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Abstract

The original Robust BVH Traversal paper [Ize 2013] had a mistake in the numerical error
derivation for the fused multiply-add (FMA) optimized ray-bounding box intersection. Instead
of having only 2 ulps of error, this method can actually have extremely large amounts of
error. The non-FMA intersection method, as used in the rest of the paper, and for which the
measurements in the paper are based on, is still correct at only 2 ulps of error.

1. Introduction

The BVH traversal requires the evaluation of the intersection distance between the ray
and axis-aligned planes. For dimension d, this ray-plane intersection distance, t, can
be given by

t = (b.d− rayorigin.d)
1

raydir.d

Floating point arithmetic will produce an intersection distance t̃ which could be
different from the true distance, t. The derivation for the numerical error present in t̃
for the non-FMA version is correctly shown in [Ize 2013] to be

|t̃− t| ≤ 3
ulp(t)

2
,

which corresponds to the floating point arithmetic introducing at most 2 ulps of error.
The FMA optimized version precomputes the following two terms:

X =−rayorigin
1

raydir
(1)

Y =
1

raydir
, (2)

which allows us to rewrite our computation as a FMA operation:

t = FMA(b,Y,X) = bY +X

However, the resulting numerical analysis for this FMA version was incorrect.
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2. Mistake

The underlying mistake in the proof is that we were not differentiating between the
floating point error introduced by each operation and assumed that each operation
added exactly ε of error. This can cause problems since it then allows one to cancel
error terms when two ε terms are subtracted from each other or prevents two truly
equal error terms from being subtracted. This manifested itself when we went from
Equation 3 to Equation 4

t̃ = b
1

raydir
(1+ ε)2− rayorigin

1
raydir

(1+ ε)3 (3)

t̃ ≤
(

b
1

raydir
− rayorigin

1
raydir

)
(1+ ε)3 (4)

by increasing the error of

b
1

raydir
(1+ ε)2

by 1+ ε. This would have been fine for the purposes of placing an upper bound on the
total error had the ε been unique. Unfortunately, it was not, and so instead of adding
error, we ended up subtracting out error from the

rayorigin
1

raydir
(1+ ε)3

term. If we reformulate the original proof using a more rigorous notation where
arithmetic operation i adds a δi of error, and |δi|< ε, then we get the following correct
proof which shows that the error is in fact not bounded to just 2 ulps.

3. Correct proof

t̃ =
(

b
(

1
raydir

(1+δ1)

)
+

(
−rayorigin

(
1

raydir
(1+δ1)

))
(1+δ2)

)
(1+δ3) (5)

t̃ =
b

raydir
(1+δ1)(1+δ3)−

rayorigin

raydir
(1+δ1)(1+δ2)(1+δ3) (6)

t̃ = (
b

raydir
−

rayorigin

raydir
)(1+δ1)(1+δ3)−

rayorigin

raydir
(1+δ1)(1+δ3)δ2 (7)

t̃ = t(1+δ1)(1+δ3)−
rayorigin

raydir
(1+δ1)(1+δ3)δ2 (8)

t̃ = t(1+δ1 +δ3 +δ1δ3)−
rayorigin

raydir
(δ2 +δ1δ2 +δ2δ3 +δ1δ2δ3) (9)

where as before, |δ|< ε and give the relative errors introduced by each floating point
operation. Dropping the higher order δ terms gives us

t̃ = t + t(δ1 +δ3)−
rayorigin

raydir
δ2. (10)
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float b = 1/6.99999;

float orig = 1/7.00000;

float dir = 1e-6;

double b_d = b, orig_d = orig, dir_d = dir;

double t_ref = (b_d - orig_d) * (1 / dir_d);

float t_f = (b - orig) * (1 / dir);

float X = -orig * (1/dir);

float Y = (1/dir);

float t_fma = FMA(b, y, X); // b*Y + X;

printf("double(reference)=%.15g, float=%.15g, FMA=%.9g\n",

t_ref, t_f, t_fma);

// outputs: double(reference)=0.193715096009103,

// float =0.19371509552002, FMA=0.18670845

}

Listing 1. Proof by example that the FMA version is susceptible to large amounts of error.

The error is thus
t̃− t = t(δ1 +δ3)−

rayorigin

raydir
δ2, (11)

and can be bounded as

|t̃− t| ≤ |tδ1|+ |tδ3|+
∣∣∣∣rayorigin

raydir
δ2

∣∣∣∣ (12)

|t̃− t| ≤ 2ε|t|+
∣∣∣∣rayorigin

raydir

∣∣∣∣ε (13)

The
∣∣∣ rayorigin

raydir

∣∣∣ε term can contribute significant amounts of error if it is larger than

ulp(t) = 2ε|t|. A simple way to cause this to happen is to make |t| small and
∣∣∣ rayorigin

raydir

∣∣∣
large. This occurs when rayorigin and b are very close together, rayorigin has large
magnitude, and raydir is small. Listing 1 gives an example of this where the non-FMA
32-bit floating point version has no ulps of error (at 32-bit precision), while the FMA
version has 470,208 ulps of error. For this reason, the FMA optimization should be
avoided when accuracy is important.
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