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ABSTRACT

Neurobiologists are collecting large amounts of electron
microscopy image data to gain a better understanding of neu-
ron organization in the central nervous system. Image anal-
ysis plays an important role in extracting the connectivity
present in these images; however, due to the large size of
these datasets, manual analysis is essentially impractical. Au-
tomated analysis, however, is challenging because of the diffi-
culty in reliably segmenting individual neurons in 3D. In this
paper, we describe an automatic method for finding neurons
in sequences of 2D sections. The proposed method formu-
lates the problem of finding paths through sets of sections as
an optimal path computation, which applies a cost function
to the identification of a cell from one section to the next and
solves this optimization problem using Dijkstra’s algorithm.
This basic formulation allows us to account for variability or
inconsistencies between sections and to prioritize cells based
on the evidence of their connectivity.

Index Terms— Tracking, serial-section TEM, normal-
ized correlation, watersheds, Dijkstra’s algorithm.

1. INTRODUCTION

Models of neural circuits are central to the study of the cen-
tral nervous system. However, relatively little is known about
the connectivities of neurons and state-of-the-art models are
insufficiently informed by anatomical ground truth. Serial-
section microscopy can provide the data necessary for the
reconstruction of large-scale neural circuits. However, the
complexity and vast size of these images make human in-
terpretation an extremely labor intensive task. A number of
researchers have undertaken extensive electron microscopy
imaging projects in order to create detailed maps of neuronal
structure [1] and connectivity [2]. Research on the recon-
struction of neural circuit diagrams has focused on the worm
species c-elegans which has 302 neurons and is one of the
simplest organisms with a nervous system. This manual re-
construction effort is estimated to have taken more than a
decade. Newer imaging techniques are providing larger vol-
umes from more complex organisms, further complicating the
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Fig. 1. Example of images from a serial-section TEM. (a) La-
beled neurons in section 1 and (b) labeled neurons on section
28, identified through the optimal path finding algorithm.

circuit reconstruction process. Hence, there is a need for the
automated analysis methods for these large data sets.

The strategy for reconstructing neural circuitry is to iden-
tify neurons and the synapses that connect them in micro-
scopic imagery. Serial-section transmission electron mi-
croscopy (TEM) is a desirable modality for achieving this
because it offers a relatively wide field of view—sufficient
to identify large sets of cells that may wander significantly
as they progress through the sections—and has an in-plane
resolution that is sufficient for identifying synapses. In cre-
ating images from TEM, sections are cut from a specimen
and suspended so that an electron beam can pass through it
creating a projection. The projection can be captured on a
piece of film and scanned or captured directly as a digital
image (Fig. 1). A trade-off occurs with respect to the section
thickness. Thinner sections are preferable from an image
analysis point of view because structures are identified easier
due to less averaging. However, from an acquisition point
of view, thinner sections are harder to handle and impose a
limit on the area of the section that can be cut. To gain an
understanding of neural connectivity patterns, scientists need
to study sections with relatively large areas such as 200µm
x 200µm. Thus, there is a need for algorithms that are suf-
ficiently robust to trace neurons through a stack of hundreds
or thousands of sections under conditions where the in-plane
resolution, contrast, noise, etc., are not ideal.

The extremely anisotropic resolution of TEM, 2-5 nm in-



plane compared to 90 nm out-of-plane, poses two image pro-
cessing challenges. First, the cell membranes can range from
solid, dark curves for neurons that run approximately perpen-
dicular to the cutting-plane to grazed, grey swaths for others
which run more obliquely and suffer more from the averag-
ing effect. Consequently, segmentations of neurons in these
2D images, although generally good, are not entirely reliable.
Second, due to the large physical separation between sections,
shapes and positions of neurons can change significantly be-
tween adjacent sections. In order to successfully track neu-
rons across a large number of sections, it is important to use
an approach that can account for these challenges. In the pro-
posed approach, images are first segmented in 2D followed by
a novel correspondence identification approach that identifies
correspondences between neurons across the third dimension.

In related work, Jain et al. uses supervised learning to
classify pixels as membrane or non-membrane in specimens
prepared with an extracellular stain [3]. This stain shows only
the cell boundaries and results in simpler structures. How-
ever, neural circuit reconstruction requires the detection of
synapses, which is only possible when intracellular structures
are also observed. Our neuron segmentation method works
in the presence of intracellular structures as demonstrated in
Section 3. Tracking methods that use active contour based
tracking models [4, 5] work well for identifying features that
contain small amounts of variation between sections and in-
dividual structures with little variability. Probabilistic frame-
works [6, 7] use tracking in the more traditional sense to
identify features in time lapse light microscopy. The prob-
lems we address in this paper is also different from cell track-
ing in light microscopy Properties of light microscopy images
are very different than TEM images; therefore these methods
do not apply to the problem discussed in this paper. Further-
more, neither approach completely addresses the problem of
identifying and tracking data with high amounts of variation
of movement and texture between sections.

