatareforced
by anotherray from thesamepacket to traverseavoxel they
wouldnototherwisetraverse.For thoseraystheraysegment
will betheemptyinterval.

Thealgorithmfor tracingfour differentraysis essentially
thesame:For eachnode,we useSSEoperationsto compu-
te the four distancesto the splitting planeand to compare
theseto the four respective ray segments,all in parallel.If
all raysrequiretraversalof the samechild, we immediate-
ly proceedto that child without having to changethe ray
segments.Otherwise,we traverseboth children,with each
raysegmentsupdatedto � near� min
 f ar� d ��� for thecloser, re-
spectively �max
 near� d ��� f ar � for thedistantchild.

Whentraversingseveralraysatthesametime,theorderof
traversalcanbeambiguous,sincedifferentraysmight requi-
readifferenttraversalorder. Sincetheorderis basedonly on
the sign of the respective direction,this canhappenonly if
thesignsof thefour directionvectorsdonotmatch,whichis
a rarecaseif we assumetheraysto becoherent.Additional-
ly, it canbeshown thatnotwo rayswith thesameorigin can
requiredifferent traversalorders.This completelyresolves
this problemfor pinholecamerasandpoint light sources.If
raysareallowedto startin differentlocations,a straightfor-
wardsolutionis to only allow rayswith matchingdirection
signsin the samepacket, andtracingthe few specialcases
separately.

4.2. Memory Layout for Better Caching

As mentionedabove,theratioof computationto theamount
of accessedmemoryis very low for scenetraversal.This re-
quiresus to carefully designthe datastructurefor efficient
cachingandprefetching.Memorybandwidthsandcacheuti-

lization have beenimproved with a compact,unified node
layout.For innernodesin a BSPnodewe have to store

 Pointersto the two child nodes.By implicitly storingthe

right child immediatelyaftertheleft child, this canbere-
presentedwith a singlepointer.
 A flag on whetherit is a leaf nodeor the type of inner
node(splitting axis).This requirestwo bits.
 The split coordinate,which is the coordinatewherethe
planeintersectsits perpendicularaxis.

For bestperformancewe useonefloat for thesplit coor-
dinateandsqueezethetwo flag bits into the2 low orderbits
of thepointer, which resultsin 8 bytespernodeor 4 nodes
per cacheline. By aligning the two childrenof a nodeon
half a cacheline we make surethat both childrenare fet-
chedtogethersincethey arelikely to be traversedtogether.
The additionalcomputationsto extract thesetwo bits from
thepointerarenegligible asthetraversalcodeperformsvery
few computationsanyway comparedto the amountof me-
mory it accesses.

For leafnodesthepointeraddressesthelist of objects,and
theotherfieldscanbeusedto storethenumberof objectsin
the list. Using the samepointerfor both nodetypesallows
usto reducememorylatenciesandpipelinestallsby prefet-
ching,asthenext data(eithera nodeor thelist of triangles)
canbe prefetchedbeforeeven processingthe currentnode.
Even thoughprefetchingcanonly be usedwith SSEcache
controloperations,thereducedbandwidthandimprovedca-
cheutilization alsoaffect thepureC implementation.

4.3. Traversal Overhead

Traversingpacketsof raysthroughtheaccelerationstructure
generatessomeoverhead:Even if only a single ray requi-
restraversalof a subtreeor intersectionwith a triangle,the
operationis alwaysperformedon all four rays.Our experi-
mentshave shown that this overheadis relatively small as
longastheraysarecoherent.Table2 shows theoverheadin
additionalBSPnodetraversalsfor differentpacket sizes.

As canbe seenfrom this experiment,overheadis in the
order of a few percentfor 2 � 2 packets of rays,but goes
up for larger packets.On the otherhand,increasingscreen
resolutionalsoincreasescoherencebetweenprimaryrays.

Most important is the fact that the effective memory
bandwidthhasbeenreducedessentiallyby a factorof four
throughthenew SIMD traversalandintersectionalgorithms
astrianglesandBSPnodesneednotbeloadedseparatelyfor
eachray. This effect is particularlyimportantfor ray traver-
salasthecomputationto bandwidthratio in relatively low.

