
Grid Creation Strategies for Efficient Ray Tracing
Thiago Ize

SCI Institute, University of Utah
Intel Corp

Peter Shirley
School of Computing, University of Utah

Steven G. Parker
SCI Institute, University of Utah

ABSTRACT

Both theoretical analysis and practical experience have shown that
when ray tracing a well-behaved model with N geometric primi-
tives, the lowest ray tracing times using a grid acceleration struc-
ture occurs when the grid has O(N) cells. This paper extends the
theoretical analysis in two ways and then experimentally verifies
that analysis for several geometric models. The first extension is
to examine how model characteristics influence the choice of the
number of cells in a grid, with models made of long thin primitives
being of particular interest. For such models, the lowest trace times
come when O(N1.5) cells are used, but may not always be practi-
cal due to the super-linear memory usage. The second extension
is to nested grids where a grid cell may itself contain another grid.
For the case of scattered data such as exploding particles, nesting
is not helpful. For the case of tesselated manifolds with compact
triangles, O(N0.6) cells at top level is optimal if only one level of
nesting is allowed. For d levels of nesting, O(N3/(3+2d)) is optimal
for the top level. For long thin primitives, O(N) cells at the top
level is optimal when one level of nesting is allowed, but this again
comes at the cost of super-linear memory usage.

1 INTRODUCTION

Acceleration structures are used in ray tracing to improve the time
needed to compute ray-scene intersections at the expense of in-
creased preprocessing time [1]. Popular methods include hierar-
chical spatial subdivision (e.g., octrees and k-d trees), hierarchical
object subdivision (e.g. bounding volume hierarchies), and uniform
spatial subdivision often called “grids”. All of these methods can
be mixed in the form of “meta-hierarchies” such as bounding vol-
ume hierarchies with grids or k-d trees in their leaves [9]. There is
currently no agreement on what acceleration structure is best [12],
and it is likely that the answer varies depending upon the details of
the model.

In this paper we examine some properties of the grid acceleration
structure [2, 6], as well the parameters that should be used when
using nested grid structures [8, 10]. We examine different build
strategies that are implied by whether a model is manifold-like, and
whether a model is made mainly of long-skinny triangles. Our ap-
proach is to use theory with simplifying assumptions, and to then
experimentally test whether these assumptions prevent the theoret-
ical results from applying in practice. We take our inspiration from
the fact that an analysis on uniformly random rays and infinitesimal
points in 3D (Figure 1, left) yields useful grid construction guide-
lines despite our straightforward analysis. We extend such simple
analysis to long-skinny primitives that we approximate with lines
and to models whose primitives lie along surfaces (Figure 1).

The guidelines for grid construction we suggest are:

• for scattered data composed of N compact primitives, a single
level grid with O(N) grid cells has an asymptotically optimal
tracing time of O(N1/3);

• for scattered data composed of N long skinny primitives, a
single level grid with O(N3/2) grid cells has an asymptotically
optimal trace time of O(N1/2);

• for manifold-like models composed of N compact primitives,
a two-level grid can reduce the time complexity of tracing to
O(N1/5) if O(N3/5) grid cells are used for the top level;

• for manifold-like models composed of N compact primitives
and d levels, O(N3/(2d+1)) grid cells should be used for
the top level, resulting in tracing asymptotic complexity of
O(N1/(2d+1));

• for manifold-like models composed of long-skinny triangles,
a two level grid should use O(N) cells in the first level grid
and results in a tracing complexity of O(N1/3).

We believe that all but the first two observations are new. Cleary
and Wyvill have a more complicated analysis for the first two ob-
servations that makes fewer simplyfing assumptions [2].

Previously, recursive grid dimensions were choosen such that
each level subgrid would always create O(N) cells, where N is the
number of primitives in that specific subgrid [8]. This results in
only O(N1/3) time complexity, instead of the O(N1/(2d+1)) pre-
sented here. We were not able to discover any preexisting theory
that helped guide in the choosing of each parameter value, which
made choosing the correct parameters challenging, especially since
they could vary substantially with N and the subgrid level. For
instance, a two level grid would often see an order of magnitude
difference in parameter values between the two levels. Our strategy
not only can give better performance, it is also much easier to use
since only one parameter needs to be adjusted and this parameter
does not vary with the scene.