2. METHODS

2.1. 2D Segmentation

The first step of the algorithm is to segment the individual
neurons in the 2D images. First, a contrast limited adaptive
histogram equalization (CLAHE) is applied to the raw data,
improving the contrast of the neuron membranes and fixing
the contrast variation. Furthermore, many of the cell mem-
branes appear to contain gaps. To address this problem, a
directional diffusion filter is applied [8] to enhance the neu-
ron boundary. To isolate the membranes, the image is thresh-
olded and a connected component filter is applied to remove
components that are small in size and do not correspond to
neuron membranes. This results in a binary image of the neu-
ron membranes, which we then blur with a Gaussian filter to
obtain a fuzzy edge map. The final step applies a watershed
segmentation using the implementation from ITK [9]. A per-

fect 2D segmentation is not possible because of the problems
with grazed membranes, as described in Section 1, and the
presence of intracellular structures.

2.2. Optimal-Path-Finding Algorithm

We will formulate the problem of identifying correspon-
dences between segmented 2D regions across the third di-
mension as a optimal path finding problem in a graph struc-
ture. We begin with the construction and processing of the
graph in the basic algorithm, and then describe the exten-
sions to the graph that make the algorithm significantly more
robust in Section 2.3. Let Rs,i be the i’th region from the
2D segmentation in section s. Next we construct a directed
graph containing a set of nodes that correspond to the set of
segmented regions in section s. The set of directed edges on
the graph is between all nodes in adjacent sections. That is,

E =


N,Qs,Qs+1⋃

s,i,j=1

Es,i,j

 where Es,i,j = [Rs,i, Rs+1,j ],

(1)
N is the total number of sections, and Qs denotes the number
of segmented regions in section s.

We define a path through the graph as a sequence of nodes
connected by edges. We are interested in paths that span all
sections P = (R1,i1 , R2,i2 , . . . , RN,iN

), and we define the
cost of the path as the sum of the costs of the edges

K(P ) =
N−1∑
s=0

W (Es,is,is+1), (2)

where i1, . . . iN is the set of indices that the path follows
on each section; because of the directed nature of the graph,
paths cannot cross back to previous sections.

For biologists, the identification of neurons between sec-
tions relies on texture, shape, and proximity. These properties
motivated our construction of the edge cost as the negative
of the log-product of the correlation between regions and a
Gaussian penalty on in-section displacement. That is:

W (Es,i,j) = − log [C(Rs,i, Rs+1,j) (3)
exp

(
−D(Rs,i, Rs+1,j)2σ−2

)]
,

where C is the maximum value of the normalized cross-
correlation of the two segmented regions, andD(Rs,i, Rs+1,j)
is the distance between region centers in the x−y coordinates
of the section. For computational efficiency, we compute the
normalized cross-correlation in the Fourier domain. The log
is used so that the formulation is equivalent to a product
through the section (there is a probabilistic interpretation),
and the system avoids seeking out very good connections at
the expense of very bad ones—i.e. cell identity is lost if a con-
nection between sections is not sufficiently strong. Finally,
the log-product , which can be seen as an edge connection
weight, is negated to create a cost function.



Finally, Dijkstra’s algorithm, which finds a minimum dis-
tance path in a directed graph is used to find the optimal con-
nectivity for each neuron (region) in the first section. If we run
Dijkstra’s with a zero cost for all the regions in the first sec-
tion, we find the region with the best cost on the last section,
and trace the solution backwards, we have the optimal path
(best cell) for the whole data set. Of course in this solution,
cells can share paths, which is not normally what we want
for this particular application. To account for this, we enforce
uniqueness iteratively, in a greedy optimization strategy. That
is, we solve for the best path, remove those nodes from the
graph, and repeat, producing a sequence of cells associated
with a decreasing degree of evidence for connectivity.

2.3. Extension to Robust Optimal-Path-Finding

The algorithm described in Section 2.2 is moderately effec-
tive, but fails in cases where the 2D segmentation fails or
the quality of a section is particularly bad. We can make the
method more robust with two additional features. The first is
to account for over-segmentation by inserting extra nodes in
the graph that correspond to merged regions. Let

Ms,i = {j : Rs,j is adjacent to Rs,i}, (4)

represent the indices of all regions that are neighbors of Rs,i

(i.e. they contain adjacent pixels). Next, we define a subset of
Ms,i corresponding to those neighbors of Rs,i whose union
with Rs,i will be considered as additional nodes in the graph:

M̃s,i = {j ∈Ms.i and g(Rs,i, Rs,j) > T}. (5)

The function g(Rs,i, Rs,j) measures the boundary strength
between any two adjacent regions in the same section. Be-
cause boundaries are dark, we use the negative of the maxi-
mum value of the intensities along the boundary that separates
the two regions. If the edge strength is less than a threshold
T , these regions become part of M̃s,i in (5). We define the set
of new regions in a section as

{Rs,i ∪Rs,j}j∈M̃s,i
, (6)

and augment the set of nodes, edges, and edge costs accord-
ingly. The inclusion of these merged regions as well as their
individual constituent regions provides our approach the flex-
ibility to correct 2D over-segmentation problems, but does not
address 2D under-segmentation problems.