Of courseonecouldoperateonevenlargerpacketsof rays
to enhancetheeffect.However, our resultsshow thatwe are
runningalmostcompletelywithin theprocessorcacheseven
with only four rays.Wehavethereforechosennotto usemo-
re raysper ray packet, asit would additionallyincreasethe
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2 � 2 4 � 4 8 � 8 2562 10242

Shirley 6 1.4% 4.4% 11.8% 5.8% 1.4%
MGF office 2.6% 8.2% 21.6% 10.4% 2.6%
MGF conf. 3.2% 10.6% 28.2% 12.2% 3.2%

Table 2: Overhead(measuredin numberof additionalnode
traversals)of tracingentirepacketsof raysat animagereso-
lution of 10242 in thefirst threecolumns:Asexpected,over-
headincreaseswith scenecomplexity (800, 34k, and 280k
triangles,respectively)and packet size, but is tolerable for
small packet sizes.Thetwo columnson the right showthe
overheadfor 2 � 2 packetsat differentscreenresolutions.

overheaddueto redundanttraversalandintersectioncompu-
tations.

5. SIMD PhongShading

As data-parallelintersectionandtraversalhasshown to be
very effective, the samebenefitsshouldalsoapply for sha-
ding computations.Similar to the traversalandintersection
code,we canshadefour raysin parallel.Sincethe four hit
pointsmayhave differentmaterials,datahasto be rearran-
ged.Althoughthissetupresultsin someoverhead,thefollo-
wingshadingoperationscanbeveryefficiently implemented
in SSE,yielding almostperfectutilizationof theSSEunits.

Light sourcesareprocessedin turn: For eachlight sour-
ce,we first determineits visibility by shootingshadow rays
using the traversal and intersectionalgorithms described
above. If a light sourceis visible from at leastone pixel,
its contribution to all four hit pointsis computedin parallel.
Thiscontribution is thenaddedto thevisiblehit pointsonly,
by maskingout shadowed points.This procedurecomputes
informationthatmaygetdiscardedlaterandthushassome
overhead.However, this happensonly in the casethat the
visibility of a light sourceis differentbetweenthesetof hit
points.For a coherentsetof raysthis happensbut rarely.

Specialcarehasto be taken when shootingthe shadow
rays.Sinceshadow raystypically make up thelargestfracti-
onof all raysin araytracer, shootingthemwith thefastSSE
traversalcodeis desirable.This,however, is only efficientas
longastheraysarecoherent,whichis notautomaticallytrue
for shadow rays,sinceall shadow raysfrom asinglehit point
typically go in very differentdirections.However, coherent
primary rays are also likely to hit similar locationsin the
scene,yielding coherentshadow raysif connectedto oneof
thelight sources.In theworstcase(i.e. if theraysareinco-
herent),performancedegradesto theperformanceachieved
whentracingeachrayon its own.

Implementingtheshadingin SSEoperationsgivesaspee-
dupof 2 to 2.5ascomparedto theC implementationon top
of thespeedupobtainedby thegeneraloptimizationsdiscus-
sedabove.Texturinghasshown to berelatively cheap.Even

scene flat textured

Quake 4.22fps 3.85fps
Terrain 1.05fps 0.96fps

Figure 3: Texturing comesrathercheaply:Evenfor a com-
plex scenewith incoherent texture access,texturing only
slightlyreducestheframerate, renderingevena sceneof one
million trianglesinteractively. Image resolutionis 5122.

Figure4: Framesfromtheaccompanyingvideoshowingthe
entire conferenceroombeingreflectedin thefire extinguis-
her(left).Performanceonlydropsslightlyevenwhena large
fractionof thesceneis reflective. Theofficehasbeenrende-
redwith manyreflectivematerials(window, lamp,mug, and
others) andthreepoint light sources.

anunoptimizedversionhasreducedframeratesby lessthan
10percent,ascanbeseenin Figure3.Thiscostcouldproba-
bly bereducedevenmoredueto a largepotentialfor prefet-
chingandparallelcomputationsthatwecurrentlydonottake
advantageof. As shadingtypically makesupfor lessthan10
percentof total renderingtime,morecomplex shadingope-
rationscould easilybe addedwithout a majorperformance
hit.