2 CLASSIC RESULTS FOR ONE-LEVEL GRIDS

In this section we review the derivation of choosing the optimal grid
resolution for simplified conditions. Details of this derivation can
be found in classic works [2, 4, 8]. We then discuss how well the
results of this simple analysis apply to several geometric models.

2.1 Theoretical analysis
The terms and symbols we use are summarized in Table 1. We now
summarize the classic analysis for one-level grids. We begin with
several simplifying assumptions:

• the N primitives are all points (infinitely small);

• all rays hit the root box from the outside, and all are equally
likely;

• the root box is a cube;

• each atomic function time can be treated as a constant;

• mathematical operations (as opposed to memory effects etc.)
dominate performance;

• the grid has m3 = M cells, and M can be treated as a continu-
ous number so discrete math idiosyncrasies can be avoided.

arbitrary points arbitrary lines points on curve lines on curve

Figure 1: 2D versions of the scene types analyzed.

symbol meaning
N number of geometric primitives
M number of grid cells
Mi number of grid cells at level i (i = 1 is the top)
m number of grid cells in one dimension: m = 3

√
M

mi the cube root of Mi
k a grid has km2 occupied cells
T average time to trace a single random ray

Tsetup time to do initial intersection with
scene bounding box and setup traversal

Tstep time for ray to advance from cell to its neighbor
Tintersection ray/primitive intersection time

Table 1: Symbols used in the paper

Geometric probability (or the closely related integral geometry)
shows that exactly m cells on average are hit by a ray. Regardless
of the distribution of the points, an average of N/m3 points occupy
a single cell, so a ray tests (and always misses) an average of N/m2

infinitesimal points on its way through the grid. The average time
T for a single ray to compute the fact that it misses all points is:

T = Tsetup +mTstep +
N
m2 Tintersection (1)

By treating m as a continuous number we can take a derivative and
minimize T :

dT
dm

= Tstep−
2N
m3 Tintersection (2)

Which when set to zero implies that T is minimized when:

m = 3

√
N

2Tintersection

Tstep
(3)

2.2 Empirical test of analysis
The simplicity of these assumptions is cause for concern, but un-
fortunately the analysis is much more involved when these assump-
tions are relaxed [2, 4, 8, 13]. However, Equation 3 does seem to
apply to at least some real models, and that happy fact is the in-
spiration for the simplified analyses we make later in this paper.
We deviate from the results given by our theory by using grid cells
that are as close to a cube as possible (to allow for non-cubical grid
shapes), which in turn leads to the grid containing different numbers
of divisions per dimension, as explained in [11]. Since m no longer
represents the number of divisions, we use the computed value of
M instead of m. The resulting value for M (from cubing the m in
Equation 3) is:

M = N
2Tintersection

Tstep
(4)

The models in particular where the assumptions underlying the
simple analysis are not too damaging are scanned models composed

model N empirical M theoretical M penalty
bunny 948 29172 7584 4%

69451 645028 555608 2%
buddha 15536 132848 124288 1%

1087716 4873932 8701728 3%
conference 282664 1121514 2261312 5%

Table 2: The performance of M = 8N for several models. Penalty
is the percentage of extra time used by choosing the theoretical M
versus the empirically determined optimal M.

of relatively small triangles. In Figure 2 we have fit runtimes on
several models to Equation 1 and have found the empirical behavior
to be quite close to the theory with the caveat that the coefficients
are slightly different for each model. The key ratio for optimiza-
tion of runtime, Tintersection/Tstep, is on average 4 for the models we
have tested. This ratio and Equation 4 imply M = 8N. The relative
performance of this M and the empirically determined optimal M
for several models is shown in Table 2. As can be seen, for such
scanned models, we only sacrifice a few percentage points in run-
time by using our theoretical M for every model. Even the 282K
triangle conference room that is even further from our assumptions
closely follows our theory.

