
BSP Tree
Thiago Ize
Ingo Wald
Steven G. Parker

Ray Tracing with the

BSP Tree
Thiago Ize
Ingo Wald
Steven G. Parker

RealRay Tracing with the

History

• General BSPs are commonly assumed to be:

• Too complicated to build

• Numerically unstable

• Slow to traverse

• Nothing published about actually trying them for ray tracing

kd-trees

• BSP with axis-aligned splitting planes

• Fast high quality SAH build

• Often the fastest acceleration structure for static scenes

Allow only axis
aligned splitting planes

(2 possible splits)

O(n log n)

half the node still has empty space

kd-trees

• BSP with axis-aligned splitting planes

• Fast high quality SAH build

• Often the fastest acceleration structure for static scenes

Allow only axis
aligned splitting planes

(2 possible splits)

Cutting out empty
space

O(n log n)

half the node still has empty space

kd-trees

• BSP with axis-aligned splitting planes

• Fast high quality SAH build

• Often the fastest acceleration structure for static scenes

Allow only axis
aligned splitting planes

(2 possible splits)

Cannot split triangles
into separate nodes

Cutting out empty
space

O(n log n)

half the node still has empty space

Restricted BSPs

• Kammaje and Mora RT07 (introduction of RBSP)

• Budge et al. RT08 (much faster builds)

• Introduce a fixed number of additional splitting plane normals

• Currently still slower than kd-trees

Allow splitting planes
at every 30 degrees

(12 possible splits)

Builds are now faster. Might be interesting to use a RBSP build for the top level of the tree
and then a real BSP build for the lower levels.

Restricted BSPs

• Kammaje and Mora RT07 (introduction of RBSP)

• Budge et al. RT08 (much faster builds)

• Introduce a fixed number of additional splitting plane normals

• Currently still slower than kd-trees

Allow splitting planes
at every 30 degrees

(12 possible splits)

Cutting out empty
space

Builds are now faster. Might be interesting to use a RBSP build for the top level of the tree
and then a real BSP build for the lower levels.

Restricted BSPs

• Kammaje and Mora RT07 (introduction of RBSP)

• Budge et al. RT08 (much faster builds)

• Introduce a fixed number of additional splitting plane normals

• Currently still slower than kd-trees

Allow splitting planes
at every 30 degrees

(12 possible splits)

Cutting out empty
space

Cannot split triangles
into separate nodes

Builds are now faster. Might be interesting to use a RBSP build for the top level of the tree
and then a real BSP build for the lower levels.

BSPs

• Allow arbitrary splitting plane normals

• Builds are slow

• Faster than kd-trees for rendering

Any splitting plane is
allowed

BSPs

• Allow arbitrary splitting plane normals

• Builds are slow

• Faster than kd-trees for rendering

Any splitting plane is
allowed

Cut out all empty
space

BSPs

• Allow arbitrary splitting plane normals

• Builds are slow

• Faster than kd-trees for rendering

Any splitting plane is
allowed

Cut out all empty
space

Able to split triangles
into separate nodes

Build

• Root node starts in axis-aligned bounding box (like kd-tree)

• Use the naive SAH kd-tree build (no optimizations)

• For each triangle, pick candidate splitting planes

• Evaluate cost of using that splitting plane

• Find surface areas of child nodes

• Count number of triangles on each side of splitting
plane

• Split using the candidate splitting plane with lowest cost
(SAH)

O(n2)

Build: splitting planes

• Which splitting planes to try?

• Axis aligned planes used in a kd-tree

• Use triangle face as a plane

• Use triangle edges as planes

• Could do other planes at cost of increased build time

planes on triangle edge are made orthogonal to triangle face

Build: surface area

• Compute actual node geometry after splitting parent node

• Find area of each face of child node to get total area

• This is the expensive step

Build: counting triangles with a BVH

• Use a BVH to quickly count tri on each side of split

• Use spheres for bounding volume (BSH)

• Build BSH exactly like a standard axis aligned BVH

• Lowers complexity from to probablyO(n2) O(n log2 n)

Counting is required by SAH
we use spheres for efficiency.
Refit after a split is performed (fast to do)

Build: counting triangles with a BVH

• Use a BVH to quickly count tri on each side of split

• Use spheres for bounding volume (BSH)

• Build BSH exactly like a standard axis aligned BVH

• Lowers complexity from to probablyO(n2) O(n log2 n)

Counting is required by SAH
we use spheres for efficiency.
Refit after a split is performed (fast to do)

Build: counting triangles with a BVH

• Use a BVH to quickly count tri on each side of split

• Use spheres for bounding volume (BSH)

• Build BSH exactly like a standard axis aligned BVH

• Lowers complexity from to probably

3

O(n2) O(n log2 n)

Counting is required by SAH
we use spheres for efficiency.
Refit after a split is performed (fast to do)