6. Performanceof the Ray Tracing Engine

After all thepartsof afull raytracerarenow togetherwecan
evaluatetheoverall performanceof our system(RTRT). We
startby evaluatingtheperformancefor primaryraysasthis
will allow us to comparethe ray tracingalgorithmdirectly
to rasterization-basedalgorithmsthatdonotdirectlysupport
shadows, reflection,andrefractioneffects.

c
�

TheEurographicsAssociationandBlackwell Publishers2001.



Wald, Slusallek,Benthin,andWagner/ InteractiveRenderingwith CoherentRayTracing

Tris Rayshade POV-Ray RTRT

MGF office 40k 29 22.9 2.1
MGF conf. 256k 36.1 29.6 2.3

MGF theater 680k 56.0 57.2 3.6
Library 907k 72.1 50.5 3.4

SodaFloor5 2.5m OOM OOM 2.9
SodaHall 8m OOM OOM 4.5

Table 3: Performancecomparisonof our ray traceragainst
RayshadeandPOV-Ray. All renderingtimesaregivenin mi-
crosecondsperprimary ray includingall renderingoperati-
onsfor thesameview of each sceneat a resolutionof 5122

(OOM = outof memory).

Onasingle800MHz Pentium-III,weachievearendering
performancefrom about200,000to almost1.5 million pri-
maryrayspersecondfor theSSEversionof our algorithm.
If wecomparetheperformanceof thethisversionto ourop-
timizedC codewe seeanoverall speedupbetween1.8 and
2.5. This is a bit lessthanthat for ray-triangleintersection
but is dueto theworseratio of memoryaccessesto compu-
tationsin thetraversalstageandthestrictsequentialtraversal
orderthatdoesnotallow for betterprefetching.

6.1. Comparison to Other Ray Tracers

In order to evaluatethe performanceof our optimizedray
tracingenginewetestedit againstanumberof freelyavaila-
ble ray tracers,includingPOV-Ray 27 andRayshade22. We
have chosenthe setof testscenesso that they spana wide
rangeregardingthe numberof triangleand the overall oc-
clusionwithin thescene.Unfortunately, bothothersystems
failedto rendersomeof themorecomplex testscenesdueto
memorylimitationsevenwith 1GB of mainmemory.

Thenumbersof theperformancecomparisonfor thecase
of primaryraysaregivenin Table3. It demonstratesclearly
that our new ray tracing implementationimproves perfor-
manceconsistentlyby a factorbetween11 and15 (!) com-
paredto both POV-Ray andRayshade.The numbersshow
thatpayingcarefulattentionto cachingandcoherenceissu-
escanhave a tremendouseffect on theoverall performance,
evenfor suchwell-analyzedalgorithmsasray tracing.

The numbersalsoseemto indicatethat the performance
gapwidensslightly for morecomplex scenes,which indica-
te thatthecachingeffect getevenmorepronouncedin these
cases.Our implementationwastestedonamachinewith on-
ly 256MB of mainmemory, while we hadto usea machine
with 1GBof memoryfor theotherray tracers.

Somecommentson theseresultsarenecessary:Rayshade
is usinga uniform grid asan accelerationstructureandwe
had to determinethe bestgrid size for eachsceneby trial
anderror. No suchmanualoptimizationswasnecessaryfor
POV-Rayandour implementation.Also both otherray tra-

cerscouldnot dealwell with largescenesandreportedout
of memoryerrorsfor scenesbeyond1 million triangles.

Of coursePOV-RayandRayshadeoffer considerablymo-
re featuresthanour ray tracerengine.However, mostof the-
sefeaturesareshadingrelatedandcouldeasilybeaddedto
our engineusingdynamicallyloadableshaders.This would
have little effect on theperformanceof thecoreengineun-
lessthosefeaturesareused.Theotherraytracersarealsonot
limited to only usetrianglesto representobjects.However,
we believe this is actuallyanadvantagefor usandis partly
thereasonfor thegoodperformance.Finally, theseotherray
tracersarenotwrittenwith highestoptimizationin mindbut
aremoretargetedtowardsalargefeatureset.Webelievethat
wewill beableto show in thefuturethatthesetwo goalsdo
notcontradicteachother.