 0

 0.5

 1

 1.5

 2

 2.5

 0 50 100 150 200 250 300 350

ti
m

e(
s)

m

dragon

874K tri Stanford Dragon
203k tri Stanford Dragon

11k tri Stanford Dragon

 0

 0.5

 1

 1.5

 2

 2.5

 0 50 100 150 200 250 300 350

ti
m

e(
s)

m

cylinder

196 tri cylinder
3996 tri cylinder

19996 tri cylinder

Figure 2: The fitted cost runtimes (Equations 1 and 5) match very
closely with the actual runtimes.

3 LONG-SKINNY TRIANGLES AND ONE-LEVEL GRIDS

If the model is made up of long skinny objects (as they would be in
a tesselated cylinder) then each object will be added to more than
O(1) cells so the basic assumptions of the previous section do not
apply. In practice, long skinny objects get cut into more and more
effective objects as more grid cells are added, so the benefits of
grids are diminished. Rather than using points to approximate small
objects as in the last section, we use line segment to approximate
long thin objects.

3.1 Theoretical analysis
In the same spirit of simplified analysis, we can assume each long-
skinny object is actually a line segment spanning the entire model.
This means as m increases, so does the total number of effective
primitives in the model. Each line will intersect O(m) cells. If all
lines are equally likely each will intersect an average of m cells.
This changes Equation 1 to have an extra factor of m in the numer-
ator of the last term:

T = Tsetup +mTstep +
N
m

Tintersection (5)

and the resulting derivative:

dT
dM

= Tstep−
N
m2 Tintersection (6)

Which when set to zero implies that T is minimized when:

m =

√
N

Tintersection

Tstep
(7)

and the total number of grid cells:

M =
(

N
Tintersection

Tstep

)1.5
(8)

Unfortunately this implies memory use of O(N1.5) but that suggests
a tradeoff between runtime and memory utilization that could be
made by the user. Again if we assume the ratio in the equation is 4,
then we have M = 8N1.5.

3.2 Empirical test of analysis
We have observed parts of models that have long skinny triangles.
These are typically tesselated parts that themselves are long and
skinny. To mimic such situations, we have used a tesselated cylin-
der. The cylinder consists of very long skinny triangles that span
the entire length, with a triangle fan making up the caps. Figure 6
shows the 196 triangle version of the cylinder we used for testing.

Our theory suggests that M = 8N1.5, and using that we get good
results for all of our reasonably sized tests as shown in table 3. For
the extremely large 19996 triangle cylinder, using 8 is noticeably
inferior and 2.3 works best. However, since it is unlikely a O(N1.5)
space-complexity algorithm would be used for a model with that
many skinny triangles, for practical scenes using 8 as the constant
will work very well.

model N empirical M theoretical M penalty
cylinder 196 16875 21952 0%

3996 768337 2020822 3%
19996 6591676 22620629 10%

Table 3: The performance of M = 8N1.5 for a tesellated cylinder.
Penalty is the percentage of extra time used by choosing the the-
oretical M versus the emprically determined optimal M.

arbitrary points points on curve

Figure 3: In scattered data most or all cells need to be refined, de-
feating the purpose. In a suface (curve in 2D) there are cells (shaded)
that need not be refined.

Figure 4: Two different ways to refine a cell.

Compared to using the M = 8N metric that produces near-
optimal single level grids for most models, using M = 8N1.5 as
suggested by our theory produces near-optimal grids that are 1.25×
faster and 14× larger for the 196 triangle cylinder, 1.7× faster and
63× larger for the 3996 triangle cylinder, and 2× faster and 141×
larger for the 19996 triangle cylinder.

4 MULTI-LEVEL GRIDS AND POINTS ON SURFACES

For scattered data having hierarchical grids does little good because
most or all cells will be refined, while for points on surfaces there
is more potential (Figure 3). There are a variety of ways to sup-
port a multi-level grid. Two simple options in 2D are shown in
Figure 4. These two options trade-off geometric compactness for
sharing setup costs between levels. For our analysis we adopt the
method where the whole new cell is a grid as the analysis is easy
due to predictable surface area of sub-grids. In implementation we
adopt the geometrically compact method as in our experience it is
usually faster, and it is simpler from a software engineering stand-
point as black-box software can be used: a grid cell can simply
point to an abstract object that happens to be another grid. In ad-
dition to the two options above there are other methods that use a
single high resolution grid and use some method of skipping the
empty spaces, such as proximity clouds [3] and macro-regions [5].
We do not try to analyse these alternatives.

