
Journal of Computer Graphics Techniques
Robust BVH Ray Traversal — FMA correction

Vol. 0, No. 0, 2015
http://jcgt.org

Robust BVH Ray Traversal — FMA Correction

Thiago Ize
Solid Angle

Abstract

The original Robust BVH Traversal paper [Ize 2013] had a mistake in the numerical error
derivation for the fused multiply-add (FMA) optimized ray-bounding box intersection. Instead
of having only 2 ulps of error, this method can actually have extremely large amounts of
error. The non-FMA intersection method, as used in the rest of the paper, and for which the
measurements in the paper are based on, is still correct at only 2 ulps of error.

1. Introduction

The BVH traversal requires the evaluation of the intersection distance between the ray
and axis-aligned planes. For dimension d, this ray-plane intersection distance, t, can
be given by

t = (b.d− rayorigin.d)
1

raydir.d

Floating point arithmetic will produce an intersection distance t̃ which could be
different from the true distance, t. The derivation for the numerical error present in t̃
for the non-FMA version is correctly shown in [Ize 2013] to be

|t̃− t| ≤ 3
ulp(t)

2
,

which corresponds to the floating point arithmetic introducing at most 2 ulps of error.
The FMA optimized version precomputes the following two terms:

X =−rayorigin
1

raydir
(1)

Y =
1

raydir
, (2)

which allows us to rewrite our computation as a FMA operation:

t = FMA(b,Y,X) = bY +X

However, the resulting numerical analysis for this FMA version was incorrect.

0

http://jcgt.org

Journal of Computer Graphics Techniques
Robust BVH Ray Traversal — FMA correction

Vol. 0, No. 0, 2015
http://jcgt.org

2. Mistake

The underlying mistake in the proof is that we were not differentiating between the
floating point error introduced by each operation and assumed that each operation
added exactly ε of error. This can cause problems since it then allows one to cancel
error terms when two ε terms are subtracted from each other or prevents two truly
equal error terms from being subtracted. This manifested itself when we went from
Equation 3 to Equation 4

t̃ = b
1

raydir
(1+ ε)2− rayorigin

1
raydir

(1+ ε)3 (3)

t̃ ≤
(

b
1

raydir
− rayorigin

1
raydir

)
(1+ ε)3 (4)

by increasing the error of

b
1

raydir
(1+ ε)2

by 1+ ε. This would have been fine for the purposes of placing an upper bound on the
total error had the ε been unique. Unfortunately, it was not, and so instead of adding
error, we ended up subtracting out error from the

rayorigin
1

raydir
(1+ ε)3

term. If we reformulate the original proof using a more rigorous notation where
arithmetic operation i adds a δi of error, and |δi|< ε, then we get the following correct
proof which shows that the error is in fact not bounded to just 2 ulps.

3. Correct proof

t̃ =
(

b
(

1
raydir

(1+δ1)

)
+

(
−rayorigin

(
1

raydir
(1+δ1)

))
(1+δ2)

)
(1+δ3) (5)

t̃ =
b

raydir
(1+δ1)(1+δ3)−

rayorigin

raydir
(1+δ1)(1+δ2)(1+δ3) (6)

t̃ = (
b

raydir
−

rayorigin

raydir
)(1+δ1)(1+δ3)−

rayorigin

raydir
(1+δ1)(1+δ3)δ2 (7)

t̃ = t(1+δ1)(1+δ3)−
rayorigin

raydir
(1+δ1)(1+δ3)δ2 (8)

t̃ = t(1+δ1 +δ3 +δ1δ3)−
rayorigin

raydir
(δ2 +δ1δ2 +δ2δ3 +δ1δ2δ3) (9)

where as before, |δ|< ε and give the relative errors introduced by each floating point
operation. Dropping the higher order δ terms gives us

t̃ = t + t(δ1 +δ3)−
rayorigin

raydir
δ2. (10)

1

http://jcgt.org

Journal of Computer Graphics Techniques
Robust BVH Ray Traversal — FMA correction

Vol. 0, No. 0, 2015
http://jcgt.org

float b = 1/6.99999;

float orig = 1/7.00000;

float dir = 1e-6;

double b_d = b, orig_d = orig, dir_d = dir;

double t_ref = (b_d - orig_d) * (1 / dir_d);

float t_f = (b - orig) * (1 / dir);

float X = -orig * (1/dir);

float Y = (1/dir);

float t_fma = FMA(b, y, X); // b*Y + X;

printf("double(reference)=%.15g, float=%.15g, FMA=%.9g\n",

t_ref, t_f, t_fma);

// outputs: double(reference)=0.193715096009103,

// float =0.19371509552002, FMA=0.18670845

}

Listing 1. Proof by example that the FMA version is susceptible to large amounts of error.

The error is thus
t̃− t = t(δ1 +δ3)−

rayorigin

raydir
δ2, (11)

and can be bounded as

|t̃− t| ≤ |tδ1|+ |tδ3|+
∣∣∣∣rayorigin

raydir
δ2

∣∣∣∣ (12)

|t̃− t| ≤ 2ε|t|+
∣∣∣∣rayorigin

raydir

∣∣∣∣ε (13)

The
∣∣∣ rayorigin

raydir

∣∣∣ε term can contribute significant amounts of error if it is larger than

ulp(t) = 2ε|t|. A simple way to cause this to happen is to make |t| small and
∣∣∣ rayorigin

raydir

∣∣∣
large. This occurs when rayorigin and b are very close together, rayorigin has large
magnitude, and raydir is small. Listing 1 gives an example of this where the non-FMA
32-bit floating point version has no ulps of error (at 32-bit precision), while the FMA
version has 470,208 ulps of error. For this reason, the FMA optimization should be
avoided when accuracy is important.

Acknowledgements

Sean Barrett pointed out that the original FMA error analysis was incorrect.

References

IZE, T. 2013. Robust BVH ray traversal. Journal of Computer Graphics Techniques (JCGT) 2,
2 (July), 12–27. 0

2

http://jcgt.org

Journal of Computer Graphics Techniques
Robust BVH Ray Traversal — FMA correction

Vol. 0, No. 0, 2015
http://jcgt.org

Thiago Ize, Robust BVH Ray Traversal — FMA correction, Journal of Computer Graphics
Techniques (JCGT), vol. 0, no. 0, 0–0, 2015
????

Received: 2014-10-24
Recommended: pending review Corresponding Editor:
Published: pending review Editor-in-Chief: Morgan McGuire

c© 2015 Thiago Ize (the Authors).
The Authors provide this document (the Work) under the Creative Commons CC BY-ND 3.0
license available online at http://creativecommons.org/licenses/by-nd/3.0/. The Authors further
grant permission reuse of images and text from the first page of the Work, provided that the
reuse is for the purpose of promoting and/or summarizing the Work in scholarly venues and
that any reuse is accompanied by a scientific citation to the Work.

3

http://jcgt.org
http://creativecommons.org/licenses/by-nd/3.0/