6.2. Reflectionand Shadow Rays

Of coursea ray tracingenginewould not be completeif it
couldnot handleshadows, reflection,andrefraction.These
effectsalsochallengeouroverall approachasraycoherence
canbeconsiderablylessfor shadow or evenreflectionrays.
Althoughthehandlingof secondaryraysis notyetfully opti-
mizedin our implementationweweresurprisedby thegood
performanceweobservedevenfor extremecasesof reflecti-
vity.

The accompanying video shows a walkthroughof the
MGF conferencescene,wheremostof the materialhasat
leastaslight contributionby reflectionrays.Eventhedoors,
wall panelswith fixtures,andmetalframesof theseatsgene-
ratereflectionrays,oftenresultingin multiple reflectionsas
clearlyvisible whenzoomingtowardsthefire extinguisher,
which reflectstheentirescene(seeFigure4).

Sphere-like objectssuchas the fire extinguisherarepo-
tentialhot spotsin sceneslike theseasthey cantriggerlarge
numbersof reflectionraysthatsampletheentirevisible en-
vironmentandarelikely to have adverseeffect on caching.
It is interestingto seethat theeffect is hardlynoticeableas
longastheseobjectscoveronly moderatepartsof theimage.
In thiscaseonly afew raysarereflectedalmostrandomlyin-
to theenvironment.Thoserayspotentiallysampletheentire
scenebut our accelerationstructuresuccessfullylimits the
databeing accessedto only a few BSP-cellsand triangles
alongthepathsof thosefew rays.As a resultthe impacton
performanceremainslow.

Performancedegradessignificantlyonly if zoomingin on
a reflective objectsuchthat it fills the field of view. In this
casealmostall visible geometrywill actually be sampled
andcachingwill no longerbeeffective for largescenes.Ho-
wever, this is anunavoidableconsequenceof dealingwith a
working setmuchlarger thanthe cache(our largestscenes
occupy closeto 2GB of memorybut renderfine with 256
MB of main memory).In thosecasesit seemsunavoidable
to useapproximationssuchasa reflectionmap.
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An exampleimagerenderedwith reflectionsandshadows
canalsobe seenon the right in Figure4. Many objectare
reflective andgeneratereflectionsrays.Also threeshadow
raysaresentfor eachintersection.Theperformanceis main-
ly influencedby thenumberof shadow rays.

7. Ray Tracing of ComplexScenes

Thereis astrongtrendtowardsmoreandmorecomplex sce-
nesthat needto be rendered.Many disciplinesneedto vi-
sualizelarge assembliessuchas whole cars,ships,airpla-
nes,power plants,andsimilar structures.It is oftenvery ti-
meconsumingto preprocessthedatain orderto reducethe
complexity to a level manageableby currentrenderingtech-
nology. Thesepreprocessingstepsarenon-trivial andoften
requireconsiderableuserinteraction2. We expectthis trend
to morecomplex modelsto increaseascomputingandme-
mory resourcesmake large assemblieseasierto storeand
handle.

Ray tracingstill needspreprocessingfor thosedatasets,
but thispreprocessingis limited to purespatialorderingand
doesnot involveany complex computationsonthegeometry
itself, aswould for instancegeometricsimplification.Addi-
tionally ray tracinghasocclusionculling built into the al-
gorithmsanddoesnot requirecomplex precomputationof
data,suchasthepotentiallyvisible set(PVS)or similar da-
ta structures2. Consequently, ray tracingis especiallywell
suitedfor largeandcomplex models.

7.1. Comparisonwith RasterizationHardware

We startedthis paperwith the claim madeby researchers
in the past that ray tracing would eventually becomefa-
sterthanrasterizationhardware.However, it wasunclearat
which point thatcrossover would happen,if at all. With the
ray tracing systemdescribedabove we arenow in a posi-
tion to answerthis questions:We have alreadyreachedthe
crossover point andcannow even outperformrasterization
hardwarewith a softwareray tracer– at leastfor complex
scenesandmoderatescreenresolutions.