4.1 Theoretical analysis for 2-level grids
When a surface sweeps through a grid it leaves many cells empty.
For example, a single axis-aligned plane hits exactly one “sheet”
of cells and thus occupies m2

1 of the m3
1 cells. A cube composed

of six squares will occupy about 6m2
1 cells. We assume that for a

given model, there will be some constant k such that the number of
occupied cells is km2

1. The rest of the m3
1 cells are empty and would

not be refined into subgrids.
A key assumption to make the analysis more tractable is that

the points in occupied cells are evenly divided between those cells.
Thus each of the occupied cells has N/(km2

1) points. This assump-
tion is usually never realistic, but we hope that as in the single level

grid analysis a simplified case that does not discard objects will still
yield useful guidance.

Since we assume the occupied cells have the same number of
points, each occupied cell is divided into m3

2 level-2 cells. Since the
probability of intersecting a point is 0, a ray will pass through the
entire grid, touching on the order of m1 level-1 cells, and since the
fraction of level-1 cells with a subgrid is k/m1, the average number
of subgrids hit by a ray is k. Within a subgrid the analysis from
Section 2 applies. Since each subgrid contains N/(km2

1) points, the
average number of points in one of the cells in a level-2 grid is
N/(km2

1m3
2). For recursive grids, the setup time must be done each

time a grid or subgrid is entered. Thus the average time is:

T = Tsetup +m1Tstep + k

(
Tsetup +m2Tstep +

N
km2

1m2
2

Tintersection

)
(9)

If we take partial derivatives, we get

∂T
∂m1

= Tstep−
2N

m3
1m2

2
Tintersection (10)

and
∂T
∂m2

= kTstep−
2N

m2
1m3

2
Tintersection (11)

Setting those both to zero and solving for m1 yields:

m1 = 5

√
N

2k2Tintersection

Tstep
(12)

Thus the optimal choice for the number of cells in the top level
grid is:

M1 =
(

N
2k2Tintersection

Tstep

)0.6

(13)

The formula for M2 differs only in constants, and ends up being
the same answer as in Section 2 once you account for the fact that
there are N/(km2

1) points total in the subgrid. This intuitively makes
sense since we want to build an optimal single level grid for the
points in the subgrid. Note that if you did the above build on scat-
tered small points (k = m1), you would get O(N6/5) memory use
and O(N2/5) time, both of which are not ideal. The type of model
matters.

4.2 Empirical tests for 2-level grids
We first build a grid using the M1 cells given from Equation 13.
In each occupied cell we build an optimal single level grid with the
number of cells for that subgrid determined by Equation 4, where N
in this case corresponds to the number of primitives in that subgrid.
We use the same values of Tintersection and Tstep as in Section 2. For
k we found that setting it to 1 seemed to give the best results. This is
likely due to our assumptions with using points, such as a ray going
all the way through the grid and not hitting any objects, not carrying
over completely when using primitives. This gives us M1 = (8N).6
and M2 = 8N2, where N2 is the number of triangles in the subgrid
being created.

Using just the parameters already obtained for the single level
grids (the ratio of Tintersection to Tstep) and setting k = 1, we are ex-
tremely successful in finding near-optimal 2-levels grids. In table 4
we see that for both tesselation extremes of the buddha and bunny
models, we are within 2% of the optimal time and the number of
cells used appears linear. More surprisingly, even the conference
room is handled by our method extremely well.

Figure 5 shows how varying the number of cells used for each
level affects render performance. Since we use m1 = (8N)1/5 and

m2 = (8N2)1/3, this corresponds to the point (81/5,81/3) = (1.5,2)
in the plots, which is usually very close to the optimal point.