Build: counting triangles with a BVH

• Use a BVH to quickly count tri on each side of split

• Use spheres for bounding volume (BSH)

• Build BSH exactly like a standard axis aligned BVH

• Lowers complexity from to probably

3

O(n2) O(n log2 n)

Counting is required by SAH
we use spheres for efficiency.
Refit after a split is performed (fast to do)

Build: counting triangles with a BVH

• Use a BVH to quickly count tri on each side of split

• Use spheres for bounding volume (BSH)

• Build BSH exactly like a standard axis aligned BVH

• Lowers complexity from to probably

3

3

O(n2) O(n log2 n)

Counting is required by SAH
we use spheres for efficiency.
Refit after a split is performed (fast to do)

Build: counting triangles with a BVH

• Use a BVH to quickly count tri on each side of split

• Use spheres for bounding volume (BSH)

• Build BSH exactly like a standard axis aligned BVH

• Lowers complexity from to probably

31

3

O(n2) O(n log2 n)

Counting is required by SAH
we use spheres for efficiency.
Refit after a split is performed (fast to do)

Build: counting triangles with a BVH

• Use a BVH to quickly count tri on each side of split

• Use spheres for bounding volume (BSH)

• Build BSH exactly like a standard axis aligned BVH

• Lowers complexity from to probably

4 4

O(n2) O(n log2 n)

Counting is required by SAH
we use spheres for efficiency.
Refit after a split is performed (fast to do)

Build: SAH

Cost = PlnlCtri + PrnrCtri + Ctraversal

probabilities come from ratio of child SA to parent SA

Kd-trees are still good

• kd-tree traversals are cheaper than BSP traversals.

• kd-tree splitting planes can sometimes be almost as high
quality as a general BSP split

• Cheaper traversal + slightly increased cost of rendering node
might make kd-tree split better than the BSP split

• Use SAH to determine which
type of split is cheaper

• Could just directly use a
and a in SAH

CBSP

Ckd-tree

Build: combined SAH

• So what value of and should we use?
BSPkd-tree

Ckd-treeCBSP

kd-tree splits are likely to be most useful near root of tree because there are lots of triangles
and very accurate splits are not needed.
Near root of trees this SAH will almost never pick the kd-tree split.

Build: combined SAH

• So what value of and should we use?
BSPkd-tree

Ckd-treeCBSP

<

kd-tree splits are likely to be most useful near root of tree because there are lots of triangles
and very accurate splits are not needed.
Near root of trees this SAH will almost never pick the kd-tree split.

Build: combined SAH

• So what value of and should we use?
BSPkd-tree

Ckd-treeCBSP

0.75 · 0Ctri + 0.75 · 10000Ctri + Ckd-tree 0.76 · 0Ctri + 0.74 · 10000Ctri + CBSP

<

kd-tree splits are likely to be most useful near root of tree because there are lots of triangles
and very accurate splits are not needed.
Near root of trees this SAH will almost never pick the kd-tree split.

Build: combined SAH

• So what value of and should we use?
BSPkd-tree

Ckd-treeCBSP

0.75 · 0Ctri + 0.75 · 10000Ctri + Ckd-tree 0.76 · 0Ctri + 0.74 · 10000Ctri + CBSP

7400Ctri + CBSP7500Ctri + Ckd-tree

<

kd-tree splits are likely to be most useful near root of tree because there are lots of triangles
and very accurate splits are not needed.
Near root of trees this SAH will almost never pick the kd-tree split.

Build: combined SAH

• So what value of and should we use?
BSPkd-tree

Ckd-treeCBSP

0.75 · 0Ctri + 0.75 · 10000Ctri + Ckd-tree 0.76 · 0Ctri + 0.74 · 10000Ctri + CBSP

7400Ctri + CBSP7500Ctri + Ckd-tree

7500Ctri + Ckd-tree < 7400Ctri + CBSP

100Ctri + Ckd-tree < CBSP

<

kd-tree splits are likely to be most useful near root of tree because there are lots of triangles
and very accurate splits are not needed.
Near root of trees this SAH will almost never pick the kd-tree split.

Build: combined SAH

• So what value of and should we use?
BSPkd-tree

Ckd-treeCBSP

0.75 · 0Ctri + 0.75 · 10000Ctri + Ckd-tree 0.76 · 0Ctri + 0.74 · 10000Ctri + CBSP

7400Ctri + CBSP7500Ctri + Ckd-tree

7500Ctri + Ckd-tree < 7400Ctri + CBSP

100Ctri + Ckd-tree < CBSP

<

.01nCtri + Ckd-tree < CBSP

kd-tree splits are likely to be most useful near root of tree because there are lots of triangles
and very accurate splits are not needed.
Near root of trees this SAH will almost never pick the kd-tree split.