For this demonstrationwe comparedthe performanceof
our ray tracing implementationwith the renderingperfor-
manceof the OpenGL-basedhardware. In order to get the
highestpossibleperformanceon this hardware we chose
to renderthe sceneswith SGI Performer35, which is well-
known for its highly optimizedrenderingenginethat takes
advantageof most available hardware resourcesincluding
multiprocessingon our multiprocessormachines.We have
usedthedefaultparametersof Performerwhenimportingthe
scenedatavia theNFF formatandwhile rendering.The32-
bit versionof Performerthatwe usedwasunableto handle
the largestscene(SodaHall) becauseit ranout of memory.
Weusedsimpleconstantshadingin all cases.

Therasterizationmeasurementsof our experimentswere

Scene Tris Octane Onyx PC RTRT

MGF office 40k >24 > 36 12.7 1.8
MGF conf. 256k >5 > 10 5.4 1.6

MGF theater 680k 0.4 6-12 1.5 1.1
Library 907k 1.5 4 1.6 1.1

SodaFloor 2.5m 0.5 1.5 0.6 1.5
SodaHall 8m OOM OOM OOM 0.8

Table 4: OpenGLrenderingperformancein framesper se-
condwith SGI Performeron threedifferent graphicshard-
ware platformscompared with our software ray tracerat a
resolutionof 5122 pixelson a dual processorPC. Theray
tracerusesonlya singleprocessor, whileSGIPerformerac-
tually usesall available.

conductedon threedifferentmachinesin orderto get a re-
presentativesampleof todayshardwareperformance.Onour
PCs(dualPentium-III,800MHz, 256MB) weusedaNvidia
GeForceII GTS graphicscardrunningunderLinux. Addi-
tionally, we usedan SGI Octane(300 MHz R12k, 4 GB)
with therecentlyintroducedV8 graphicssubsystemaswell
asabrandnew SGIOnyx-3 graphicssupercomputer(8x 400
MHz R12k, 8 GB) with InfiniteReality3graphicsandfour
rastermanagers.Theresultsareareshown in Table4.

The resultsshow clearly that the software ray traceral-
readyoutperformthebesthardwarerasterizationenginesfor
sceneswith a complexity of roughly1 million trianglesand
moreandis alreadycompetitive for scenesof abouthalf the
size.The ray tracing numberscan be scaledeasily by ad-
ding moreprocessors— just enablingthe secondCPU on
ourmachinesdoublesourRTRT numbersgivenin Table4.

In orderto visualizethescalingbehavior of rasterization
and ray tracing-basedrenderers,we usedthe large terrain
sceneshown in Figure3 andsubsampledthegeometry. The
resultsareshown in Figure5. Even thoughSGI Performer
usesa numberof techniquesto reducerenderingtimes,we
seethe typical linearscalingof rasterization.Evenocclusi-
on culling would not help in this kind of scene.Raytracing
benefitsfrom thefactthateachray visits roughlya constant
numberof trianglesbut needsto traverseaBSPtreewith lo-
garithmicallyincreasingdepth.Raytracingalsosubsamples
thegeometryfor thehigherresolutionterrainasthenumber
of pixels is lessthanthenumberof triangles.

For sceneswith low complexity, rasterizationhardware,
benefitsfrom the large initial costper ray for traversaland
intersectionrequiredby a ray tracer. However, we believe
that for thesecasesthereis still room for performanceim-
provements.The large initial costper ray alsofavors raste-
rizationfor higherimageresolutions.However, thiseffect is
linear in the numberof pixels andcanbe compensatedby
addingmoreprocessors,for instancein form of adistributed
ray tracer.

c
�

TheEurographicsAssociationandBlackwell Publishers2001.



Wald, Slusallek,Benthin,andWagner/ InteractiveRenderingwith CoherentRayTracing

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

-200 0 200 400 600 800 1000 1200

s
e
c
 
p
e
r
 
f
r
a
m
e
 

(thousand triangles)

onyx
nvidia

octane
rtrt,512^2

Figure 5: This figure showsthe logarithmic scalingof ray
tracingwith input complexity. We alsoshowthe linear sca-
ling of differentrasterizationhardware. Thesceneswereob-
tainedby subsamplingthe high resolutionterrain from Fi-
gure 3 with more than onemillion triangles.Other scenes
showevenbetterresultsdueto more occlusion.