Compared to an optimal single ray grid, we get close to a
2× speedup in rendering time for the buddha model and a 2.4×
speedup for the conference room when we use the two level grid
suggested by our theory.

empirical theoretical
model N total cells total cells penalty
bunny 948 36016 17315 1%

69451 1863727 747518 2%
buddha 15536 132848 215579 1%

1087716 7308615 10350245 0%
conference 282664 5194622 2832557 1%

Table 4: The performance of M1 = (8N)3/5 and M2 = 8N2 for several
models. Penalty is the percentage of extra time used by choosing the
theoretical M1 versus the empirically determined optimal M1.

4.3 Theoretical analysis for multi-level grids
Applying the logic as above, we define k1 to be the occupancy con-
stant for the first level grid, and k2 for the second. Thus for a three
level grid, the cost is:

T = Tsetup +m1Tstep + k1(Tsetup +m2Tstep)

+ k1k2

(
Tsetup +m3Tstep +

N
k1k2m2

1m2
2m2

3
Tintersection

)
(14)

Optimizing this shows that m1 = O(7
√

N), and m2 = O(5
√

N/m2
1).

More precisely,

M1 =
(

2Nk4
1k2

2
Tintersection

Tstep

) 3
7

. (15)

This suggests the general rule that for L levels in a grid, the optimal
subdivision for the top level is:

M = O
(

N
3

2L+1

)
. (16)

This formula can be repeatedly applied for the number of objects
in each subgrid. For example, for two levels, we would use M1 =
O(N3/5) and then M2 would be linear in the number of objects in
that particular subgrid.

4.4 Two Level Grids and long-skinny triangles
As with one level grids, long, skinny objects deviate from the anal-
ysis above because they occupy a number of cells that depend on
m. As before, if the primitives are on a surface, it is possible that
two-level grids can improve runtime. The terms change slightly but
the same basic techniques apply, yielding:

M1 = kN
Tintersection

Tstep
(17)

and M2, which is identical to M in Section 3. The associated space
is:

space = O(N
5
3) (18)

Figure 5 shows that our theory once again predicts to a very high
accuracy what the optimal grid resolutions are. Compared to using
the 2-level grid formula for regular triangles, we get a 1.6× and a
1.2× rendering speed increase for the 1996 and respectively, 196
triangle cylinders.

0

1

2

3

4

5

10

15

20

25

>25

p
er

ce
n
t

er
ro

r

bunny 69451 tri

 0.5 1 1.5 2 2.5 3 3.5 4

m1/(N1
1/5

)

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

m
2
/(

N
2
1
/3

)

0

1

2

3

4

5

10

15

20

25

>25

p
er

ce
n
t

er
ro

r

bunny 948 tri

 0.5 1 1.5 2 2.5 3 3.5 4

m1/(N1
1/5

)

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

m
2
/(

N
2
1
/3

)

0

1

2

3

4

5

10

15

20

25

>25

p
er

ce
n
t

er
ro

r

conference room 282k tri

 0.5 1 1.5 2 2.5 3 3.5 4

m1/(N1
1/5

)

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

m
2
/(

N
2
1
/3

)

0

1

2

3

4

5

10

15

20

25

>25

p
er

ce
n
t

er
ro

r

buddha - 1087716 tri

 0.5 1 1.5 2 2.5 3 3.5 4

m1/(N1
1/5

)

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

m
2
/(

N
2
1
/3

)

0

1

2

3

4

5

10

15

20

25

>25

p
er

ce
n
t

er
ro

r

buddha - 15536 tri

 0.5 1 1.5 2 2.5 3 3.5 4

m1/(N1
1/5

)

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

m
2
/(

N
2
1
/3

)

0

1

2

3

4

5

10

15

20

25

>25

p
er

ce
n
t

er
ro

r

cylinder - 196 tri

 0.5 1 1.5 2 2.5 3 3.5 4

m1/(N1
1/3

)

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

m
2
/(

N
2
1
/2

)

0

1

2

3

4

5

10

15

20

25

>25

p
er

ce
n
t

er
ro

r

cylinder - 1996 tri

 0.5 1 1.5 2 2.5 3 3.5 4

m1/(N1
1/3

)

 0.5
 1

 1.5
 2

 2.5
 3

 3.5
 4

m
2
/(

N
2
1
/2

)

Figure 5: Percent error in rendering times found through an exhaus-
tive search across the 2D parameter space for creating 2-level grids.
Moving across the x-axis changes m1 and the y-axis corresponds to
m2. Our theory predicts the point (1.6,2) for the cylinders and (1.5,2)
for the other models as being optimal.