Build: combined SAH

• So what value of and should we use?
BSPkd-tree

Ckd-treeCBSP

0.75 · 0Ctri + 0.75 · 10000Ctri + Ckd-tree 0.76 · 0Ctri + 0.74 · 10000Ctri + CBSP

7400Ctri + CBSP7500Ctri + Ckd-tree

7500Ctri + Ckd-tree < 7400Ctri + CBSP

100Ctri + Ckd-tree < CBSP

<

.01nCtri + Ckd-tree < CBSP

CBSP varies linearly with
number of triangles

kd-tree splits are likely to be most useful near root of tree because there are lots of triangles
and very accurate splits are not needed.
Near root of trees this SAH will almost never pick the kd-tree split.

Traversal

• Identical to kd-tree except:

• Distance to plane computation more expensive

• Epsilon test when comparing distance

• Optimize by still using kd-tree traversal for axis aligned splits

Traversal based triangle intersection

• BSP can tightly contain a triangle

• If ray hits a leaf node with a tightly contained triangle, triangle
must be hit

• Ray distance already computed during traversal, so we know
where triangle is hit

• % time spent in triangle intersection for BSP is already low, so
this offers only modest speedups (more interesting from
academic perspective)

Results

• Ray cast

• Test against very coherent rays

• Use ray packets, SSE, etc...

• Path trace

• Progressively more incoherent with each bounce

• Single ray traversal

Results

• Compare against a highly optimized kd-tree

• Packetized SSE for ray casting

• Single ray for path tracing

• SAH with perfect splits

Results: Build times

36min 56tri/s
122K tri

9sec 65tri/s
596 tri

19min 60tri/s
69K tri

65min 47tri/s
183K tri

112min 42tri/s
283K tri

23.6h 25tri/s
2.14M tri

23.6h 25tri/s
2.14M tri

23.6h 25tri/s
2.14M tri

slow build, but ok as a *preprocess*
clearly less than O(n^2)
kd-tree about 100x faster (kd-tree sodahall 6 minutes)

Results: Path traced/raycasted improvements

2.4x/3.3x~/26x 1.2x/1.2x ~/1.3x

1.1x/1.1x 2.5x/2.4x 1.3x/1.8x 1.2x/1.2x

Results: Why is it faster?

• Time spent traversing actually went slightly up

• A BSP traversal is more expensive than a kd-tree traversal

• More node traversals performed

• Time spent intersecting triangles went down (2x-50x)

• Able to better handle “complicated” geometry

• Most leaf nodes refined down to only 1 triangle

kd-tree BSP

Example reduces # of tri intersections for that root node by 3x
More node traversals == less triangle intersections.

Results: Why is it faster?

• Time spent traversing actually went slightly up

• A BSP traversal is more expensive than a kd-tree traversal

• More node traversals performed

• Time spent intersecting triangles went down (2x-50x)

• Able to better handle “complicated” geometry

• Most leaf nodes refined down to only 1 triangle

kd-tree BSP

Example reduces # of tri intersections for that root node by 3x
More node traversals == less triangle intersections.

Results: Why is it faster?

• Time spent traversing actually went slightly up

• A BSP traversal is more expensive than a kd-tree traversal

• More node traversals performed

• Time spent intersecting triangles went down (2x-50x)

• Able to better handle “complicated” geometry

• Most leaf nodes refined down to only 1 triangle

kd-tree BSP

Example reduces # of tri intersections for that root node by 3x
More node traversals == less triangle intersections.

Results: Why is it faster?

• Time spent traversing actually went slightly up

• A BSP traversal is more expensive than a kd-tree traversal

• More node traversals performed

• Time spent intersecting triangles went down (2x-50x)

• Able to better handle “complicated” geometry

• Most leaf nodes refined down to only 1 triangle

kd-tree BSP

Example reduces # of tri intersections for that root node by 3x
More node traversals == less triangle intersections.

BSP kd-tree
difference

pixel intensity == time spent rendering pixel
1.1x

1.2x

1.2x

Performance robustness
BSPkd-tree

bin/mantar -model ~/work/DynRT-SIGGRAPH/Models/sodahall.iw -as BSP -load ~/data/BSPs/sodahall.bbsp -noload ~/data/KDTree/sodahall.kdtreer -np 4 -lightOrigin -0.488 0.4905 0.067566 -ui
"camerapath(-file ../soda-room.path -delta_t 0.01 -delta_time 0.03 -behavior loop)" --timeview

Future work and Conclusion

• Faster build!

• RBSP for top level, full BSP for lower level of tree (possibly
huge savings)

• Parallel build (soda hall in 3 hours on 8 core machine)

• Optimize the build (2x speedup?)

• Use BSP only for nodes kd-tree cannot further refine

• Adapting to work with other primitives

• BSP is very useful if build can be done as an offline preprocess