7.2. Distrib uted Ray Tracing

Sofar we have concentratedon simpleray tracingwith pri-
mary raysonly thatcanbecomparedto rasterization-based
hardware.As weaddspecialray tracingeffectssuchassha-
dows, reflections,or even global illumination, we arecon-
frontedwith theneedto traceanincreasingnumberof rays.
However, ray tracing is well-known for its almostperfect
scalabilityin a distributedenvironment.

Our small distributedray tracingsystemusesthe typical
master/slaveapproachwith socket-basedcommunication.A
simpleloadbalancingschemebasedonawork queueonthe
masterkeepstheclient processorsbusyalmostall thetime.

Table5 show thepreliminaryperformanceof our engine
whenconnectingto five dualPentium-IIIdesktopPCs(800
and866MHz, 256to 768MB of memory).In particularwe
geta decentrenderingspeedwith theoffice sceneevenwith
reflectionsandshadows from threepoint light sources.

The machinesare connectedwith a switched100-Mbit
Ethernetandrenderingspeedis mainly limited by theband-
width to the computerusedfor display. The uncompres-
sedpixel streameasilysaturatesthe availablelinks andwe
arecurrentlyexperimentingwith higherbandwidthnetwork
componentsto eliminateor at leastreducethecurrentbott-
leneck.However, the bandwidthrequirementsareonly de-
pendenton thesizeof theoutputimageandarenot affected
aswe proceedto morecostly renderingoperations,suchas
morelight sources,moreexpensiveshaders,supersampling,
andglobalillumination.

7.3. Description of AccompanyingVideo

Thissubmissionalsocontainsavideo.Eachvideoclip is re-
cordedlive from the screenof oneof our PCs.Ray tracing
is computedat a resolutionof 640 by 480 pixels. The ray
tracingcomputationsareperformedonfivePCs,whichsend

Scene Tris framerate

Library 907k 7.7fps
MGF Theater 680k 7.3fps
MGF office 40k 2.4fps(*)

Table 5: Interactiverenderingperformanceof a distributed
ray tracing implementationbasedon theoptimizedray tra-
cing core. All imagesare rendered at a resolutionof 5122

onfivePCs(Pentium-III,800MHzmachines).(*) Werender
primary raysonly, exceptfor theofficewith containsreflec-
tionsandshadowsfromthreepoint light sources.

the computedpixels to the display host acrossa switched
100Mbit Ethernet.Higherresolutionscouldnotberendered
dueto network bandwidthrestrictions.Note thatsomesyn-
chronizationartifactsarevisible, which aredueto theearly
stageof developmentof this distributed renderingsystem.
Thecurrentframerateis alwaysdisplayedin thetitle areaof
thedisplaywindow.

Thevideostartswith a simplemodelof a Quake monster
renderedwith andwithouttexturesto show thattexturinghas
hardlyany effectontherenderingperformance.In particular
texturingperformanceis independentof scenecomplexity as
eachpixel is only shadedonce.All scenesarerenderedwith
only a single primary ray for eachpixel unlessotherwise
mentioned.

Thenext clip showstherenderingof atexturedterrainsce-
necontaining1 million triangles.Thecamerastartszoomed
in on a few triangleswith thepointeroutlining oneof them.
We thenzoomout until almostall trianglesarevisible. The
renderingperformancechangesonly slightly in theprocess.

We thenshow a walkthroughof the MGF theatrescene
containing200k triangles.The illumination hasbeenpre-
computedwith stochasticradiosityusingtheRenderParksy-
stemby BekaertandSuykens7.

Thenext clip actuallyshows two differentmodelsof the
fully furnished,sevenfloor SodaHall building from Berke-
ley. Theinitial view is thenon-illuminatedmodelconsisting
of 1.5million triangles.As we enterthebuilding we switch
to a illuminatedmodelsubdivided by the radiositycompu-
tation into roughly8 million triangles.Note that the model
containscoplanartrianglesof which someare black. This
createsartifactsthatareunrelatedto therenderingalgorithm.

The next two clips show theMGF office andconference
scenewith reflectionby almostall materials.Pleasenotethe
reflectionin thedoors,rails alongthewalls, andtheir fixtu-
res.Multiple reflectioncanfor instancebeseenin thelower
part of the desklamp in the office clip. Performancestays
fairly highexceptwhendisplayingthereflective lampin full
screen.