5 CONCLUSION AND DISCUSSION

Clearly our analysis makes many assumptions, some of them pos-
sibly unrealistic. But it does highlight two important things:

1. For well-behaved models, using nested grids can lower time
complexity below O(3

√
N), but this comes at the cost of in-

creased constant overhead, so the number of levels depends
both on the model and on the setup cost of entering a grid.
Models with more primitives, or multi-level grid implemen-
tations with low setup costs, such as with macro cells, should
be able to take advantage of more levels.

2. Models with long skinny triangles can use grids for sub-linear
time, but only if super-linear memory is used. If linear mem-
ory is used, then the intersection time is linear but with a re-
duced time constant.

The first observation above gives some explanation as to why grids
can sometimes be competitive with tree-based techniques despite
their worse time complexity. The difference between N1/5 and
logN requires fairly large N or large constants to become obvious.

The second observation illustrates how difficult long-skinny
polygons are for ray tracing in general. In fact, kd-trees and axis-
aligned BVHs experience even more severe difficulties with such
models [12]. It also points out that simplifying tesselated models

Figure 6: Four of the models we use in our tests. Depicted here
are the 196 triangle cylinder used for modeling long skinny triangle
scenes, the 282K triangle conference room, the 1M triangle Happy
Buddha statue, and the 69K triangle Stanford Bunny.

for ray tracing is problematic—in areas of high curvature along one
tangent axis and low along the other, simplified models will have
long skinny triangles that will effectively be re-tesselated by the
grid. That all suggests oriented acceleration structures should be
investigated more thoroughly.

While we don’t recommend using the optimal M for large N, for
small N the super-linear storage cost can be better justified. Further-
more, these results can be used in picking a middle ground where
performance is close to optimal, but storage use is still reasonable.
This is important because many architectural or CAD-like scenes
contain parts made up of long skinny triangles. In a multi-level grid
it is likely that some subgrids would consist of mainly long skinny
triangles where our results could be used.

Using mailboxing with long skinny triangles will not allow us to
use O(N) grid cells since mailboxing only prevents redundant inter-
section tests from occurring; however our problem is not redundant
intersections, but intersecting a ray against a very large number of
triangles that exist in a single cell.

Our results for determining the optimal grid dimensions for sin-
gle and multi-level grids are very good for all the models we tested,
which is especially surprising when we look at the simplifications
we had to make. For instance, assuming the primitives are points
and so have zero probability of being hit by a ray is clearly false.
This could have an impact on our results since we assume a ray
will always traverse through the grid and through k subgrids, when
in reality, for a manifold-like object the ray will on average hit a
primitive (and thus stop traversing) after only traversing through a
fraction of the grid and will usually only need to enter one or two
subgrids. This would suggest that the cost to trace a ray can be,
on average, significantly lower. On the other hand, since rays are
hitting primitives, our assumption that the number of primitive in-
tersections is N/m2, which converges to 0 in the limit, is too low
since at least one primitive must be hit, which raises the total cost.
Finally, even just changing the camera location can affect the op-
timal grid resolution. In the end we expect that most of these dif-
ferences are just folded into our constants, average each other out,
are insignificant, or in the case of k, become 1 and disappear. Since
other unknown terms are being folded into the constants we use, this

means that our constants no longer specifically represent what they
started as. This means that plugging in the actual time to intersect
a triangle into Tintersection would likely lead to an incorrect solution
and so these parameters should be experimentally determined.