Another other important extension to the basic framework
is to allow paths to skip sections, in order to avoid poor quality
sections (which happens regularly) or to overcome a segmen-
tation problem that is not corrected by the merging strategy.
To do this we add edges to the graph that allow connections
up to M sections away:

E =


M,N,Qs,Qs+k⋃

k,s,i,j=1

Es,i,j,k

 where Es,i,j,k = [Rs,i, Rs+k,j ]

(7)

In this paper, we use M = 2, thereby allowing connections
between sections separated by at most a single intermediate
section. This choice gives Dijkstra’s algorithm a choice in
calculating the best path in the case where an immediately
adjacent section does not have the best match. We must be
careful in how we construct the costs for these edges, because
we want to avoid cost functions that favor skipping sections
when there is sufficient data to support a path through a sec-
tion. We adjust the cost function penalizing the correlation
term to account for the missed sections (factor of αk−1 mul-
tiplying correlation), but allow for more displacement (factor
of k−2 multiplying displacement). Generally we have

W (Es,i,j,k) = − log
[
αk−1C(Rs,i, Rs+k,j) (8)

exp
(
−D(Rs,i, Rs+k,j)2(kσ)−2

)]
,

where α is the typical correlation between a cell in two adja-
cent sections, which was found empirically to be about 0.6.

3. RESULTS

This method for tracking neurons through sections was ap-
plied to a mouse retinal dataset with a resolution of 2.5 x 2.5
x 90 nm. As a preprocessing step, the dataset is registered and
assembled using displacement histograms [10], which accu-
rately aligns all the individual sections from the microscope
and creates a volume. Each section is segmented in 2D, us-
ing the method described in 2.1, to create a series of regions
through the volume. Fig. 2 shows regions identified as the
best path for 4 neurons across 28 sections using the proposed
method. The top right image illustrates the hand segmented
regions. The following sections are segmented automatically
and identified using the optimal-path-finding algorithm. The
labels for these regions are found to be correct when com-
pared to data labeled by an expert after the system parame-
ters were set. The quality and the consistency of the neuron
boundaries can change dramatically between sections. For
example, in Fig. 2-Section 3, the lower right portion of the
boundary for region C is not captured and therefore under-
segmented. As a result, the edge cost from regionC in section
2 to region C in section 4 is much smaller when compared to
the edge costs from region C in section 2 to any regions in
section 3. This causes section 3 to be skipped for region C. It
is possible this neuron is splitting, as indicated by the abrupt
change in region shape. This is an important area of future
research, since splitting indicates the beginning of other neu-
rons. Also in section 3, region D is over-segmented. As a
consequence, the algorithm prefers a merged alternative re-
gion over all of the single regions directly obtained from the
2D segmentation. The boundaries between the two regions
that were merged are shown as dashed lines in Fig. 2. Region
A in section 14 and region C in section 28 are also merged in
Fig. 2. Over the 28 sections, regions A, B, C and D skipped
a total of 9 sections and performed 6 merges.

This paper demonstrates an effective method for tracking
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Fig. 2. Sequence of images showing the result of tracking
4 neurons over 28 sections. The left column is the CLAHE
enhanced raw data and the right column is the corresponding
segmentation for the tracked neurons. Sections 1, 2, 3, 4, 14,
and 28 are shown from top to bottom. Letters correspond to
matching regions between sections.

neurons through serial section TEM images. This is a signif-
icant step in bridging the gap between image acquisition and
the reconstruction of neural circuitry. Individual sections are
segmented into sets of regions, a connecting graph is built in
3D, and a version of Dijkstra’s algorithm to used to calculate a
unique path through the graph. To account for over and under-
segmented regions, this method can merge regions within a
section or skip regions between sections. Failure to correctly
identify a sequence of neurons can still occur when an accu-
rate segmentation of a neuron is missing for more than one
section or more than two regions need to be merged for the
best possible correlation. Both of these cases will most likely
result in diverting the optimal path to a different path, with a
higher correlation. Future work will address these problems,
including region splitting, and focus on tracking larger num-
bers of neurons over longer sequences of sections.
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