Thefinal clip shows theoffice sceneagain,this time with
reflectionsandshadows from threepoint light sources.The
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performancedropsaccordingto the additionalnumbersof
raysthatneedto betraced.

8. Conclusions

Thecomputationalcostof ray tracingis known to be loga-
rithmic in termsof thenumberof triangles.In contrast,the
renderingcostusinga rasterizationpipelineappearslinear
in the numberof triangleseven with optimizationssuchas
view frustumculling. Therefore,a break-even point in mo-
delcomplexity wasexpected,abovewhichraytracingwould
be preferredover rasterizationhardware.The main goal of
this paperwasto investigatewherethis break-even point is
located,comparingan efficient softwareimplementationof
theray tracingalgorithmon a commodityPCwith state-of-
the-artrasterizationhardware.

Our ray tracingimplementationexploits a numberof no-
vel techniques,describedabove, that make it morethanan
order of magnitudefasterthan other ray tracerswe could
comparewith:

 Carefulattentionis paidto exploiting coherencein theray

tracingalgorithmsin orderto achieve goodcachingbeha-
vior suchthat the algorithmscan essentiallyrun within
the first andsecondlevel datacachesof the processors.
Ourexperimentsindicatethatthis resultsin aspeed-upof
roughlyhalf anorderof magnitude.
 Several strategies have been investigatedfor utilizing
SIMD instructionsfound on commodity processors.In
our implementation,we usedIntel’s SSEextensionson a
Pentium-IIIprocessor. A significantspeed-upcanonly be
obtainedby re-orderingthe ray tracingalgorithmso that
raysaretracedin packetsof four coherentrays.This re-
ducesthememorybandwidthby afactorof four andgives
anadditionalspeed-upfactorof about2.

We have comparedrenderingspeedsof this ray tracing
implementationon a 800MHz Pentium-III basedLinux PC
with thoseobtainedusing a high-endcommercialvisuali-
zationpackage(SGI Performer)on threedifferentgraphics
accelerators(NVidia GeForceII GTS,SGI Octanewith V8
graphicsboard,SGIOnyx-3 with InfiniteReality3 graphics).
Our experimentson a varietyof models(seeTable4), sug-
gestthat the break-even point is reachedfor modelsof the
orderof magnitudeof 1 million trianglesat a screenresolu-
tion of 512 � 512.For largermodels,ray tracingwins.

Both ray tracingand the Z-buffer algorithmhave a cost
componentlinearin thenumberof screenpixelsaswell ho-
wever. In hardwareimplementationsof the rasterizationpi-
peline,thiscostcomponentis almostnegligible. Thecostof
ray tracingis directly proportionalto the numberof pixels.
Thebreak-evenpoint thereforeshiftstowardsmorecomplex
models,proportionalto screenresolution.Moreover, more
sophisticatedocclusionculling algorithmscurrently being
developedmayreducethecostof a rasterizationpipelineto
sub-linear, similar to ray-tracing.

On theotherhand,by payingcarefulattentionto caching
issues,ray tracingis not limited by memorybandwidthbut
runswithin theprocessorcachesandperformancescalesli-
nearlywith theimageresolution,thespeedof theprocessor,
andwith thenumberof processors.

Wetestedour implementationalsoon4-CPUsystemwith
no performancedegradationandestimatea gradualbottlen-
eck due to limited memorybandwidthonly at around6-8
CPUswith currentPC technology. Thememorybandwidth
of currentPCsystemsis ratherpoor andmeasuresat about
200 MB per secondto main memory. A hardware imple-
mentationwould allow for memorybandwidthin theorder
of several GB per second,enoughto keepa large number
of parallelray tracingunitsbusy. This would allow for real-
time visualizationfor a very wide rangeof models.We are
actively investigatingsuitablehardwarearchitecturesfor this
approach.

We concludethat,unlike widely believed,theray tracing
algorithmis a viablealternative for a Z-buffer basedrasteri-
zationpipelineespeciallywhenit comesto visualizinglarge
polygonaldatasets.
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