While our theory is corroborated very well by our experiments,
it is not perfect. Interestingly enough, while experimenting with
single level grids we empirically found that using M = O(N7/9) for
manifold-like models with compact triangles and M = O(N4/3) for
manifold-like models with long skinny triangles produced essen-
tially perfect results for choosing M. We hypothesize that these are
actually the correct formulas to use when dealing with real primi-
tives and not points and lines. Using these results for single level
grids or the bottom level of a grid might produce even better results
both in time and space costs, especially when N becomes extremely
large. Proving this hypothesis would be interesting future work.

In this paper we use an unoptimized single ray grid even though a
faster grid traversal scheme exists that makes use of SIMD instruc-
tions and ray coherence [11]. We do so for two reasons. First, our
analysis is based on recursive grids for which more interesting re-
sults can be proven, such as the storage complexity staying linear as
the number of levels increases. Wald et al.’s coherent grid traversal
algorithm, on the other hand, used macro cells that do not exhibit
linear storage complexity. Secondly, a single ray recursive grid is
more robust than a coherent grid traverser and for scenes with in-
coherent rays will perform better (the coherent grid traverser would
need to revert to single ray) and so the analysis still applies. Com-
bining our results with a coherent grid traversal algorithm could
produce some interesting results.

Build times have now become very important in interactive ray
tracing [12]. We show that grids with compact triangles take linear
space, which means building a recursive grid can be done in lin-
ear time. While not previously mentioned in our paper, our current
build times are an order of magnitude slower than those reported
by Ize et al. [7]. In addition to our build being unoptimized, it is
also slower because they report rebuild time, meaning that memory
has already been allocated and an initial grid built. We are confi-
dent that rebuild times of nested grids could become fast enough
for handling dynamic scenes.

REFERENCES

[1] J. Arvo and D. Kirk. A survey of ray tracing acceleration techniques.
In A. S. Glassner, editor, An Introduction to Ray Tracing. Academic
Press, San Diego, CA, 1989.

[2] J. G. Cleary and G. Wyvill. Analysis of an algorithm for fast ray trac-
ing using uniform space subdivision. The Visual Computer, 4(2):65–
83, 1988.

[3] D. Cohen and Z. Sheffer. Proximity clouds–an acceleration technique
for 3d grid traversal. The Visual Computer, 11(1):27–38, 1994.

[4] O. Devillers. Méthodes d’optimisation du tracé de rayons. PhD thesis,
Université de Paris-sud, 1988.

[5] O. Devillers. The macro-regions: an efficient space subdivision struc-
ture for ray tracing. In Proceedings of Eurographics ’89, pages 27–38.
Elsevier Science Publishers, September 1989.

[6] A. Fujimoto, T. Tanaka, and K. Iwata. ARTS: Accelerated ray tracing
system. IEEE CG&A, 6(4):16–26, 1986.

[7] T. Ize, I. Wald, C. Robertson, and S. G. Parker. An evaluation of paral-
lel grid construction for ray tracing dynamic scenes. In Proceedings of
the 2006 IEEE Symposium on Interactive Ray Tracing, pages 47–55,
2006.

[8] D. Jevans and B. Wyvill. Adaptive voxel subdivision for ray tracing.
Proceedings of Graphics Interface ’89, pages 164–172, June 1989.

[9] D. Kirk and J. Arvo. The ray tracing kernel. In Proceedings of Aus-
graph, pages 75–82, 1988.

[10] K. S. Klimaszewski and T. W. Sederberg. Faster ray tracing using
adaptive grids. IEEE CG&A, 17(1):42–51, Jan./Feb. 1997.

[11] I. Wald, T. Ize, A. Kensler, A. Knoll, and S. G. Parker. Ray tracing
animated scenes using coherent grid traversal. ACM Transactions on
Graphics, 25(3):485–493, 2006. (Proceedings of ACM SIGGRAPH).

[12] I. Wald, W. R. Mark, J. Günther, S. Boulos, T. Ize, W. Hunt, S. G.
Parker, and P. Shirley. State of the art in ray tracing animated scenes.
In State of the Art Reports, Eurographics 2007, 2007.

[13] B. Walter and P. Shirley. Cost analysis of a monte-carlo radiosity algo-
rithm. Technical Report PCG-95-3, Program of Computer Graphics,
Cornell University, 1995.

